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30.1 Central Limit Theorem

In this section, we will state and prove the central limit theorem. Let {X;} be a sequence of i.i.d. random
variables having a finite variance. From law of large numbers we know that for large n, the sum S, is
approximately as big as nE[X] , i.e.,
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Thus whenever the variance of X; is finite, the difference S,, — nE[X] grows slower as compared to n. The
Central Limit Theorem (CLT) says that this difference scales as y/n, and that the distribution of S"%E[X]

approaches a normal distribution as n — oo irrespective of the distribution of Xj.

Sp — nE[X]

Tn ~ N(0,0%).

Theorem 30.1 (Central Limit Theorem) Let {X;} be a sequence of i.i.d. random variables with mean

E[X] and a non-zero variance 0% < oo. Let Z, = SZ%L\%X]. Then, we have Z, - N(0,1), i.e.,
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Proof: Let Y,, = X”;E[X]. Let Z,, = l:\}ﬁ . It is easy to see that Y,, has unit variance and zero mean, i.e.,
E[Y,]=0and 03 =1.
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30-2 Lecture 30: The Central Limit Theorem

From the theorem on convergence of characteristic functions, Z,, converges to a standard Gaussian in distri-
bution.

For example, if X;’s are discrete random variables, the CDFs will be step functions. As n — oo, these
step functions will gradually converge to the error function (i.e. the steps will gradually decrease to form a
continuous distribution as n — c0).

It is also important to understand what this theorem does mot say. It is not saying that the probability

2
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%e 2. Convergence in density function requires more stringent conditions

which are stated in the Local Central Limit Theorem.

density function converges to

Theorem 30.2 (Local Central Limit Theorem) Let X, Xs,... be i.i.d. random variables with zero
mean and unit variance. Suppose further that their common characteristic function ¢ satisfies the following:

/ 6(t)|"dt < oo,

for some integer r > 1. The density function g,of U, = (X1+X2+X“) exists for n > r, and furthermore

we have,

as n — oo, uniformly in v € R.

Proof: For a proof, refer to Section 5.10 in [1].
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Let X7, Xs,... be i.i.d. random variables with zero mean and unit variance. From CLT, we know that
i Xi

U, = i:\l/ﬁ is distributed as a standard Gaussian. We now look at yet another interesting result which deals

with the largest value taken by U,,, m > n, for a large n.

Theorem 30.3 (The Law of the Iterated Logarithm) Let X, X5, ... be i.i.d. random variables with

zero mean and unit variance. Also, let S, = > X; Then,
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Unlike the CLT which talks about distribution of U, for a large, fixed n, law of iterated logarithm talks

about the largest fluctuation in U,,, for m > n. In particular, it bounds the largest value taken by U,
beyond n. Formally, the subset of Q for which this holds has a probability measure 1.
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