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In this lecture, we will introduce Moment Generating Function and discuss its properties.

Definition 25.1 The moment generating function (MGF) associated with a random variable X, is a func-
tion, MX : R→ [0,∞] defined by MX(s) = E

[
esX

]
.

The domain or region of convergence (ROC) of MX is the set DX = {s|MX(s) < ∞}. In general, s can
be complex, but since we did not define expectation of complex valued random variables, we will restrict
ourselves to real valued s. Note that s = 0 is always a point in the ROC for any random variable, since
MX(0) = 1.

Cases:

• If X is discrete with pmf pX(x), then MX(s) =
∑
x
esxpX(x).

• If X is continuous with density fX(·), then MX(s) =
∫
esxfX(x) dx.

Example 25.2 Exponential random variable

fX(x) = µe−µx, x ≥ 0,

MX(s) =

∞∫
0

esxµe−µxdx =

{
µ
µ−s , if s < µ,

+∞, otherwise.

The Region of Convergence for this example is, {s|MX(s) <∞}, i.e., s < µ.

Example 25.3 Std. Normal random variable

fX(x) =
1√
2π
e

−x2
2 , x ∈ R,

MX(s) =
1√
2π

∞∫
−∞

esxe
−x2
2 dx ,

= e
s2

2 , s ∈ R.

The Region of Convergence for this example is the entire real line.

Example 25.4 Cauchy random variable

fX(x) =
1

π(1 + x2)
, x ∈ R,

MX(s) =
1

π

∞∫
−∞

esx
1

1 + x2
dx =

{
1, if s = 0,

+∞, otherwise.

The Region of Convergence for this example is just the point s = 0.
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Remark 2: The above examples can be interpreted as follows.

• In Example 25.2, we have the product of two exponentials. Thus, the MGF converges when the product
is decreasing.

• In Example 25.3, there is a ’competition’ between e−
x2

2 and esx. Since the first term from the Gaussian
decreases faster than esx increases (for any s), the integral always converges.

• In Example 25.4, for s 6= 0, an exponential competes with a decreasing polynomial, as a result of which
the integral diverges.

It is an interesting question whether or not we can uniquely find the CDF of a random variable, given the
moment generating function and its ROC. A quick look at Example 25.4 reveals that if the MGF is finite only
at s = 0 and infinite elsewhere, it is not possible to recover the CDF uniquely. To see this, one just needs to
produce another random variable whose MGF is finite only at s = 0. (Do this!) On the other hand, if we can
specify the value of the moment generating function even in a tiny interval, we can uniquely determine the
density function. This result follows essentially because the MGF, when it exists in an interval, is analytic,
and hence possesses some nice properties. The proof of the following theorem is rather involved, and uses
the properties of an analytic function.

Theorem 25.5 (Without Proof)

i) Suppose MX(s) is finite in the interval [−ε, ε] for some ε > 0, then MX uniquely determines the CDF
of X.

ii) If X and Y are two random variables such that, MX(s) = MY (s) ∀s ∈ [−ε, ε] , ε > 0 then X and Y
have the same CDF.

25.1 Properties

1. MX(0) = 1.

2. Moment Generating Property: We shall state this property in the form of a theorem.

Theorem 25.6 Supposing MX(s) <∞ for s ∈ [−ε, ε], ε > 0 then,

d

ds
MX(s)

∣∣∣
s=0

=E[X]. (25.1)

More generally,

dm

dsm
MX(s)

∣∣∣
s=0

=E[Xm] ; m ≥ 1.

Proof: (25.1) can be proved in the following steps.

d

ds
MX(s) =

d

ds
E[esX ]

(a)
= E[

d

ds
esX ] = E[XesX ],

where, (a) is obtained by the interchange of the derivative and the expectation. This follows from the
use of basic definition of the derivative, and then invoking the DCT; see Lemma 25.7 (d).
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Lemma 25.7 Suppose that X is a non-negative random variable and MX(s) < ∞, ∀s ∈ (−∞, a],
where a is a positive number, then

(a) E[Xk] <∞, for every k.

(b) E[XkesX ] <∞, for every s < a.

(c) ehX−1
h ≤ XehX .

(d) E[X] = E[limh↓0
ehX−1
h ] = limh↓0

E[ehX ]−1
h .

Proof: Given that X is a non-negative random variable with a Moment Generating Function such
that MX(s) <∞, ∀s ∈ (−∞, a], for some positive a.

(a) For a positive number a, xk ≤ eax, ∀k ∈ Z+ ∪ {0}. Therefore, E[Xk] =
∫
xkdPX ≤

∫
eaxdPX .

However,
∫
eaxdPX = MX(a) <∞. Therefore, E[Xk] <∞.

