Course Objectives

□ Introduce students to some relevant advanced topics of current interest in academia and industry

Give the students a feel for research topics and what research means

□ Make students aware of work happening in India

Current Topics

Embedded Memory Design

SRAMs (Dr. Rahul Rao, IBM India)

eDRAMs (Dr. Janakriaman, IITM)

□ Advanced Memories

Learning Objectives for SRAM

Articulate memory hierarchy and the value proposition of SRAMs in the memory chain + utilization in current processors

Explain SRAM building blocks and peripheral operations and memory architecture (with physical arrangement)

 \Box Articulate commonly used SRAM cells (6T vs 8T), their advantages and disadvantages

Explain the operation of a non-conventional SRAM cells, and their limitations

- Explain commonly used assist methods
- Explain how variations impact memory cells

Learning Objectives for EDRAM

- Explain the working of a (e)DRAM. What does Embedded mean?
- □ Explain the working of a feedback sense amplifier and modify

existing designs to improve performance

- □ Calculate the voltage levels of operation of various components for an eDRAM
- □ Introduce stacked protect devices to reduce voltage stress of the WL driver

Grading

- □ Assignments 10%
- □ Midsem 30%
- **Project** 20%
- □ End Semester 40%

Course Schedule

□ Friday – 2:00 –5:00

ESB 207A

Embedded DRAM

Janakiraman V

Assistant Professor Electrical Department IIT Madras

Topics

- Introduction to memory
- □ DRAM basics and bitcell array
- eDRAM operational details (case study)
- Noise concerns
- □ Wordline driver (WLDRV) and level translators (LT)
- □ Challenges in eDRAM
- Understanding Timing diagram An example
- Gated Feedback Sense Amplifier (case study)
- References

Acknowledgement

- Raviprasad Kuloor (Course slides were prepared by him)
- John Barth, IBM SRDC for most of the slides content
- Madabusi Govindarajan
- Subramanian S. Iyer
- Many Others

Topics

- Introduction to memory
- □ DRAM basics and bitcell array
- eDRAM operational details (case study)
- Noise concerns
- □ Wordline driver (WLDRV) and level translators (LT)
- □ Challenges in eDRAM
- Understanding Timing diagram An example

Memory Classification revisited

Motivation for a memory hierarchy - infinite memory

Cycles per Instruction (CPI) Number of processor clock cycles required per instruction

CPI[∞ cache]

Finite memory speed

Locality of reference - spatial and temporal

Temporal If you access something now you'll need it again soon *e.g: Loops*

Spatial

If you accessed something you'll also need its neighbor e.g: Arrays

Exploit this to divide memory into hierarchy

Cache size impacts cycles-per-instruction

+ Access rate reduces \rightarrow Slower memory is sufficient

Cache size impacts cycles-per-instruction

Speed	1ns	10ns	100ns	10ms	10sec
Size	В	KB	MB	GB	ТВ
	L)		

For a 5GHz processor, scale the numbers by 5x

Technology choices for memory hierarchy

eDRAM L3 cache

Power7 processor

Move L2,L3 Cache inside of the data hungry processor Higher hit rate \rightarrow Reduced FCP

Embedded DRAM Advantages

Memory Advantage

- 2x Cache can provide > 10% Performance
- ~3x Density Advantage over eSRAM
- 1/5x Standby Power Compared to SRAM
- Soft Error Rate 1000x lower than SRAM
- Performance ? DRAM can have lower latency !
- IO Power reduction

Deep Trench Capacitor

- Low Leakage Decoupling
- 25x more Cap / µm² compared to planar
- Noise Reduction = Performance Improvement
- Isolated Plate enables High Density Charge Pump

IBM Power7tm

eDRAM Advantages – Stand By Leakage

eDRAM Advantages – Stand By Leakage

eDRAM Advantages – Stand By Leakage

On average: eDRAMs have 1/5x Standby Power Compared to SRAM

eDRAM Advantages – Performance

- Cosmic particles can bombard the cell and cause a bump in the cell voltage
- If voltage bump is large enough SRAM can permanently flip
 - Static cross couple inverters
- Voltage on DRAM capacitor node can also bump
- But will leak away with time
 - Only those cells which get refreshed in a certain period will flip
- Soft Error Rate 1000x lower than SRAM

