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Timing Failure due to BTI
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SRAM Operatmg Mode: READ

BL and BR are pre-charged to
1T NBTI VDD and then left hanging
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Sense-Amp fires

7' ' Access FETs (AXL & AXR) are ON for
PBTI . short duration while cell is accessed =>
. assumed negligible degradation

* The data stored should nof flip during READ
=> NL (NR) should be stronger than AXL (AXR): PBTI can make NL weak (bad!)

« Sufficient AV to fire SA should be developed while WL = ‘1’
=> AXL-NL should fast discharge BL: Weak NL will slow discharge (bad!)




SRAM Operating Mode: WRITE

Voo BL and BR are
NBTI 1 FIXED to data
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WL
‘1’ N\ Weak cross-coupled inverters
(NL-PL and NR-PR) are good
PBTI for writing

* The data stored must flip during WRITE
=> AXL (AXR) should be stronger than PL (NR) NBTI (PBTI) can make PL (NR)

weak (good!)

 Data should flip while WL = ‘1’
=> WL pulse width increased (good)




Static and Alternating Stress
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PBTI : PBTI
Static Stress Alternating Stress
Cell is storing same data for long time => asymmetric Cell is regularly flipped => symmetric
May be READ multiple times but not flipped Equal time/relaxation for storing ‘1’ and ‘0’ to
AVt for static stress larger than alternating stress (no maintain symmetry
recovery) AVt for same usage is less (low power-on time)
READ gradually becomes unstable B-ratio between pull-down and pass-gate FETs

Increases READ access time varies => PD weakens and READ fail increases

Increases READ access time

Typically all cells in between Static to Alternating stress




Unbalanced Post-Fabrication SRAM Cells

Unbalanced cells result in uneven squares in butterfly curve => Reduced noise margin

Read performance on different read ports become different (in case of single ended read
/ 8T cells)

Bring up state:
— V| =0, NL-PR pair is stronger than PL-NR pair

Pre-condition sram cell state before burn in (depending on stability or performance need)
— Burn-inwithV =0

Duration of ‘conditional’ stress can be based on spread of the initial curve

— Or by # of 1s / Os in the initial bring up )
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Impact on Cell READ and WRITE time

Assuming AV;= 50mV
increase due to NBTI and
PBTI at end-of-life

% increase in cell READ & WRITE times
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* READ time reduces as we go from dense to high-performance cell

* READ time is less dependent on stress condition




READ access time
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* READ time is practically immune to NBTI
* READ time degrades ~ 9-12% for 50mV V; shift due to PBTI

» Stringent PBTI requirements in high-performance cells




WRITE time
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* WRITE time is practically immune to PBTI
* WRITE time degrades ~ 8% for 50mV V; shift due to NBTI

» Similar NBTI requirements in high-performance and dense cells




Hot Carrier Injection
O The impact of HCI
a) Is more on access transistors than the pull down and pull up
transistors
b) Is more on word-line overdrive (WLOD) assisted cells
c) Is higher on frequently written cells than frequently read
cells

d) Improves the read access time of 8T cells




Block Diagram
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Power Computation

U Apply sequence of patterns aimed at separating power components
O Initialize array with equi probable Os and 1s (make AO = all Os)

O Hold operation (Py) => Leakage + Clock power
O Write all Os to Address AO (Py,o) => Power of a write where no cells is actually

written => Power of address decode + write drivers (peripherals)

O Read from Address AO (Pro) => Should read all Os, i.e all bit-lines will
discharge (in a single ended read scenario)

O Write 111 to Address AO (Py+) => Power of a write operation where N cells are actually
written

O Read from address AO (Pr1) => Power of a read operation where no bit lines

will discharge (in a single ended read scenario)

O Vary addresses to get power of decoders

U Power of a write operation where N of M bits actually flip = Py + Py,g + (Pw1 - Pwo)*N/M




Test




Test
] Defect vs Fault

« Defect => A deviation from intended behavior

 Fault => A model for the defect

O Structural vs Functional Test
« Structural Test => Testing all nodes of the circuits

