Advanced Topics in VLSI

EE6361

Jan 2017
Course Objectives

- Introduce students to some relevant advanced topics of current interest in academia and industry
- Make students aware of some advanced techniques
- Make students aware of work happening in India
Current Topics

- Embedded Memory Design
 - DRAMs + Yield Estimation (Janakriaman, IITM)
 - SRAMs (Rahul Rao, IBM India)
- TCAMs (Self Study)
- Electronic Design Automation for Circuits (Sridhar Rangarajan, IBM India)
Learning Objectives for EDRAM

- Explain the working of a (e)DRAM. What is Embedded mean?
- Explain the working of a feedback sense amplifier and modify existing designs to improve performance
- Calculate the voltage levels of operation of various components for an eDRAM
- Introduce stacked protect devices to reduce voltage stress of the WL driver
- Calculate the number of samples required to estimate yield to specified accuracy and confidence
- Explain the use of importance sampling to reduce the number of samples required in step 6
Learning Objectives for SRAM

- Articulate memory hierarchy and the value proposition of SRAMs in the memory chain + utilization in current processors
- Explain SRAM building blocks and peripheral operations and memory architecture (with physical arrangement)
- Articulate commonly used SRAM cells (6T vs 8T), their advantages and disadvantages
- Explain the operation of a non-conventional SRAM cells, and their limitations
- Explain commonly used assist methods
- Explain how variations impact memory cells
Learning Objectives for EDA

- Describe the role of CAD tools in VLSI Physical Design process.
- Explain various design phases and physical design flow
- Articulate the commonly used algorithms in physical design tools
- Detailed understanding of placement and routing techniques.
- Describe the role of physical synthesis in design closure
- Incremental synthesis and optimization and its role in physical design closure

If time permits

- Articulate as how static timing analysis works
- Articulate leakage and dynamic power modelling
Grading

- Assignments – 20%
- Self Study Seminar – 20%
- Quiz – 20%
- End Semester – 40%
Refresher
Refresher

- Inverter trip point and noise margins
- Short Channel Effect
 - Sub-threshold leakage
 - DIBL
 - GIDL
- Stacking Effect
- Pass transistors
- 6T SRAM basics
Review of SRAM

- Basic 6T SRAM cell
- Read and Write operation
 - Sizing of devices
- Sense Amps
6T SRAM

BLT

WL

BLC
6T SRAM Array

Slide 12

Introduction of eDRAM
SRAMs cannot be pre-charged to ground because

- The pull up PFET will malfunction
- The pass transistor is an NFET and hence will not allow a successful read ONE
- The pass transistor is an NFET and hence read ONE will be slow
- Who said you can’t precharge to ground?
6T SRAM Array

... In an SRAM, PD = Pull down NFET, PU = Pull up PFET and PT = Pass transistor

- PD > PT > PU
- PD > PU > PT
- PU > PT > PD
- Size doesn't matter!
Embedded DRAM

Janakiraman V
Assistant Professor
Electrical Department
IIT Madras
Topics

- Introduction to memory
- DRAM basics and bitcell array
- eDRAM operational details (case study)
- Noise concerns
- Wordline driver (WLDRV) and level translators (LT)
- Challenges in eDRAM
- Understanding Timing diagram – An example
- References
Acknowledgement

- Raviprasad Kuloor (Course slides were prepared by him)
- John Barth, IBM SRDC for most of the slides content
- Madabusi Govindarajan
- Subramanian S. Iyer
- Many Others
Topics

- Introduction to memory
- DRAM basics and bitcell array
- eDRAM operational details (case study)
- Noise concerns
- Wordline driver (WLDRV) and level translators (LT)
- Challenges in eDRAM
- Understanding Timing diagram – An example
Memory Classification revisited

Memory Arrays

Random Access Memory
- Volatile Memory (RAM)
 - Static RAM (SRAM)
 - Dynamic RAM (DRAM)

- Nonvolatile Memory (ROM)
 - Mask ROM
 - Programmable ROM (PROM)
 - Erasable Programmable ROM (EPROM)

Serial Access Memory
- Serial In Parallel Out (SIPO)
- Parallel In Serial Out (PISO)

- Shift Registers
- Queues
 - First In First Out (FIFO)
 - Last In First Out (LIFO)

Content Addressable Memory (CAM)
- Electrically Erasable Programmable ROM (EEPROM)
- Flash ROM
Motivation for a memory hierarchy – infinite memory

Cycles per Instruction (CPI) = Number of processor clock cycles required per instruction

CPI[∞ cache]
Finite memory speed

CPI = CPI[∞ cache] + FCP

Finite cache penalty
Locality of reference – spatial and temporal

Temporal
If you access something now you’ll need it again soon e.g. *Loops*

Spatial
If you accessed something you’ll also need its neighbor e.g. *Arrays*

Exploit this to divide memory into hierarchy
Cache size impacts cycles-per-instruction

Logic-based eDRAM: Origins and rationale for use

R. E. Matick
S. E Schuster

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

CPU

L1 cache
mr$_1$

L2 cache

Misses

L2 hits / I × T$_2$ cycles per hit

Hits

No. of L2 hits per instruction
mr$_1$ − mr$_2$

Finite cache penalty

DELAY / I for L2 hits + Delay / I for L3 hits + Delay / I for L4 hits ...

FCP

(mr$_1$ − mr$_2$) T$_2$ + (mr$_2$ − mr$_3$) T$_3$ + (mr$_3$ − mr$_4$) T$_4$ + ...

Cycles per instruction = Hits per instruction × cycles per hit

L3 cache

Misses

L3 hits / I × T$_3$ cycles per hit

Hits

No. of L3 hits per instruction
mr$_2$ − mr$_3$

L4 cache

Hits

L4 hits / I × T$_4$ cycles per hit

No. of L4 hits per instruction
mr$_3$ − mr$_4$

Access rate reduces: Slower memory is sufficient
Cache size impacts cycles-per-instruction

For a 5GHz processor, scale the numbers by 5x
Technology choices for memory hierarchy

Chart: J. Barth

Cost

Performance

- NOR FLASH: \(\sim 9F^2 \)
- NAND FLASH: \(\sim 4.5F^2 \)
- DRAM: 6-8\(F^2 \)
- SRAM
- Hard Disk
- Tbits/in\(^2\)
- Hard Disk

Hard Disk

Chart: J. Barth
eDRAM L3 cache

Move L2, L3 Cache inside of the data hungry processor
Higher hit rate → