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9.1 Conditional Probability

Definition 9.1 Let (Ω,F ,P) be a probability space. Let B ∈ F such that P (B) > 0. Then the conditional
probability of A given B is defined as,

P (A|B) =
P (A ∩B)

P (B)
.

Caution: We cannot condition on sets of zero probability measure. For example, if Ω = [0, 1] endowed with
the Borel σ-algebra and a uniform probability measure, we cannot condition on the set of rationals.

Theorem 9.2 Let B ∈ F and P (B) > 0. Then, P (· |B) : F 7−→ [0, 1] is a probability measure on (Ω,F).

Proof: We need to show that the three properties of probability measure holds true, namely:

• P (Ω|B) = 1.

• P (φ|B) = 0.

• Countable additivity property.

We have,

P (Ω|B) =
P (Ω ∩B)

P (B)
=

P (B)

P (B)
= 1.

P (φ|B) =
P (φ ∩B)

P (B)
=

P (φ)

P (B)
= 0.

We are now left with proving countable additivity property. Let A1, A2, . . . be disjoint. We need to show
that,

P

( ∞⋃
i=1

Ai|B

)
=

∞∑
i=1

P (Ai|B) .

Consider,

P

( ∞⋃
i=1

Ai|B

)
=

P (
⋃∞

i=1Ai ∩B)

P (B)
=

P (
⋃∞

i=1 (Ai ∩B))

P (B)
.

Since Ai are disjoint, Ai ∩B are also disjoint. Therefore we can write the following:

P (
⋃∞

i=1 (Ai ∩B))

P (B)
=

∞∑
i=1

P (Ai ∩B)

P (B)
=

∞∑
i=1

P (Ai|B) .
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9.1.1 Properties of Conditional Probability

1. The Law of Total Probability: Let A ∈ F and let {Bi, i = 1, 2, . . .} be events that partition Ω (by
partition we mean

⋃
i∈N

Bi = Ω and Bi ∩Bj = φ, ∀i 6= j), with P (Bi) > 0, ∀i. Then,

P (A) =

∞∑
i=1

P (A|Bi)P (Bi) .

Proof: We know that {Bi, i = 1, 2, . . .} partitions Ω. Hence {A ∩ Bi, i = 1, 2, . . .} partitions A.
Therefore, by the countable additivity property, we have

P (A) = P

( ∞⋃
i=1

(A ∩Bi)

)
=

∞∑
i=1

P (A ∩Bi) .

and P (A ∩Bi) = P (A|Bi)P (Bi) , ∀i. Therefore,

∞∑
i=1

P (A ∩Bi) =

∞∑
i=1

P (A|Bi)P (Bi) .

Note: In particular, if B is such that 0 < P (B) < 1, then,

P (A) = P (A|B)P (B) + P (A|Bc)P (Bc) .

2. Bayes’ Rule: Let A ∈ F , with P (A) > 0 and let {Bi, i = 1, 2, . . .} be a partition of Ω such that
P (Bi) > 0 ∀i. Then, we have,

P (Bi|A) =
P (A|Bi)P (Bi)∑∞

j=1 P (A|Bj)P (Bj)
.

Proof:

P (Bi|A) =
P (A ∩Bi)

P (A)
=

P (Bi)P (A|Bi)

P (A)
=

P (A|Bi)P (Bi)∑∞
j=1 P (A|Bj)P (Bj)

.

3. For any sequence of events {Ai}, we have the following relation:

P

( ∞⋂
i=1

Ai

)
= P (A1)

∞∏
i=2

P (Ai|A1 ∩A2 ∩ . . . ∩Ai−1) .

as long as all the conditional probabilities are well defined.
Proof: We know that the following holds for finite set of events:

P

(
n⋂

i=1

Ai

)
= P (A1)

n∏
i=2

P (Ai|A1 ∩A2 ∩ . . . ∩Ai−1) .

Now taking limits, we have:

lim
n→∞

P

(
n⋂

i=1

Ai

)
= lim

n→∞
P (A1)

n∏
i=2

P (Ai|A1 ∩A2 ∩ . . . ∩Ai−1) .

Now using continuity of probability, we get the required relation,

P

( ∞⋂
i=1

Ai

)
= P (A1)

∞∏
i=2

P (Ai|A1 ∩A2 ∩ . . . ∩Ai−1) .
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9.2 Independence

Definition 9.3 Let (Ω,F ,P) be a probability space. Two events A and B are said to be independent (under
the probability measure P) if P (A ∩B) = P (A)P (B).

Note: If P (B) > 0 and, A and B are independent, then we have,

P (A|B) =
P (A ∩B)

P (B)
= P (A) .

Example: Can disjoint sets be independent at all? Let A,B ∈ F be two disjoint sets. Therefore, we have
P (A ∩B) = P (φ). This means that P (A ∩B) = 0. For independence, we need to have P (A)P (B) =
P (A ∩B) = 0. This can happen when P (A) = 0 or P (B) = 0. Therefore, in general, two disjoint events are
independent if and only if at least one of them has zero probability.

Definition 9.4 A1, A2, . . . , An are independent if for all non-empty I0 ⊆ {1, 2, . . . , n}, we have,

P

(⋂
i∈I0

Ai

)
=
∏
i∈I0

P (Ai) .

Next, we define independence of an arbitrary collection of events.

Definition 9.5 {Ai, i ∈ I} are said to be independent if for every non-empty finite subset I0 of I, we have

P

(⋂
i∈I0

Ai

)
=
∏
i∈I0

P (Ai) .

