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In this lecture, we discuss the case where the sample space is uncountable. This case is more involved than
the case of a countable sample space, mainly because it is often not possible to assign probabilities to all
subsets of Ω. Instead, we are forced to work with a smaller σ-algebra. We consider assigning a “uniform
probability measure” on the unit interval.

7.1 Uncountable sample spaces

Consider the experiment of picking a real number at random from Ω = [0, 1], such that every number is
“equally likely” to be picked. It is quite apparent that a simple strategy of assigning probabilities to singleton
subsets of the sample space gets into difficulties quite quickly. Indeed,

(i) If we assign some positive probability to each elementary outcome, then the probability of an event
with infinitely many elements, such as A = {1, 1

2 ,
1
3 , · · · }, would become unbounded.

(ii) If we assign zero probability to each elementary outcome, this alone would not be sufficient to determine
the probability of a uncountable subset of Ω, such as

[
1
2 ,

2
3

]
. This is because probability measures are

not additive over uncountable disjoint unions (of singletons in this case).

Thus, we need a different approach to assign probabilities when the sample space is uncountable, such as
Ω = [0, 1]. In particular, we need to assign probabilities directly to specific subsets of Ω. Intuitively, we
would like our ‘uniform measure’ µ on [0, 1] to possess the following two properties.

(i) µ ((a, b)) = µ ((a, b]) = µ ([a, b)) = µ ([a, b])

(ii) Translational Invariance. That is, if A ∈ [0, 1], then for any x ∈ Ω, µ (A⊕ x) = µ (A) where, the set
A⊕ x is defined as

A⊕ x = {a+ x|a ∈ A, a+ x ≤ 1} ∪ {a+ x− 1|a ∈ A, a+ x > 1}

However, the following impossibility result asserts that there is no way to consistently define a uniform
measure on all subsets of [0, 1].

Theorem 7.1 (Impossibility Result) There does not exist a definition of a measure µ (A) for all subsets
of [0, 1] satisfying (i) and (ii).

Proof: Refer proposition 1.2.6 in [1].

Therefore, we must compromise, and consider a smaller σ-algebra that contains certain “nice” subsets of
the sample space [0, 1]. These “nice” subsets are the intervals, and the resulting σ-algebra is called the
Borel σ-algebra. Before defining Borel sets, we introduce the concept of generating σ-algebras from a given
collection of subsets.
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7.2 Generated σ-algebra and Borel sets

The σ-algebra generated by a collection of subsets of the sample space is the smallest σ-algebra that contains
the collection. More formally, we have the following theorem.

Theorem 7.2 Let C be an arbitrary collection of subsets of Ω, then there exists a smallest σ-algebra, denoted
by σ (C), that contains all elements of C. That is, if H is any σ-algebra such that C ⊆ H, then σ (C) ⊆ H.
σ (C) is called the σ-algebra generated by C.

Proof: Let {Fi, i ∈ I} denote the collection of all σ-algebras that contain C. Clearly, the collection
{Fi, i ∈ I} is non-empty, since it contains at least the power set, 2Ω. Consider the intersection

⋂
i∈I
Fi. Since

the intersection of σ-algebras results in a σ-algebra (homework problem!) and the intersection contains C,
it follows that

⋂
i∈I
Fi is a σ-algebra that contains C. Finally, if C ⊆ H, then H is one of Fi’s for some i ∈ I.

Hence
⋂
i∈I
Fi is the smallest σ-algebra generated by C.

Intuitively, we can think of C as being the collection of subsets of Ω which are of interest to us. Then, σ(C)
is the smallest σ-algebra containing all the ‘interesting’ subsets.

We are now ready to define Borel sets.

Definition 7.3

(a) Consider Ω = (0, 1]. Let C0 be the collection of all open intervals in (0, 1]. Then σ (C0) , the σ - algebra
generated by C0, is called the Borel σ - algebra. It is denoted by B ((0, 1]).

(b) An element of B ((0, 1]) is called a Borel-measurable set, or simply a Borel set.

Thus, every open interval in (0, 1] is a Borel set. We next prove that every singleton set in (0, 1] is a Borel
set.

Lemma 7.4 Every singleton set {b}, 0 < b ≤ 1, is a Borel set, i.e., {b} ∈ B ((0, 1]).

