Spring 2005; E4332: VLSI Design Laboratory; HW1

Nagendra Krishnapura (nkrishna@ vitesse.com)

due on 1 Feb. 2005

Figure 1:

1. Design a CMOS inverter with minimum length p - and n -channel devices with equal widths.
(a) Simulate the DC characteristics with a 5 V supply. What $V_{I H}, V_{I L}$, assuming that the output low and high voltages away from their ideal values by 10% of the supply voltage.
(b) Design a 7 stage ring oscillator using the inverters designed above. What is the oscillation frequency? Repeat the simulations with supply voltages from 2.5 V to 4.5 V in increments of 0.5 V and determine the oscillation frequency in each case.
2. Design an inverter with p - and n -channel MOS device widths such that the transition in the inverter's characteristics is in the middle of the 5 V supply rail. Repeat the DC and transient simulations specified in the previous problem with this inverter.
3. Determine "textbook" I_{D} vs. $V_{D S}\left(0 \leq V_{D S} \leq 5 \mathrm{~V}\right)$ curves (Fig. 2(a)) for $V_{G S}$ from 1 V to 5 V in increments of 0.5 V . Do this for transistors of lengths $0.5 \mu \mathrm{~m}, 1 \mathrm{mum}$, and 2 mum (three sets of curves for p - and n - channel transistors). Use $W / L=10$ in each case. In each of the curves, determine the slope in the saturation region, and the corresponding output resistance of the transistor.
4. Determine "textbook" I_{D} vs. $V_{G S}\left(0 \leq V_{G S} \leq 5 \mathrm{~V}\right)$ curves (Fig. 2(b)) with $V_{D S}=3 \mathrm{~V}$. Do this for transistors of lengths $0.5 \mu \mathrm{~m}, 1 \mathrm{mum}$, and 2 mum (three sets of curves each for p - and n - channel transistors). Use $W / L=10$ in each case. From the curves, determine the current factors $K_{n, p}$ and the threshold voltages $V_{T H N}, V_{T H P}$.

Figure 2:

Figure 3:
5. For the circuit in Fig. 3, carry out a parametric simulation as $I_{\text {in }}$ from $1 \mu \mathrm{~A}$ to $100 \mu \mathrm{~A}$ in 7 logarithmically spaced steps. Plot a) the DC value of $V_{G S}$, b) the inherent dc gain of the transistor $g_{m} / g_{d s}$, and c) the unity gain frequency of the transistor gain. For c), you need to do a parametric ac analysis. Do this for n - and p-channel transistors of $0.5 \mu \mathrm{~m}$ and $2 \mu \mathrm{~m}$ channel lengths. Use $W / L=10$ in each case.

