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In this lecture, we will introduce the notions of variance and covariance of random variables. Earlier, we
learnt about the expected value of a random variable which gives an idea of the average value. The idea of
variance is useful in describing the extent to which the random variable deviates about its mean on either
side. The covariance is a property that characterizes the extent of dependence between two random variables.

22.1 Variance

As stated earlier, the variance quantifies the extent to which the random variable deviates about the mean.
Mathematically, the variance is defined as follows :

Definition 22.1 Let X be a random variable with E[X] <∞. The variance of X is defined as

V ar(X) = σ2
X = E

[
(X − E[X])2

]
.

σX is referred to as the standard deviation of the random variable X.

22.1.1 Properties of Variance

We will now study a few properties of the variance of a random variable.

First and foremost, we can clearly see that for any real valued random variable X, g(X) = (X−E[X])2 ≥ 0.
Thus it is easy to see that σ2

X ≥ 0 from property PAI 2 from Lecture #18. In fact, we can make the
following stronger statement regarding the variance of a random variable.

Lemma 22.2 Let X be a real valued random variable. Then, V ar(X) = 0 if and only if X is a constant
almost surely.

Proof: We will first prove the sufficiency criterion in the above statement. That is, assume that X is a
constant valued random variable almost surely. Thus, it is evident that X = E[X] almost surely, consequently
implying that σ2

X = 0.

To prove the necessity condition in the statement, assume that X is a random variable with zero variance.
Thus, we have the following :

σ2
X = E[(X − E[X])2] = 0.

=⇒
∫

(X − E[X])2dPX = 0. (22.1)

Applying PAI 7 from Lecture #18 to (22.1), we can conclude that (X − E[X])2 = 0 almost surely. Thus,
we have X = E[X] almost surely.

22-1



22-2 Lecture 22: Variance and Covariance

Now, using some simple algebra, we make a few useful observations.

σ2
X = E

[
(X − E[X])2

]
,

= E
[
(X2) + (E[X])2 − 2XE[X]

]
,

(a)
= E

[
X2
]
− 2E[X].E[X] + (E[X])

2
,

= E
[
X2
]
− (E[X])

2
, (22.2)

where (a) follows from the linearity of expectation (PAI 4 from Lecture #18). Now using the fact that
σ2
X ≥ 0 and (22.2), we can see that E[X2] ≥ (E[X])2. The term E

[
X2
]

is referred to as the second moment
of the random variable X.

An interesting digression:

Theorem 22.3 (Jensen’s Inequality) Let X be any real valued random variable and let h(·) be a function
of the random variable. Then,

1. If h(·) is convex, then E[h(X)] ≥ h(E[X]).

2. If h(·) is concave, then E[h(X)] ≤ h(E[X]).

3. If h(·) is linear, then E[h(X)] = h(E[X]).

A guided proof of Jensen’s inequality will be encountered in your homework.

Since f(x) = x2 is a convex function, we can invoke Theorem 22.3 and observe that E[X2] ≥ (E[X])2.

Let us look at a few examples.

Example 1: Let X be a Bernoulli random variable with parameter p i.e.,

X =

{
1 w.p. p,
0 w.p. 1− p.

Find the variance of X.
Solution: We have

E[X] = p× 1 + (1− p)× 0,

= p.

Next,

E[X2] = p× 12 + (1− p)× 02,

= p.

Finally,

σ2
X = E[X2]− (E[X])

2
,

= p− p2,
= p(1− p).



Lecture 22: Variance and Covariance 22-3

Example 2: Let X be a discrete valued random variable with Poisson distribution of parameter λ. That

is, P(X = k) = e−λλk

k! ,∀k ∈ Z+ ∪ {0}. Find the variance of X.
Solution: We have

E[X] =

∞∑
k=0

k
e−λλk

k!
,

= λ

∞∑
k=1

e−λλ(k−1)

(k − 1)!
,

= λ.

Next,

E[X2] =

∞∑
k=0

k2
e−λλk

k!
,

=

∞∑
k=1

λ(k − 1 + 1)e−λλ(k−1)

(k − 1)!
,

=

∞∑
k=2

λ2
e−λλ(k−2)

(k − 2)!
+

∞∑
k=1

λ
e−λλ(k−1)

(k − 1)!
,

= λ2 + λ.

