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Lecture 21: Expectation of CRVs, Fatou’s Lemma and DCT
Lecturer: Krishna Jagannathan Scribe: Jainam Doshi

In the present lecture, we will cover the following three topics:

• Integration of Continous Random Variables

• Fatou’s Lemma

• Dominated Convergence Theorem (DCT)

21.1 Integration of Continuous Random Variables

Theorem 21.1 Consider a probability space (Ω,F ,P). Let X : Ω → R be a continuous random variable.
Let g be a measurable function which is either non-negative or satisfies

∫
|g|dPX <∞.Then,

E[g(X)] =

∫
gfXdλ.

In particular, if g(x) = x, i.e. the identity map, we have

E[X] =

∫
xfXdλ.

Proof: Let us first consider the case of g being a simple function i.e. g =
K∑
i=1

aiIAi for some measurable

disjoint subsets Ai over the real line. We then have

E[g(X)] =

∫
g dPX

=

K∑
i=1

aiPX(Ai) [g is a simple function]

=

K∑
i=1

ai

∫
Ai

fXdλ [From Radon-Nikodym Theorem]

=

K∑
i=1

∫
Ai

ai fXdλ [ai is a constant]

=

K∑
i=1

∫
Ω

(aiIAifX)dλ [IAi is the indicator random variable of event Ai]
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=

∫
Ω

K∑
i=1

(aiIAifX)dλ [Interchanging finite summation and integral]

=

∫
Ω

(
K∑
i=1

(aiIAi)

)
fXdλ

=

∫
Ω

(gfX)dλ.

Thus we have proved the above theorem for simple functions. We now assume g to be a non-negative mea-
surable function which may not necessarily be simple.

Let gn be an increasing sequence of non-negative simple functions that converge to g point wise. One way
of coming up with such a sequence was discussed in the previous lecture. We then have,

E[g(X)] = lim
n→∞

∫
gndPX [From MCT]

= lim
n→∞

∫
gnfXdλ [From result for simple functions]

=

∫
gfXdλ. [From MCT, since gnfX ↑ gfX ]

For arbitrary g which are absolutely integrable, a similar proof can be worked out by writing g = g+ − g−
and proceeding.

Example 1: Let X be an exponential random variable with parameter µ. Find E[X] and E[X2].
Solution: Recall that for an exponential random variable with parameter µ, fX(x) = µe−µx. Thus, we have

E[X] =

∫
xfXdλ =

∞∫
0

xµe−µxdx =
1

µ
.

E[X2] =

∫
x2fXdλ =

∞∫
0

x2µe−µxdx =
2

µ2
.

Example 2: Let X ∼ N (µ, σ2). Find E[X] and E[X2].

Solution: Recall that the density of X is given by fX(x) = 1
σ
√

2π
e−

(x−µ)2

2σ2 . Thus, we have

E[X] =

∫
xfXdλ =

∞∫
−∞

x
1

σ
√

2π
e−

(x−µ)2

2σ2 dx = µ.

E[X2] =

∫
x2fXdλ =

∞∫
−∞

x2 1

σ
√

2π
e−

(x−µ)2

2σ2 dx = µ2 + σ2.
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Example 3: Let X be a one-sided Cauchy random variable i.e. fX(x) = 2
π

1
1+x2 for x ≥ 0. Find E[X].

Solution: We have

E[X] =

∫
xfXdλ =

∞∫
0

x
2

π

1

1 + x2
dx =∞.

Example 4: Let X be a two-sided Cauchy random variable i.e., fX(x) = 1
π

1
1+x2 for ∀x ∈ R. Find E[X].

Solution: In this case the random variable X takes both positive and negative values. Hence, we need to
find E[X+] and E[X−] seperately and then evaluate E[X] = E[X+] − E[X−]. Recall that X+ = max(X, 0)
and X− = −min(X, 0). Thus,

X+(ω) = 0 for ω ∈ A = {ω ∈ Ω|X(ω) < 0},
X+(ω) = X(ω) for ω ∈ Ac.

Similarly,

X−(ω) = 0 for ω ∈ B = {ω ∈ Ω|X(ω) > 0},
X−(ω) = −X(ω) for ω ∈ Bc.

It is easy to see that P(A) = P(B) = 0.5. Next, we have

E[X+] =

∫
xdPX+

E[X+] = 0× P(A) +

∞∫
0

x
1

π

1

1 + x2
dx =∞.

Similarly,

E[X−] =

∫
xdPX−

E[X−] = 0× P(B) +

0∫
−∞

−x 1

π

1

1 + x2
dx =∞.

Thus, we have a case of ∞−∞ and E[X] is undefined.

Note that in Example 2 also, X takes both positive and negative values and we should find E[X+] and E[X−]
seperately and evaluate E[X] = E[X+]−E[X−]. But in that case both E[X+] and E[X−] are finite, allowing
us to integrate with respect to the pdf fX(x) from −∞ to ∞ directly.

Note: For the two sided Cauchy,

∞∫
−∞

1

π

1

1 + x2
dx , lim

M1→−∞
M2→∞

M2∫
M1

1

π

1

1 + x2
dx.

The above limit does not exist and hence the integral is not defined.

