Advanced Topics in VLSI

EE6361

Jan 2017

DRAM

Course Objectives

- Introduce students to some relevant advanced topics of current interest in academia and industry
- Make students aware of some advanced techniques
- Make students aware of work happening in India

Current Topics

Embedded Memory Design

- DRAMs + Yield Estimation (Janakriaman, IITM)
- □ SRAMs (Rahul Rao, IBM India)
- TCAMs (Self Study)
- Electronic Design Automation for Circuits (Sridhar Rangarajan, IBM India)

Learning Objectives for EDRAM

- Explain the working of a (e)DRAM. What is Embedded mean?
- Explain the working of a feedback sense amplifier and modify existing designs to improve performance
- Calculate the voltage levels of operation of various components for an eDRAM
- Introduce stacked protect devices to reduce voltage stress of the WL driver
- Calculate the number of samples required to estimate yield to specified accuracy and confidence
- Explain the use of importance sampling to reduce the number of samples required in step 6

Learning Objectives for SRAM

- Articulate memory hierarchy and the value proposition of SRAMs in the memory chain + utilization in current processors
- Explain SRAM building blocks and peripheral operations and memory architecture (with physical arrangement)
- Articulate commonly used SRAM cells (6T vs 8T), their advantages and disadvantages
- Explain the operation of a non-conventional SRAM cells, and their limitations
- Explain commonly used assist methods
- Explain how variations impact memory cells

Learning Objectives for EDA

- Describe the role of CAD tools in VLSI Physical Design process.
- Explain various design phases and physical design flow
- Articulate the commonly used algorithms in physical design tools
- Detailed understanding of placement and routing techniques.
- Describe the role of physical synthesis in design closure
- Incremental synthesis and optimization and its role in physical design closure

If time permits

- Articulate as how static timing analysis works
- Articulate leakage and dynamic power modelling

Grading

- Assignments 20%
- □ Self Study Seminar 20%
- 🖵 Quiz 20%
- End Semester 40%

Refresher

DRAM

Refresher

Inverter trip point and noise margins

- Short Channel Effect
 - Sub-threshold leakage
 - DIBL
 - GIDL
- Stacking Effect
- Pass transistors
- □ 6T SRAM basics

Review of SRAM

Basic 6T SRAM cell

- Read and Write operation
 - □ Sizing of devices
- Sense Amps

6T SRAM

6T SRAM Array

SRAMs cannot be pre-charged to ground because

The pull up PFET will malfunction

) The pass transistor is an NFET and hence will not allow a successful read ONE

The pass transistor is an NFET and hence read ONE will be slow

Who said you can't precharge to ground?

6T SRAM Array

In an SRAM, PD= Pull down NFET, PU= Pull up PFET and PT=Pass transistor

. . .

- PD > PT > PU
- PD > PU > PT
- PU > PT > PD
 -) Size doesn't matter!

Embedded DRAM

Janakiraman V

Assistant Professor Electrical Department IIT Madras

Topics

- Introduction to memory
- DRAM basics and bitcell array
- eDRAM operational details (case study)
- Noise concerns
- □ Wordline driver (WLDRV) and level translators (LT)
- □ Challenges in eDRAM
- Understanding Timing diagram An example
- □ References

Acknowledgement

- Raviprasad Kuloor (Course slides were prepared by him)
- John Barth, IBM SRDC for most of the slides content
- Madabusi Govindarajan
- Subramanian S. Iyer
- Many Others

Topics

- Introduction to memory
- DRAM basics and bitcell array
- eDRAM operational details (case study)
- Noise concerns
- □ Wordline driver (WLDRV) and level translators (LT)
- □ Challenges in eDRAM
- □ Understanding Timing diagram An example

Memory Classification revisited

Motivation for a memory hierarchy – infinite memory

Cycles per Instruction (CPI) = Number of processor clock cycles required per instruction

CPI[∞ cache]