 Functional Test => Behaves as desired

d Verification vs Test
« Verification => Design is correct

« Test => Hardware is correct




Test

O Stuck At Faults => Cell is stuck at a particular value

d Transition Faults => Cell fails to undergo a particular
transition

O Coupling Faults => Cell (v) fails due to Cell (a)

O Pattern Faults => Cell (v) fails due to a multiple set of Cells

(a1 - an)




Fault Notation

<...> describes a fault
» <S/F> describes a single-cell fault
— S describes the state/operation sensitizing the fault
A fault is sensitized when the fault effect is made present
— F describes the fault effect in the victim cell (v-cell)
» <S§;F> describes a two-cell fault (a Coupling Fault)

— S describes the state/operation of the aggressor cell (a-cell) sensitizing
the fault

— F describes the fault effect in the v-cell

« Examples
— <V/0>: a SAOQ fault <V/1>: a SA1 fault
— <T/0>:an T TF <I/1>:alTF
— <T:0>:aCF <T:1>: aCF

— <y;0>:aCF <d:1>:a CF




Stuck Faults

O Stuck At Faults => Cell is stuck at a particular value

WO Good cell W
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d Stuck at Open Fault

0 e.g Word line is broken => When read is performed both
BL and BLB remain high




Transition Fault

d Transition Faults => Cell fails to undergo a particular

transition

wO/ N\ W T wi
'@ Y Cell with

<T/0>TF

Test: All cells should have a T and 4 transition and read

] Retention Faults => Cell loses value after a while




Coupling Faults
O Coupling Faults => State (or Transition) of Cell A causes a

failure in Cell V
Gea) " (e

[ Coupling Transition Faults: <T;0>, <T:1>, <;0> and <i;1>
A Coupling state faults: <1;0>, <1;1>, <0;0> and <0;1>
Q Coupling inversion fault: <T;{> and <{;{>




Pattern Sensitive Faults

0 The state (transition) or K cells causes a failure in an ith cell

ANPSF => The k cells are adjacent
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Address Faults

O Address (A1) cause no cell to be accessed
O Address (A1) accesses multiple cells
d Cell (C1) is accessed with multiple addresses

d Cell (C1) is accessed by its own and another address

Ax Cx Ax Cx  Ax Cx

Ax Cx
¢— —0 O— : O 0 O
Fault /A QY pay Cy Ay : Cy

o—0

Fault Fault Fault




March Tests
LA sequence of operations applied in a particular order aimed
at targeting the various fault models

1 March C
{3 (w0);M1(ro,w1); 1 (r1,w0); J(ro,w1);4(r1,w0); §(r0)}

O Intermediate rO shown to be redundant => March C-

{T(wO0); 11(r0,w1);TT(r1,w0); U(r0,w1);U(r1,w0); §(r0)}




Memory Technology Comparison

Non-volatile No Yes Yes
Cell size (F2) 6-10 15-34 6-12 6-20
Read time (ns) 30 20~-80 20-50 2-20
Write / Erase _ lus/ 1Lms/ N
time (ns) “‘"’ 50/50 10 ms N pd 50/ 50 3-20 50 / 120 2-20
Endurance 10 10 10° 10* 102 >101F 10 >104F
Write power Low Very high Very high Low High Low Low
Other power Refresh N N N N N
consumption current none
High voltage
required -8V 16-20V 1.5-3V <15V
Existing products Prototype

Source: Grandis Corporation, 2008




Emerging Memory Technologies

= Two Phases:

] PCRAM (Phase Change RAM) Amorphous Phase Crystalline Phase‘
. o 9 0 | Jo1 Jot et et Jor |
— Medium Performance o“. S0% Ao Jo Tor Ter Ter
— Storage Class Memory *aoy % o » ':, =) $0808 80808

— Apply current to change material phase | |
= Phases have very different electrical resistances (ratio of 1:100 to 1:1000)
& measure R by phase = Transition between phases by controlled heating and cooling
= Read time: 100-300 nsec

