E4332: VLSI Design Laboratory

Nagendra Krishnapura Columbia University Spring 2005: Lectures nkrishna@vitesse.com

AM radio receiver

- AM radio signals: Audio signals on a carrier
- Intercept the signal
- Amplify the signal
- Demodulate the signal-recover the audio
- Amplify the audio to drive a speaker

AM signal basics: time domain

• Envelope(peak) of the carrier is the message

AM signal basics: frequency domain

Sidebands around the carrier

AM signals

Sidebands around the carrier

Broadcast AM signals

 Broadcast AM channels 10kHz from each other

Receiver bandwidth

Receiver bandwidth must be constant

Receiver bandwidth

- f_c/f_{bw} =53 at the lowest end
- f_c/f_{bw} =161 at the highest end
- High Q (~ quality factor)
- Maintain constant bandwidth

Receiver sensitivity and selectivity

- Sensitivity: ability to detect small signals
 - AM radio sensitivity: ~50uV signals with 30% modulation
- Selectivity: ability to reject adjacent signals
 - Dictated by the choice of architecture in our case

Tuned Radio Frequency(TRF) receiver

- Input tuned circuit is the only filter providing selectivity
- Coil on a ferrite rod

TRF receiver: input tuning

2nd order filter basics

• Resonant frequency(radians per second) ω_{o}

 $= 1/sqrt(LC_{tune})$

- 3dB bandwidth ω_{h}
- Quality factor $Q = \omega_0 / \omega_b$
- Series loss: $Q_s = 1/R_s sqrt(L/C)$
 - Bandwidth = R_s/L
- Parallel loss: $Q_{D} = R_{D} sqrt(C/L)$
 - Bandwidth $= 1/CR_{p}$

TRF receiver: input tuning

- Resonant frequency(1/sqrt(LC_{tune})) varies
 from 530 to 1610kHz, approx 3x
- Fixed L, $\Rightarrow C_{tune}$ varies by 9x
- Series $loss(R_s)$ only
 - Bandwidth = R_s/L
 - No change with C_{tune}
- Parallel loss(R_D) only
 - Bandwidth = $1/C_{tune}R_{s}$
 - varies by 9x with change in C_{tun}

TRF receiver: input tuning

- Some bandwidth variation with tuning
 - Bandwidth < 10kHz at low end
 - Bandwidth > 10kHz at high end
- 2nd order filter. Limited out of band attenuation
- ⇒ Poor selectivity in a TRF receiver
- Suggestion: Use a very large on chip R_p to maintain as high a Q as possible

TRF receiver: Input amplifier

- High impedance input necessary
 - Source follower buffer
 - Differential amplifier

TRF receiver: Input amplifier

Use large resistors for input biasing

TRF receiver: Detector

- No diodes in CMOS process
- Input amplitude > diode drop
- Use of an amplifier in feedback to improve sensitivity

AM radio: specifications

Signal levels:

- Input from $50\mu V$ to 5mV
- RF amplifier with AGC
- Output of RF amplifier with AGC from 50mV to 200mV
 - Max. gain = $50 \text{mV}/50 \mu \text{V} = 1000$ (60dB)
 - Min. gain = 200 mV/5 mV = 40 (32 dB)
 - Total gain variability = 1:25 (28dB)
- Detector must work with 50mV-200mV inputs
- Audio output max. ~ $1V_{pk}$ into 8Ω speaker

AM radio: specifications

<u>Misc.:</u>

- Supply voltage: 4.2-4.5V
 - Operation with 3x 1.5V batteries
 - Try to design for 4.2V

AM radio: input signal generation

- Use A from $50\mu V$ to 5mV
- Parameterized subcircuit(using pPar("m"), pPar("A") etc.) to make an AM source in Cadence