Finite memory speed

Locality of reference – spatial and temporal

Temporal

If you access something now you'll need it again soon *e.g: Loops*

Spatial

If you accessed something you'll also need its neighbor *e.g: Arrays*

Exploit this to divide memory into hierarchy

Cache size impacts cycles-per-instruction

Access rate reduces: Slower memory is sufficient

Cache size impacts cycles-per-instruction

Speed	1ns	10ns	100ns	10ms	10sec
Size	В	KB	MB	GB	ТВ
	`		فر		

For a 5GHz processor, scale the numbers by 5x

Technology choices for memory hierarchy

eDRAM L3 cache

Power7 processor

Move L2,L3 Cache inside of the data hungry processor

Higher hit rate [] Reduced FCP

Embedded DRAM Advantages

Memory Advantage

- 2x Cache can provide > 10% Performance
- ~3x Density Advantage over eSRAM
- 1/5x Standby Power Compared to SRAM
- Soft Error Rate 1000x lower than SRAM
- Performance ? DRAM can have lower latency
- IO Power reduction

Deep Trench Capacitor

- Low Leakage Decoupling
- 25x more Cap / μm² compared to planar
- Noise Reduction = Performance Improvement
- Isolated Plate enables High Density Charge Pump

IBM Power7tm

Slide 28

Cache performance – SRAM vs. DRAM

Chart: Matick & Schuster, op. cit.

Memory Block Size Built With 1Mb Macros

Slide 30

לכווץ לאוט

Question 3

Comparing SRAM and eDRAM which of the following is true?

-) eDRAM can be faster than SRAM for small size memories
-) SRAM is more succeptable to SEUs
-) SRAM process of manufacturing is more complicated
- Stand by power in SRAM is lower

Topics

- Introduction to memory
- DRAM basics and bitcell array
- eDRAM operational details (case study)
- Noise concerns
- □ Wordline driver (WLDRV) and level translators (LT)
- □ Challenges in eDRAM
- Understanding Timing diagram An example

Fundamental DRAM Operation

Memory Arrays are composed of Row and Columns

Most DRAMs use 1 Transistor as a switch and 1 Cap as a storage element (Dennard 1967)

Single Cell Accessed by Decoding One Row / One Column (Matrix)

Row (Word-Line) connects storage Caps to Columns (Bit-Line)

Storage Cap Transfers Charge to Bit-Line, Altering Bit-Line Voltage

1T1C DRAM Cell Terminals

Voltage Levels?

IBM J RES & DEV 2005

Slide 34

1T1C DRAM Cell Terminals

VWL: GND or Negative for improved leakage

VPP: 1.5V up to 3.5V depending on Technology

VBB: Typically Negative to improve Leakage Not practical on SOI

IBM J RES & DEV 2005

DRAM cell Cross section

- Store their contents as charge on a capacitor rather than in a feedback loop.
- 1T dynamic RAM cell has a transistor and a capacitor

Strap Wordline Meavily doped p-substrate

CMOS VLSI design - PEARSON

$\mathsf{C}_{\mathsf{cell}}$ a) bit buried strap WL=Vpp resistance BL=Vdd Vs. →Ion collar resistance distributed RC
Storing data '1' in the cell

Vgs for pass transistor reduces as bitcell voltage rises, increasing Ron

Why there is a reduction in cell voltage after WL closes? Experiment

MIM Cap v/s Trench

MIM eDRAM Process

- Stack capacitor requires more complex process
- M1 height above gate is increased with stacked capacitor
 - M1 parasitics significantly change when wafer is processed w/o eE
 - Drives unique timings for circuit blocks processed w/ and w/o eDR
 - Logic Equivalency is compromised Trench is Better Choice

Classical DRAM Organization

DRAM Subarray

FIGURE 12.43 DRAM subarray

CMOS VLSI design -PEARSON

Trench cell layout and cross-section

Silicon Image

Question 4

In a certain eDRAM process VDD=800mV and the pass transistor has a nominal VTH of 200mV with the worst case VTH variation 50mV. VPP should be

References so far

Barth, J. et al., "A 300MHz Multi-Banked eDRAM Macro Featuring GND Sense, Bit-line Twisting and Direct Reference Cell Write," ISSCC Dig. Tech. Papers, pp. 156-157, Feb. 2002.

