E4332: VLSI Design Laboratory

Nagendra Krishnapura Columbia University Spring 2005: Lectures nkrishna@vitesse.com

Digital Clock: Timebase #1

- 60Hz from mains source
- Clip, buffer, and divide by 60 to get 1Hz clock

Digital Clock: Timebase #2

- Crystal oscillator
- Accurate frequency, low drift

Crystal equivalent circuit

- Series(ω_{s}) and parallel(ω_{p}) resonance
- Extremely high Q ~ 10,000s
- Oscillator freq. usually between $\omega_{\rm g}$ and $\omega_{\rm g}$

Crystal equivalent circuit

- Overtone modes present in the crystal
- Can oscillate at these frequencies
- Overtone modes need to be suppressed

Oscillator principle

 C₁, C₂, g_m result in a negative resistance and compensate resonator loss.

Oscillator principle

- Circuit oscillates at a frequency of net zero reactance
 - Impedance zero (series mode)
 - Admittance zero (parallel mode)
- Series/shunt capacitors can tune the oscillation frequency slightly
- Oscillation frequency between ω_{s} and ω_{p}
- $|g_m/\omega^2 C_1 C_2|$ increases \Rightarrow greater loss compensation (greater oscillator loop gain)
- g_{ds} results in extra loss; minimize

Oscillator principle

- Pole/zero of impedance and admittance lie between $\omega_{\!_{S}}$ and $\omega_{\!_{p}}$

Crystal oscillators

- Crystal replaces inductor-parallel mode
- Inverter biased in high gain region acts as a $g_{\rm m}$

CMOS crystal oscillators

Package Size		DS26	DS15	DS10	
Nominal frequency	FL	32.768	32.768	32.768	kHz
Load capacitance 1)	CL	8.2	8.2	8.2	pF
Frequency tolerance ²⁾	∆F/F	+/-20	+/-20	+/-20	ppm
	∆F/F	+/-30	+/-30	+/-30	ppm
	∆F/F	+/-100	+/-100	+/-100	ppm
Series resistance typ./max.	R _s	30 / 42	35 / 50	45 / 60	kΩ
Motional capacitance typ.	C ₁	2.1	2.1	2.1	fF
Static capacitance typ.	C ₀	0.9	0.9	0.9	pF
Drive level max.	Р	1.0	1.0	1.0	μW
Quality factor min.	Q	55'000	45'000	38'000	
Insulation resistance min.	R _i	500	500	500	MΩ
Aging first year max.	∆F/F	+/-3	+/-3	+/-3	ppm
Turnover temperature	T ₀	25 +/-5	25 +/-5	25 +/-5	°C
Frequency vs. temperature	$\Delta F/F_0$	$-0.035 \text{ ppm}/_{C^2} (T - T_0)^2 + -10\%$			ppm

1) Other load capacitances on request.

2) Tighter and wider frequency tolerances on request.

• Crystal power dissipation in parallel resonant mode ~ $V_{rms}^2/R_s \cdot 1/1 + Q^2(C_m/2C_0)^2$

CMOS crystal oscillator design

- 32,768Hz crystal: suitable for a digital clock
- Determine C_m, L_m, R_m from crystal specs.
 Crystal can be modeled using these.
- Design a suitable active element for the oscillator. e.g. inverter
- Variable C₁ or C₂ useful for trimming the frequency.
- Calculate crystal power dissipation. Ensure that it is within specs.

Digital clock: dividers

Cascade structure

Digital clock: dividers

c) general 4 bit state machine

- Dividers: simple state machines
- Avoid glitches

Digital clock: latches

• Low speed-static latches

Digital clock: displays

- Display type: LED: bright / LCD: low power
- Interface type: 7 segment / dot matrix / anything else

Digital clock: display drivers

Digital clock: display drivers

- Switch+resistor
 - Used in discrete drivers
- Current source drive
 - Easily implemented in CMOS
- Gate switching
 - Small switches, complementary switching control signals
- Source switching
 - Large switches, single switching control signal

Digital clock: display drivers

- Output current drive ~ mA (LEDs)
- Progressively larger driver for large loads

Digital clock: continuous drive

- Simple
- 7*N pins, drivers for N displays

Digital clock: multiplexed drive

Digital clock: Multiplexed drive

- Cycle through N displays at a high rate ~ few kHz to result in a persistent display
- N+7 pins, drivers for N displays
- Display blanking to avoid wrong digit flickering. Enable only when digit input is stable
- Larger peak current (~sqrt(N)) to preserve brightness
- Dot matrix displays: multiplexed row/column drivers

Digital clock: Time set function

• Advance minute/hour counter @ 1/sec.

Digital clock: Time set function

• Advance minute/hour counter @ input pulse rate.

Digital clock: Time set function

- Switching between "setting" mode and "normal" mode should be glitch free-i.e. No spurious edges.
- Off chip switch inputs should be debounced.

Digital clock: Alarm function

- Digital clock, AM radio: low frequency circuits, but
 - Need to complete it!
 - Minimize power
 - Minimize supply voltage
 - etc.

Digital clock: Alarm function

• Alarm circuitry core same as clock circuitry.

Digital clock: Design review

- Present details of
 - Timebase
 - Supply voltage
 - Dividers
 - Display
 - Decoders
 - Display drivers
 - Time setting
 - Alarm
 - Anything else you want to put in

Digital clock: design flow

- Dividers, decoders, drivers ...
- Prioritize essential blocks.