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An important concept in Probability Theory is that of convergence of random variables. Since the important
results in Probability Theory are the limit theorems that concern themselves with the asymptotic behaviour
of random processes, studying the convergence of random variables becomes necessary. We begin by recalling
some definitions pertaining to convergence of a sequence of real numbers.

Definition 28.1 Let {xn, n ≥ 1} be a real-valued sequence, i.e., a map from N to R. We say that the
sequence {xn} converges to some x ∈ R if there exists an n0 ∈ N such that for all ε > 0,

|xn − x| < ε, ∀ n ≥ n0.

We say that the sequence {xn} converges to +∞ if for any M > 0, there exists an n0 ∈ N such that for all
n ≥ n0, xn > M .
We say that the sequence {xn} converges to −∞ if for any M > 0, there exists an n0 ∈ N such that for all
n ≥ n0, xn < −M .

We now define various notions of convergence for a sequence of random variables. It would be helpful to recall
that random variables are after all deterministic functions satisfying the measurability property. Hence, the
simplest notion of convergence of a sequence of random variables is defined in a fashion similar to that for
regular functions.

Let (Ω,F ,P) be a probability space and let {Xn}n∈N be a sequence of real-valued random variables defined
on this probability space.

Definition 28.2 [Definition 0 (Point-wise convergence or sure convergence)]
A sequence of random variables {Xn}n∈N is said to converge point-wise or surely to X if

Xn(ω)→ X(ω), ∀ ω ∈ Ω.

Note that for a fixed ω, {Xn(ω)}n∈N is a sequence of real numbers. Hence, the convergence for this sequence
is same as the one in definition (28.1). Also, since X is the point-wise limit of random variables, it can
be proved that X is a random variable, i.e., it is an F-measurable function. This notion of convergence
is exactly analogous to that defined for regular functions. Since this notion is too strict for most practical
purposes, and neither does it consider the measurability of the random variables nor the probability measure
P(·), we define other notions incorporating the said characteristics.

Definition 28.3 [Definition 1 (Almost sure convergence or convergence with probability 1)]
A sequence of random variables {Xn}n∈N is said to converge almost surely or with probability 1 (denoted by
a.s. or w.p. 1) to X if

P ({ω|Xn(ω)→ X(ω)}) = 1.
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Almost sure convergence demands that the set of ω’s where the random variables converge have a probability
one. In other words, this definition gives the random variables “freedom” not to converge on a set of zero
measure! Hence, this is a weakened notion as compared to that of sure convergence, but a more useful one.

In several situations, the notion of almost sure convergence turns out to be rather strict as well. So several
other notions of convergence are defined.

Definition 28.4 [Definition 2 (convergence in probability)]
A sequence of random variables {Xn}n∈N is said to converge in probability (denoted by i.p.) to X if

lim
n→∞

P (|Xn −X| > ε) = 0, ∀ ε > 0.

As seen from the above definition, this notion concerns itself with the convergence of a sequence of proba-
bilities!

At the first glance, it may seem that the notions of almost sure convergence and convergence in probability
are the same. But the two definitions actually tell very different stories! For almost sure convergence, we
collect all the ω’s wherein the convergence happens, and demand that the measure of this set of ω’s be
1. But, in the case of convergence in probability, there is no direct notion of ω since we are looking at a
sequence of probabilities converging. To clarify this, we do away with the short-hand for probabilities (for
the moment) and obtain the following expression for the definition of convergence in probability:

lim
n→∞

P ({ω||Xn(ω)−X(ω)| > ε}) = 0, ∀ ε > 0.

Since the notion of convergence of random variables is a very intricate one, it is worth spending some time
pondering the same.

Definition 28.5 [Definition 3 (convergence in rth mean)]
A sequence of random variables {Xn}n∈N is said to converge in rth mean to X if

lim
n→∞

E [|Xn −X|r] = 0.

In particular, when r = 2, the convergence is a widely used one. It goes by the special name of convergence
in the mean-squared sense.

The last notion of convergence, known as convergence in distribution, is the weakest notion of convergence.
In essence, we look at the distributions (of random variables in the sequence in consideration) converging
to some distribution (when the limit exists). This notion is extremely important in order to understand the
Central Limit Theorem (to be studied in a later lecture).