Barth, J. et. al., "A 500MHz Multi-Banked Compilable DRAM Macro with Direct Write and Programmable Pipeline," ISSCC Dig. Tech. Papers, pp. 204-205, Feb. 2004.

Barth, J. et al., "A 500MHz Random Cycle 1.5ns-Latency, SOI Embedded DRAM Macro Featuring a 3T Micro Sense Amplifier," ISSCC Dig. Tech. Papers, pp. 486-487, Feb. 2007.

Barth, J. et al., "A 45nm SOI Embedded DRAM Macro for POWER7TM 32MB On-Chip L3 Cache," ISSCC Dig. Tech. Papers, pp. 342-3, Feb. 2010.

Butt,N., et al., "A 0.039um2 High Performance eDRAM Cell based on 32nm High-K/Metal SOI Technology," IEDM pp. 27.5.1-2, Dec 2010.

Bright, A. et al., "Creating the BlueGene/L Supercomputer from Low-Power SoC ASICs," ISSCC Dig. Tech. Papers, pp. 188-189, Feb. 2005.

DRAM Read, Write and Refresh

- Write:
 - -1. Drive bit line
 - -2. Select row
- Read:
 - -1. Precharge bit line
 - -2. Select row
 - -3. Cell and bit line share charges
 - Signal developed on bitline
 - -4. Sense the data
 - -5. Write back: restore the value
- Refresh

-1. Just do a dummy read to every cell & auto write-back

Cell transfer ratio

Bits per Bit-Line v/s Transfer Ratio

Slide 47

Segmentation

Array Segmentation Refers to WL / BL Count per Sub-Array

Longer Word-Line (More Bit-Lines per Word-Line)

Slower but more area efficient - Less Decoders and drivers

Longer Bit-Line (more Word-Lines per Bit-Line)

Less Signal (Higher Bit-Line Capacitance = Lower Transfer Ratio) More Power (Bit-Line CV is Significant Component of DRAM Power) Slower Performance (Higher Bit-Line Capacitance = Slower Sense Amp) More Area Efficient (Fewer Sense Amps)

Number of WLs Activated determines Refresh Interval and Power

All Cells on Active Word-Line are Refreshed All Word-Lines must be Refreshed before Cell Retention Expires 64ms Cell Retention / 8K Word Lines = 7.8us between refresh cycles Activating 2 Word-Lines at a time = 15.6us, 2x Bit-Line CV Power

Choice of SA

Depending on signal developed SA architecture is chosen

Direct sensing

Requires large signal development An inverter can be used for sensing Micro sense amp (uSA) is another option

Differential sense amp

Can sense low signal developed

This is choice between area, speed/performance

Question 5

The diffusion capacitance of the pass transistor is 100aF. If metal capacitance is negligible, in order to achieve a transfer ratio of at least 0.7 with 33 cells connected to a BL, the cell capacitance should be

At least 7.7fF
At least 7.7 pF
At most 7.7 fF

At most 7.7 pF

Topics

- Introduction to memory
- DRAM basics and bitcell array
- eDRAM operational details (case study)
- Noise concerns
- □ Wordline driver (WLDRV) and level translators (LT)
- □ Challenges in eDRAM
- Understanding Timing diagram An example

DRAM Operation Details (Case Study)

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 1, JANUARY 2008

A 500 MHz Random Cycle, 1.5 ns Latency, SOI Embedded DRAM Macro Featuring a Three-Transistor Micro Sense Amplifier (John Barth/IBM)

JSSC11

levels

3T uSA operation

Pre-charge

WL is low. WBL and RBL both pre-charged to HIGH. Next GSA drives WBL low. <u>LBL floats to GND level</u>

Read "0"

LBL remains LOW. RBL is HIGH. Sensed as a "0"

Read "1"

LBL is HIGH. Turns on RH, pulls RBL LOW. + feedback as pFET FB turns ON. Sensed as a "1"

Write "1"

GSA pulls RBL to GND. FB pFET turns ON Happens while WL rises (direct write)

Write "0"

WBL is HIGH, PCW0 ON. Clamps LBL to GND As WL activates.

