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3.1 Functions

We recall the following definitions.

Definition 3.1 A function f : A → B is a rule that maps every element of set A to a unique element in
set B.

In other words, ∀x ∈ A,∃y ∈ B and only one such element, such that, f(x) = y. Then y is called the image
of x and x, the pre-image of y under f . The set A is called the domain of the function and B, the co-domain.
R = {y : ∃x ∈ A, s.t. f(x) = y} is called as the range of the function f .

Definition 3.2 A function f : A→ B is said to be an injective (one-to-one) function, if every element
in the range R has a unique pre-image in A.

Definition 3.3 A function f : A → B is said to be a surjective (onto) function, if R = B, i.e,
∀y ∈ B, ∃x ∈ A, s.t. f(x) = y.

Definition 3.4 A function f : A→ B is a bijective function if it is both injective and surjective.

Hence, in a bijective mapping, every element in the co-domain has a pre-image and the pre-images are
unique. Thus, we can define an inverse function, f−1 : B → A, such that, f−1(y) = x, if f(x) = y. In simple
terms, bijective functions have well-defined inverse functions.

3.2 Cardinality and Countability

In informal terms, the cardinality of a set is the number of elements in that set. If one wishes to compare the
cardinalities of two finite sets A and B, it can be done by simply counting the number of elements in each
set, and declare either that they have equal cardinality, or that one of the sets has more elements than the
other. However, when sets containing infinitely many elements are to be compared(for example, N versus Q),
this elementary approach is not efficient to do it. In the late nineteenth century, Georg Cantor introduced
the idea of comparing the cardinality of sets based on the nature of functions that can be possibly defined
from one set to another.

Definition 3.5 (i) Two sets A and B are equicardinal (notation |A| = |B|) if there exists a bijective
function from A to B.

(ii) B has cardinality greater than or equal to that of A (notation |B| ≥ |A|) if there exists an injective
function from A to B.
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(iii) B has cardinality strictly greater than that of A (notation |B| > |A|) if there is an injective function,
but no bijective function, from A to B.

Having stated the definitions as above, the definition of countability of a set is as follow:

Definition 3.6 A set E is said to be countably infinite if E and N are equicardinal. And, a set is said
to be countable if it is either finite or countably infinite.

The following are some examples of countable sets:
1. The set of all integers Z is countably infinite.
We can define the bijection f : Z→ N as follows :

n = f(z) ∈ N z ∈ Z
1 0
2 +1
3 -1
4 +2
5 -2
. .
. .
. .

The existence of this bijective map from Z to N proves that Z is countably infinite.

2. The set of all rationals in [0, 1] is countable.
Consider the rational number p

q where q 6= 0. Increment q in steps of 1 starting with 1. For each such q and

0 ≤ p ≤ q, add the rational number p
q to the set, if it not already present. By this way, the set of rational

numbers in [0, 1] can be explicitly listed as: {0, 1, 12 ,
1
3 ,

2
3 ,

1
4 ,

3
4 ,

1
5 ,

2
5 ,

3
5 ,

4
5 ,

1
6 ,

5
6 , ...}

Clearly, we can define a bijection from Q ∩ [0, 1]→ N where each rational number is mapped to its index in
the above set. Thus the set of all rational numbers in [0, 1] is countably infinite and thus countable.

3. The set of all Rational numbers, Q is countable.
In order to prove this, we state an important theorem, whose proof can be found in [1].

Theorem 3.7 Let I be a countable index set, and let Ei be countable for each i ∈ I. Then
⋃
i∈I Ei is

countable. More glibly, it can also be stated as follows: A countable union of countable sets is countable.

We will now use this theorem to prove the countability of the set of all rational numbers. It has been already
proved that the set Q∩ [0, 1] is countable. Similarly, it can be showed that Q∩ [n, n+1] is countable, ∀n ∈ Z.
Let Qi = Q ∩ [i, i + 1]. Thus, clearly, the set of all rational numbers, Q = ∪i∈ZQi – a countable union of
countable sets – is countable.

Remark: For two finite sets A and B, we know that if A is a strict subset of B, then B has cardinality
greater than that of A. As the above examples show, this is not true for infinite sets. Indeed, N is a strict
subset of Q, but N and Q are equicardinal!

4. The set of all algebraic numbers (numbers which are roots of polynomial equations with rational co-
efficients) is countable.

5. The set of all computable numbers, i.e., real numbers that can be computed to within any desired
precision by a finite, terminating algorithm, is countable (see Wikipedia article for more details).
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Definition 3.8 A set F is uncountable if it has cardinality strictly greater than the cardinality of N.

In the spirit of Definition 3.5, this means that F is uncountable if an injective function from N to F exists,
but no such bijective function exists.