Amplifier basics

Amplifier basics

- Gain = $g_m(R_L + 1/g_{ds}) \sim g_m R_L$
- Gm = sqrt($\mu C_{ox}/2^*W/L^*I_0$) = $I_0/V_{GS}-V_T$
- Gain = $g_m R_L = I_0 R_L / V_{GS} V_T$
 - To change gain, $I_0^{R_L}$ (the dc voltage drop across R_L) or $V_{gs}^{-}-V_{\tau}$ (related to transistor current density) has to be changed
- Linearity improves with increasing V_{GS} - V_{T}
 - Amplifier: larger V_{gs} - V_{T}
 - Switch: smaller V_{gs} - V_{T}

RF amplifier I

RF amplifier I

- AC coupled to remove offsets
- Single ended input/output-simple
- Gain = $g_m R_L/2$ (Analyze this!)
- Ac coupling resistors: pMOS transistors
- Ac coupling corner frequency: ~ 1dB attenuation at lower end of AM band
- Capacitor values: 5pF or less
 Linear capacitor density ~ 0.9fF/μm²
- Resistor values: upto $10k\Omega$
 - Resistivity ~ $800\Omega/sq$.

RF amplifier II

RF amplifier II

- AC coupled to remove offsets
- Single ended input/output-simple
- Gain = $g_m R_L$ (Analyze this!)
- Ac coupling resistors: pMOS transistors
- Ac coupling corner frequency: ~ 1dB attenuation at lower end of AM band
- Capacitor values: 5pF or less
 Linear capacitor density ~ 0.9fF/µm²
- Resistor values: upto $10k\Omega$
 - Resistivity ~ $800\Omega/sq$.

RF amplifier III

RF amplifier III

- AC coupled to remove offsets
- Differential stages
 - 2x ac coupling capacitors
- Gain = $g_m R_L$ (Analyze this!)
- Ac coupling resistors: pMOS transistors
- Ac coupling corner frequency: ~ 1dB attenuation at lower end of AM band
- Capacitor values: 5pF or less
 - Linear capacitor density ~ 0.9fF/ μ m²
- Resistor values: upto $10k\Omega$

- Resistivity ~ $800\Omega/sq$.

Detector I

- Implement $v_i(t)$ *sgn($v_i(t)$) and filter the result
 - Full wave rectification and filtering
- Filtering capacitor C
 - retain audio, remove RF
 - External, if too large
- Upper pair should act as a switch: sgn(v_i(t))
- Lower pair should act as a linear amplifier (over the entire range of input signals)

Detector II

Detector II

- Full wave rectifier with differential inputs
- Half wave rectifier with single ended inputs
- Followed by amplifier and filter
- Filtering capacitor C
 - retain audio, remove RF
 - External, if too large

Peak detector

Detector III

Detector III

• Single stage "op amp"

Detector III

- Peak detector
- Discharge time constant slower than charging time constant
 - Negligible discharge between RF cycles
 - Full discharge between audio cycles

- Feedback for linearity
- Output current ~ $1V/8\Omega = 125$ mA

Class A opamp

• Need to bias with I0 = 125 mA!

V_{b1} and V_{b2} adjusted so that output branch
 Current is I₀
 Nagendra Krishnapura: VLSI Design Laboratory, Spring 2005

 Output pMOS gate pulled down to drive out a large current (> bias)

 Output nMOS gate pulled up to pull in a large current (> bias)

Class AB opamp: bias generation

Class AB opamp: full schematic

Bias current generation

common bias line; potential coupling between stages

 One external resistor to fix bias currents
 Bias line coupling can lead to problems in high gain multistage circuits

Bias current generation

- Separate mirroring branch for each stage
 + Reduced interstage coupling
- Increased current in bias branches

Bias current generation

RC filter to each biasing MOS transistor
 + Reduced interference and noise
 + No increase in bias currents

Passive components

Passive components: Resistors

- Passive resistor
 - Min. width=; few kOhms
- MOS resistors
 - Need bias
 - Greater range of values
 - Voltage tunability

Passive components: capacitors

- Passive (poly1-poly2)
 - Few pF
 - Bottom plate to ground parasitic
- MOS capacitors
 - Higher capacitor density
 - Need to be biased in strong inversion