« STT-MRAM (Spin Transfer Torque RAM)  =7ooremimeiotsomses

= PCM cells can be reprogrammed at least 106 times

- D RAM alte n atlveS / em bedded MRAM = Performance and price characteristics between DRAM and Flash

— Expensive
Fly current to change magnet polarity & measure R by
arity .
« ReRAM (Resistive RAM) itk

— Medium Performance

Free Layer
— Storage Class Memory Fixed layer
— Apply current to change atomic structure & measure R by
atom distance Logic ‘High’ Logic ‘Low’

Courtesy: S. Sethuraman, IBM




STTRAM cell

o Bit Line (BL)
Bipol Free layer
“7,?; ’ E Pinned layer
Pulse
Read-Out —iC Akosa transistor
o Sdurce Line (SL)
S/A
Rl \Word Line (WL)

M. Hosomi et al, IEDMO05, Sqny

-
; —: = .> Parallel state
Writing 0 I (low R)
;‘ ; Anti-parallel
I Y, 4m e [writing 17> I state
T '+' (high R)
'
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Merged MTJ cells with logic

R — R — Independently read each cell (MTJ)
Independently write each cell (MTJ)
Cannot read the combination of both cells
DO D1

R —| M1 Can independently write to each cell (MTJ)
Can independently read each cell (MTJ)

W
—| Can read the combination of both cells




Write MO

Write operations

Write M1

gm0
R —]

DO D1

W
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Read operations (individual cells)

Read MO

Read M1

gm0
R —]

W

_|

DO D1




Read combination

Read (MO = 0 and M1 = 0)
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Characterization Circuits

Process Characterization
— Understand effect of different process steps
— Characterize extent and impact of various effects
— Feed back to modeling and technology team

— Guidelines for good topologies, design styles
— Examples
» Array of Devices for |-V Characterization
» Local vs Global Variation Sensors
« NBTI / PBTI Isolation Circuits
Mature Process
— Topologies to ensure that process is well behaved
— Process corner detection circuits for static compensation
— Dynamic (on-line) characterization for adaptive systems
— Sensors for debug of failure mechanisms
— Examples
 Critical Path Monitors / Skitter Circuits
» Slew Monitor
* In-situ Power Monitor




Characterization Challenges

 Limited silicon and characterization resources

» |-V Characterization Simplifications

— Limited physical configurations
(neighborhood/density, stress-related geometries,
device sizes)

— Limited operating conditions (voltage, history, self-
heating)

— Sampling of manufactured devices
— Snapshot of process and lifetime




Global vs Local Characterization

o eal/t—LOCAL
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intra-die
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inter-die

Local Variation Sensors

— Eliminate the influence of

global and systematic
variations that effects all
devices equally

— Minimize noise due to
common environmental
factors

Methods

— |-V measurements

— Measuring digital signatures
of analog variations
— Measurement of mismatch

anq measurement of o
individual device variations




Array Based |-V Characterization Circuits

DDDD )
1721 k921 || K2) | Re2) 1751 175} 72| 17
7] 192] | | I°2] k%2 nln| ~—---—-—-=—=-=-==--- ala
A ff == Al al4a
sense drive 14 4 b4 }a

clamp drain top
sense drain top
drive drain top

sd

sﬁti]ﬂ*’ssb {i]}f <l VR VR vk PR
|—|_clamp S } .} .} clamp gate top\
sense gate top
| drive gate top

Multiple Gate - Drain
drive nodes to
minimize resistance
effects

Right LSSD bank

Left L§SD bank

Scan chain <
based device
selection

et o

A A A A
A Al AL A

=R L

drive gate bottom
sense gate bottom
clamp gate bottom

sense source Jeft —

drive drain bottom
sense drain bottom
clamp drain bottom

Bottom LSSD bank

* Measure |-V of devices in an array
» Extract Vt mismatch from “current difference” between identical transistors




Array Based |-V Characterization Circuits
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Array Based |-V Characterization C

Spatial V+ Distribution
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