(b) For s < a, ∃ε > 0 such that MX(s + ε) < ∞ ⇒
∫
esxeεxdPX < ∞. But since ε > 0, as x → ∞,

xk ≤ eεx. Therefore, E[XkesX ] =
∫
xkesxdPX ≤

∫
esxeεxdPX <∞⇒ E[XkesX ] < ∞.

(c) To prove that ehX−1
h ≤ XehX .

Let hX = Y . Therefore, re-arranging the terms, we need to prove that eY − Y eY ≤ 1. Or
equivalently, it is enough to prove that, g(Y ) = eY (Y − 1) ≥ −1.
g(Y ) has a minima at Y = 0, and the minimum value, i.e., g(0) = -1.
⇒ g(Y ) ≥ −1,
⇒ eY (Y − 1) ≥ −1.
Hence proved.

(d) Define Xh = ehX−1
h .

limh↓0Xh =X i.e. Xh → X point-wise. Since E[XkesX ]<∞ is true, when s= h and k = 1, we get
E[XehX ]<∞. SinceXh is dominated byXehX , E[XehX ] <∞ and limh↓0Xh =X, applying DCT

we get E[X] = E[limh↓0Xh] = E[limh↓0
ehX−1
h ] = limh↓0 E

[
ehX−1
h

]
= limh↓0

E[ehX ]−1
h . Therefore,

E[X] = E[limh↓0
ehX−1
h ] = limh↓0

E[ehX ]−1
h .

Hence proved.

3. If Y = aX + b, a, b ∈ R, then MY (s) = esbMX(as). For example, X ∼ N (0, 1), Y = σX + µ

⇒ Y ∼ N (µ, σ2)⇒MY (s) = eµseσ
2 s2

2 , s ∈ R.

4. If X and Y are independent and Z = X + Y , then MZ(s) = MX(s)MY (s).
Proof: E[esZ ] = E[esX+sY ] = E[esXesY ]=E[esX ]E[esY ].

Consider the following examples:

(a) X1 ∼ N(µ1, σ
2
1);X2 ∼ N(µ2, σ

2
2); and X1, X2 are independent. Z = X1 +X2;

MX1
(s) = e

(
µ1s+

σ21s
2

2

)
,

MX2(s) = e

(
µ2s+

σ22s
2

2

)
,

MZ(s) = MX1(s)MX2(s),

= e

(
(µ1+µ2)s+

(σ21+σ22)s2

2

)
.

⇒ Z ∼ N(µ1 + µ2, σ
2
1 + σ2

2).
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(b) X1 ∼ exp(µ);X2 ∼ exp(λ), λ 6= µ and X1, X2 are independent. Z = X1 +X2;

MX1
(s) =

µ

µ− s
,

MX2
(s) =

λ

λ− s
,

MZ(s) = MX1(s)MX2(s),

=
µλ

(µ− s)(λ− s)
, ROC is s < min(λ, µ)

⇒ fZ(x) =
µ

µ− λ
λe−λx − λ

µ− λ
µe−µx,

=

(
µλ

µ− λ

)(
e−λx − e−µx

)
, x ≥ 0.

5. Z =
N∑
i=1

Xi, Xi are i.i.d and N is independent of Xi.

MZ(s) = E[esZ ] = E
[
E
[
esZ |N

]]
,

= E
[
(MX(s))

N
]
,

If we write in terms of the PGF and MGF of N , then,

MZ(s) = GN (MX(s)),

= MN (logMX(s)).

For example, Xi ∼ exp(µ);N ∼ Geom(p) and Z =
N∑
i=1

Xi. Then the distribution of Z is computed as

follows:

MX(s) =
µ

µ− s
, s < µ,

GN (ξ) =
pξ

1− (1− p)ξ
, |ξ| < 1

1− p
,

MZ(s) = GN (MX(s)),

=
p
(

µ
µ−s

)
1− (1− p)

(
µ
µ−s

) ,
=

µp

µp− s
, s < µp,

⇒ Z ∼ exp(µp).

25.2 Exercise

1. (a) [Dimitri P.Bertsekas] Find the MGF associated with an integer-valued random variable X that
is uniformly distributed in the range {a, a+ 1, ..., b}.



Lecture 25: Moment Generating Function 25-5

(b) [Dimitri P.Bertsekas] Find the MGF associated with a continuous random variable X that is
uniformly distributed in the range [a, b].

2. [Dimitri P.Bertsekas] A non-negative interger-valued random variable X has one of the following MGF:

(a) M(s) = e2(e
es−1−1).

(b) M(s) = e2(e
es−1).

(a) Explain why one of the 2 cannot possibly be a MGF.

(b) Use the true MGF to find P(X = 0).

3. Find the variance of a random variable X whose moment generating function is given by

MX(s) = e3e
s−3


