Advanced Topics in VLSI

Rahul Rao

IBM Systems and Technology Group

SRAM Operating Mode: READ

The data stored should not flip during READ
 > NL (NR) should be stronger than AXL (AXR): PBTI can make NL weak (bad!)

• Sufficient △V to fire SA should be developed while WL = '1' => AXL-NL should fast discharge BL: *Weak NL will slow discharge (bad!*)

SRAM Operating Mode: WRITE

• The data stored *must* flip during WRITE => AXL (AXR) should be stronger than PL (NR) *NBTI (PBTI) can make PL (NR) weak (good!)*

• Data should flip while WL = '1'

=> WL pulse width increased (good)

(A. Bansal, MicroReliability 2009)

Static and Alternating Stress

- Cell is storing same data for long time => asymmetric
- May be READ multiple times but not flipped
- ΔVt for static stress larger than alternating stress (no recovery)
- READ gradually becomes unstable
- Increases READ access time

- Cell is regularly flipped => symmetric
- Equal time/relaxation for storing '1' and '0' to maintain symmetry
- Δ Vt for same usage is less (low power-on time)
- β-ratio between pull-down and pass-gate FETs
 varies => PD weakens and READ fail increases
- Increases READ access time

Typically all cells in between Static to Alternating stress

(A. Bansal, MicroReliability 2009)

Unbalanced Post-Fabrication SRAM Cells

- Unbalanced cells result in uneven squares in butterfly curve => Reduced noise margin
- Read performance on different read ports become different (in case of single ended read / 8T cells)
- Bring up state:
 - V_L = 0, NL-PR pair is stronger than PL-NR pair
- Pre-condition sram cell state before burn in (depending on stability or performance need)
 - Burn in with $V_L = 0$
- Duration of 'conditional' stress can be based on spread of the initial curve
 - Or by # of 1s / 0s in the initial bring up

Impact on Cell READ and WRITE time

Assuming $\Delta V_T = 50mV$ increase due to NBTI and PBTI at end-of-life

READ time reduces as we go from dense to high-performance cell

READ time is *less* dependent on stress condition

(A. Bansal, IRPS 2009)

READ access time

- READ time is practically immune to NBTI
- READ time degrades ~ 9-12% for 50mV V_T shift due to PBTI

Stringent PBTI requirements in high-performance cells

(A. Bansal, IRPS 2009)

- WRITE time is practically immune to PBTI
- WRITE time degrades ~ 8% for 50mV V_T shift due to NBTI
- Similar NBTI requirements in high-performance and dense cells

(A. Bansal, IRPS 2009)

Hot Carrier Injection

□ The impact of HCI

- a) Is more on access transistors than the pull down and pull up transistors
- b) Is more on word-line overdrive (WLOD) assisted cells
- c) Is higher on frequently written cells than frequently read cells
- d) Improves the read access time of 8T cells

Block Diagram

Power Computation

Read from Address A0

written

Apply sequence of patterns aimed at separating power components Initialize array with equi probable 0s and 1s (make A0 = all 0s) Hold operation (P_H) => Leakage + Clock power Write all 0s to Address A0 (P_{w0}) => Power of a write where no cells is actually

written => Power of address decode + write drivers (peripherals)

 (P_{r0})

=> Should read all 0s, i.e all bit-lines will

=> Power of a write operation where N cells are actually

=> Power of a read operation where no bit lines

Read from address A0 (P_{r1})
 will discharge (in a single ended read scenario)

discharge (in a single ended read scenario)

□ Vary addresses to get power of decoders

Write 111 to Address A0 (P_{w1})

□ Power of a write operation where N of M bits actually flip = $P_H + P_{w0} + (P_{w1} - P_{w0})*N/M$

Test

Test

Defect vs Fault

- Defect => A deviation from intended behavior
- Fault => A model for the defect

□ Structural vs Functional Test

- Structural Test => Testing all nodes of the circuits
- Functional Test => Behaves as desired

Verification vs Test

- Verification => Design is correct
- Test => Hardware is correct

Test

- □ Stuck At Faults => Cell is stuck at a particular value
- □ Transition Faults => Cell fails to undergo a particular transition
- □ Coupling Faults => Cell (v) fails due to Cell (a)
- Pattern Faults => Cell (v) fails due to a multiple set of Cells
- (a1 an)

Fault Notation

- ...> describes a fault
- <S/F> describes a single-cell fault
 - S describes the state/operation sensitizing the fault
 - A fault is sensitized when the fault effect is made present
 - F describes the fault effect in the victim cell (v-cell)
- <S;F> describes a two-cell fault (a Coupling Fault)
 - S describes the state/operation of the aggressor cell (a-cell) sensitizing the fault
 - F describes the fault effect in the v-cell
- Examples
 - $\langle \forall /0 \rangle$: a SAO fault
 - $<\uparrow/0>: an \uparrow TF$
 - <↑;0>: a CF
 - <↓;0>: a CF

- <∀/1>: a SA1 fault
 - $<\downarrow/1>: a \downarrow TF$
 - <1;1>: a CF
 - <↓;1>: a CF