Finally,

σ2
X = E[X2]− (E[X])

2
,

= λ2 + λ− (λ)
2
,

= λ.

Example 3: Let X be a discrete random variable with P(X = k) = 1
ζ(3)

1
k3 for k ∈ N, where ζ(·) is the

Riemann zeta function. Find σ2
X .

Solution: We have,

E[X] =

∞∑
k=1

kP(X = k),

=

∞∑
k=1

k
1

ζ(3)

1

k3
,

=
1

ζ(3)

∞∑
k=1

1

k2
,

=
1

ζ(3)

π2

6
.
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Next, we have

E[X2] =

∞∑
k=1

k2P(X = k),

=

∞∑
k=1

k2
1

ζ(3)

1

k3
,

=
1

ζ(3)

∞∑
k=1

1

k
,

=∞.

Finally,

σ2
X = E

[
X2
]
− (E[X])

2
,

= ∞.

The above example is a case of a random variable with finite expected value but infinite variance!

Example 4: Let X be a uniform random variable in the interval [a, b]. Find the variance of X.
Solution: Recall that the density of X is given by

fX(x) =

{
1
b−a for a ≤ x ≤ b,
0 otherwise .

Now, we have

E[X] =

∫
xfX(x)dx,

=

b∫
a

x
1

b− a
dx,

=
a+ b

2
.

Next, we have

E
[
X2
]

=

∫
x2fX(x)dx,

=

b∫
a

x2
1

b− a
dx,

=
(b3 − a3)

3(b− a)
,

=
a2 + ab+ b2

3
.
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Finally,

σ2
X = E[X2]− (E[X])

2
,

=
a2 + ab+ b2

3
− a2 + 2ab+ b2

4
,

=
b2 − 2ab+ a2

12
,

=
(b− a)2

12
.

Example 5: Let X be an exponentially distributed random variable with parameter µ. Find σ2
X .

Solution: Recall that for an exponential random parameter fX(x) = µe−µx for x ≥ 0.

E[X] =

∫
xfX(x)dx,

=

∞∫
0

x µe−µxdx,

=
1

µ
.

Next, we have

E
[
X2
]

=

∫
x2fX(x)dx,

=

∞∫
0

x2 µe−µxdx,

=
2

µ2
.

Finally,

σ2
X = E[X2]− (E[X])

2
,

=
2

µ2
−
(

1

µ

)2

,

=
1

µ2
.

Example 6: Let X ∼ N
(
µ, σ2

)
. Find σ2

X .

Solution: From Example 2 in Lecture #21, we know that E[X] = µ and E
[
X2
]

= µ2 + σ2. Thus, we have

σ2
X = E

[
X2
]
− (E[X])

2
,

= µ2 + σ2 − (µ)2,

= σ2.

Note that the normal distribution is parametrized by the expected value µ and the variance σ2.
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22.2 Covariance

Having looked at variance, a term that characterizes the extent of deviation of a single random variable
around its expected value, we now define and study the covariance of two random variables X and Y , a term
that quantifies the extent of dependence between the two random variables.

Definition 22.4 Let X and Y be random variables on (Ω,F ,P). Further, let E[X] < ∞ and E[Y ] < ∞.
The covariance of X and Y is given by

cov(X,Y ) = E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ].

Definition 22.5 Let X and Y be random variables. X and Y are said to be uncorrelated if cov(X,Y ) = 0,
i.e, if E[XY ] = E[X]E[Y ].

Thus, two random variables are uncorrelated if the expectation of their product is the product of their
expectations. The following theorem asserts that independent random variables are uncorrelated.

Theorem 22.6 If X and Y are independent random variables with E[|X|] <∞, E[|Y |] <∞. Then E[XY ]
exists, and E[XY ] = E[X]E[Y ] i.e., cov(X,Y ) = 0.

Proof: We will prove this theorem in three steps. We will first assume that the random variables X and Y
are simple and thus can be represented as follows :

X =

n∑
i=1

xiIAi and Y =

m∑
i=1

yiIBi .

Assuming canonical representation of the random variables X and Y , we have

XY =

n∑
i=1

m∑
j=1

(xiyj)I(Ai∩Bj).

