

CMOS-Compatible Logic Embedded High-K Charge-Trap Multi-Time-Programmable Memory

Janakiraman Viraraghavan, Derek Leu, <u>Balaji Jayaraman</u>, Alberto Cestero, Ming Yin, John Golz, Rajesh R. Tummuru, Ramesh Raghavan, Dan Moy, Thejas Kempanna, Faraz Khan, Toshiaki Kirihata, Subramanian Iyer

Outline

- Introduction
- Embedded Nonvolatile Memory Applications
- Charge Trap Transistor (CTT) Technology
- Macro Overview
- Hardware Results
 - SOI
 - 14nm Bulk FinFET
- Future scope
- Summary

Introduction – Computer Architecture

Introduction – Computer Architecture

Introduction – Computer Architecture

Outline

- Introduction
- Embedded Nonvolatile Memory Applications
- Charge Trap Transistor (CTT) Technology
- Macro Overview
- Hardware Results
 - SOI
 - 14nm Bulk FinFET
- Future scope
- Summary

Embedded Nonvolatile Memories

			← Applications →				•				
Туре	Tech- nique	Density	Re- writability	Q	Security	2D Red.	3D Red.	Firmware	Data	Cache	
OTPM	eFUSE	Low	One Time				*	*	*	*	
Dense OTPM	Anti-fuse	Medium	Emulation	•	•			•	×	*	
MTPM	Charge Trap	Medium	Medium	•	•	•	•	•	*	*	
Flash	FG	High	High	*			•	•		*	Γ.
MRAM	Magnetic	High	High	*						•	

- Integrating Firmware on chip is beneficial
 - Cost reduction → If done with zeromask adder to logic process.
 - Enhanced security.

Ideally suited

Fairly suited

eNVM For Redundancy

eNVM for Automotive application

Code Flash 2MB	Code Flash 2MB	Data Flash 64KB
#0		
		THE R

	Code Flash	Data Flash		
Technology	28nm SG-MONOS			
Memory Cell Size	0.053µm ²			
Memory Capacity	2MB X 2	64KB		
Power Supply	Core(VDD) 1.1V±0.	1V, I/O(VCC) 2.7-5.5V		
Operating Temp.	-40~170°C (Tj)			
Read I/O number	(128bit + 10bit) X 2	32bit + 7bit		
Random Read Freq.	200MHz	10MHz		
Program Speed	2.0MB/s	150us/4B		
Erase Speed	0.91MB/s	1.5ms/64B		
P/E endurance	10k cycles	>1M cycles		
Maximum Capacity	32MB	512KB		

- 4MB code flash + 64KB data flash integrated on-chip.
- Targeted for automotive MCUs for engine control and driver assistance applications.

Y. Taito et al., ISSCC 2015

eNVM for Media application

Embedded Flash memory in 0.5um CMOS for voice-storage application:

- 32Mb, 4-level embedded flash to store 64 minutes of voice.
- On-chip Memory BIST is included.

M. Borgatti et al., IEEE JSSC 2001

eNVM for other applications

Nonvolatile logic-in-memory array

processor using MTJ/MOS in

M. Natsui et al., ISSCC 2013

90nm node,

65-nm CMOS 352-Kb SRAM tag 4×1-Mb MRAM data 4-way set associative 256-bit line width 4k sets 8-entry input queue 8-entry output queue 8-entry miss buffer 4-entry fill buffer 4-entry write-back

STT-MRAM based cache memory in 65nm node, H. Noguchi et al., ISSCC 2016

Memory cell : 2T 2MTJ

90nm Process MTJ/MOS Area (Core) 1.153 mm² Num, of MOS Trs. 474,019 Num, of MTJs 13,400 Supply voltage 1.0 V

array

Ш

5x5

Outline

- Introduction
- Embedded Nonvolatile Memory Applications
- Charge Trap Transistor (CTT) Technology
- Macro Overview
- Hardware Results
 - SOI
 - 14nm Bulk FinFET
- Future scope
- Summary

This talk focuses on a CTT based eNVM targeted for :

- Secure OTPM ID
- 2D and 3D Redundancies
- Firmware applications

Comparison of Embedded NVRAM Solutions

CTT – Dense, No mask adder, Bulk/ SOI FIN scalable, logic voltage compatible MTPM

CTT MTPM Applications

Outline

- Introduction
- Embedded Nonvolatile Memory Applications
- Charge Trap Transistor (CTT) Technology
- Macro Overview
- Hardware Results
 - SOI
 - 14nm Bulk FinFET
- Future scope
- Summary

Charge Trap Transistor (CTT) Technology

Intrinsic Oxygen vacancies in HfO₂ HiK dielectrics

Charge Trapping done at logic process compatible voltages

OTPM / MTPM Twin Cell

 $0.108 \text{m}\text{m}^2 \text{ in } 32 \text{nm node}$

1/4 Standby – Initial State Before Programming

Mode	WL	BL	SL
Standby	0V	float	0V
Program	2V	0V	~1.5V
Read	1V	Signal	1V
Erase	-1V	float	~2V

2/4 Program

Mode	WL	BL	SL
Standby	0V	float	0V
Program	2V	0V	~1.5V
Read	1V	Signal	1V
Erase	-1V	float	~2V

3/4 Read

Mode	WL	BL	SL
Standby	0V	float	0V
Program	2V	0V	~1.5V
Read	1V	Signal	1V
Erase	-1V	float	~2V

