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15.1 Sum of Two Random Variables

In this section, we will study the distribution of the sum of two random variables. Before we discuss their
distributions, we will first need to establish that the sum of two random variables is indeed a random variable.

Theorem 15.1 Let X and Y be random variables defined on a probability space (Ω,F ,P) and define Z(ω) =
X(ω) + Y (ω), ∀ω ∈ Ω. Then, Z is a random variable.

Proof: To prove that Z is a random variable, we need to show that {ω ∈ Ω : Z(ω) > z} ∈ F , ∀z ∈ R.

Now, ∀z ∈ R, Z(ω) > z if and only if there exists a rational q such that X(ω) > q and Y (ω) > z − q. This
follows from the fact that the set of rationals is dense in R. Thus,

{ω ∈ Ω : Z(ω) > z} =
⋃
q∈Q
{ω ∈ Ω : X(ω) > q, Y (ω) > z − q}

=
⋃
q∈Q

({ω ∈ Ω : X(ω) > q} ∩ {ω ∈ Ω : Y (ω) > z − q}) . (15.1)

We know that ∀q ∈ Q, {ω ∈ Ω : X(ω) > q} ∩ {ω ∈ Ω : Y (ω) > z − q} ∈ F because X and Y are random
variables. Since the set of rationals is countable, we have a countable union of sets from F , which should
also be in F as it is a σ-algebra. Thus, {ω ∈ Ω : Z(ω) > z} ∈ F , proving that the sum, Z = X + Y is a
random variable.

We will now start with random variables in the discrete domain. Assume that X and Y are discrete random
variables with a known joint pmf pX,Y (·). Let the random variable Z be defined as Z = X+Y . We will now
characterize the pmf of Z, pZ(·) :

pZ(z) = P(Z = z)

=
∑

x+y=z

pX,Y (x, y)

=
∑
x

P(X = x, Y = z − x) (15.2)

=
∑
x

pX,Y (x, z − x)

In particular, if X and Y are independent, the pmf of Z simplifies to

pZ(z) =
∑
x

pX(x)pY (z − x), (15.3)

which is simply the discrete convolution of the two pmfs.

Let us now look at an example.
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Example 15.2 Let X and Y be independent, random variables with distributions given by Pois(λ) and
Pois(µ) respectively. Define Z = X + Y . Then, the pmf of Z, can be computed, by invoking (15.3) :

pZ(z) =

z∑
x=0

e−λλx

x!

e−µµz−x

(z − x)!

=
e−(λ+µ)

z!

z∑
x=0

(
z

x

)
λxµz−x

=
e−(λ+µ)(λ+ µ)z

z!

The above computation establishes that the sum of two independent Poisson distributed random variables,
with mean values λ and µ, also has Poisson distribution of mean λ+ µ.

We can easily extend the same derivation to the case of a finite sum of independent Poisson distributed
random variables.

Next, we consider the case of two jointly continuous random variables. Assume that X and Y are jointly
continuous random variables, with joint pdf given by fX,Y (x, y). Let Z = X + Y . Then,

FZ(z) = P(Z ≤ z)
= P(X + Y ≤ z)

=

∫ ∞
−∞

(∫ z−x

−∞
fX,Y (x, y)dy

)
dx (15.4)

=

∫ ∞
−∞

(∫ z

−∞
fX,Y (x, t− x)dt

)
dx

=

∫ z

−∞

(∫ ∞
−∞

fX,Y (x, t− x)dx

)
︸ ︷︷ ︸

fZ(t)

dt. (15.5)

From (15.5), we can see that the pdf of Z is given by fZ(z) =
∫∞
−∞ fX,Y (x, z − x)dx.

In the special case of X and Y being independent continuous random variables, we get

fZ(z) =

∫ ∞
−∞

fX(x)fY (z − x)dx = fX ∗ fY , (15.6)

which is the convolution of the two marginal pdfs.

Example 15.3 Assume that X1 and X2 are independent exponential random variables with parameters µ1

and µ2 respectively. Let Z = X1 +X2. Using (15.6) and the fact that the support for the exponential random
variable is R+ ∪ {0}, we get,

fZ(z) = fX1 ∗ fX2 ,

=

∫ z

0

µ1e
−µ1xµ2e

−µ2(z−x)dx,

= µ1µ2e
−µ2z

∫ z

0

e(µ2−µ1)xdx.
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We can see from the above integral that

fZ(z) =

{
µ1µ2

µ2−µ1

(
e−µ1z − e−µ2z

)
if µ1 6= µ2,

µ2ze−µz µ1 = µ2 = µ.

In fact, the process can be extended to the case of a sum of a finite number n of random variables of
distribution exp(µ), and we can observe that the pdf of the sum, Zn, is given by Erlang (n, µ), i.e,

fZn(z) =
µnzn−1e−µz

(n− 1)!
. (15.7)

The above example describes the process of computing the pdf of a sum of continuous random variables.