Thus, we have,

E[XY ] =

∫
XY dP,

=

n∑
i=1

m∑
j=1

(xiyj)P(Ai ∩Bj). (22.3)

Next, as X and Y are independent random variables, σ(X) and σ(Y ) are independent σ−algebras. Also,
Ai = {ω ∈ Ω|X(ω) = ai} ∈ σ(X) and Bj = {ω ∈ Ω|X(ω) = bj} ∈ σ(Y ). By definition of independent σ−
algebras,

P(Ai ∩Bj) = P(Ai)P(Bj), ∀i, j. (22.4)

Using (22.4) in (22.3), we get

E[XY ] =

n∑
i=1

m∑
j=1

xiyjP(Ai)P(Bj),

=

(
n∑
i=1

xiP(Ai)

) m∑
j=1

yjP(Bj)

 ,

= E[X]E[Y ].



Lecture 22: Variance and Covariance 22-7

We will now extend the proof to non-negative random variables. Let X and Y be non-negative random
variables. Let the sequences of simple random variables, Xn and Yn, be such that Xn ↑ X and Yn ↑ Y . We
know that such a sequence exists from section 3 in Lecture #19. Also, by construction, it is easy to see that
Xn and Yn are independent. Consequently, we have XnYn ↑ XY . Thus,

E[XY ]
MCT

= lim
n→∞

E[XnYn]
(a)
=
(

lim
n→∞

E[Xn]
)(

lim
n→∞

E[Yn]
)
MCT

= E[X]E[Y ], (22.5)

where (a) follows from the independence of Xn and Yn and since both the limits exist.

Finally, for the case of X and Y possibly being negative, let X = X+ − X−, and let Y = Y+ − Y− where
X+, X−, Y+ and Y− are as defined in Lecture #17. Then

E[XY ] = E[X+Y+] + E[X−Y−]− E[X+Y−]− E[X−Y+], (22.6)

= E[X+]E[Y+] + E[X−]E[Y−]− E[X+]E[Y−]− E[X−]E[Y+], (22.7)

= E[X]E[Y ]. (22.8)

where (22.6) and (22.8) follow from the linearity of expectations (PAI 4 from Lecture #18) and (22.7) follows
from (22.5). Note that X+ and X− are functions of X, and Y+ and Y− are functions of Y . Since X and
Y are independent, all the pairs of random variables inside expectation in RHS of (22.6) are independent.1

Thus, we have proved that independent random variables are uncorrelated.

Caution: While independence guarantees that two random variables are uncorrelated, the converse is not
necessarily true i.e., two uncorrelated random variables may or may not be independent. We show this by a
counter example.

Let X ∼ unif [−1, 1] and Y = X2 be two random variables. It can be shown that X and Y are not
independent. However,

cov(X,Y ) = E[XY ]− E[X]E[Y ],

= E
[
X3
]
− E[X]E

[
X2
]
,

(a)
= 0− 0,

= 0,

where (a) follows since X is symmetric around 0.
Thus, we have an example where two random variables X and Y are uncorrelated but not independent.

Proposition 22.7 Consider two random variables X and Y . Then, we have

V ar(X + Y ) = V ar(X) + V ar(Y ) + 2cov(X,Y ).

Proof:

V ar(X + Y ) = E
[
(X + Y )2

]
− (E[X] + E[Y ])2

= E
[
X2 + Y 2 + 2XY

]
−
(
E[X]2 + E[Y ]2 + 2E[X]E[Y ]

)
,

=
(
E
[
X2
]
− E[X]2

)
+
(
E
[
Y 2
]
− E[Y ]2

)
+ 2 (E[XY ]− E[X]E[Y ]) ,

= V ar(X) + V ar(Y ) + 2cov(X,Y ).

1Let X and Y be independent random variables on (Ω,F ,P). Also, let f(·) and g(·) be measurable functions from R to R.
Then, f(X) and g(Y ) are independent random variables.



22-8 Lecture 22: Variance and Covariance

It is easy to see that if X and Y are uncorrelated, then V ar(X + Y ) = V ar(X) + V ar(Y ). This can of
course be extended to the sum of any finite number of random variables.

Definition 22.8 Let X and Y be random variables. Then, the correlation coefficient for the two random
variables is defined as :

ρX,Y ,
cov(X,Y )√

V ar(X)V ar(Y )

Theorem 22.9 Cauchy-Schwartz Inequality For any two random variables X and Y , −1 ≤ ρX,Y ≤ 1.
Further, if ρX,Y = 1, then there exists a > 0 such that Y − E[Y ] = a (X − E[X]) and if ρX,Y = −1, then
there exists a < 0 such that Y − E[Y ] = a (X − E[X]).