21.2 Fatou’s Lemma

Before we state Fatou’s lemma, let us motivate it with an elementary result.
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Lemma 21.2 Let X and Y be random variables. Then,

E [min(X,Y )] ≤ min (E[X],E[Y ]) .

E [max(X,Y )] ≥ max (E[X],E[Y ]) .

Proof: By definition, we have

min(X,Y ) ≤ X.
min(X,Y ) ≤ Y.

Taking expectations on both the sides,

E [min(X,Y )] ≤ E[X].

E [min(X,Y )] ≤ E[Y ].

Combining the above two equations, we get

E [min(X,Y )] ≤ min (E[X],E[Y ]) .

The other statment of the lemma involving maximum of X and Y can be proved in a similar way and is left
to the reader as an exercise.

The above lemma can be generalized to any finite collection of random variables and a similar proof can be
worked out. Fatou’s Lemma generalizes this idea for a sequence of random variables.

Lemma 21.3 Fatou’s Lemma: Let Y be a random variable that satisfies E[|Y |] <∞. Then the following
holds,

• If Y ≤ Xn, for all n, then E
[
lim inf
n→∞

Xn

]
≤ lim inf

n→∞
E[Xn].

• If Y ≥ Xn, for all n, then E
[
lim sup
n→∞

Xn

]
≥ lim sup

n→∞
E[Xn].

Proof: Let us start by proving the first statement. For some n we have

inf
k≥n

Xk − Y ≤ Xm − Y, ∀ m ≥ n.

Taking expectations,

E
[

inf
k≥n

Xk − Y
]
≤ E[Xm − Y ], ∀ m ≥ n.

Taking infimum with respect to m on R.H.S, we obtain

E
[

inf
k≥n

Xk − Y
]
≤ inf
m≥n

E[Xm − Y ], ∀ m ≥ n.

Let Zn = inf
k≥n

Xk −Y . Note that Zn ≥ 0 since Xm ≥ Y ∀ m and Zn is a non-decreasing sequence of random

variables.
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Also, Z = lim
n→∞

Zn = lim inf
n→∞

Xn − Y . By MCT, we have

E
[
lim inf
n→∞

Xn − Y
]
≤ lim inf

n→∞
E[Xn − Y ].

As E[|Y |] <∞, we can invoke linearity of expectation to get the first result of Fatou’s lemma.

The second statement can be proved similarly and is left to the reader as an exercise.

21.3 Dominated Convergence Theorem

The DCT is an important result which asserts a sufficient condition under which we can interchange a limit
and integral.

Theorem 21.4 Consider a sequence of random variables Xn that converges almost surely to X. Suppose
there exists a random variable Y such that |Xn| ≤ Y almost surely for all n and E[Y ] <∞. Then, we have

lim
n→∞

E[Xn] = E[X].

Proof: We have |Xn| ≤ Y which implies −Y ≤ Xn ≤ Y . We can now apply Fatou’s lemma to obtain

E[X] = E
[
lim inf
n→∞

Xn

]
≤ lim inf

n→∞
E[Xn] ≤ lim sup

n→∞
E[Xn] ≤ E

[
lim sup
n→∞

Xn

]
= E[X].

Thus, all the inequalities in the above equation must be met with equalities and we have

E[X] = lim inf
n→∞

E[Xn] = lim sup
n→∞

E[Xn],

which proves that the limit, lim
n→∞

E[Xn] exists and is given by

lim
n→∞

E[Xn] = E[X].

Thus we see that Dominated Convergence theorem (DCT) is a direct consequence of Fatou’s Lemma. The
name “dominated” is intuitive because we need |Xn| to be bounded by some random variable Y almost
surely for every n. However, we do not require Xn’s to be monotonically increasing as in the case of MCT.

Corollary 21.5 A special case of DCT is known as Bounded Convergence theorem (BCT). Here, the random
variable Y is taken to be a constant random variable. BCT states that if there exists a constant c ∈ R such
that |Xn| ≤ c almost surely for all n, then lim

n→∞
E[Xn] = E[X].
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21.4 Exercise

1. [MIT OCW problem set] A workstation consists of three machines, M1,M2 and M3 , each of which
will fail after an amount of time Ti which is an independent exponentially distributed random variable,
with parameter 1. Assume that the times to failure of the different machines are independent. The
workstation fails as soon as both of the following have happened:

(a) Machine M1 has failed.

(b) Atleast one of the machines M2 or M3 has failed.

Find the expected value of the time to failure of the workstation.

2. [Assignment problem, University of Cambridge] Let Z be an exponential random variable with param-
eter λ = 1 and Zint = bZc. Compute E[Zint].

3. [Prof. Pollak, Purdue University] Suppose Sk and Sn are the prices of a financial instrument on days
k and n, respectively. For k < n, the gross return Gk,n between days k and n is defined as Gk,n = Sn

Sk
and is equal to the amount of money you would have on day n if you invested $1 on day k. Let Gk,k+1

be lognormal random variable with parameters µ and σ2, ∀k ≥ 1, and the random variables Gj,j+1

and Gk,k+1 are independent and identically distributed ∀k 6= j. Find the expected total gross return
from day 1 to day n.