Micro Sense Amp Simulations

(b)

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 1, JANUARY 2008

A 500 MHz Random Cycle, 1.5 ns Latency, SOI Embedded DRAM Macro Featuring a Three-Transistor Micro Sense Amplifier

JSSC08

Layout Floor plan of Array+SA

GSA Should fit into the bitcell width or n*bitcell width

Thus, distributed GSA on two sides of bitcell array

Question 6

Q6. In a 3T micro sense amp, sensing a one is controlled is directly controlled by the trip point of

) NFET RH

Pre-charge NFET (PC)

Pull up PFET (FB)

Pass transistor of the cell being read

Question 1 (Feb 2 2017)

Q7. The problem with the 3T micro sense family is that

) It is slow to sense a ZERO

) It cannot accommodate more than 33 cells per LBL

it consumes too much dynamic and leakage power

) It is too slow to sense a ONE

LAYOUT of array

Micro Sense Local Bit-line Cross Section

Single Ended Sense – Twist not effective Line to Line Coupling must be managed

Question 2 (Feb 2 2017)

Q2. In a 3T micro sense amp, in stand by mode, the following leakage current is a serious concern

) Through PCW0

Through RH

Through FB

Stand by leakage is not a concern

Micro Sense Coupling Mechanisms

- Write '1' Couples WBL below Ground Increasing RH leakage during Refresh '0'
- Write '0' Couples RBL above VDD Delaying Feedback during Refresh '1'
- 3. Read '1' Couples Half-Selected LBL Below GND Increasing Array Device Sub-VT Leakage

Micro Sense Evolution

Micro Sense Architecture (µSA)

Data Sense Amp (DSA)

JSSC11

Micro Sense Advantage

Array utilization

Access Shmoo

1.5ns Access @1V 85C

4ns Access @600mV

Redundancy

Page 111

Extra Page R05

	INDEX TO BOOK ONE	
	PAGEN	ERPT. No. AND DATE
eFuse based repair table	109	30 APRIL 1999- EAP. 30
	110	1- MAN 1999 GOP 30 CONTO
(see page R05)	111	1-WHY 1999 EXP31
	112	1- may 1999 ELP 31 LANTO,
		and the second

Topics

- Introduction to memory
- DRAM basics and bitcell array
- eDRAM operational details (case study)
- Noise concerns
- □ Wordline driver (WLDRV) and level translators (LT)
- □ Challenges in eDRAM
- Understanding Timing diagram An example
Noise

oupling and Local Process Variation effectively degrades signal

xternal Noise (Wire or Sx) Reduced to Common Mode by Folding

Line to Line Coupling Limited by Bit-Line Twisting

V_ta**h**dMis-Match Limited by Longer Channel Length

verlay Mis-Alignment Limited by Identical Orientation

pacitive Mis-Match Limited by careful Physical Design (Symmetry)

Interleaved Sense Amp w/ Bit-Line Twist

CMOS VLSI design -PEARSON

Folded Bitline Layout

FIGURE 12.46 Layout of folded bitline subarray

CMOS VLSI design -PEARSON

Topics

- Introduction to memory
- DRAM basics and bitcell array
- eDRAM operational details (case study)
- Noise concerns
- □ Wordline driver (WLDRV) and level translators (LT)
- □ Challenges in eDRAM
- □ Understanding Timing diagram An example

Retention

Transfer Device and Storage Cap are NOT ideal devices: they LEAK Leakage Mechanisms include: loff, Junction Leakage, GIDL,... Junction Leakage Temperature Dependence = 2x/10C

Cell Charge needs to be replenished (Refreshed), Median Retention Time:

 $T = \underline{C\Delta V} = \underline{35fF \times 400mV} = 7 \text{ seconds} \quad \text{Where } \Delta V \text{ is acceptable loss} \\ |_{eak} \quad 2fA \quad C \text{ is Cell Capacitance} \\ |_{leak} \text{ is Total Leakage}$

Retention Distribution has Tails created by Defects and Leaky Cells

Weak Cells Tested out (5x Guardband) and replaced with Redundancy

Customer issues periodic Refresh Cycle

Pass transistor leakage

Floating Body Effects

Body potential modulated by coupling and leakage During write back, body voltage increases \Rightarrow Threshold voltage decreases \Rightarrow Better WRITE 1

Degraded J_{ff} / Retention if body floats high (body leakage)

- \Rightarrow GND pre-charge keeps body low
- \Rightarrow Eliminate long periods with BL high (limit page mode)

eDRAM vs. SRAM Cycle-Time Comparison

NET: SRAM Random Cycle will continue to lead!