Proof: Consider the collection of sets set
{(
b− 1

n , b+ 1
n

)
, n ≥ 1

}
. By the definition of Borel sets,(

b− 1

n
, b+

1

n

)
∈ B ((0, 1]) .

Using the properties of σ-algebra, (
b− 1

n
, b+

1

n

)c

∈ B ((0, 1])

=⇒
∞⋃

n=1

(
b− 1

n
, b+

1

n

)c

∈ B ((0, 1])

=⇒

( ∞⋂
n=1

(
b− 1

n
, b+

1

n

))c

∈ B ((0, 1])

=⇒
∞⋂

n=1

(
b− 1

n
, b+

1

n

)
∈ B ((0, 1]) . (7.1)
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Next, we claim that

{b} =

∞⋂
n=1

(
b− 1

n
, b+

1

n

)
. (7.2)

i.e., b is the only element in
∞⋂

n=1

(
b− 1

n , b+ 1
n

)
. We prove this by contradiction. Let h be an element

in
∞⋂

n=1

(
b− 1

n , b+ 1
n

)
other than b. For every such h, there exists a large enough n0 such that h /∈(

b− 1
n0
, b+ 1

n0

)
. This implies h /∈

∞⋂
n=1

(
b− 1

n , b+ 1
n

)
. Using (7.1) and (7.2), thus, proves that {b} ∈

B ((0, 1]).

As an immediate consequence to this lemma, we see that every half open interval, (a, b], is a Borel set. This
follows from the fact that

(a, b] = (a, b) ∪ {b},

and the fact that a countable union of Borel sets is a Borel set. For the same reason, every closed interval,
[a, b], is a Borel set.

Note: Arbitrary union of open sets is always an open set, but infinite intersections of open sets need not be
open.

Further reading for the enthusiastic: (try Wikipedia for a start)

• Non-Borel sets

• Non-measurable sets (Vitali set)

• Banach-Tarski paradox (a bizzare phenomenon about cutting up the surface of a sphere. See https:

//www.youtube.com/watch?v=Tk4ubu7BlSk

• The cardinality of the Borel σ-algebra (on the unit interval) is the same as the cardinality of the
reals. Thus, the Borel σ-algebra is a much ‘smaller’ collection than the power set 2[0,1]. See https:

//math.dartmouth.edu/archive/m103f08/public_html/borel-sets-soln.pdf

7.3 Caratheodory’s Extension Theorem

In this section, we discuss a formal procedure to define a probability measure on a general measurable space
(Ω,F). Specifying the probability measure for all the elements of F directly is difficult, so we start with a
smaller collection F0 of ‘interesting’ subsets of Ω, which need not be a σ-algebra. We should take F0 to be
rich enough, so that the σ-algebra it generates is same as F . Then we define a function P0 : F0 → [0, 1],
such that it corresponds to the probabilities we would like to assign to the interesting subsets in F0. Under
certain conditions, this function P0 can be extended to a legitimate probability measure on (Ω,F) by using
the following fundamental theorem from measure theory.

Theorem 7.5 (Caratheodory’s extension theorem) Let F0 be an algebra of subsets of Ω, and let F =
σ (F0) be the σ-algebra that it generates. Suppose that P0 is a mapping from F0 to [0, 1] that satisfies
P0 (Ω) = 1, as well as countable additivity on F0.
Then, P0 can be extended uniquely to a probability measure on (Ω,F). That is, there exists a unique proba-
bility measure P on (Ω,F) such that P (A) = P0 (A) for all A ∈ F0.
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Proof: Refer Appendix A of [2].

We use this theorem to define a uniform measure on (0, 1], which is also called the Lebesgue measure.

7.4 The Lebesgue measure

Consider Ω = (0, 1]. Let F0 consist of the empty set and all sets that are finite unions of the intervals of the
form (a, b]. A typical element of this set is of the form

F = (a1, b1] ∪ (a2, b2] ∪ . . . ∪ (an, bn]

where, 0 ≤ a1 < b1 ≤ a2 < b2 ≤ . . . ≤ an < bn and n ∈ N.