Definition 28.6 [Definition 4 (convergence in distribution or weak convergence)]
A sequence of random variables {Xn}n∈N is said to converge in distribution to X if

lim
n→∞

FXn
(x) = FX(x), ∀ x ∈ R where FX(·) is continuous.
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That is, the sequence of distributions must converge at all points of continuity of FX(·). Unlike the previous
four notions discussed above, for the case of convergence in distribution, the random variables need not be
defined on a single probability space!

Before we look at an example that serves to clarify the above definitions, we summarize the notations for
the above notions.

(1) Point-wise Convergence: Xn
p.w.−→ X.

(2) Almost sure Convergence: Xn
a.s.−→ X or Xn

w.p. 1−→ X.

(3) Convergence in probability: Xn
i.p.−→ X.

(4) Convergence in rth mean: Xn
r−→ X. When r = 2, Xn

m.s.−→ X.

(5) Convergence in Distribution: Xn
D−→ X.

Example: Consider the probability space (Ω,F ,P) = ([0, 1],B([0, 1]), λ) and a sequence of random variables
{Xn, n ≥ 1} defined by

Xn(ω) =

{
n, if ω ∈

[
0, 1

n

]
,

0, otherwise.

Since the probability measure specified is the Lebesgue measure, the random variable can be re-written as

Xn =

{
n, with probability 1

n ,

0, with probability 1− 1
n .

Clearly, when ω 6= 0, lim
n→∞

Xn(ω) = 0 but it diverges for ω = 0. This suggests that the limiting random

variable must be the constant random variable 0. Hence, except at ω = 0, the sequence of random variables
converges to the constant random variable 0. Therefore, this sequence does not converge surely, but converges
almost surely.
For some ε > 0, consider

lim
n→∞

P (|Xn| > ε) = lim
n→∞

P (Xn = n) ,

= lim
n→∞

(
1

n

)
,

= 0.

Hence, the sequence converges in probability.
Consider the following two expressions:

lim
n→∞

E
[
|Xn|2

]
= lim

n→∞

(
n2 × 1

n
+ 0

)
,

= ∞.
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lim
n→∞

E [|Xn|] = lim
n→∞

(
n× 1

n
+ 0

)
,

= 1.

Since the above limits do not equal 0, the sequence converges neither in the mean-squared sense, nor in the
sense of first mean.
Considering the distribution of Xn’s, it is clear (through visualization) that they converge to the following
distribution:

FX(x) =

{
0, if x < 0,

1, otherwise.

Also, this happens at each x 6= 0 i.e. at all points of continuity of FX(·). Hence, the sequence of random
variables converge in distribution.

So far, we have mentioned that certain notions are weaker than certain others. Let us now formalize the
relations that exist among various notions of convergence.

It is immediately clear from the definitions that point-wise convergence implies almost sure convergence.
Figure (28.1) is a summary of the implications that hold for any sequence for random variables. No other
implications hold in general. We prove these, in a series of theorems, as below.

a.s.p.w.

i.p.

rth mean (r ≥ 1) sth mean (r > s ≥ 1)

D

Figure 28.1: Implication Diagram

Theorem 28.7 Xn
r−→ X =⇒ Xn

i.p.−→ X, ∀ r ≥ 1.

Proof: Consider the quantity lim
n→∞

P (|Xn −X| > ε). Applying Markov’s inequaliy, we get

lim
n→∞

P (|Xn −X| > ε) ≤ lim
n→∞

E [|Xn −X|r]
εr

, ∀ε > 0,

(a)
= 0,

where (a) follows since Xn
r−→ X. Hence proved.

Theorem 28.8 Xn
i.p.−→ X =⇒ Xn

D−→ X.

Proof: Fix an ε > 0.

FXn
(x) = P(Xn ≤ x),

= P(Xn ≤ x,X ≤ x+ ε) + P(Xn ≤ x,X > x+ ε),

≤ FX(x+ ε) + P(|Xn −X| > ε).
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Similarly,

FX(x− ε) = P(X ≤ x− ε),
= P(X ≤ x− ε,Xn ≤ x) + P(X ≤ x− ε,Xn > x),

≤ FXn(x) + P(|Xn −X| > ε).

Thus,
FX(x− ε)− P(|Xn −X| > ε) ≤ FXn

(x) ≤ FX(x+ ε) + P(|Xn −X| > ε).