Proof: Let X̃ = X − E[X] and Ỹ = Y − E[Y ]. Now we know that,

E

[(
X̃ − E[X̃Ỹ ]

E[Ỹ 2]
Ỹ

)2
]

(a)

≥ 0, (22.9)

E

X̃2 − 2X̃
E[X̃Ỹ ]

E[Ỹ 2]
Ỹ +

(
E[X̃Ỹ ]

)2
(
E[Ỹ 2]

)2 Ỹ 2

 ≥ 0,

E
[
X̃2
]
− (E[X̃Ỹ ])2

E[Ỹ 2]

(b)

≥ 0,

E
[
X̃2
]
≥ (E[X̃Ỹ ])2

E[Ỹ 2]
,

− 1 ≤
E
[
X̃Ỹ

]
√

E
[
X̃2
]√

E
[
Ỹ 2
] ≤ 1, (22.10)

where (a) follows from PAI 2 of Lecture #18 and (b) follows from linearity and scaling property of expectation

(PAI 4 and PAI 8 of Lecture #18). From definition, E[X̃2] = V ar(X) and E[Ỹ 2] = V ar(Y ). Further, we

can observe that E[X̃Ỹ ] = cov(X,Y ).Thus, it is easy to see that

ρX,Y =
cov(X,Y )√

V ar(X)V ar(Y )
=

E
[
X̃Ỹ

]
√
E
[
X̃2
]√

E
[
Ỹ 2
] . (22.11)

Combining (22.10) and (22.11), we get

−1 ≤ ρX,Y ≤ 1.

Note that ρX,Y = 1 or ρX,Y = −1 when the (22.9) is met with equality. This happens when X̃ = E[X̃Ỹ ]

E[Ỹ 2]
Ỹ

almost surely which proves the second part of the theorem.
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The discussion regarding Cauchy-Schwartz inequality above has a close connection with Hilbert Spaces. As
one may recall from a course in Linear Algebra, a Hilbert Space is a complete vector space endowed with an
inner product.

Let (Ω,F ,P) be a probability space, and let L2 be a collection of all zero-mean, real-valued random variables
defined over this space with finite second moment. It can be shown that L2 with addition of functions and
scalar multiplication (obeyed except perhaps on a set of measure zero) is a Hilbert Space. The associated
inner product is the covariance function. We say that two random variables from L2 are equivalent if they
agree, except perhaps on a set of measure zero. That is, X ∼ Y (read as X is equivalent to Y ) if P(X = Y )
= 1, for any X,Y ∈ L2. Thus, L2 is partitioned into several such equivalence classes by the aforementioned
equivalence relation.

In light of this discussion, the covariance function can be interpreted as the dot product of the Hilbert space,
and the correlation coefficient is interpreted as the cosine of the angle between two random variables in this
Hilbert space. In particular uncorrelated random variables are orthogonal! The interested reader is referred
to sections 7 through 11 of chapter 6 in [1] for a more detailed treatment of this topic; this viewpoint is
especially useful in estimation theory.

22.3 Exercise

1. [Papoulis] Let a and b be positive integers with a ≤ b, and let X be a random variable that takes as
values, with equal probability, the powers of 2 in the interval [2a, 2b]. Find the expected value and
variance of X.

2. [Papoulis] Suppose that X and Y are random variables with the same variance. Show that X −Y and
X + Y are uncorrelated.

3. [Papoulis] Suppose that a random variable X satisfies E[X] = 0, E[X2] = 1, E[X3] = 0 and E[X4] = 3
and let Y = a+ bX + cX2. Find the correlation co-efficient ρX,Y .

4. [Assignment problem, University of Cambridge] Take 0 ≤ r ≤ 1. Let X and Y be independent random
variables taking values ±1 with probabilities 1

2 . Set Z = X, with probability r and Z = Y , with
probability 1− r. Find ρX,Z .

5. [Papoulis] Let X1, X2, ..., Xn be independent random variables with non-zero finite expectations. Show
that

var(
n∏
i=1

Xi)

n∏
i=1

E[Xi]2
=

n∏
i=1

(var(Xi)

E[Xi]2
+ 1
)
− 1

.
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