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20.1 Expectations of Discrete RVs

A discrete random variable X(ω), (which only takes a countable set of values) can be represented as follows:

Definition 20.1 X(ω) =
∞∑
i=1

aiIAi(ω) where X ≥ 0.

In the canonical representation, the ai’s are non-negative and distinct, and the Ai’s are disjoint. It is easy
to see that the Ai’s partition the sample space. Let us now define a sequence of simple random variables,
which approximate X from below.

Definition 20.2 Define Xn(ω) =
n∑
i=1

aiIAi
(ω).
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Figure 20.1: Simple random variable

Note that ∀ω, Xn(ω) ≤ Xn+1(ω), where n ≥ 1. Next, let us fix ω ∈ Ω. Since Ai’s partition Ω, there exists
k ≥ 1 such that ω ∈ Ak. Thus, ∀n ≥ k, Xn(ω) = ak and ∀n < k, Xn(ω) = 0. Therefore,

lim
n→∞

Xn(ω) = X(ω) ∀ω ∈ Ω. (20.1)

In other words, Xn(ω) is a sequence of simple functions converging monotonically to X(ω). Now applying
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the Monotone Convergence Theorem (MCT) to the sequence of random variables Xn,

E[X] = lim
n→∞

E[Xn],

= lim
n→∞

n∑
i=1

aiP(Ai),

= lim
n→∞

n∑
i=1

aiP(X = ai),

⇒ E[X] =

∞∑
i=1

aiP(X = ai). (20.2)

The limit of the sum is well-defined as X is a non-negative random variable and it either converges to some
positive real number or goes to +∞. If X is discrete but takes on both positive and negative values, we
write X = X+ −X−, where X+ = max(X, 0) and X− = −min(X, 0). Then, we compute

E[X] = E[X+]− E[X−]. (20.3)

The above is meaningful when at least one of the expectation on the right hand side is finite. We now give
some examples.

1. X ∼ Geometric(p) - E[X] =
∞∑
i=1

i(1− p)i−1p = 1
p .

This tells us that, for a geometric random variable, the expected number of trials for the first success
to occur scales as 1

p .

2. P(X = k) = 6
π2

1
k2 for k ≥ 1 - For this probability distribution,the expectation is calculated as

E[X] =
6

π2

∞∑
i=1

i

(
1

i2

)
= +∞. (20.4)

In this example, we see that a random variable can have infinite expectation.

3. P(X = k) = 3
π2

1
k2 for k ∈ Z/{0} - For this probability distribution, the expectation is calculated as

E[X] = E[X+]−E[X−]. However, both the expectations E[X+] and E[X−] are infinite! Therefore, E[X]
is not defined! This is an example of a discrete random variable with undefined expectation.

20.2 Connection between Riemann and Lebesgue integrals

The connection is given by the following theorem which we state without proof.

Theorem 20.3 Let f be measurable and Riemann integrable over an interval [a, b]. Then,∫
[a,b]

f dλ exists, and

∫
[a,b]

f dλ =

∫ b

a

f(x) dx. (20.5)

Here, λ is the Lebesgue measure on R. The integral on the left is a Lebesgue integral while the one on the
right is the standard Riemann integral.
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20.3 Expectations on different spaces

We often want to compute the expectation of a function of a random variable, say Y = f(X), where both
X and Y are random variables and f(·) is a measurable function on R. The following theorem asserts that
the expectation can be computed over different spaces, to obtain the ‘same answer.’ For example, we can
compute the expectation of Y by either working in the X-space or the Y -space to write (for discrete random
variables)

∑
i

yiP(Y = yi) =
∑
i

f(ai)P(X = ai), (20.6)

where yi = f(ai). This is just a special case of the following theorem

Theorem 20.4 Denote the probability measure on the sample space by P, on the range space of X as PX
and on range space of Y as PY . Then,

∫
Y dP =

∫
f dPX =

∫
y dPY where Y = f(X) and the integrals are

over the respective spaces.

Figure 20.2: Different spaces considered

Proof: Let f be a simple function which takes values y1, y2 · · · yn. Then,

∫
Y dP =

n∑
i=1

yiP(ω|Y (ω) = yi),

=

n∑
i=1

yiP(ω|f(X(ω)) = yi).
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Now, looking at the second integral, we have∫
f dPX =

n∑
i=1

yiPX(x ∈ R|f(x) = yi),

=

n∑
i=1

yiPX(f−1(yi)),

=

n∑
i=1

yiP(ω|ω : X(ω) ∈ f−1(yi)),

=

n∑
i=1

yiP(ω|f(X(ω)) = yi).

Now, we extend the above to the case when f is a non-negative measurable function. Let {fn} be a sequence
of simple functions such that fn ↑ f according to the construction given in the previous lecture. Thus,
fn(X) ↑ f(X) and, ∫

Y dP =

∫
(f ·X) dP,

=

∫
f(X) dP,

= lim
n→∞

∫
fn(X) dP (by MCT),

= lim
n→∞

∫
fn dPX (∵ simple function),

=

∫
f dPX (by MCT).

This can now be simply extended to the case where g takes both negative and positive values.

A simple corollary of this theorem is that
∫
X dP =

∫
x dPX .

20.4 Exercise

1. [Dimitri P.Bertsekas] Let X be a random variable with PMF pX(x) = x2

a , if x = −3,−2,−1, 0, 1, 2, 3
and zero otherwise. Compute a and E[X].

2. [Dimitri P.Bertsekas] As an advertising campaign, a chocolate factory places golden tickets in some
of its candy bars, with the promise that a golden ticket is worth a trip through the chocolate factory,
and all the chocolate you can eat for life. If the probability of finding a golden ticket is p, find the
expected number of bars you need to eat to find a ticket.

3. [Dimitri P.Bertsekas] On a given day, your golf score takes values from the range 101 to 110, with
probability 0.1, independent of other days. Determined to improve your score, you decide to play on
three different days and declare as your score the minimum X of the scores X1, X2 and X3 on the
different days. By how much has your expected score improved as a result of playing on three days?

4. [Papoulis] A biased coin is tossed and the first outcome is noted. Let the probability of head occuring
be p and that of a tail be q = 1− p. The tossing is continued until the outcome is the complement of
the first outcome, thus completing the first run. Let X denote the length of the first run. Find the
PMF of X and show that E[X] = p

q + q
p .