Topics

- Introduction to memory
- DRAM basics and bitcell array
- eDRAM operational details (case study)
- Noise concerns
- Gated Feedback Sense Amplifier
- □ Challenges in eDRAM
- Understanding Timing diagram An example

Gated Feedback Sense Amp

Question 3 (Feb 2 2017)

Q3. The logic one voltage level of BLMUX in a Gated Feedback Sense Amp (GSA) should be

VDD
VPP
At least VDD + VT

At most VPP - VT

Question 4 (Feb 2 2017)

Q4. SETPn and SETP are respectively used in a GSA to

Prevent early feedback and reduce leakage

Reduce leakage and prevent early feedback

Reduce leakage

Prevent early feedback

Question 5 (Feb 2 2017)

Q5. With regard to multiplexing BLs and sharing GSAs which of the following is true?

) Like in SRAM LBLs can be column multiplexed and shared with a GSA if the GSA is large enough

) Column multiplexing LBLs with the GSA saves area but is a minor advantage

Depends on the layout symmetry

Each LBL should necessarily be connected to a GSA

Question 6 (Feb 2 2017)

Q6. In a particular lot, the NFET is much slower and the PFET is much faster than expected. This will cause

Read 0 to be slower

Read 1 to be slower

) Read 0 to be faster

Read 1 to be faster

Topics

- Introduction to memory
- DRAM basics and bitcell array
- eDRAM operational details (case study)
- Noise concerns
- Wordline driver (WLDRV) and level translators (LT)
- □ Challenges in eDRAM
- Understanding Timing diagram An example

WLDRV

Driver with Low voltage transistors [] Logic transistors

No thick gate oxide transistors required!!

1.

Voltage across any two terminals should not exceed reliability limits

LEVEL Shifter

. US patent No: 8,120,968 🛛 William Robert Reohr, John E Barth

. A Low Voltage to High Voltage Level Shifter Circuit for MEMS Application [] Dong Pan

Orthogonal WLD and pyramid wiring (M3/M4)

Question 7 (Feb 2 2017)

Q7. Applying a voltage swing of VPP to VWL (~2 V) across a standard NFET is not advisable because

) It can break the device

) Causes the VT of the device to reduce over time

Causes the VT of the device to increase over time

It's maybe a reliability concern depending on where it is placed in the layout

Topics

- Introduction to memory
- DRAM basics and bitcell array
- eDRAM operational details (case study)
- Noise concerns
- □ Wordline driver (WLDRV) and level translators (LT)
- □ Challenges in eDRAM
- Understanding Timing diagram An example

Logic Diagram of a Typical DRAM

- Control Signals (RAS_L, CAS_L, WE_L, OE_L) are all active low
- Din and Dout are combined (D):
 - WE_L is asserted (Low), OE_L is disasserted (High)
 - D serves as the data input pin
 - WE_L is disasserted (High), OE_L is asserted (Low)
 - D is the data output pin
- Row and column addresses share the same pins (A)
 - RAS_L goes low: Pins A are latched in as row address
 - CAS_L goes low: Pins A are latched in as column address
 - RAS/CAS edge-sensitive

DRAM logical organization (4 Mbit)

° Square root of bits per RAS/CAS

Din Dout can be clubbed together with a BiDi buffer

rly Read Cycle: OE_L asserted before Cl4ateLRead Cycle: OE_L asserted after CAS

DRAM Write Timing

Conclusion

- Pulling more DRAM cache (L2,L3) inside the processor improves overall performance
- eDRAM design using logic process is a challenge
- Case study is done, covering many of the eDRAM design aspects

