Fall 2004; E6316: Analog Systems in VLSI; HW4

Nagendra Krishnapura (nkrishna@ vitesse.com)

due on 9 Nov. 2004

Figure 1:

1. Fig. 1 shows a two step flash converter. The overall resolution is $N=M+K$ bits. The error in each block is shown as an analog voltage referred to either the input or the output. i.e. The $m^{\text {th }}$ transition of A/D1 occurs at $m V_{L S B 1}+V_{e, A / D 1}[m]$ and the $m^{\text {th }}$ output of D/A is $m V_{L S B 1}+V_{e, D / A}[m] .0 \leq$ $m \leq 2^{M}-1$ and $0 \leq k \leq 2^{K}-1 . V_{L S B}=V_{r e f} / 2^{N}$ is the LSB voltage of the overall converter.
(a) (2 pts.) Derive the value of the input $V_{i n}$ which corresponds to $m^{\text {th }}$ transition of A/D1. You should get an expression that combines the errors from different components.
(b) (2 pts.) Derive the value of the input $V_{i n}$ which corresponds to $k^{\text {th }}$ transition of A/D2. Assume that $\mathrm{A} / \mathrm{D} 1$ is between $m^{\text {th }}$ and $(m+1)^{\text {th }}$ transitions.
(c) (2 pts.) In the result from (a) above, assume that the different terms contribute equally to the total error, which is constrained to $0.5 V_{L S B}$. Calculate the individual errors in terms of $V_{\text {ref }}$.
(d) (2 pts.) In the result from (b) above, assume that the different terms contribute equally to the total error, which is constrained to $0.5 V_{L S B}$. Calculate the individual errors in terms of $V_{r e f}$.
(e) (4 pts.) Calculate the allowable errors in each component for a 8 bit converter, for $M=5, K=3$ and $M=4, K=4$. Express the accuracy as an effective number of bits (A component with a voltage range $V_{\text {ref }}$ has an L bit accuracy if its error magnitude is less than $V_{\text {ref }} / 2^{L+1}$, i.e. half LSB at L bits). If (c) and (d) give different error constraints for the same component, use the more conservative constraint.
2. Assume that you have a 2 step flash A / D converter (no digital error correction) with 2 bits in each stage. All components other than the residue amplifier are ideal. Sketch the A/D characteristics for the following cases. Compare it with the ideal characteristics.
(a) (2 pts.) The amplifier has a gain $G>4$
(b) (2 pts.) The amplifier has a gain $G<4$
(c) (2 pts.) The amplifier has an input referred offset $V_{o s}>0$
(d) (2 pts.) The amplifier has an input referred offset $V_{o s}<0$
