EE539: Analog Integrated Circuit Design; HW1

Nagendra Krishnapura (nagendra@iitm.ac.in)

due on 16 Jan. 2006

Submit all solutions by email as a single pdf file; Present the solutions in the same order as the problems below.

0.18 μ m technology parameters: $V_{Tn} = 0.5$ V; $V_{Tp} = 0.5$ V; $K_n = 300 \ \mu \text{A}/V^2$; $K_p = 75 \ \mu \text{A}/V^2$; $A_{VT} = 3.5 \ mV \ \mu$ m; $A_{\beta} = 1\% \ \mu$ m; $V_{dd} = 1.8$ V; $L_{min} = 0.18 \ \mu$ m, $W_{min} = 0.24 \ \mu$ m; Ignore body effect unless mentioned otherwise.

1. Textbook problem 2.6 (Textbook Figure 2.43). I_x and g_m of M_1 .

Figure 1: Problem 2

- 2. Calculate V_{out} in Fig. 1. Comment.
- 3. Calculate Vout in Fig. 2. Comment.
- 4. Calculate $V_{1,2}$ in Fig. 3(a, b). What is a possible application of this circuit? What is the minimum V_{dd} required? How do $V_{1,2}$ change if the substrates of the transistors are not connected to their individual sources (Fig. 3(c, d)).

Figure 2: Problem 3

5. (For this problem, The minimum usable dimension is 0.5 μm.) A MOSFET is used as a 100 kΩ resistor (Fig. 4) V₀ = 0.5 V and v_x is restricted to 0.2 V. The nonlinearity of the resistance should be at most 5%. Calculate the gate bias V_{bias} and the dimensions of the transistor. If a linear resistive material with a sheet resistance of 8 Ω/sq. is available, what would be its dimensions? What is the motivation for using a transistor instead of a resistive material?

$$V_0 + v_x/2$$
 $V_0 - v_x/2$
 $V_0 + v_x/2$ $V_0 - v_x/2$

Figure 4: Problem 5

The following are to be simulated. Repeat for pMOS and nMOS.

- 1. Plot I_D vs. V_{DS} (0 to 1.8 V) for V_{GS} from 0 to 1.5 V in steps of 0.25 V and $V_{BS} = 0$ V. Overlay the plots for $W/L = 5 \,\mu\text{m}/0.5 \,\mu\text{m}$ and $W/L = 25 \,\mu\text{m}/2.5 \,\mu\text{m}$. Comment on the results.
- 2. Plot I_D vs. V_{DS} (0 to 1.8 V) for V_{BS} from -1 V to 0 V in steps of 0.25 V and $V_{GS} = 1.5$ V. Overlay the plots for $W/L = 5 \,\mu m/0.5 \,\mu m$ and $W/L = 25 \,\mu m/2.5 \,\mu m$. Comment on the results.
- 3. Plot (log-log) I_D vs. V_{GS} (18 mV to 1.8 V) for $V_{DS} = 1$ V and $V_{BS} = 0$ V. Overlay the plots for $W/L = 5 \,\mu m/0.5 \,\mu m$ and $W/L = 25 \,\mu m/2.5 \,\mu m$ and temperatures of $\{0, 27, 100\}$ °C. Comment on the results. Calculate the subthreshold slope η .
- 4. Plot (log-log) I_D vs. V_{BS} (-1.5 V to -15 mV) for $V_{DS} = 1$ V and $V_{GS} = 1$ V. Overlay the plots for $W/L = 5 \,\mu m/0.5 \,\mu m$ and $W/L = 25 \,\mu m/2.5 \,\mu m$ and temperatures of $\{0, 27, 100\}^{\circ}$ C. Comment on the results.