Lemma 7.6

a) F0 is an algebra

b) F0 is not a σ-algebra

c) σ (F0) = B

Proof:

a) By definition, Φ ∈ F0. Also, ΦC = (0, 1] ∈ F0. The complement of (a1, b1]∪ (a2, b2] is (0, a1]∪ (b1, a2]∪
(b2, 1], which also belongs to F0. Furthermore, the union of finitely many sets each of which are finite
unions of the intervals of the form (a, b] , is also a set which is the union of finite number of intervals,
and thus belongs to F0.

b) To see this, note that
(

0, n
n+1

]
∈ F0 for every n, but

∞⋃
n=1

(
0, n

n+1

]
= (0, 1) /∈ F0.

c) First, the null set is clearly a Borel set. Next, we have already seen that every interval of the form
(a, b] is a Borel set. Hence, every element of F0 (other than the null set), which is a finite union of
such intervals, is also a Borel set. Therefore, F0 ⊆ B. This implies σ (F0) ⊆ B.
Next we show that B ⊆ σ (F0). For any interval of the form (a, b) in C0, we can write (a, b) =
∞⋃

n=1

((
a, b− 1

n

]
∩ Ω

)
. Since every interval of the form

(
a, b− 1

n

]
∈ F0, a countable number of unions of

such intervals belongs to σ (F0). Therefore, (a, b) ∈ σ (F0) and consequently, C0 ⊆ σ (F0). This gives
σ (C0) ⊆ σ (F0). Using the fact that σ (C0) = B proves the required result.

For every F ∈ F0 of the form

F = (a1, b1] ∪ (a2, b2] ∪ . . . ∪ (an, bn] ,

we define a function P0 : F0 → [0, 1] such that

P0 (Φ) = 0 and P0 (F ) =
n∑

i=1

(bi − ai).
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Note that P0 (Ω) = P0 ((0, 1]) = 1. Also, if (a1, b1] , (a2, b2] , . . . , (an, bn] are disjoint sets, then

P0

(
n⋃

i=1

((ai, bi])

)
=

n∑
i=1

P0 ((ai, bi])

=

n∑
i=1

(bi − ai)

implying finite additivity of P0. It turns out that P0 is countably additive on F0 as well i.e., if (a1, b1] , (a2, b2] , . . .

are disjoint sets such that
∞⋃
i=1

((ai, bi]) ∈ F0, then P0

( ∞⋃
i=1

((ai, bi])

)
=
∞∑
i=1

P0 ((ai, bi]) =
∞∑
i=1

(bi − ai). The

proof is non-trivial and beyond the scope of this course (see [Williams] for a proof). Thus, in view of The-
orem 7.5, there exists a unique probability measure P on ((0, 1] ,B) which is the same as P0 on F0. This
unique probability measure on (0, 1] is called the Lebesgue or uniform measure.

The Lebesgue measure formalizes the notion of length. This suggests that the Lebesgue measure of a singleton
should be zero. This can be shown as follows. Let b ∈ (0, 1]. Using (7.2), we write

P ({b}) = P

( ∞⋂
n=1

(
b− 1

n
, b

]
∩ Ω

)

Let An =
(
b− 1

n , b
]
. For each n, the lebesgue measure of An is

P (An) =
1

n
(7.3)

Since An is a decreasing sequence of nested sets,

P ({b}) =P

( ∞⋂
n=1

An

)
= lim

n→∞
P (An)

= lim
n→∞

1

n

=0

where the second equality follows from the continuity of probability measures.

Since any countable set is a countable union of singletons, the probability of a countable set is zero. For
example, under the uniform measure on (0, 1], the probability of the set of rationals is zero, since the rational
numbers in (0, 1] form a countable set.

For Ω = (0, 1], the Lebesgue measure is also a probability measure. For other intervals (for example Ω =
(0, 2]), it will only be a finite measure, which can be normalized as appropriate to obtain a uniform probability
measure.

Definition 7.7 Let (Ω,F ,P) be a probability space. An event A is said to occur almost surely (a.s) if
P(A) = 1.

Caution: P(A) = 1 does not mean A = Ω.
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Lebesgue Measure of the Cantor set: Consider the cantor set K. It is created by repeatedly removing
the open middle thirds of a set of line segments. Consider its complement. It contains countable number of
disjoint intervals. Hence we have:

P(Kc) =
1

3
+

2

9
+

4

27
+ · · · =

1
3

1− 2
3

= 1.