As n → ∞, since Xn
i.p.−→ X, P(|Xn −X| > ε) → 0. Therefore,

FX(x− ε) ≤ lim inf
n→∞

FXn
(x) ≤ lim sup

n→∞
FXn

(x) ≤ FX(x+ ε), ∀ε > 0.

If F is continuous at x, then FX(x− ε) ↑ FX(x) and FX(x+ ε) ↓ FX(x) as ε ↓ 0. Hence proved.

Theorem 28.9 Xn
r−→ X =⇒ Xn

s−→ X, if r > s ≥ 1.

Proof: From Lyapunov’s Inequality [1, Chapter 4], we see that (E[|Xn −X|s])1/s ≤ (E[|Xn −X|r])1/r , r >
s ≥ 1. Hence, the result follows.

Theorem 28.10 Xn
i.p.−→ X 6=⇒ Xn

r−→ X in general.

Proof: Proof by counter-example:
Let Xn be an independent sequence of random variables defined as

Xn =

{
n3, w.p. 1

n2 ,
0, w.p. 1- 1

n2 .

Then, P(|Xn| > ε) = 1
n2 for large enough n, and hence Xn

i.p.−→ 0. On the other hand, E[|Xn|] = n, which
diverges to infinity as n grows unbounded.

Theorem 28.11 Xn
D−→ X 6=⇒ Xn

i.p.−→ X in general.

Proof: Proof by counter-example:
Let X be a Bernoulli random variable with parameter 0.5, and define a sequence such that Xi=X ∀ i. Let

Y=1−X. Clearly, Xi
D−→ Y . But, |Xi − Y |=1, ∀ i. Hence, Xi does not converge to Y in probability.

Theorem 28.12 Xn
i.p.−→ X 6=⇒ Xn

a.s.−→ X in general.

Proof: Proof by counter-example:
Let {Xn} be a sequence of independent random variables defined as

Xn =

{
1, w.p. 1

n ,
0, w.p. 1- 1n .

lim
n→∞

P(|Xn| > ε) = lim
n→∞

P(Xn = 1) = lim
n→∞

1
n = 0. So, Xn

i.p.−→ 0.

Let An be the event that {Xn = 1}. Then, An’s are independent and
∞∑
n=1

P(An) = ∞. By Borel-Cantelli

Lemma 2, w.p. 1 infinitely many An’s will occur, i.e., {Xn = 1} i.o.. So, Xn does not converge to 0 almost
surely.
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Theorem 28.13 Xn
s−→ X 6=⇒ Xn

r−→ X if r > s ≥ 1 in general.

Proof: Proof by counter-example:
Let {Xn} be a sequence of independent random variables defined as

Xn =

{
n, w.p. 1

n
r+s
2

,

0, w.p. 1- 1

n
r+s
2

.

Hence, E[|Xs
n|] = n

s−r
2 → 0. But, E[|Xr

n|] = n
r−s
2 →∞.

Theorem 28.14 Xn
m.s.−→ X 6=⇒ Xn

a.s.−→ X in general.

Proof: Proof by counter-example:
Let {Xn} be a sequence of independent random variables defined as

Xn =

{
1, w.p. 1

n ,
0, w.p. 1- 1n .

E[X2
n]= 1

n . So, Xn
m.s.−→ 0. As seen previously (during the proof of Theorem (28.12)), Xn does not converge

to 0 almost surely.

Theorem 28.15 Xn
a.s.−→ X 6=⇒ Xn

m.s.−→ X in general.

Proof: Proof by counter-example:
Let {Xn} be a sequence of independent of random variables defined as

Xn(ω) =

{
n, ω ∈ (0, 1

n ),
0, otherwise.

We know that Xn converges to 0 almost surely. E[X2
n]=n −→ ∞. So, Xn does not converge to 0 in the

mean-squared sense.

Before proving the implication Xn
a.s.−→ X =⇒ Xn

i.p.−→ X, we derive a sufficient condition followed by a
necessary and sufficient condition for almost sure convergence.

Theorem 28.16 If ∀ ε > 0,
∑
n
P(An(ε)) <∞, then Xn

a.s.−→ X, where An(ε) = {ω : |Xn(ω)−X(ω)| > ε}.

Proof: By Borel-Cantelli Lemma 1, An(ε) occurs finitely often, for any ε > 0 w.p. 1. Let Bm(ε) =
⋃
n≥m

An(ε).

Therefore,

P(Bm(ε)) ≤
∞∑
n=m

P(An(ε)).