Embedded DRAM Advantages

Deep Trench Capacitor

- Low Leakage Decoupling
- 25x more Cap / µm² compared to planar
- Noise Reduction = Performance Improvement
- Isolated Plate enables High Density Charge Pump

IBM Power7tm

Embedded DRAM Advantages

Memory Advantage

- 2x Cache can provide > 10% Performance
- ~3x Density Advantage over eSRAM
- 1/5x Standby Power Compared to SRAM
- Soft Error Rate 1000x lower than SRAM
- Performance ? DRAM can have lower latency !
- IO Power reduction

Deep Trench Capacitor

- Low Leakage Decoupling
- 25x more Cap / µm² compared to planar
- Noise Reduction = Performance Improvement
- Isolated Plate enables High Density Charge Pump

IBM Power7tm

Cache performance - SRAM vs. DRAM

Cache performance - SRAM vs. DRAM

Time to access the farthest word-line determines performance Access time = Cell access time + time of flight interconnect delay

Introduction of eDRAM

Embedded DRAM Performance

Memory Block Size Built With 1Mb Macros

Barth ISSCC 2011

eDRAM Faster

Slide 29

Topics

- □ Introduction to memory
- □ DRAM basics and bitcell array
- Noise concerns
- □ Wordline driver (WLDRV) and level translators (LT)
- □ Challenges in eDRAM
- Understanding Timing diagram An example

Fundamental DRAM Operation

Memory Arrays are composed of Row and Columns

Most DRAMs use 1 Transistor as a switch and 1 Cap as a storage element (Dennard 1967)

Single Cell Accessed by Decoding One Row / One Column (Matrix)

Row (Word-Line) connects storage Caps to Columns (Bit-Line)

Storage Cap Transfers Charge to Bit-Line, Altering Bit-Line Voltage

1T1C DRAM Cell Terminals

VWL: Word-Line Low Supply, GND or Negative for improved leakage

VPP: Word-Line High Supply, 1.8V up to 3.5V depending on Technology Required to be at least a Vt above VDD to write full VDD

VBB: Back Bias, Typically Negative to improve Leakage Not practical on SOI

IBM J RES & DEV 2005

Choice of Access Transistor

DRAMs are limited by sub-threshold leakage

 I_{off} α 1/t_{OX}
 Use thick oxide transistor

 t_{OX} ≈ 3nm in 14nm Technology
 Thin oxide transistors (t_{OX} ≈ 1nm)
 What should be the width of the device?
 Density constraints => Unit size
 Unit size transistor also provides least leakage
 Bit-line (BL)
 Word-line (WL)
 Word-line (WL)
 Bit-line (BL)

IBM J RES & DEV 2005

MIM Cap v/s Trench

- Stack capacitor requires more complex process •
- M1 height above gate is increased with stacked capacitor
 - M1 parasitics significantly change when wafer is processed w/o eDRAM
 - Drives unique timings for circuit blocks processed w/ and w/o eDRAM
 - Logic Equivalency is compromised Trench is Better Choice ٠

Word-line Swing - High

What about VTn variability

•
$$V_{PP} \ge V_{DD} + V_{Tn} + \Delta V_{Tn}$$

• Typical value of $V_{PP} = 0.9 + 0.4 + 0.2 = 1.5V$

IBM J RES & DEV 2005

Word-line Swing - Low

DRAM cell Cross section

- Store their contents as charge on a capacitor rather than in a feedback loop.
- 1T dynamic RAM cell has a transistor and a capacitor

Slide 37

Storing data '1' in the cell

Vgs for pass transistor reduces as bitcell voltage rises, increasing Ron

Why there is a reduction in cell voltage after WL closes? Experiment

Classical DRAM Organization

DRAM Subarray

CMOS VLSI design - PEARSON

Trench cell layout and cross-section

Silicon Image

References so far

Barth, J. et al., "A 300MHz Multi-Banked eDRAM Macro Featuring GND Sense, Bit-line Twisting and Direct Reference Cell Write," ISSCC Dig. Tech. Papers, pp. 156-157, Feb. 2002.