4/4 Erase

Mode	WL	BL	SL
Stand-by	0V	float	0V
Program	2V	0V	~1.5V
Read	1V	Signal	1V
Erase	-1V	float	~2V

CTT : Operating zones

Circuit Assist Techniques needed to operate in the "Safe" Zone

HiK Charge Trap Transistor Enables Process Free Multi-time Programmability

	eFUSE	Anti Fuse	МТРМ
Mb/(mm ²)	<0.1	~1	~1
Rewritable	No	No	Yes

Bitmap Image

Outline

- Introduction
- Embedded Nonvolatile Memory Applications
- Charge Trap Transistor (CTT) Technology
- Macro Overview
- Hardware Results
 - SOI
 - 14nm Bulk FinFET
- Future scope
- Summary

80Kb Twin Cell Macro Architecture

Circuit Assist – Over Write Protection

Write in multi-steps with OWP

Circuit Assist – Slew Sense Amplifier

- Turn on column switch
 - Connect cell to SA
- Ramp the WL slowly to VDD
 - Rise time ~500ps
- Differential charging of SAt and SAc
- Self timed Sense Amp
- Capacitance mismatch
 - Fixable using reduced slew

Circuit Assist – Slew Sense Amplifier

SSA can sense 10% less VT shift compared to CCSA

Outline

- Introduction
- Embedded Nonvolatile Memory Applications
- Charge Trap Transistor (CTT) Technology
- Macro Overview
- Hardware Results
 - SOI
 - 14nm Bulk FinFET
- Future scope
- Summary

SOI Hardware Results - OWP

Over-Write Protection ensures operation in the "safe" zone

J. Viraraghavan et al., IEEE VLSI Symp. 2016

SOI Hardware Results – HTS Stress

Bake Tests Indicate 30% V_{TH} Degradation in 10 years @ 125^oC

SOI Hardware Results – Multi-Time Programming

Outline

- Introduction
- Embedded Nonvolatile Memory Applications
- Charge Trap Transistor (CTT) Technology
- Macro Overview
- Hardware Results
 - SOI
 - 14nm bulk FinFET
- Future scope
- Summary

14nm bulk FinFET Hardware Results

40Kb Checker Board Programming

256b Multi Programming

14nm Hardware Results - Schmoo and retention

Prototype is functional using VDD = 0.7V Projected Charge loss for 10 year product life: <35%

Outline

- Introduction
- Embedded Nonvolatile Memory Applications
- Charge Trap Transistor (CTT) Technology
- Macro Overview
- Hardware Results
 - SOI
 - 14nm bulk FinFET
- Future scope
- Summary

Future : Endurance Improvement Concept

Future : Hardware-Based Security

- Programmed bits physically invisible
- Enable Physically Unclonable Fuse (PUF) for a secure product source solution.
- Create a unified memory array, using these three modes of operation
 - -OTPM Mode: Used for stable non-volatile bits
 - -MTPM Mode: Self Destructive Re-writable Memory non-volatile bits
 - Intrinsic ID Mode: Physically Unclonable Fuse (PUF).

Future : Unified memory using CTT MTPM

Outline

- Introduction
- Embedded Nonvolatile Memory Applications
- Charge Trap Transistor (CTT) Technology
- Macro Overview
- Hardware Results
 - SOI
 - 14nm bulk FinFET
- Future scope
- Summary

Summary

- MTPM demonstrated in both SOI and Bulk FIN
- Scalable standard Hi-K logic process
 - Process as it is (ex. No mask adder)
 - Operated in logic compatible voltages
 - ~30X more dense than eFUSE
- Future : MTPM fundamental concepts
 - Endurance improvement, using forming approach
 - Unified memory, using OTPM, self-destructive MTPM, PUF.

Technology	32nm SOI	22nm SOI	14nm FIN Bulk	
Cell	0.109µm² with 1.4nm Gox NMOS	0.144µm² with 1.2nm Gox NMOS	0.1411µm² with FIN NMOS	
Macro Density	80Kb	64Kb	40Kb	
Density/mm ²	~2Mb/mm ²	~2.5Mb/mm ²	~1.3*Mb/mm ²	
Activation Energy	~1.4eV	-	~1.6eV	

References

[1] H. Kojima et. al., IEDM, 2007, pp. 677-680.
[2] Y. Taito et. al., ISSCC, pp. 132-133, Feb. 2015.
[3] M. Jefremow et. al., ISSCC, pp. 216-217, Feb. 2013.
[4] M. Ueki et. al, VLSI Tech., pp. 108-109, 2015.
[5] G. Uhlmann et. al., ISSCC, pp. 406-407, Feb. 2008.
[6] Zicheng Liu et. al., ISNE pp. 1-3, 2015
[7] C. Kothandaraman et. al., IRPS, 2015 pp. MY2.1-MY2.4
[8] F. Khan et. al., IEEE EDL 37 pp. 88-91, Jan. 2016.
[9] Kenji Noda, Using Hot Carrier Injection for Embedded Non-volatile Memory NSCore, Inc. White Paper http://www.nscore.com/images/WhitePaper_081002.pdf

Acknowledgements

Darren Anand John Fifield Sami Rosenblatt Xiang Chen Krishnan Rengarajan Giuseppe Larosa Norman Robson Jim Pape **Daniel Berger** Dan Moy Robert Katz Yoann Mamy Randriamihaja Zakariae Chbili Andreas Kerber Raman Kodhandaraman

This work at UCLA is partially supported by the Defense Advanced Research ProjectsAgency (DARPA). The views, opinions, and/or findings contained in this article are those of the author(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government

Thank You

