Course Objectives

- Introduce students to some relevant advanced topics of current interest in academia and industry
- Give the students a feel for research topics and what research means
- Make students aware of work happening in India
Current Topics

- Embedded Memory Design
 - SRAMs (Dr. Rahul Rao, IBM India)
 - eDRAMs (Dr. Janakriaman, IITM)
- Advanced Memories
Learning Objectives for SRAM

- Articulate memory hierarchy and the value proposition of SRAMs in the memory chain + utilization in current processors
- Explain SRAM building blocks and peripheral operations and memory architecture (with physical arrangement)
- Articulate commonly used SRAM cells (6T vs 8T), their advantages and disadvantages
- Explain the operation of a non-conventional SRAM cells, and their limitations
- Explain commonly used assist methods
- Explain how variations impact memory cells
Learning Objectives for EDRAM

- Explain the working of a (e)DRAM. What does Embedded mean?
- Explain the working of a feedback sense amplifier and modify existing designs to improve performance
- Calculate the voltage levels of operation of various components for an eDRAM
- Introduce stacked protect devices to reduce voltage stress of the WL driver
Grading

- Assignments - 10%
- Midsem – 30%
- Project - 20%
- End Semester - 40%
Course Schedule

- Friday – 2:00 – 5:00
- ESB 207A
Embedded DRAM

Janakiraman V
Assistant Professor
Electrical Department
IIT Madras
Topics

- Introduction to memory
- DRAM basics and bitcell array
- eDRAM operational details (case study)
- Noise concerns
- Wordline driver (WLDRV) and level translators (LT)
- Challenges in eDRAM
- Understanding Timing diagram - An example
- Gated Feedback Sense Amplifier (case study)
- References
Acknowledgement

• Raviprasad Kuloor *(Course slides were prepared by him)*
• John Barth, IBM SRDC for most of the slides content
• Madabusi Govindarajan
• Subramanian S. Iyer
• Many Others
Topics

- Introduction to memory
- DRAM basics and bitcell array
- eDRAM operational details (case study)
- Noise concerns
- Wordline driver (WLDRV) and level translators (LT)
- Challenges in eDRAM
- Understanding Timing diagram - An example
Memory Classification revisited

- Memory Arrays
 - Random Access Memory
 - Volatile Memory (RAM)
 - Static RAM (SRAM)
 - Dynamic RAM (DRAM)
 - Nonvolatile Memory (ROM)
 - Serial Access Memory
 - Serial In Parallel Out (SIPO)
 - Parallel In Serial Out (PISO)
 - Content Addressable Memory (CAM)
 - Shift Registers
 - First In First Out (FIFO)
 - Last In First Out (LIFO)
 - Queues
Motivation for a memory hierarchy - infinite memory

Cycles per Instruction (CPI) = Number of processor clock cycles required per instruction

CPI[∞ cache]
Finite memory speed

\[\text{CPI} = \text{CPI}[\infty \text{ cache}] + \text{FCP} \]

Finite cache penalty
Locality of reference - spatial and temporal

Temporal
If you access something now you’ll need it again soon
e.g: Loops

Spatial
If you accessed something you’ll also need its neighbor
e.g: Arrays

Exploit this to divide memory into hierarchy
Cache size impacts cycles-per-instruction

Logic-based eDRAM: Origins and rationale for use

R. E. Matick
S. E. Schuster

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

Access rate reduces → Slower memory is sufficient
Cache size impacts cycles-per-instruction

For a 5GHz processor, scale the numbers by 5x
Technology choices for memory hierarchy

- Cost:
 - NOR FLASH: ~9F^2
 - NAND FLASH: ~4.5F^2
 - DRAM: 6-8F^2
 - SRAM: ~120F^2
 - Hard Disk
 - Tbits/in^2

- Performance
Move L2, L3 Cache inside of the data hungry processor
Higher hit rate \rightarrow Reduced FCP
Embedded DRAM Advantages

Memory Advantage
- 2x Cache can provide > 10% Performance
- ~3x Density Advantage over eSRAM
- 1/5x Standby Power Compared to SRAM
- Soft Error Rate 1000x lower than SRAM
- Performance? DRAM can have lower latency!
- IO Power reduction

Deep Trench Capacitor
- Low Leakage Decoupling
- 25x more Cap / µm² compared to planar
- Noise Reduction = Performance Improvement
- Isolated Plate enables High Density Charge Pump
eDRAM Advantages – Stand By Leakage

Both inverters leak
True Pass transistor leaks

NO Leakage
eDRAM Advantages – Stand By Leakage

Both inverters leak
Complement Pass transistor leaks

Leakage exists
eDRAM Advantages – Stand By Leakage

Both inverters leak
Complement Pass transistor leaks
Leakage exists

On average: eDRAMs have 1/5x Standby Power Compared to SRAM
eDRAM Advantages – Performance

WL = \(V_{PP} \)

BLt = \(V_{DD} \)

\[\text{Both inverters leak} \]
\[\text{Complement Pass transistor leaks} \]

BLc = \(V_{DD} \)

BL = 0

Leakage exists
eDRAM Advantages – Soft Error Rate

- Cosmic particles can bombard the cell and cause a bump in the cell voltage
- If voltage bump is large enough SRAM can permanently flip
 - Static cross couple inverters
- Voltage on DRAM capacitor node can also bump
- But will leak away with time –
 - Only those cells which get refreshed in a certain period will flip
- Soft Error Rate 1000x lower than SRAM
Embedded DRAM Advantages

Deep Trench Capacitor
• Low Leakage Decoupling
• 25x more Cap / £m² compared to planar
• Noise Reduction = Performance Improvement
• Isolated Plate enables High Density Charge Pump
Embedded DRAM Advantages

Memory Advantage
- 2x Cache can provide > 10% Performance
- ~3x Density Advantage over eSRAM
- 1/5x Standby Power Compared to SRAM
- Soft Error Rate 1000x lower than SRAM
- Performance ? DRAM can have lower latency !
- IO Power reduction

Deep Trench Capacitor
- Low Leakage Decoupling
- 25x more Cap / µm² compared to planar
- Noise Reduction = Performance Improvement
- Isolated Plate enables High Density Charge Pump
Cache performance – SRAM vs. DRAM

Chart: Matick & Schuster, op. cit.
Cache performance - SRAM vs. DRAM

Time to access the farthest word-line determines performance
Access time = Cell access time + time of flight interconnect delay
Embedded DRAM Performance

45nm eDRAM vs. SRAM Latency

- eDRAM Total Latency
- SRAM Total Latency
- eDRAM Wire/Repeater Delay
- SRAM Wire/Repeater Delay

eDRAM Faster than SRAM

Barth ISSCC 2011
Topics

- Introduction to memory
- DRAM basics and bitcell array
- eDRAM operational details (case study)
- Noise concerns
- Wordline driver (WLDRV) and level translators (LT)
- Challenges in eDRAM
- Understanding Timing diagram - An example
Memory Arrays are composed of Row and Columns

Most DRAMs use 1 Transistor as a switch and 1 Cap as a storage element (Dennard 1967)

Single Cell Accessed by Decoding One Row / One Column (Matrix)

Row (Word-Line) connects storage Caps to Columns (Bit-Line)

Storage Cap Transfers Charge to Bit-Line, Altering Bit-Line Voltage
1T1C DRAM Cell Terminals

Word-Line (VWL to VPP Swing)

Cap (0 to VDD)

Bit-Line (0 to VDD) Back Bias (VBB - Bulk Only)

VWL: Word-Line Low Supply, GND or Negative for improved leakage

VPP: Word-Line High Supply, 1.8V up to 3.5V depending on Technology
 Required to be at least a Vt above VDD to write full VDD

VBB: Back Bias, Typically Negative to improve Leakage
 Not practical on SOI

IBM J RES & DEV 2005
Choice of Access Transistor

- DRAMs are limited by sub-threshold leakage
 - $I_{\text{off}} \propto 1/t_{\text{OX}}$
 - Use thick oxide transistor
 - $t_{\text{OX}} \approx 3\text{nm}$ in 14nm Technology
 - Thin oxide transistors ($t_{\text{OX}} \approx 1\text{nm}$)
- What should be the width of the device?
 - Density constraints => Unit size
- Unit size transistor also provides least leakage
MIM Cap v/s Trench