So, P(Bm(ε)) → 0 as m → ∞, whenever
∑
n
P(An(ε)) < ∞. An equivalent way of proving almost sure

convergence is to first consider lim
m→∞

P

( ⋃
n≥m
{ω : |Xn(ω)−X(ω)| > ε}

)
= 0, ∀ ε > 0. Hence, P(Bm(ε))→ 0

as m→∞. This implies almost sure convergence.
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Theorem 28.17 Xn
a.s.−→ X iff P(Bm(ε))→ 0 as m→∞, ∀ ε > 0.

Proof:

Let A(ε) = { ω ∈ Ω : ω ∈ An(ε) for infinitely many values of n } =
⋂
m

∞⋃
n=m

An(ε).

If Xn
a.s.−→ X, then it is easy to see that P(A(ε))=0, ∀ ε > 0.

Then, P
( ∞⋂
m=1

Bm(ε)

)
= 0.

Since {Bm(ε)} is a nested, decreasing sequence, it follows from the continuity of probability measures that
lim
m→∞

P(Bm(ε)) = 0.

Conversely, let C={ ω ∈ Ω : Xn(ω)→ X(ω) as n →∞}. Then,

P(Cc) = P

(⋃
ε>0

A(ε)

)

= P

( ∞⋃
m=1

A

(
1

m

))
as A(ε) ⊆ A(ε′) if ε ≥ ε′

≤
∞∑
m=1

P
(
A

(
1

m

))
.

Also, P(A(ε)) = lim
m→∞

P(Bm(ε))=0. Consider

P
(
A

(
1

k

))
= P

( ∞⋂
m=1

Bm

(
1

k

))

= lim
m→∞

P
(
Bm

(
1

k

))
= 0. ∀ k ≥ 1, by assumption

So, P(Cc) = 0. Hence, P(C) = 1.

Corollary 28.18 Xn
a.s.−→ X =⇒ Xn

i.p.−→ X.

Proof: Xn
a.s.−→ X =⇒ lim

m→∞
P(Bm(ε))=0.

As Am(ε) ⊆ Bm(ε), it is implied that lim
m→∞

P(Am(ε))=0.

Hence, Xn
i.p.−→ X.

Theorem 28.19 If Xn
i.p.−→ X, then there exists a deterministic, increasing subsequence n1, n2, n3, . . . such

that Xni
a.s. −→X as i−→∞.

Proof: The reader is referred to Theorem 13 in Chapter 7 of [1] for a proof.

Example: Let {Xn} be a sequence of independent random variables defined as

Xn =

{
1, w.p. 1

n ,
0, w.p. 1- 1n .
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It is easy to verify that, Xn
i.p.−→ 0, but Xn

a.s.9 X. However, if we consider the subsequence {X1, X4, X9, . . . },
this (sub)sequence of random variables converges almost surely to 0. This can be verified as follows.
Let ni = i2, Yi = Xni

= Xi2 .
Thus, P(Yi = 1) = P(Xi2 = 1) = 1

i2 .

⇒
∑
i∈N

P(Yi) =
∑
i∈N

1
i2 <∞. Hence, by BCL-1, X2

i
a.s.→ 0.

Although this is not a proof for the above theorem, it serves to verify the statement via a concrete example.

Theorem 28.20 [Skorokhod’s Representation Theorem]
Let {Xn, n ≥ 1} and X be random variables on (Ω,F ,P) such that Xn converges to X in distribution. Then,
there exists a probability space (Ω′,F ′,P′), and random variables {Yn, n ≥ 1} and Y on (Ω′,F ′,P′) such that,

a) {Yn, n ≥ 1} and Y have the same distributions as {Xn, n ≥ 1} and X respectively.

b) Yn
a.s.→ Y as n→∞.

Theorem 28.21 [Continuous Mapping Theorem]

If Xn
D→ X, and g : R −→ R is continuous, then g(Xn)

D→ g(X).

Proof: By Skorokhod’s Representation Theorem, there exists a probability space (Ω′,F ′,P′), and {Yn, n ≥
1}, Y on (Ω′,F ′,P′) such that, Yn

a.s.→ Y . Further, from continuity of g,
{ω ∈ Ω′ | g(Yn(ω))→ g(Y (ω))} ⊇ {ω ∈ Ω′ | Yn(ω)→ Y (ω)},
⇒ P({ω ∈ Ω′ | g(Yn(ω))→ g(Y (ω))}) ≥ P({ω ∈ Ω′ | Yn(ω)→ Y (ω)}),
⇒ P({ω ∈ Ω′ | g(Yn(ω))→ g(Y (ω))}) ≥ 1,

⇒ g(Yn)
a.s.→ g(Y ),

⇒ g(Yn)
D→ g(Y ).

