EE539: Analog Integrated Circuit Design; HW2

Nagendra Krishnapura (nagendra@iitm.ac.in)

due on 30 Jan. 2006

 $0.18\,\mu\mathrm{m}$ technology parameters: $V_{Tn}=0.5\,\mathrm{V};$ $V_{Tp}=0.5\,\mathrm{V};$ $K_n=300~\mu\mathrm{A}/V^2;$ $K_p=75~\mu\mathrm{A}/V^2;$ $A_{VT}=3.5\,mV~\mu\mathrm{m};$ $A_{\beta}=1\%~\mu\mathrm{m};$ $V_{dd}=1.8\,\mathrm{V};$ $L_{min}=0.18~\mu\mathrm{m},$ $W_{min}=0.24~\mu\mathrm{m};$ Ignore body effect unless mentioned otherwise.

- Textbook problem 2.11 (Textbook Fig. 2.48; You don't have to sketch-just show the calculations)
- 2. Design a 1 pF capacitor using A square nMOS device (drain/source shorted). Plot its capacitance as a function of voltage (0 to 1.8 V). What is the usable voltage range of this capacitor? Repeat the above for a square pMOS device. Repeat the above for a parallel combination of equal sized nMOS and pMOS.

A square Metal1-Metal2 structure

A square sandwiched structure with poly, M2, M4 tied together and M1, M3, M5 tied together.

- 3. Plot the f_T of an nMOS device with W/L from $3.6~\mu\mathrm{m}/0.18~\mu\mathrm{m}$ to $115.2~\mu\mathrm{m}/5.76~\mu\mathrm{m}$ with W and L doubled in each step. Comment on the results.
- 4. Two transistors carrying a current I_D are required to have a current mismatch $\leq \sigma_{I_D}$ and operate in saturation with an output voltage V_{out} (Fig. 1). Compute the transistor dimensions and its f_T in terms of the mismatch con-

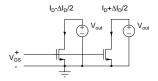


Figure 1:

stants A_{VT} and A_{β} , I_{D} , $\sigma_{I_{D}}$ and V_{out} . Comment on tradeoffs between speed, voltage, and precision.

- 5. The current in a velocity saturated device is given by $I_D \approx WC_{ox}(V_{GS}-V_T)v_{sat}$ where v_{sat} is the saturation velocity. Compute the g_m and the f_T of such a device and comment on the qualitative differences from a device without velocity saturation. Simulate I_D versus L for a $10~\mu\text{m}/L$ device with $V_{GS}=V_{DS}=1~\text{V}$ and identify the onset of velocity saturation.
- 6. Plot g_m , g_{ds} , g_{mbs} , g_m/g_{ds} , f_T , V_{GS} , and $V_{DS,SAT}^{-1}$ as a function of I_D (from $1\,\mu\mathrm{A}$ to $100\,\mu\mathrm{A}$) for a diode connected nMOS transistor for two cases: $W/L = 5\,\mu\mathrm{m}/0.5\,\mu\mathrm{m}$ and $W/L = 25\,\mu\mathrm{m}/2.5\,\mu\mathrm{m}$. In each case, overlay the plots for $0^\circ\mathrm{C}$ and $100^\circ\mathrm{C}$.
- 7. Repeat the previous problem for pMOS.

 g_m , g_{ds} , g_{mbs} , V_{GS} , and $V_{DS,SAT}$ will be reported by the simulator at the dc operating point. Calculate f_T