An interesting example of an uncountable set is the set of all infinite binary strings. The proof of the
following theorem uses the celebrated ‘diagonal argument’ of Cantor.

Theorem 3.9 (Cantor) : The set of all infinite binary strings, {0, 1}∞, is uncountable.

Proof: It is easy to show that an injection from N to {0, 1}∞ exists (exercise: produce one!). We need to
show that no such bijection exists.

Let us assume the contrary, i.e, let us assume that the set of all binary strings, A = {0, 1}∞ is countably
infinite. Thus there exists a bijection f : A→ N. In other words, we can order the set of all infinite binary
strings as follows:

a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .
. . .
. . .
. . . ,

where, aij is the jth bit of the ith binary string, i, j ≥ 1.

Consider the infinite binary string given by ā = ā11ā22ā33..., where āij is the complement of the bit aij .

Since our list contains all infinite binary strings, there must exist some k ∈ N such that the string ā occurs
at the k position in the list, i.e., f(ā) = k. The kth bit of this specific string is ¯akk. However, from the
above list, we know that the kth bit of the kth string is akk. Thus, we can conclude that the string ā cannot
occur in any position k ≥ 1 in our list, contradicting our initial assumption that our list exhausts all possible
infinite binary strings.

Thus, there cannot possibly exist a bijection from N to {0, 1}∞, proving that {0, 1}∞ is uncountable.

Now using Cantor’s theorem, we will prove that the set of irrational numbers is uncountable.

Claim 3.10 The sets [0, 1], R and {R \Q} are uncountable.

Proof: Firstly, consider the set [0, 1]. Any number in this set can be expressed by its binary equivalent
and thus, there appears to be a bijection from [0, 1] → {0, 1}∞. However, this is not exactly a bijection
as there is a problem with the dyadic rationals (i.e., numbers of the form a

2b
, where a and b are natural

numbers, and a is odd). For example, 0.01000.... in binary is the same as 0.001111.... . However we can
tweak this “near bijection” to produce an explicit bijection in the following way. For any infinite binary
string x = (x1, x2, . . . ) ∈ {0, 1}∞, let

g(x) =

∞∑
k=1

xk2−k.

The function g maps {0, 1}∞ “almost bijectively” to [0, 1], but unfortunately, the dyadic rationals have two
pre-images. For example we have g(1000...) = g(0111...) = 1

2 . To fix this let the the set of dyadic rationals
be diven by the list

D =

{
d1 =

1

2
, d2 =

1

4
, d3 =

3

4
, d4 =

1

8
, d5 =

3

8
, d6 =

5

8
, d7 =

7

8
, ....

}
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Note that the dyadic rationals can be put in a list as given above as they are countable. Next, we define the
following bijection f(x) from {0, 1}∞ to [0, 1].

f(x) =

 g(x) if g(x) /∈ D,
d2n−1 if g(x) = dn for some n ∈ N and xk terminates in 1,
d2n if g(x) = dn for some n ∈ N and xk terminates in 0.

This is an explicit bijection from {0, 1}∞ to [0, 1] which proves that the set [0, 1] is uncountable. (Why?)

Next, we can define a bijection from (0, 1) → R, for instance using the function tan(πx − π
2 ), x ∈ (0, 1).

Thus the set of all real numbers, R is uncountable.

Finally, we can write, R = Q∪{R \Q}. Since Q is countable and R is uncountable, we can easily argue that
{R \Q}, i.e, the set of all irrational numbers, is uncountable.

3.3 Exercises

1. Prove that 2N, the power set of the natural numbers, is uncountable. (Hint: Try to associate an infinite
binary string with each subset of N.)

2. Prove that the Cartesian product of two countable sets is countable.

3. Let A be a countable set, and Bn be the set of all n-tuples (a1, ..., an), where ak ∈ A(k = 1, 2, ..., n)
and the elements a1, a2, ..., an need not be distinct. Show that Bn is countable.

4. Show that an infinite subset of a countable set is countable.

5. A number is said to be an algebraic number if it is a root of some polynomial equation with integer
coefficients. For example,

√
2 is algebraic since it is a root of the polynomial x2 − 2. However, it is known

that π is not algebraic. Show that the set of all algebraic numbers is countable. Also, a transcendental
number is a real number that is not algebraic. Are the transcendental numbers countable?

6. The Cantor set is an interesting subset of [0, 1], which we will encounter several times in this course.
One way to define the Cantor set C is as follows. Consider the set of all real numbers in [0, 1] written down
in ternary (base-3) expansion, instead of the usual decimal (base-10) expansion. A real number x ∈ [0, 1]
belongs to C iff x admits a ternary expansion without any 1s. Show that C is uncountably infinite, and that
it is indeed equi-cardinal with [0, 1].
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