High-Performance Design

Rahul Rao

IBM Systems and Technology Group

Content & Learning Objectives

SRAMs

- Memory hierarchy and organization, SRAM building blocks and peripherals, modes of operation, common and uncommonly used cell types with their merits / demerits, Assists circuitry
- Introduction to next generation memory (circuits)

Reliability and Variation

- Source of variation, Variation detection circuits, impact on SRAMs
- Bias Temperature Instability
- Variation tolerant circuits / methods
- Other topics?

Memory Classification revisited

Topics

- □SRAM : Basic memory element
- Operations and modes of failure
- Cell optimization
- □ SRAM peripherals
- Memory architecture and folding

Back to Back Inverters

Butterfly Curve

6T SRAM Cell

No Operation (Hold)

Differences between latch and memory cell?

Lets fill this together

Then flip the application and measurement sides (use half cells). Plot the Transfer curves on the same graph

Hold Margin

Hold Failure => Flipping of cell data in the Hold mode with the application of a lower supply voltage.

Question 2

- □ Hold Margin for an SRAM cell
- a) Is always greater than read margin
- b) Can be improved by making the access transistor bigger
- c) Defines the minimum supply voltage required to perform a read operation
- d) Depends on the number of cells on the bit line

Read Operation

S. Mukhopadhyay, ITC 2010

Hold vs Read Margin

Write Operation

S. Mukhopadhyay, ITC 2010

Write Margin

Access Failure : Time required to produce a pre-specified bit-differential is higher than a maximum allowed time.

Question 2b

- □ Write Margin for an SRAM cell
- a) Is always greater than read margin
- b) Can be improved by making the access transistor bigger
- c) Defines the minimum supply voltage required to perform a read operation
- d) Depends on the number of cells on the bit line

The Balancing Act

Large N: Better READ performance. If too large, trip voltage of inverter becomes so low that cell becomes unstable.

Large A: Better Performance. If too large, storage node voltage goes high during READ, causing cell flip

Large P: Increase stability. If too large, hard to WRITE.

Need to balance all : NR:XR:PR ~ 2:1:1

Workhorse 6T-Cell

Thin Cell (Litho-Friendly)

Cell area vital for density

Question 2c

Decreasing the size of only one side of NFET transistors

- will improve the cell
- a) Cell density
- b) Read margin
- c) Write margin
- d) Hold margin

Topics

- □ Introduction to memory
- □ SRAM : Basic memory element
- Operations and modes of failure
- Cell optimization
- □ SRAM peripherals
- Memory architecture and folding

Decoders and Drivers

WL driver	cell	cell	cell	cell
WL driver	cell	cell	cell	cell

Word line driver layout needs to be pitch matched to SRAM cell

WL driver	cell	cell	cell	cell	
WL driver	cell	cell	cell	cell	
Decoder and Control	Column Circuitry				

Column Circuitry for Read and Write

WRITE

Sense Amplifiers

Sense-amp provide necessary gain (small input \rightarrow large output) for read If sense_clk arrives too early \rightarrow False read may happen due to too small difference If sense_clk arrives too late \rightarrow Too slow

Isolation transistors: Disconnects sense amp to cutoff large bit line capacitance once sensing starts

Hierarchical Bit-lines

Hierarchical Bit-lines

Pre-Conditioning

Pre-Conditioning

Question 3

Equalizer is required

- a) Both the bitlines are pre-charged at the same time
- b) To ensure that the bit-lines are conditioned suitably for write operation
- c) To minimize offset between the bitlines prior to read operation
- d) To improve the hold and read margin of the memory cells

Topics

- □ Introduction to memory
- □ SRAM : Basic memory element
- Operations and modes of failure
- Cell optimization
- □ SRAM peripherals
- Memory architecture and folding

Memory Architecture

 2ⁿ words of 2^m bits each, If n >> m, fold by 2^k into fewer rows of more columns

- Good regularity easy to design
- Utilization = Cell Area / (Cell + Periphery Area)

Why memory is folded?

- To improve aspect ratio by column multiplexing
 - E.g.: 2Kword x 16 can be arranged as 256 rows and 128 columns
 - 8:1 MUX are used to read 16 desired columns out of 128
- To improve soft-error immunity
 - bits of a word are not placed next to each other
 - Single-bit soft-error can be corrected by ECC

Column Select and Half-Select Issue

Prevents multiple-bit soft error

Better aspect ratio

Class Exercise

Build a schematic of a 6T - SRAM cell with minimum sized
PFETs, Pull down = 3*PFET size, and Access transistor = 2* PFET size. Simulate it and plot butterfly curve for margins
Change Pull down size to 4*PFET size and re-simulate
Change Access transistor size to 3*PFET size and re-simulate
Change pull up device size to 2 original size and re-simulate

Next Class

□ Alternative Cell Types (6 to 10T), Asymmetric Cells, Subthreshold Cells, Low - leakage cells