This completes the proof since, g(Yn) has the same distribution as g(Xn), and g(Y ) has the same distribution
as g(X).

Theorem 28.22 Xn
D→ X iff for every bounded continuous function g : R −→ R, we have E[g(Xn)] →

E[g(X)].

Proof: Here, we present only a partial proof. For a full treatment, the reader is referred to Theorem 9 in
chapter 7 of [1].

Assume Xn
D→ X. From Skorokhod’s Representation Theorem, we know that there exist random variables

{Yn, n ≥ 1} and Y , such that Yn
a.s.→ Y . From Continuous Mapping Theorem, it follows that g(Yn)

a.s.→ g(Y ),
since g is given to be continuous. Now, since g is bounded, by DCT, we have E[g(Yn)] → E[g(Y )]. Since,
g(Yn) has the same distribution as g(Xn), and g(Y ) has the same distribution as g(X), we have E[g(Xn)]→
E[g(X)].

Theorem 28.23 If Xn
D−→ X, then CXn

(t) −→ CX (t) , ∀t.

Proof: If Xn
D−→ X, from Skorokhod’s Representation Theorem, there exist random variables {Yn} and Y

such that Yn
a.s.−→ Y .

So,
cos(Ynt) −→ cos(Y t), cos(Xnt) −→ cos(Xt), ∀t.
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As cos(·) and sin(·) are bounded functions,

E[cos(Ynt)] + iE[sin(Ynt)] −→ E[cos(Y t)] + iE[sin(Y t)], ∀t.

⇒ CYn(t) −→ CY (t), ∀t.

We get,
CXn

(t) −→ CX(t), ∀t,

since distributions of {Xn} and X are same as those of {Yn} and Y respectively, from Skorokhod’s Repre-
sentation Theorem.

Theorem 28.24 Let {Xn} be a sequence of RVs with characteristic functions, CXn
(t) for each n, and let

X be a RV with characteristic function CX (t). If CXn (t) −→ CX (t), then Xn
D−→ X.

Theorem 28.25 Let {Xn} be a sequence of RVs with characteristic functions CXn (t) for each n, and
suppose lim

n→∞
CXn (t) exists ∀t, and is denoted by φ (t). Then, one of the following statements is true:

(a) φ (·) is discontinuous at t = 0, and in this case, Xn does not converge in distribution.

(b) φ (·) is continuous at t = 0, and in this case, φ is a valid characteristic function of some RV X. Then

Xn
D−→ X.

Remark 28.26 In order to prove that the φ(t) above is indeed a valid characteristic function, we need to
verify the three defining properties of characteristic functions. However, in the light of Theorem (28.25), it
is sufficient to verify the continuity of φ(t) at t = 0. After all φ(t) is not an arbitrary function; it is the limit
of the characteristic functions of Xns, and therefore inherits some nice properties. Due to these inherited
properties, it turns out it is enough to verify continuity at t = 0, instead of verifying all the conditions of
Bochner’s theorem!

Note: Theorems (28.24) and (28.25) together are known as Continuity Theorem. For proof, refer to [1].

28.1 Exercises

1. (a) Prove that convergence in probability implies convergence in distribution, and give a counter-
example to show that the converse need not hold.

(b) Show that convergence in distribution to a constant random variable implies convergence in prob-
ability to that constant.

2. Consider the sequence of random variables with densities

fXn(x) = 1 - cos(2πnx), x ∈ (0, 1).

Do Xn’ s converge in distribution? Does the sequence of densities converge?

3. [Grimmett] A sequence {Xn, n ≥ 1} of random variables is said to be completely convergent to X if∑
n P(|Xn −X| > ε) <∞, ∀ε > 0
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Show that, for sequences of independent random variables, complete convergence is equivalent to almost
sure convergence. Find a sequence of (dependent) random variables that converge almost surely but
not completely.

4. Construct an example of a sequence of characteristic functions φn(t) such that the limit φ(t) =
limn→∞ φn(t) exists for all t, but φ(t) is not a valid characteristic function.
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