Therefore P(K) = 0. It is very interesting to note that though the Cantor set is equicardinal with (0, 1], its
Lebesgue measure is equal to 0 while the Lebesgue measure of (0, 1] is equal to 1.
We now extend the definition of Lebesgue measure on [0, 1] to the real line, R. We first look at the definition
of a Borel set on R. This can be done in several ways, as shown below.

Definition 7.8 Borel sets on R:

• Let C be a collection of open intervals in R. Then B(R) = σ(C) is the Borel set on R.

• Let D be a collection of semi-infinite intervals {(−∞, x];x ∈ R}, then σ(D) = B(R).

• A ⊆ R is said to be a Borel set on R, if A ∩ (n, n+ 1] is a Borel set on (n, n+ 1] ∀n ∈ Z.

Exercise: Verify that the three statements are equivalent definitions of Borel sets on R.

Definition 7.9 Lebesgue measure of A ⊆ R:

λ(A) =

∞∑
n=−∞

Pn(A ∩ (n, n+ 1])

Theorem 7.10 (R,B(R), λ) is an infinite measure space.

Proof: We need to prove following:

• λ(R) =∞

• λ(Φ) = 0

• The countable additivity property

We see that
Pn(R ∩ (n, n+ 1]) = 1,∀n ∈ I

Hence we have

λ(R) =

∞∑
n=−∞

1 =∞

Now consider Φ ∩ (n, n+ 1]. This is a null set for all n. Hence we have,

Pn(Φ ∩ (n, n+ 1]) = 0,∀n ∈ I

which implies,

λ(Φ) =

∞∑
n=−∞

Pn(Φ ∩ (n, n+ 1]) = 0
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We now need to prove the countable additivity property. For this we consider Ai ∈ B(R) such that the
sequence A1, A2, . . . , An, . . . are arbitrary pairwise disjoint sets in B(R). Therefore we obtain,

λ(

∞⋃
i=1

Ai) =

∞∑
n=−∞

Pn(

∞⋃
i=1

Ai ∩ (n, n+ 1])

=

∞∑
n=−∞

∞∑
i=1

Pn(Ai ∩ (n, n+ 1])

=

∞∑
i=1

∞∑
n=−∞

Pn(Ai ∩ (n, n+ 1])

The second equality above comes from the fact that the probability measure has countable additivity prop-
erty. The last equality above comes from the fact that the summations can be interchanged (from Fubini’s
theorem). We also have the following:

λ(Ai) =

∞∑
n=−∞

Pn(Ai ∩ (n, n+ 1])

We now immediately see that

λ(

∞⋃
i=1

Ai) =

∞∑
i=1

λ(Ai)

Hence proved.

7.5 Exercises

1. Let F be a σ-algebra corresponding to a sample space Ω. Let H be a subset of Ω that does not belong
to F . Consider the collection G of all sets of the form (H ∩A) ∪ (Hc ∩B), where A and B ∈ F .

(a) Show that H ∩A ∈ G.
(b) Show that G is a σ-algebra.

2. Show that C = σ(C) iff C is a σ-algebra.

3. Let C and D be two collections of subsets of Ω such that C ⊆ D. Prove that σ(C) ⊆ σ(D).

4. Prove that the following subsets of (0, 1] are Borel-measurable.

(a) any countable set

(b) the set of irrational numbers

(c) the Cantor set (Hint: rather than defining it in terms of ternary expansions, it’s easier to use
the equivalent definition of the Cantor set that involves sequentially removing the “middle-third”
open intervals; see Wikipedia for example).

(d) The set of numbers in (0, 1] whose decimal expansion does not contain 7.

5. Let B denote the Borel σ-algebra as defined in class. Let Cc denote the set of all closed intervals
contained in (0, 1]. Show that σ(Cc) = B. In other words, we could have very well defined the Borel
σ-algebra as being generated by closed intervals, rather than open intervals.
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6. Let Ω = [0, 1], and let F3 consist of all countable subsets of Ω, and all subsets of Ω having a countable
complement. It can be shown that F3 is a σ-algebra (Refer Lecture 4, Exercises, 6(d)). Let us define
P(A) = 0 if A countable, and P(A) = 1 if A has a countable complement. Is (Ω,F3,P) a legitimate
probability space?

7. We have seen in 4(c) that the Cantor set is Borel-measurable. Show that the Cantor set has zero
Lebesgue measure. Thus, although the Cantor set can be put into a bijection with [0, 1], it has zero
Lebesgue measure!
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