The methods described above can be easily extended to deal with finite sums of random variables too.

15.2 Sum of a random number of random variables

In this section, we consider a sum of independent random variables, where the number of terms in the
summation is itself random. Let N be a positive integer valued random variable on (Ω,F ,P) with known pmf
P(N = n). Let X1, X2, ..., be independent random variables on the same probability space, (Ω,F ,P), with
distributions, FX1

(.), FX2
(.), ..., respectively. Further, we will assume that N is independent of {Xi, i ≥ 1}.

Define, SN =
N∑
i=1

Xi. That is, SN (ω) =
N(ω)∑
i=1

Xi(ω),∀ω ∈ Ω. The cdf of SN can be computed as follows :

FSN
(x) = P(SN ≤ x),

=

∞∑
k=1

P(SN ≤ x|N = k)P(N = k),

=

∞∑
k=1

P(Sk ≤ x)P(N = k), (15.8)

where (15.8) follows from the independence of N and the Xis.

In the above expression, we know how to compute P(Sk ≤ x) from the previous section. Thus we have essen-
tially computed the distribution of the random sum of random variables under the specified independence
assumptions.

The following example is quite instructive.

Example 15.4 Geometric Sum of Exponentials :
Let Xi,∀i ≥ 1 be independent random variables with distribution exp(µ). Let N be a positive integer valued
random variable of geometric distribution with parameter p.

Define SN =
N∑
i=1

Xi. We will now determine the pdf of SN .

We know that P(N = k) = (1 − p)k−1p,∀k ≥ 1. Further we observed earlier (15.7) that the sum of k

exponential distributions of mean 1
µ , Sk =

k∑
i=1

Xi, is a kth order Erlang distribution. Thus, using this and
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(15.8), we get,

FS(x) = P(SN ≤ x),

=

∞∑
k=1

P(N = k)FSk
(x),

=

∞∑
k=1

(
p(1− p)k−1

)(
1−

k−1∑
n=0

1

n!
e−µx(µx)n

)
,

=

∞∑
k=1

p(1− p)k−1 −
∞∑
k=1

p(1− p)k−1e−µx
(
k−1∑
n=0

1

n!
(µx)n

)
,

= 1− e−µx
∞∑
n=0

(µx)n

n!

p

1− p

∞∑
k=n+1

(1− p)k,

= 1− e−µx
∞∑
n=0

(µx(1− p))n

n!
,

= 1− e−µxeµ(1−p)x,
= 1− e−(pµ)x.

The above derivation establishes that the geometric sum of exponentials has an exponential distribution with
parameter µ′ = pµ.

Consider a radioactive source emitting α particles where the time between two successive emissions is ex-
ponentially distributed with parameter λ. Whenever there is an emission, the detector detects it with
probability p and misses it with probability 1 − p independent of other detections. So it can be easily
seen that the time between two successive detections is indeed a geometric sum of i.i.d exponential random
variables which itself is an exponential random variable with parameter pλ as seen in the above example.

The above study gives a detailed account of the random sum of random variables under the strict indepen-
dence constraints earlier assumed. It is however possible to envision a scenario where the random number
N is dependent on the observations, Xi themselves.

For instance let us assume that a gambler plays a game repeatedly and is rewarded or penalized in each
round. Say the gambler stops only when he is “satisfied” (or “broke”) with the overall outcome of the game.
Let Xi be the amount he gains (or loses) in round i of the game. In this scenario, analysing the overall sum
earned by the gambler at the end of his game is complicated by the dependence of N on the outcomes. This
scenario motivates the theory of stopping rules, which shall be covered in a more advanced course (EE6150).

15.3 Exercise:

1. Let X1 and X2 be independent random variables with distributions N (0, σ2
1) and N (0, σ2

2) respectively.
Show that the distribution of X1 +X2 is N (0, σ2

1 + σ2
2).

2. Consider two independent and identically distributed discrete random variables X and Y . Assume
that their common PMF, denoted by p(z), is symmetric around zero, i.e., p(z) = p(−z), ∀z. Show that
the PMF of X + Y is also symmetric around zero and is largest at zero.

3. Suppose X and Y are independent random variables with Z = X + Y such that fX(x) = ce−cx, x ≥ 0
and fZ(z) = c2ze−cz, z ≥ 0. Compute fY (y).
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4. Let X1 and X2 be the number of calls arriving at a switching centre from two different localities at
a given instant of time. X1 and X2 are well modelled as independent Poisson random variables with
parameters λ1 and λ2 respectively.

(a) Find the PMF of the total number of calls arriving at the switching centre.

(b) Find the conditional PMF of X1 given the total number of calls arriving at the switching centre
is n.

5. The random variables X, Y and Z are independent and uniformly distributed between zero and one.
Find the PDF of X + Y + Z.

6. Construct an example to show that the sum of a random number of independent normal random
variables is not normal.