9.2.1 Independence of σ-algebras

Definition 9.6 Let F1 and F2 be two sub-σ-algebras of F . We say that F1 and F2 are independent σ-
algebras if for all A1 ∈ F1 and A2 ∈ F2, A1 and A2 are independent events.

Example: A simple example we can construct is the following: Let A,B ∈ F , then F1 = {φ,Ω, A,Ac} and
F2 = {φ,Ω, B,Bc} are independent iff A and B are independent.

We now define independence on a collection of sub-σ algebras.

Definition 9.7 Let {Fi, i ∈ I} (where I is an index set) be a collection of sub σ algebras of F . Then,
{Fi, i ∈ I} are said to be independent if for every choice of Ai ∈ Fi, we have {Ai, i ∈ I} are independent.

Example (from [Lecture 2, MIT OCW]): Consider the infinite coin toss model discussed previously.

• Let Ai be the event that the ith coin toss resulted in heads (say). If i 6= j, the events Ai and Aj are
independent.

• The following infinite family of events are independent: {Ai|i ∈ N}. This example captures the intuitive
idea of independent coin tosses.
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• Let F1 (respectively, F2) be the collection of all events whose occurrence can be decided by looking at
the results of the coin toss at odd times (respectively, at even times) n. More formally, let Hi be the
event that the ith toss resulted in heads. Let C = {Hi | i is odd} and let F1 = σ(C), so that F1 is the
smallest σ-algebra that contains all the events Hi, for odd i. We define F2 similarly, using even times
instead of odd times. Then, the two σ-algebras F1 and F2 turn out to be independent. Intuitively,
this implies that any event whose occurrence is determined completely by the outcomes of the tosses
at odd times, is independent of any event whose occurrence is determined completely by the outcomes
of the tosses at even times.

• Let Fn be the collection of all events whose occurrence can be decided by looking at the coin tosses
2n and 2n + 1. We know that Fn is a σ-algebra with finitely many events ∀n ∈ N. It turns out that
{Fn, n ∈ N} are independent.

9.3 Exercises

1. (a) Let C, C ∈ F , where F is a sigma algebra on Ω. Show that F1 = {φ,Ω, C, Cc} and F2 =
{φ,Ω, D,Dc} are independent iff C and D are independent.

(b) Let Ω = {1, 2, 3, ....p} where p is a prime, F be the collection of all subsets of Ω, and P(A) = |A|
p

(where |A| denotes cardinality of A) for all A ∈ F . Show that, if A and B are independent events,
then at least one of A and B is either φ or Ω.

2. In a box, there are four red balls, six red cubes, six blue balls and an unknown number of blue cubes.
When an object from the box is selected at random, the shape and colour of the object are independent.
Determine the number of blue cubes.

3. A man is known to speak the truth 3 out of 4 times. He throws a die and reports that it is a six. Find
the probability that it is actually a six.

4. [Exercise: Q29, Bertsekas & Tsitsiklis] Let A and B be events such that P (A|B) > P (A). Show that
P (B|A) > P (B) and P (A|Bc) < P (A).

5. [MIT OCW Assignment problem] A coin is tossed independently n times. The probability of heads at
each toss is p. At each time k (k = 2, 3, ..., n) we get a reward at time k+ 1 if kth toss was a head and
the previous toss was a tail. Let Ak be the event that a reward is obtained at time k.

a) Are events Ak and Ak+1 independent?

b) Are events Ak and Ak+2 independent?

6. [Assignment problem, University of Cambridge] A drawer contains two coins. One is an unbiased coin,
which when tossed, is equally likely to turn up heads or tails. The other is a biased coin, which will
turn up heads with probability p and tails with probability 1− p. One coin is selected (uniformly) at
random from the drawer. Two experiments are performed:

a) The selected coin is tossed n times. Given that the coin turns up heads k times and tails n − k
times, what is the probability that the coin is biased?

b) The selected coin is toss repeatedly until it turns up heads k times. Given that the coin is tossed
n times in total, what is the probability that the coin is biased?

7. [MIT OCW Assignment problem] Fred is giving out samples of dog food. He makes calls door to door,
but he leaves a sample (one can) only on those calls for which the door is answered and a dog is in
residence. On any call the probability of the door being answered is 3/4, and the probability that
any household has a dog is 2/3. Assume that the events “door answered” and “a dog lives here” are
independent and also that the outcomes of all calls are independent.



Lecture 9: Conditional Probability and Independence 9-5

a) Determine the probability that Fred gives away his first sample on his third call.

b) Given that he has given away exactly four samples on his first eight calls, determine the conditional
probability that Fred will give away his fifth sample on his eleventh call.

c) Determine the probability that he gives away his second sample on his fifth call.

d) Given that he did not give away his second sample on his second call, determine the conditional
probability that he will leave his second sample on his fifth call.

e) We will say that Fred needs a new supply immediately after the call on which he gives away his
last can. If he starts out with two cans, determine the probability that he completes at least five
calls before he needs a new supply.

8. [MIT OCW Assignment problem] Let A, B, A1, A2, ... be events. Suppose that for each k, we have
Ak ⊆ Ak+1, and that Ak is independent of B, ∀k ≥ 1. If A = ∪k∈NAk, then show that B is independent
of A.

9. [Assignment problem University of Cambridge] Consider pairwise disjoint events B1, B2, B3 and C,
with P (B1) = P (B2) = P (B3) = p and P (C) = q, where 3p + q ≤ 1. Suppose p = −q +

√
q, then

prove that the events B1 ∪ C, B1 ∪ C and B1 ∪ C are pairwise independent. Also, prove or disprove
that there exist p > 0 and q > 0 such that these three events are independent.
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