High-Performance SRAM Design

Rahul Rao

IBM Systems and Technology Group

Bias Temperature Instability

FET characteristics and BTI

- Threshold voltage (V_T)
- Current degradation approximately corresponds to V_T degradation
- Known sensitivities
 - PBTI is more sens. to Voltage
 - NBTI is *more* sens. to temperature
- Semi-empirical model (for both NBTI and PBTI)

 $\Delta V_T \mid_{DC_stress} = A V_{DD}^a T^b t^n \quad \text{(without including recovery)}$

Recovery after stress

Static stress and recovery or "0.001 Hz waveform"

*Ramey et. al., Intel, IRPS 2009

> In other words, if probability of '1' at the gate of an NFET is say P_1 , then,

duty_cycle =
$$\frac{t_{\text{stress}}}{t_{\text{stress}} + t_{\text{relax}}} = P_1$$

Biggest benefits of recovery when duty_cycle < 95%</p> Recovery happens when FET is OFF

$$\Delta V_T \mid_{after_relax} = FRx \Delta V_T \mid_{DC_stress}$$

FR = |1|

Fraction Remaining

$$+ \alpha \left(\frac{t_{relax}}{t_{stress}}\right)^n \right]^{-1}$$

FET stress-recovery

Let's take an example of simple CMOS inverter

- If a FET is ON, it's stressed (for both NFET and PFET)

- If a FET is OFF, it's relaxed (for both NFET and PFET)

FET stress-recovery

For other circuit types say transmission gate

- Both the FETs are either ON or OFF together

- Source-drain voltages during relaxation depends on other circuit blocks on left and right

- e.g., negative gate-drain or gate-source voltage in NFET may speed up recovery (also true for inverter on previous slide)

Nature of Stresses/recovery

Static or DC stress

FETs are in the same voltage bias condition during the USAGE

Examples:

- -SRAM cells storing the same data for long time
- -Circuit paths not used for long time but powered on
 - Word line drivers, local and global eval circuits

Nature of Stresses/recovery

Alternating or AC stress

- FETs turn ON (stress) and OFF (recover) during the USAGE
- It's composed of several DC stress and recovery conditions
- Durations of stress and recovery depend on nature of program running and typically can not be estimated

- -SRAM cells frequently changing the stored data
- -Logic circuit paths doing computations

Question

The bias temperature instability device degradation in a circuit can be reduced by

- a) Using assymmetric transistors since they will degrade at different rates
- b) Avoiding pass gates in the design and always using transmission gates
- c) Increasing the supply voltage of the circuit
- d) Ensuring that all nodes in a circuit switch every N cycles

SRAM Operating Mode: READ

The data stored should not flip during READ
 > NL (NR) should be stronger than AXL (AXR): PBTI can make NL weak (bad!)

• Sufficient △V to fire SA should be developed while WL = '1' => AXL-NL should fast discharge BL: *Weak NL will slow discharge (bad!*)

SRAM Operating Mode: WRITE

• The data stored *must* flip during WRITE => AXL (AXR) should be stronger than PL (NR) *NBTI (PBTI) can make PL (NR) weak (good!)*

• Data should flip while WL = '1'

=> WL pulse width increased (good)

(A. Bansal, MicroReliability 2009)

Static and Alternating Stress

- Cell is storing same data for long time => asymmetric
- May be READ multiple times but not flipped
- ΔVt for static stress larger than alternating stress (no recovery)
- READ gradually becomes unstable
- Increases READ access time

- Cell is regularly flipped => symmetric
- Equal time/relaxation for storing '1' and '0' to maintain symmetry
- Δ Vt for same usage is less (low power-on time)
- β-ratio between pull-down and pass-gate FETs
 varies => PD weakens and READ fail increases
- Increases READ access time

Typically all cells in between Static to Alternating stress

(A. Bansal, MicroReliability 2009)

Unbalanced Post-Fabrication SRAM Cells

- Unbalanced cells result in uneven squares in butterfly curve => Reduced noise margin
- Read performance on different read ports become difference (in case of single ended read / 8T cells)
- Bring up state:
 - V_L = 0, NL-PR pair is stronger than PL-NR pair
- Pre-condition sram cell state before burn in (depending on stability or performance need)
 - Burn in with $V_L = 0$
- Duration of 'conditional' stress can be based on spread of the initial curve
 - Or by # of 1s / 0s in the initial bring up

Impact on Cell READ and WRITE time

Assuming $\Delta V_T = 50mV$ increase due to NBTI and PBTI at end-of-life

READ time reduces as we go from dense to high-performance cell

READ time is *less* dependent on stress condition

(A. Bansal, IRPS 2009)

