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In this lecture, we study the laws of large numbers (LLNs), which are arguably the single most important
class of theorems, which form the backbone of probability theory. In particular, the LLNs provide an intuitive
interpretation for the expectation of a random variable as the ‘average value’ of the random variable. In the
case of i.i.d. random variables that we consider in this lecture, the LLN roughly says that the sample average
of a large number of i.i.d. random variables converges to the expected value. The sense of convergence in
the weak law of large numbers is convergence in probability. The strong law of large numbers, as the name
suggests, asserts the stronger notion of almost sure convergence.

29.1 Weak Law of Large Numbers

The earliest available proof of the weak law of large number dates to the year 1713, in the posthumously
published work of Jacob Bernoulli. It asserts convergence in probability of the sample average to the expected
value.

Theorem 29.1 (Weak Law of Large numbers) Let X1, X2, . . . be i.i.d random variables with finite mean,

E[X]. Let Sn =
n∑
i=1

Xi. Then,

Sn
n

i.p−→ E[X].

Proof: First, we give a partial proof by assuming the variance of X to be finite i.e., σ2
X < ∞. Since Xi’s

are i.i.d, E[Sn] = nE[X], V ar (Sn) = nV ar(X) ⇒ E
[
Sn

n

]
= E[X], V ar

(
Sn

n

)
=

σ2
X

n .

lim
n→∞

P
(∣∣∣Sn

n
− E [X]

∣∣∣ > ε

)
≤ lim

n→∞

V ar
(
Sn

n

)
ε2

(By Chebyshev’s Inequality),

= lim
n→∞

σ2
X

nε2
,

= 0.

Next, we give a general proof using characteristic functions.

Proof: Assume that Xi (where i = 1, 2, . . . , n, . . . ) are i.i.d random variables. The characteristic function
of Xi be CXi

(t) ≡ CX(t) for any i ∈ {1, 2, . . . , n}. Let Sn = X1 + X2 + . . . Xn be the sum of these n i.i.d
random variables. The following can be easily verified:

CSn
= [CX(t)]n = E[eitSn ],

= E[e
itnSn

n ],

= CSn
n

(nt).
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This implies that,

CSn
n

(t) = [CX

(
t

n

)
]n,

=

[
1 +

iE[X]t

n
+ o

(
t

n

)]n
.

As n→∞, we have,
CSn

n
(t)→ eiE[X]t, ∀t ∈ R.

Note that, eiE[X]t is a valid characteristic function. In fact, it is a characteristic function of a constant
random variable which takes the value E[X]. From the theorem on convergence of characteristic functions,
we have

Sn
n

D−→ E[X].

Since E[X] is a constant1, we have,
Sn
n

i.p−→ E[X].

29.2 Strong Law of Large Numbers

The Strong Law of Large Numbers (SLLN) gives us the condition when the sample average
(
Sn

n

)
converges

almost surely to the expected value.

Theorem 29.2 If {Xi, i ≥ 1} is a sequence of i.i.d RVs with E[|Xi|] < ∞, then Sn

n

a.s.→ E[X], i.e.,

P
(
ω
∣∣Sn(ω)

n → E[X]
)

= 1.

Here, Sn(ω) is just X1(ω) +X2(ω) · · ·+Xn(ω). Thus, for a fixed ω ∈ Ω,
{
Sn(ω)
n , n ≥ 1

}
is a sequence of real

numbers. Then, there are the following three possibilities regarding the convergence of this sequence:

1. The sequence Sn(ω)
n does not converge as n→∞.

2. The sequence Sn(ω)
n converges to a value other than E[X], as n→∞.

3. The sequence Sn(ω)
n converges to E[X] as n→∞.

The SLLN asserts that the set of ω ∈ Ω where the third possibility holds has a probability of 1. Also,
the SLLN implies the WLLN because almost sure convergence implies convergence in probability. From
Theorem 28.16, we obtain another way of stating the SLLN as given below

lim
n→∞

P

 ⋃
m≥n

{
ω :

∣∣∣∣Sm(ω)

m
− E[X]

∣∣∣∣ > ε

} = 0, ∀ε > 0. (29.1)

A general proof of the SLLN is rather long, so we will restrict ourselves to two partial proofs, each of which
makes a stronger assumption than needed about the moments of the random variable X.

1Recall that convergence in probability is equivalent to convergence in distribution, when the limit is a constant.
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29.3 Partial Proof 1 (assuming finite fourth moment)

Proof: Assume E[X4
i ] = η < ∞ and without loss of generality, E[X] = 0. The second assumption is not

crucial. We want to show that Sn

n

a.s.→ 0.

Now,

E[S4
n] = E[(X1 +X2 + · · ·Xn)4],

= nη +

(
4

2

)(
n

2

)
E[X2

1X
2
2 ], (29.2)

= nη + 6

(
n

2

)
σ4,

≤ nη + 3n2σ4. (29.3)

In (29.2), the coefficient of η is n because there are n terms of the form X4
i . Terms of the form X3

iXj are
not present as our assumption that E[X] = 0 ensures that these terms go to zero. For the other surviving
terms of the form X2

iX
2
j , the coefficient arises because there are

(
n
2

)
ways to choose the distinct indices i

and j, after which one can choose Xi from 2 out of the 4 terms being multiplied together, in which case Xj

will come from the other two terms.

Now, we make use of the Markov inequality and substitute the inequality for E
[
S4
n

]
from (29.3).

P

(∣∣∣∣Snn
∣∣∣∣4 > ε

)
≤ E[S4

n]

n4ε
,

≤ nη + 3n2σ4

n4ε
,

=
η

n3ε
+

3σ4

n2ε
. (29.4)

Then, from (29.4),
∞∑
n=1

P

(∣∣∣∣Snn
∣∣∣∣4 > ε

)
≤
∞∑
n=1

η

n3ε
+

3σ4

n2ε
<∞. (29.5)

Using the first Borel-Cantelli lemma, we can conclude∣∣∣∣Snn
∣∣∣∣4 a.s.−→ 0,

⇒ Sn
n

a.s.−→ 0.

29.4 Partial Proof 2 (assuming finite variance)

Assume σ2 < ∞ and E[X] = µ. We begin by proving the SLLN for Xi ≥ 0. From the partial proof of the
Weak Law of Large Numbers, we have

P
(∣∣∣∣Snn − µ

∣∣∣∣ > ε

)
≤ σ2

X

nε2
. (29.6)
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To obtain a.s. convergence, consider a deterministic subsequence ni = i2 , i ≥ 1. Thus we get,

P
(∣∣∣∣Si2i2 − µ

∣∣∣∣ > ε

)
≤ σ2

X

i2ε2
,

which implies that
∞∑
i=1

P
(∣∣∣∣Si2i2 − µ

∣∣∣∣ > ε

)
<∞, ∀ε > 0,

Using Borel-Cantelli lemma 1 we conclude that

Si2

i2
a.s.−→ µ as i→∞.

Let n be such that i2 ≤ n ≤ (i+ 1)2. Since Xi ≥ 0,

Si2 ≤ Sn ≤ S(i+1)2 ,

⇒ Si2

(i+ 1)2
≤ Sn

n
≤
S(i+1)2

i2
.

Multiplying the expression on the left by i2 in both the numerator and denominator, and similarly for the
expression on the right, except by (i+ 1)2, we get

Si2

(i+ 1)2
i2

i2
≤ Sn

n
≤
S(i+1)2

i2
(i+ 1)2

(i+ 1)2
,

Si2

i2
i2

(i+ 1)2
≤ Sn

n
≤

S(i+1)2

(i+ 1)2
(i+ 1)2

i2
,

As i→∞, we have

µ ≤ Sn
n
≤ µ.

Thus, by the sandwich theorem, we get
Sn
n

a.s.−→ µ.

To generalise to arbitrary RVs with a finite variance, we just write Xn = X+
n −X−n and proceed as above

since both X+
n and X−n have a finite variance and are non-negative.

29.5 Exercises

1. [Gallager] A town starts a mosquito control program and the random variable Zn is the number of
mosquitoes at the end of the nth year (n = 0, 1, ...). Let Xn be the growth rate of mosquitoes in
the year n i.e. Zn = XnZn−1, n ≥ 1. Assume that {Xn, n ≥ 1} is a sequence of i.i.d. random
variables with the PMF P(X = 2) = 1

2 , P(X = 1
2 ) = 1

4 and P(X = 1
4 ) = 1

4 . Suppose Z0, the initial
number of mosquitoes, is a known constant and assume, for simplicity and consistency, that Zn can
take non-integer values.

(a) Find E[Zn] and limn→∞ E[Zn].
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(b) Based on your answer to part (a), can you conclude whether or not the mosquito control program
is successful? What would your conclusion be?

(c) Let Wn = log2Xn. Find E[Wn] and E[log2
Zn

Z0
].

(d) Show that there exists a constant α such that limn→∞
1
n log2

Zn

Z0
= α almost surely.

(e) Show that there is a constant β such that limn→∞ Zn = β almost surely.

(f) Based on your answer to part (e), can you conclude whether or not the mosquito control program
is successful? What would your conclusion be?

(g) How do you reconcile your answers to parts (b) and (f)?

2. Imagine a world in which the value of π is unknown. It is known that area of a circle is proportional
to the square of the radius, but the constant of proportionality is unknown. Suppose you are given
a uniform random variable generator, and you can generate as many i.i.d. samples as you need,
devise a method to estimate the value of the proportionality constant without actually measuring the
area/circumference of the circle.