- Stack capacitor requires more complex process
- M1 height above gate is increased with stacked capacitor
 - M1 parasitics significantly change when wafer is processed w/o eDRAM
 - Drives unique timings for circuit blocks processed w/ and w/o eDRAM
 - Logic Equivalency is compromised – **Trench is Better Choice**
Word-line Swing - High

- WL High Voltage – ON State
 - Technology maximum high voltage?
 - Access device is thick oxide
 - Can handle a swing of more than V_{DD}.
 - How high?
 - We wish to write a logic-1 completely
 - Logic-1 = V_{DD}
 - Access device is an NMOS transistor
 - Cannot pass V_{DD} fully if WL= V_{DD}
 - WL high = $V_{PP} \geq V_{DD} + V_{Tn}$
 - What about V_{Tn} variability
 - $V_{PP} \geq V_{DD} + V_{Tn} + \Delta V_{Tn}$
 - Typical value of $V_{PP} = 0.9 + 0.4 + 0.2 = 1.5V$

IBM J RES & DEV 2005
Word-line Swing - Low

- WL Low Voltage (V_{WL}) – OFF State
- BL will be pre-charged to either 0 or V_{DD}
 - BL pre-charged to 0
 - Cell storing a 1 causes leakage
 - BL pre-charged to 1
 - Cell storing a 0 causes leakage
- Need to minimize leakage current either way
- V_{GS} of access device needs to be as low as possible
 - I_{OFF} decreases exponentially with V_{GS}
 - Can we lower the WL down to $-V_{DD}$?
 - What is the limit?
 - Lower the WL voltage down to the point where GIDL – Gate Induced Drain Leakage sets in
 - Typical value of $V_{WL} = -300$ mV
DRAM cell Cross section

- Store their contents as charge on a capacitor rather than in a feedback loop.
- 1T dynamic RAM cell has a transistor and a capacitor.
Vgs for pass transistor reduces as bitcell voltage rises, increasing Ron

Why there is a reduction in cell voltage after WL closes? Experiment
Classical DRAM Organization

- Row decoder
- Column selector & I/O circuits
- RAM cell array
- Each intersection represents a 1-T DRAM cell
- Bit (data) lines
- Word (row) select
- Row address
- Column address
- Data

CMOS VLSI design - PEARSON
DRAM Subarray
Trench cell layout and cross-section

- Bit-Line Contact
- Active Word-Line
- Device
- Strap
- Passing Word-Line
- Deep Trench
- STI

Silicon Image

DRAM Operations

- Write
- Read
- Refresh
DRAM Read, Write and Refresh

- Write:
 - 1. Drive bit line
 - 2. Select row

\[WL = V_{PP} \]

\[BL = V_{DD} \]
DRAM Read, Write and Refresh

- Read:
 - 1. Pre-charge bit line
 - 2. Select row – Turn ON WL
 - 3. Cell and bit line share charges
 - Signal developed on bitline
 - 4. Sense the data
 - 5. Write back: restore the value

\[WL = V_{PP} \]

\[V_{DD} \]

\[BL = \text{Float at GND} \]
• Refresh
 – 1. Just do a dummy read to every cell \rightarrow auto write-back
Read - Cell transfer ratio

\[C_{\text{CELL}} \times V_{\text{INITIAL}} = (C_{\text{CELL}} + C_{\text{BL}}) \times V_{\text{FINAL}} \]

Transfer ratio \[= \frac{C_{\text{CELL}}}{(C_{\text{CELL}} + C_{\text{BL}})} \]
Cell Charge Transfer

\[\Delta V = (V_{bl} - V_{cell}) \]

\[C_{bitline} \]

\[C_{cell} \]

\[C_{bl} + C_{cell} \]

Transfer ratio
Sensing

Signal $\Delta V > V_M$ (Trip Point)

