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In this lecture, we present the Monotone Convergence Theorem (henceforth called MCT), which is considered
one of the cornerstones of integration theory. The MCT gives us a sufficient condition for interchanging limit
and integral. We also prove the linearity property of integrals using the MCT. Recall the gn −→ g µ.a.e. if
gn(ω) −→ g(ω) ∀ω ∈ Ω except possibly on a set of µ−measure zero.

19.1 Monotone Convergence Theorem

Theorem 19.1 Let gn ≥ 0 be a sequence of measurable functions such that gn ↑ g µ.a.e. (That is, except
perhaps on a set of µ-measure zero, we have gn(ω) → g(ω), and gn(ω) ≤ gn+1(ω), n ≥ 1). We then have∫
gndµ ↑

∫
gdµ. In other words,

lim
n→∞

∫
gn dµ =

∫
g dµ.

See Section 5.2 in Lecture 11 of [1] for the proof.

Example 19.2 Consider ([0, 1],B, λ) and consider the sequence of functions given by,

fn(ω) =

{
n, if 0 < ω ≤ 1/n,

0, otherwise.

∫
fndλ = 1,∀n⇒ lim

n→∞

∫
fndλ = 1.

For ω > 0, we have,

lim
n→∞

fn(ω) = 0.

For ω = 0, we have,

lim
n→∞

fn(ω) =∞.

Therefore we have, ∫
fdλ = 0.

Hence we see that, ∫
fdλ 6= lim

n→∞

∫
fndλ.

Note that monotonicity does not hold in this example.
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19.2 Linearity of Integrals

In this section, we will prove the linearity property of integrals, using the MCT. Recall that we stated the
linearity property in the previous lecture as PAI 4 but proved it only for simple functions. Here we prove
it in full generality.

Let f and g be simple functions. Therefore we can express them as,

f =

n∑
i=1

aiIAi
,

g =

m∑
j=1

bjIBj .

Here Ai and Bi are F measurable sets and IAi
and IBj

are indicator variables. Summing f and g, we obtain,

f + g =
n∑
i=1

m∑
j=1

(ai + bj)IAi∩Bj
. (19.1)

Note that f and g are canonical representations. This implies that Ai’s are disjoint sets, and so are Bj ’s.
Therefore Ai ∩Bj are disjoint sets. Hence we have,∫

f + g dµ =

n∑
i=1

m∑
j=1

(ai + bj)µ(Ai ∩Bj),

=

n∑
i=1

ai

m∑
j=1

µ(Ai ∩Bj) +

m∑
j=1

bj

n∑
i=1

µ(Ai ∩Bj).

By finite additivity property, we have,∫
f + g dµ =

n∑
i=1

aiµ(Ai) +

m∑
j=1

bjµ(Bj),

=

∫
f dµ+

∫
g dµ.

Next, we need to prove linearity for non-negative measurable functions. Let fn and gn (with n ≥ 1) be
sequences of simple functions where, fn ↑ f and gn ↑ g. Such a simple sequence always exist for every
non-negative measurable function, as we will show in the next section. Now, since fn and gn are monotonic,
fn + gn is monotonic. Then we can show that (fn + gn) ↑ (f + g). Using MCT, we have,∫

(f + g)dµ = lim
n→∞

∫
(fn + gn)dµ. (19.2)

But fn and gn are simple functions. We know that, for simple functions,∫
(fn + gn)dµ =

∫
fndµ+

∫
gndµ.

Thus,

lim
n→∞

∫
(fn + gn)dµ = lim

n→∞

∫
fndµ+ lim

n→∞

∫
gndµ,

MCT
=

∫
fdµ+

∫
gdµ.
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This implies that, ∫
(f + g)dµ =

∫
fdµ+

∫
gdµ. (19.3)

This proves linearity for non-negative functions.

For arbitrary measurable functions f and g, we can write them as f = f+ − f− and g = g+ − g− where
f+, f−, g+ and g− are non-negative measurable functions. A similar proof can then be worked out which
completes the proof of linearity.

19.3 Integration using simple functions

Our earlier definition
∫
gdµ = supq∈S(g)

∫
qdµ helped us to prove some properties of abstract integrals quite

easily. However, it does not give us a practical way of performing the integration. In this section, we present
a method to explicitly compute the integral, using the MCT. First, we approximate the function to be
integrated using simple functions from below. Specifically, define

gn(ω) =

{
n, if g(ω) ≥ n,
i
2n , if i

2n ≤ g(ω) < i+1
2n ; i ∈ {0, 1, . . . , n2n − 1}.

(19.4)

Thus, the function to be integrated in quantized to n2n levels. Next, we note here that gn(ω) is a simple
function since it can be written as

gn(ω) =

n2n−1∑
i=0

i

2n
I{ω: i

2n≤g(ω)<
i+1
2n }

+ nI{gn(ω)≥n}. (19.5)

Claim 1: We can easily show that:

• gn(ω)→ g(ω) ∀ω ∈ Ω.

• gn(ω) ≤ gn+1(ω) ∀ω ∈ Ω and ∀n ∈ N.

Therefore, using MCT, we have,∫
gdµ = lim

n→∞

∫
gndµ,

= lim
n→∞

n2n−1∑
i=0

i

2n
µ

(
ω :

i

2n
≤ g(ω) ≤ i+ 1

2n

)
+ nµ (gn(ω) ≥ n) .

Now, if g is bounded the second term µ(gn(ω) ≥ n) will be 0 and if g is unbounded, it may or may not be
finite.

This gives us an explicit way to compute the abstract integral.

19.4 Exercise:

1. Prove Claim 1.



19-4 Lecture 19: Monotone Convergence Theorem

2. Let X be a non-negative random variable (not necessarily discrete or continuous) with E[X] <∞.

(a) Prove that lim
n→∞

nP(X > n) = 0. [Hint: Write E[X] = E[XI{X≤n}] + E[XI{X>n}].]

(b) Prove that E[X] =
∞∫
0

P(X > x) dx. Yes, the integral on the right is just a plain old Riemann

integral! [Hint: Write out E[X] =
∫
x dPX as the limit of a sum, and use part (a) for the last

term.]

We say a random variable X is stochastically larger than a random variable Y , and denote by X ≥st Y ,
if P(X > a) ≥ P(Y > a) ∀a ∈ R.

(c) For non-negative random variables X and Y , show that if X ≥st Y , then E[X] ≥ E[Y ].

3. Show that f(x) = x−α is integrable on [0,∞) for α > 1.
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