EE539: Analog Integrated Circuit Design; HW1

Nagendra Krishnapura (nagendra@iitm.ac.in)

due on 16 Jan. 2006

Submit all solutions by email as a single pdf file; Present the solutions in the same order as the problems below.
$0.18 \mu \mathrm{~m}$ technology parameters: $V_{T n}=0.5 \mathrm{~V}$; $V_{T p}=0.5 \mathrm{~V} ; K_{n}=300 \mu \mathrm{~A} / V^{2} ; K_{p}=75 \mu \mathrm{~A} / V^{2}$; $A_{V T}=3.5 \mathrm{mV} \mu \mathrm{m} ; A_{\beta}=1 \% \mu \mathrm{~m} ; V_{d d}=1.8 \mathrm{~V}$; $L_{\text {min }}=0.18 \mu \mathrm{~m}, W_{\text {min }}=0.24 \mu \mathrm{~m}$; Ignore body effect unless mentioned otherwise.

1. Textbook problem 2.6 (Textbook Figure 2.43). I_{x} and g_{m} of M_{1}.

Figure 1: Problem 2
2. Calculate $V_{\text {out }}$ in Fig. 1. Comment.
3. Calculate $V_{\text {out }}$ in Fig. 2. Comment.
4. Calculate $V_{1,2}$ in Fig. 3(a, b). What is a possible application of this circuit? What is the minimum $V_{d d}$ required? How do $V_{1,2}$ change if the substrates of the transistors are not connected to their individual sources (Fig. 3(c, d)).

Figure 2: Problem 3

Figure 3: Problem 4
5. (For this problem, The minimum usable dimension is $0.5 \mu \mathrm{~m}$.) A MOSFET is used as a $100 \mathrm{k} \Omega$ resistor (Fig. 4) $V_{0}=0.5 \mathrm{~V}$ and v_{x} is restricted to 0.2 V . The nonlinearity of the resistance should be at most 5\%. Calculate the gate bias $V_{\text {bias }}$ and the dimensions of the transistor. If a linear resistive material with a sheet resistance of $8 \Omega / \mathrm{sq}$. is available, what would be its dimensions? What is the motivation for using a transistor instead of a resistive material?

$$
V_{0}+v_{x} / 2 \underset{100 \mathrm{k} \Omega}{W} V_{0}-v_{x} / 2
$$

Figure 4: Problem 5

The following are to be simulated. Repeat for pMOS and nMOS.

1. Plot I_{D} vs. $V_{D S}\left(0\right.$ to 1.8 V) for $V_{G S}$ from 0 to 1.5 V in steps of 0.25 V and $V_{B S}=0 \mathrm{~V}$. Overlay the plots for $W / L=5 \mu \mathrm{~m} / 0.5 \mu \mathrm{~m}$ and $W / L=$ $25 \mu \mathrm{~m} / 2.5 \mu \mathrm{~m}$. Comment on the results.
2. Plot I_{D} vs. $V_{D S}(0$ to 1.8 V$)$ for $V_{B S}$ from 1 V to 0 V in steps of 0.25 V and $V_{G S}=1.5 \mathrm{~V}$. Overlay the plots for $W / L=5 \mu \mathrm{~m} / 0.5 \mu \mathrm{~m}$ and $W / L=25 \mu \mathrm{~m} / 2.5 \mu \mathrm{~m}$. Comment on the results.
3. $\operatorname{Plot}(\log -\log) I_{D}$ vs. $V_{G S}(18 \mathrm{mV}$ to 1.8 V$)$ for $V_{D S}=1 \mathrm{~V}$ and $V_{B S}=0 \mathrm{~V}$. Overlay the plots for $W / L=5 \mu \mathrm{~m} / 0.5 \mu \mathrm{~m}$ and $W / L=25 \mu \mathrm{~m} / 2.5 \mu \mathrm{~m}$ and temperatures of $\{0,27,100\}^{\circ} \mathrm{C}$. Comment on the results. Calculate the subthreshold slope η.
4. Plot $(\log -\log) I_{D}$ vs. $\quad V_{B S}(-1.5 \mathrm{~V}$ to $-15 \mathrm{mV})$ for $V_{D S}=1 \mathrm{~V}$ and $V_{G S}=1 \mathrm{~V}$. Overlay the plots for $W / L=5 \mu \mathrm{~m} / 0.5 \mu \mathrm{~m}$ and $W / L=25 \mu \mathrm{~m} / 2.5 \mu \mathrm{~m}$ and temperatures of $\{0,27,100\}^{\circ} \mathrm{C}$. Comment on the results.
