1. (a) Prove that convergence in probability implies convergence in distribution, and give a counter-example to show that the converse need not hold.

(b) Show that convergence in distribution to a constant random variable implies convergence in probability to that constant.

2. Assume that a gambler’s winnings are determined by i.i.d fair coin tosses, as follows. At each stage n, his total wealth Z_n is twice his previous wealth if the nth coin toss results in heads. The gambler is ruined (i.e., loses all his money) if the coin toss results in tails. What is his limiting expected wealth $\lim_n E[Z_n]$? What is the probability that the gambler is eventually ruined?

3. Let $\{X_n, n \geq 1\}$ be a sequence of independent random variables, such that $P\{X_n = 0\} = 1 - \frac{1}{n^2}$, and $P\{X_n = 1\} = \frac{1}{n^2}$.

 (i) Does X_n converge to 0 in probability?
 (ii) Does X_n converge to 0 almost surely?
 (iii) Does X_n converge to 0 surely?
 (iv) Does $E[X_n]$ converge to 0?
 (v) Does X_n converge to 0 in the mean-squared sense?
 (vi) Would any of your answers above change if the X_ns were dependent in some way, while maintaining the same marginals?

4. Let $\Omega = [0, 1]$ and let P be the uniform probability measure on Ω. Let X_n be a sequence of random variables defined on this probability space such that

$$X_n(\omega) = \begin{cases} 1 & \text{if } \omega \in [0, 1/n], \\ 0 & \text{otherwise.} \end{cases}$$

 (i) Write down the PMF of X_n. Are the X_ns independent?
(ii) Does X_n converge to 0 in probability?

(iii) Does X_n converge to 0 almost surely? Surely?

5. Exercise 5.6, the one about mosquitoes.

6. Optional: Exercise 5.8 deals with the first Borel-Cantelli lemma, which would be useful to learn for those who have not seen it yet. See Grimmett and Stirzaker for the second lemma, which is a partial converse to the first. In particular, try reconciling your answers to Problem 3(ii), 4(iii), and the example dealt with in class, in light of the two lemmas.