Stuck Faults

□ Stuck At Faults => Cell is stuck at a particular value

Stuck at Open Fault

e.g Word line is broken => When read is performed both BL and BLB remain high

Transition Fault

Transition Faults => Cell fails to undergo a particular transition

Test: All cells should have a \uparrow and \downarrow transition and read

□ Retention Faults => Cell loses value after a while

Coupling Faults

Coupling Faults => State (or Transition) of Cell A causes a failure in Cell V

- \Box Coupling Transition Faults: < \uparrow ;0>, < \uparrow ;1>, < \downarrow ;0> and < \downarrow ;1>
- □ Coupling state faults: <1;0>, <1;1>, <0;0> and <0;1>
- \Box Coupling inversion fault: < $\uparrow;$; and < $\downarrow;$; >

Pattern Sensitive Faults

The state (transition) or K cells causes a failure in an ith cell
NPSF => The k cells are adjacent

Address Faults

- □ Address (A1) cause no cell to be accessed
- □ Address (A1) accesses multiple cells
- □ Cell (C1) is accessed with multiple addresses
- □ Cell (C1) is accessed by its own and another address

March Tests

□ March C

□A sequence of operations applied in a particular order aimed at targeting the various fault models

 $\{(w0); (r0,w1); (r1,w0); (r0,w1); (r1,w0); (r0,w1); (r1,w0); (r0)\}$

□ Intermediate r0 shown to be redundant => March C-{(w0);(r0,w1);(r1,w0);(r0,w1);(r1,w0);(r0)}

Memory Technology Comparison

	SRAM	DRAM	Flash (NOR)	Flash (NAND)	FeRAM	MRAM	PRAM	STT-RAM
Non-volatile	No	No	Yes	Yes	Yes	Yes	Yes	Yes
Cell size (F²)	50-120	6-10	10	5	15–34	16-40	6-12	6–20
Read time (ns)	1-100	30	10	50	20-80	3-20	20-50	2-20
Write / Erase time (ns)	1-100	50 / 50	1 μs / 10 ms	1 ms / 0.1 ms	50 / 50	3-20	50 / 120	2–20
Endurance	1016	1016	10 ⁵	10 ^g	1012	>1015	1010	>1015
Write power	Low	Low	Very high	Very high	Low	High	Low	Low
Other power consumption	Current leakage	Refresh current	None	None	None	None	None	None
High voltage required	No	2 V	6-8 V	16–20 V	2–3 V	3 V	1.5–3 V	<1.5 V
	Existing products						Prototype	

Source: Grandis Corporation, 2008

Emerging Memory Technologies

- PCRAM (Phase-Change RAM)
 - Medium Performance
 - Storage Class Memory
 - Apply current to change material phase
 & measure R by phase
- STT-MRAM (Spin Transfer Torque RAM)
 - DRAM alternatives/embedded MRAM
 - Expensive
 - Apply current to change magnet polarity & measure R by polarity
- ReRAM (Resistive RAM)
 - Medium Performance
 - Storage Class Memory
 - Apply current to change atomic structure & measure R by atom distance

- Two Phases:
 Amorphous Phase
 Crystalline Phase
 Set
 Set
- · Phases have very different electrical resistances (ratio of 1:100 to 1:1000)
- Transition between phases by controlled heating and cooling
- Read time: 100-300 nsec
- Program time: 10-150 µsec
- PCM cells can be reprogrammed at least 10⁶ times
- Performance and price characteristics between DRAM and Flash

Courtesy: S. Sethuraman, IBM

STTRAM cell

STTRAM cell

Merged MTJ cells with logic

Independently read each cell (MTJ) Independently write each cell (MTJ) Cannot read the combination of both cells

Can independently write to each cell (MTJ) Can independently read each cell (MTJ) Can read the combination of both cells

Write operations

Write M0

Write M1

Read operations (individual cells)

Read M0

Read M1

Read combination

Read (M0 = 0 and M1 = 0)

Variation Characterization

Rahul Rao

IBM Systems and Technology Group

Characterization Circuits

- Process Characterization
 - Understand effect of different process steps
 - Characterize extent and impact of various effects
 - Feed back to modeling and technology team
 - Guidelines for good topologies, design styles
 - Examples
 - Array of Devices for I-V Characterization
 - Local vs Global Variation Sensors
 - NBTI / PBTI Isolation Circuits
- Mature Process
 - Topologies to ensure that process is well behaved
 - Process corner detection circuits for static compensation
 - Dynamic (on-line) characterization for adaptive systems
 - Sensors for debug of failure mechanisms
 - Examples
 - Critical Path Monitors / Skitter Circuits
 - Slew Monitor
 - In-situ Power Monitor

Characterization Challenges

- Limited silicon and characterization resources
- I-V Characterization Simplifications
 - Limited physical configurations (neighborhood/density, stress-related geometries, device sizes)
 - Limited operating conditions (voltage, history, selfheating)
 - Sampling of manufactured devices
 - Snapshot of process and lifetime

Global vs Local Characterization

- Local Variation Sensors
 - Eliminate the influence of global and systematic variations that effects all devices equally
 - Minimize noise due to common environmental factors
- Methods
 - I-V measurements
 - Measuring digital signatures of analog variations
 - Measurement of mismatch and measurement of individual device variations

Array Based I-V Characterization Circuits

- Measure I-V of devices in an array
- Extract Vt mismatch from "current difference" between identical transistors

K. Agarwal, et. al. DAC 2007

Array Based I-V Characterization Circuits

K. Agarwal, et. al. DAC 2007

Array Based I-V Characterization Circuits

Sample I-V curves

Parameter Distributions

Spatial Correlation

K. Agarwal, et. al. DAC 2007