$\Delta V = (V_{bl} - V_{cell})$

Transfer ratio

C_{cell}

$C_{bl} + C_{cell}$
Retention

\[\Delta V > V_M \text{ (Trip Point)} \]

\[\Delta V = (V_{bl} - V_{cell}) \]

\[V_M = \Delta V = \text{Signal} \]

\[C_{bl} + C_{cell} \]

\[C_{cell} \]

Transfer ratio

Voltage vs. Time

Node

Bitline

Wordline

Leakage
ΔBit-Line Voltage Calculated from Initial Conditions and Capacitances:

\[\Delta V = V_{bl} - V_f = V_{bl} - Q = V_{bl} - \frac{C_{bl} \cdot V_{bl} + C_{cell} \cdot V_{cell}}{C_{bl} + C_{cell}} \]

\[\Delta V = (V_{bl} - V_{cell}) \cdot \frac{C_{cell}}{C_{bl} + C_{cell}} \]

Transfer Ratio (typically 0.2)

ΔBit-Line Voltage is Amplified with Cross Couple “Sense Amp”

Sense Amp Compares Bit-Line Voltage with a Reference

Bit-Line Voltage - Reference = Signal

Pos Signal Amplifies to Logical ‘1’, Neg Signal Amplifies to Logical ‘0’
Signal: # WLs on a BL

$$C_{BL} = N \cdot C_{\text{DIFF}} + NC_{M1}$$

$$TR = \frac{C_{\text{Cell}}}{C_{BL} + C_{\text{Cell}}}$$

$$WL^{<0>} = V_{PP}$$

$$WL^{<1>} = V_{WL}$$

$$WL^{<N-1>} = V_{WL}$$

Node

BL Float at GND

Voltage

Time
Bits per Bit-Line v/s Transfer Ratio

TR = Transfer Ratio = $\frac{C_{\text{cell}}}{C_{\text{cell}} + C_{\text{bl}}}$

1. 2x Faster Charge Transfer (90%)
 $t = 2.3 R_{\text{dev}} \frac{C_{\text{bl}} C_{\text{cell}}}{C_{\text{bl}} + C_{\text{cell}}}$

2. 2.3x More Signal

3. 10% More Write Back

32 Bits/BL TR = 0.8
128 Bits/BL TR = 0.33
Signal: # WLs on a BL

Short BLs are Mandatory in DRAMs

WL<0> = V_{PP}

WL<1> = V_{WL}

WL<N-1> = V_{WL}

Node

Bitline

Wordline

BL Float at GND

Voltage

Time

Signal
Array Segmentation Refers to WL / BL Count per Sub-Array

Longer Word-Line is Slower but more Area efficient (Less Decode/Drivers)

Longer Bit-Line (more Word-Lines per Bit-Line)

 Less Signal (Higher Bit-Line Capacitance = Lower Transfer Ratio)
 More Power (Bit-Line CV is Significant Component of DRAM Power)
 Slower Performance (Higher Bit-Line Capacitance = Slower Sense Amp)
 More Area Efficient (Fewer Sense Amps)

Number of Word-Lines Activated determines Refresh Interval and Power

 All Cells on Active Word-Line are Refreshed
 All Word-Lines must be Refreshed before Cell Retention Expires
 64ms Cell Retention / 8K Word Lines = 7.8us between refresh cycles
 Activating 2 Word-Lines at a time = 15.6us, 2x Bit-Line CV Power
Choice of SA

Depending on signal developed SA architecture is chosen

Direct sensing

- Requires large signal development
- An inverter can be used for sensing
- Micro sense amp (uSA) is another option

Differential sense amp

- Can sense low signal developed

This is choice between area, speed/performance
Differential Voltage Amplified by Cross Couple Pair

When Set Node $< (V+ΔV) - V_{tn1}$, I^+ will start to flow (On-Side Conduction)

When Set Node $< (V) - V_{tn0}$, I will start to flow (Off-Side Conduction)

Off-Side Conduction Modulated by Set Speed and Amount of Signal

Complimentary X-Couple Pairs provide Full CMOS Levels on Bit-Line