High-Performance SRAM Design

Rahul Rao

IBM Systems and Technology Group

Thought exercise

Implement logic function via 8T merge

- Concept: Use the 8-T portion of the cell for implementing logic functions
 - Possible due to decoupling of read and write paths
- RBL discharges when either C0 or C1 is high
 - Read stack remains 2-high
- And function: switch definition of WBL and WBLB
- An OR2 embodiment is shown on right
 - Can be complex OR4, OR8, etc.

A More Practical Implementation

- + Share RWL between adjacent cells
 - => 3 word-lines in 4 metal tracks
 - Reduces coupling capacitance (+ performance and power)
- + All FEOL features identical to conventional 8T cell
 - OR
 - upper device in stack can be made smaller, reducing cell size

Low leakage SRAM

The Phoenix Processor: A 30pW Platform for Sensor Applications

(S. Hanson , VLSI Symp '08)

Multi-porting SRAM Cell

Multi read ports

Multi read ports

Block Diagram

Bank and Bank Conflicts

Global and Local Variations

Inter-die Variation & Cell Failures

S. Mukhopadhyay et. al, ITC2005, VLSI2006, JSSC2007, TCAD2008

Failures in SRAM Array

• *P*_{COL}: Probability that any of the cells in a column fail

$$P_{COL} = 1 - (1 - P_F)^{N_{ROW}}$$

Transistor Sizing

• Slide contributed by K. Roy, Purdue

Impact of Redundancy on Memory Failure

Larger redundancy

Redundant Col / Total Col. [%]

- (1) more column to replace (less memory failure).
- (2) smaller cell area (larger cell failure).

Question

Array redundancy

- a) Improves cell stability
- b) Degrades cell performance (i.e increases read and write times)
- c) Does not require any change to cell peripheral circuits
- d) Row redundancy is better than column redundancy

Example: Multi-VCC for SRAM Cell

- Create differential voltage between WL and Cell to decouple the Read & Write
 - Write: V_WL > V_Cell
 - Read: V_WL < V_Cell</p>

Dynamic Circuit Techniques for Variation Tolerant SRAM

	Read	Write
V _{WL}	Lower V _{WL} => lower V _{read} (weak AX)	Higher V _{WL} => Strong AX helps discharge
V _{cs}	Higher V _{cs} => lower V _{read} (strong PD) Higher V _{trip}	Lower V _{cs} => Weak PUP
V _{BL}	Weak impact	Negative V _{BL} for 0 => strong AX helps discharge
		uscharge

Example: Dual-Vcc based Dynamic Circuit Techniques

- Dynamic VCC MUX is integrated into subarray
- VCC selection is along column direction to decouple the Read & Write

Negative Bit Line Scheme

Source: S. Mukhopadhyay, R. Rao et. al, TVLSI 2009

Effectiveness Considerations: Writability improvement

- Various dynamic schemes have different effectiveness in improving writability for similar read stability
 - Higher V_{WL} is most effective

Source: S. Mukhopadhyay, R. Rao et. al, TVLSI 2009

Impact on Active Data-Retention

- Column based read-write control adversely impact the active data-retention failures
 - DC negative bitline has higher active data-retention failures
 - Tran-NBL and lower V_{cs} have comparable failure rates

Source: S. Mukhopadhyay, R. Rao et. al, TVLSI 2009

Dynamic Circuit Techniques for Variation Tolerant SRAM

	Read	Write
V _{WL}	Lower V _{WL} => lower V _{read} (weak AX)	Higher V _{WL} => Strong AX helps discharge
V _{cs}	Higher V _{cs} => lower V _{read} (strong PD) Higher V _{trip}	Lower V _{cs} => Weak PUP
V _{BL}	Weak impact	Negative V _{BL} for 0 => strong AX helps discharge
		uscharge

Implementation Consideration: Half-Select Stability

Higher V_{WL}

- Row-based scheme
- Degrades half-select read stability of the unselected columns
- Lower V_{cell} or negative bit-line
 - + Column-based scheme
 - + Half-select read stability remains same

Assist Methods

WLOD (WL Overdrive)

Strengthen PG

VCDL (V_{DD,CELL} Lowering)

Weaken PU

NBL (Negative BL)

Strengthen PG

SBL (Suppressed BL)

Weaken BL noise

WLUD (WL Underdrive)

Weaken PG

Proposed Dual-Transient WL (DTWL)

- Dual-Transient WL (DTWL) controls WL transiently
- DTWL provides mix-up assist for read and write
 - Covers different process-corner
 - DTWL mitigate the impact of WLOD (WA)

Question

Of the various assist methods

- a) Negative bit line scheme does not help 8-T sram cell
- b) Word line under drive does not help 8-T sram cell
- c) Word line over drive does not help 7-T conditionally decoupled sram cell
- d) VCDL does not help any kind of assymetric sram cell

Precharge Time (Timing diagrams)

SRAM as random number generator