Barth, J. et. al., "A 500MHz Multi-Banked Compilable DRAM Macro with Direct Write and Programmable Pipeline," ISSCC Dig. Tech. Papers, pp. 204-205, Feb. 2004.

Barth, J. et al., "A 500MHz Random Cycle 1.5ns-Latency, SOI Embedded DRAM Macro Featuring a 3T Micro Sense Amplifier," ISSCC Dig. Tech. Papers, pp. 486-487, Feb. 2007.

Barth, J. et al., "A 45nm SOI Embedded DRAM Macro for POWER7TM 32MB On-Chip L3 Cache," ISSCC Dig. Tech. Papers, pp. 342-3, Feb. 2010.

Butt, N., et al., "A 0.039um2 High Performance eDRAM Cell based on 32nm High-K/Metal SOI Technology," IEDM pp. 27.5.1-2, Dec 2010.

Bright, A. et al., "Creating the BlueGene/L Supercomputer from Low-Power SoC ASICs," ISSCC Dig. Tech. Papers, pp. 188-189, Feb. 2005.

DRAM Operations

- Write
- Read
- Refresh

DRAM Read, Write and Refresh

- Write:
 - -1. Drive bit line
 - -2. Select row

DRAM Read, Write and Refresh

- Read:
 - -1. Pre-charge bit line
 - -2. Select row Turn ON WL
 - -3. Cell and bit line share charges
 - Signal developed on bitline
 - -4. Sense the data
 - -5. Write back: restore the value

DRAM Read, Write and Refresh

• Refresh

-1. Just do a dummy read to every cell \rightarrow auto write-back

Read - Cell transfer ratio

Transfer Ratio and Signal

 Δ Bit-Line Voltage Calculated from Initial Conditions and Capacitances:

$$\Delta V = V_{bl} - V_{f} = V_{bl} - \frac{Q}{C} = V_{bl} - \left[\frac{C_{bl} * V_{bl} + C_{cell} * V_{cell}}{C_{bl} + C_{cell}} \right]$$

$$\Delta V = (V_{bl} - V_{cell}) \left[\frac{C_{cell}}{C_{bl} + C_{cell}} \right]$$

Transfer Ratio (typically 0.2)

△Bit-Line Voltage is Amplified with Cross Couple "Sense Amp"

Sense Amp Compares Bit-Line Voltage with a Reference

Bit-Line Voltage - Reference = Signal

Pos Signal Amplifies to Logical '1', Neg Signal Amplifies to Logical '0'

Signal: # WLs on a BL

DRAM

Bits per Bit-Line v/s Transfer Ratio

Slide 53

Signal: # WLs on a BL

DRAM

5

Segmentation

Array Segmentation Refers to WL / BL Count per Sub-Array

Longer Word-Line is Slower but more Area efficient (Less Decode/Drivers)

Longer Bit-Line (more Word-Lines per Bit-Line)

Less Signal (Higher Bit-Line Capacitance = Lower Transfer Ratio) More Power (Bit-Line CV is Significant Component of DRAM Power) Slower Performance (Higher Bit-Line Capacitance = Slower Sense Amp) More Area Efficient (Fewer Sense Amps)

Number of Word-Lines Activated determines Refresh Interval and Power

All Cells on Active Word-Line are Refreshed All Word-Lines must be Refreshed before Cell Retention Expires 64ms Cell Retention / 8K Word Lines = 7.8us between refresh cycles Activating 2 Word-Lines at a time = 15.6us, 2x Bit-Line CV Power

Choice of SA

Depending on signal developed SA architecture is chosen

Direct sensing

Requires large signal development

An inverter can be used for sensing

Micro sense amp (uSA) is another option

Differential sense amp

Can sense low signal developed

This is choice between area, speed/performance

Sensing \rightarrow Signal Amplification

When Set Node < $(V + \Delta V)$ - V_{tn1} , I + will start to flow (On-Side Conduction)

When Set Node < (V) - V_{tn0} , will start to flow (Off-Side Conduction)

Off-Side Conduction Modulated by Set Speed and Amount of Signal

Complimentary X-Couple Pairs provide Full CMOS Levels on Bit-Line