References

- Matick, R. et al., "Logic-based eDRAM: Origins and Rationale for Use," IBM J. Research Dev., vol. 49, no. 1, pp. 145-165, Jan. 2005.
- Barth, J. et al., "A 500MHz Random Cycle 1.5ns-Latency, SOI Embedded DRAM Macro Featuring a 3T Micro Sense Amplifier," ISSCC Dig. Tech. Papers, pp. 486-487, Feb. 2007.
- Barth, J. et al., "A 500 MHz Random Cycle, 1.5 ns Latency, SOI Embedded DRAM Macro Featuring a Three-Transistor Micro Sense Amplifier," IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 1, JANUARY 2008.
- Barth, J. et al., "A 45nm SOI Embedded DRAM Macro for POWER7TM 32MB On-Chip L3 Cache," ISSCC Dig. Tech. Papers, pp. 342-3, Feb. 2010.
- Barth, J. et al., "A 45 nm SOI Embedded DRAM Macro for the POWER™ Processor 32 MByte On-Chip L3 Cache," IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 46, NO. 1, JANUARY 2011.
- S. Iyer et al., "Embedded DRAM: Technology Platform for BlueGene/L Chip," IBM J. Res. & Dev., Vol. 49, No. 2/3, MARCH/MAY 2005, pp.333-50.
- Barth, J. et al., "A 300MHz Multi-Banked eDRAM Macro Featuring GND Sense, Bit-line Twisting and Direct Reference Cell Write," ISSCC Dig. Tech. Papers, pp. 156-157, Feb. 2002.
- Barth, J. et. al., "A 500-MHz Multi-Banked Compilable DRAM Macro With Direct Write and Programmable Pipelining," IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 1, JANUARY 2005.
- Butt,N., et al., "A 0.039um2 High Performance eDRAM Cell based on 32nm High-K/Metal SOI Technology," IEDM pp. 27.5.1-2, Dec 2010.
- Bright, A. et al., "Creating the BlueGene/L Supercomputer from Low-Power SoC ASICs," ISSCC Dig. Tech. Papers, pp. 188-189, Feb. 2005.
- Blagojevic, M. et al., "SOI Capacitor-Less 1-Transistor DRAM Sensing Scheme with Automatic Reference Generation," Symposium on VLSI Circuits Dig. Tech. Papers, pp. 182-183, Jun. 2004.

References

- Karp, J. et al., "A 4096-bit Dynamic MOS RAM" ISSCC Dig. Tech. Papers, pp. 10-11, Feb. 1972.
- Kirihata, T. et al., "An 800-MHz Embedded DRAM with a Concurrent Refresh Mode," IEEE Journal of Solid State Circuits, pp. 1377-1387, Vol. 40, Jun. 2003.
- Luk, W. et al., "2T1D Memory Cell with Voltage Gain," Symposium on VLSI Circuits Dig. Tech. Papers, pp. 184-187, Jun. 2004.
- Luk, W. et al., "A 3-Transistor DRAM Cell with Gated Diode for Enhanced Speed and Retention Time," Symposium on VLSI Circuits Dig. Tech. Papers, pp. 228-229, Jun. 2006.

NEC eDRAM Cell Structure (MIM Capacitor): http://www.necel.com/process/en/edramstructure.html

- Ohsawa, T. et al., "Memory Design using One-Transistor Gain Cell on SOI," ISSCC Dig. Tech. Papers, pp. 152-153, Feb. 2002.
- Pilo, H. et al., "A 5.6ns Random Cycle 144Mb DRAM with 1.4Gb/s/pin and DDR3-SRAM Interface," ISSCC Dig. Tech. Papers, pp. 308-309, Feb. 2003.
- Taito, Y. et al., "A High Density Memory for SoC with a 143MHz SRAM Interface Using Sense-Synchronized-Read/Write," ISSCC Dig. Tech. Papers, pp. 306-307, Feb. 2003.
- Wang, G. et al., A 0.127 $\mu m2$ High Performance 65nm SOI Based embedded DRAM for on-Processor Applications," International Electron Devices Meeting, Dec. 2006.

Gregory Fredeman, et. al. A 14 nm 1.1 Mb Embedded DRAM Macro With 1 ns Access. J. Solid-State Circuits 51(1): 230-239 (2016)