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30.1 Central Limit Theorem

In this section, we will state and prove the central limit theorem. Let {Xi} be a sequence of i.i.d. random
variables having a finite variance. From law of large numbers we know that for large n, the sum Sn is
approximately as big as nE[X] , i.e.,

Sn
n

i.p.−−→ E[X],

⇒ Sn − nE[X]

n

i.p.−−→ 0.

Thus whenever the variance of Xi is finite, the difference Sn − nE[X] grows slower as compared to n. The

Central Limit Theorem (CLT) says that this difference scales as
√
n, and that the distribution of Sn−nE[X]√

n

approaches a normal distribution as n→∞ irrespective of the distribution of Xi.

Sn − nE[X]√
n

∼ N(0, σ2
X).

Theorem 30.1 (Central Limit Theorem) Let {Xi} be a sequence of i.i.d. random variables with mean

E[X] and a non-zero variance σ2
X < ∞. Let Zn = Sn−nE[X]

σX
√
n

. Then, we have Zn
D−→ N (0, 1), i.e.,

lim
n→∞

FZn(z) =
z∫
−∞

1√
2π
e

−x2

2 dx, ∀z ∈ R.

Proof: Let Yn = Xn−E[X]
σX

. Let Zn =

n∑
i=1

Yi

√
n

. It is easy to see that Yn has unit variance and zero mean, i.e.,

E[Yn] = 0 and σ2
Yn

= 1 .

CYn
(t) = 1 + itE[Yn] +

i2t2E[Y 2
n ]

2
+O(t2),

CYn
(t) = 1 + it(0) +

i2t2(1)

2
+ o(t2),

= 1− t2

2
+ o(t2),

CZn
(t) =

[
CYn

(
t√
n

)]n
,

=

[
1− t2

2n
+ o

(
t2

n

)]n
−→ e

−t2

2 ∀t.
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From the theorem on convergence of characteristic functions, Zn converges to a standard Gaussian in distri-
bution.

For example, if Xi’s are discrete random variables, the CDFs will be step functions. As n → ∞, these
step functions will gradually converge to the error function (i.e. the steps will gradually decrease to form a
continuous distribution as n→∞).

It is also important to understand what this theorem does not say. It is not saying that the probability

density function converges to 1√
2π
e

−x2

2 . Convergence in density function requires more stringent conditions

which are stated in the Local Central Limit Theorem.

Theorem 30.2 (Local Central Limit Theorem) Let X1, X2, . . . be i.i.d. random variables with zero
mean and unit variance. Suppose further that their common characteristic function φ satisfies the following:

∞∫
−∞

|φ(t)|rdt <∞.

for some integer r ≥ 1. The density function gnof Un = (X1+X2+...+Xn)√
n

exists for n ≥ r, and furthermore

we have,

gn(x)→ 1√
2π
e

−x2

2 ,

as n −→∞, uniformly in x ∈ R.

Proof: For a proof, refer to Section 5.10 in [1].

Let X1, X2, . . . be i.i.d. random variables with zero mean and unit variance. From CLT, we know that

Un =

n∑
i=1

Xi

√
n

is distributed as a standard Gaussian. We now look at yet another interesting result which deals

with the largest value taken by Um, m ≥ n, for a large n.

Theorem 30.3 (The Law of the Iterated Logarithm) Let X1, X2, . . . be i.i.d. random variables with

zero mean and unit variance. Also, let Sn =
n∑
i=1

Xi Then,

P
(

lim sup
n→∞

Sn√
2n log log n

= 1

)
= 1.

Unlike the CLT which talks about distribution of Un for a large, fixed n, law of iterated logarithm talks
about the largest fluctuation in Um, for m ≥ n. In particular, it bounds the largest value taken by Um
beyond n. Formally, the subset of Ω for which this holds has a probability measure 1.
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