READ access time

- READ time is practically immune to NBTI
- READ time degrades ~ 9-12% for 50mV V_T shift due to PBTI

Stringent PBTI requirements in high-performance cells

(A. Bansal, IRPS 2009)

- WRITE time is practically immune to PBTI
- WRITE time degrades ~ 8% for 50mV V_T shift due to NBTI
- Similar NBTI requirements in high-performance and dense cells

(A. Bansal, IRPS 2009)

Hot Carrier Injection

□ The impact of HCI

- a) Is more on access transistors than the pull down and pull up transistors
- b) Is more on word-line overdrive (WLOD) assisted cells
- c) Is higher on frequently written cells than frequently read cells
- d) Improves the read access time of 8T cells

Test

Test

Defect vs Fault

- Defect => A deviation from intended behavior
- Fault => A model for the defect

□ Structural vs Functional Test

- Structural Test => Testing all nodes of the circuits
- Functional Test => Behaves as desired

Verification vs Test

- Verification => Design is correct
- Test => Hardware is correct

Test

- □ Stuck At Faults => Cell is stuck at a particular value
- □ Transition Faults => Cell fails to undergo a particular transition
- Coupling Faults => Cell (v) fails due to Cell (a)
- \Box Pattern Faults => Cell (v) fails due to a multiple set of Cells
- (a1 an)

Fault Notation

- ...> describes a fault
- <S/F> describes a single-cell fault
 - S describes the state/operation sensitizing the fault
 - A fault is sensitized when the fault effect is made present
 - F describes the fault effect in the victim cell (v-cell)
- <S;F> describes a two-cell fault (a Coupling Fault)
 - S describes the state/operation of the aggressor cell (a-cell) sensitizing the fault
 - F describes the fault effect in the v-cell
- Examples
 - $< \forall /0 >$: a SAO fault
 - $<\uparrow/0>: an \uparrow TF$
 - <↑;0>: a CF
 - <↓;0>: a CF

- <∀/1>: a SA1 fault
 - $<\downarrow/1>: a \downarrow TF$
 - <1;1>: a CF
 - <↓;1>: a CF

Stuck Faults

□ Stuck At Faults => Cell is stuck at a particular value

Stuck at Open Fault

e.g Word line is broken => When read is performed both BL and BLB remain high

Transition Fault

Transition Faults => Cell fails to undergo a particular transition

Test: All cells should have a \uparrow and \downarrow transition and read

□ Retention Faults => Cell loses value after a while

Coupling Faults

Coupling Faults => State (or Transition) of Cell A causes a failure in Cell V

- \Box Coupling Transition Faults: < \uparrow ;0>, < \uparrow ;1>, < \downarrow ;0> and < \downarrow ;1>
- □ Coupling state faults: <1;0>, <1;1>, <0;0> and <0;1>
- \Box Coupling inversion fault: < $\uparrow;\uparrow$ > and < $\downarrow;\uparrow$ >

Pattern Sensitive Faults

The state (transition) or K cells causes a failure in an ith cell
NPSF => The k cells are adjacent

Address Faults

- □ Address (A1) cause no cell to be accessed
- □ Address (A1) accesses multiple cells
- □ Cell (C1) is accessed with multiple addresses
- Cell (C1) is accessed by its own and another address

March Tests

□ March C

□A sequence of operations applied in a particular order aimed at targeting the various fault models

 $\{(w0); (r0,w1); (r1,w0); (r0,w1); (r1,w0); (r0,w1); (r1,w0); (r0)\}$

□ Intermediate r0 shown to be redundant => March C-{(w0);(r0,w1);(r1,w0);(r0,w1);(r1,w0);(r0)}

Power Computation

Apply sequence of patterns aimed at separating power components Initialize array with equi probable 0s and 1s (make A0 = all 0s) Hold operation (P_H) => Leakage + Clock power Write all 0s to Address A0 (P_{w0}) => Power of a write where no cells is actually written => Power of address decode + write drivers (peripherals) Read from Address A0 => Should read all 0s, i.e all bit-lines will (P_{r0}) discharge (in a single ended read scenario) Write 111 to Address A0 (P_{w1}) => Power of a write operation where N cells are actually written Read from address A0 (P_{r1}) => Power of a read operation where no bit lines will discharge (in a single ended read scenario)

□ Power of a write operation where N of M bits actually flip = $P_H + P_{w0} + (P_{w1} - P_{w0})*N/M$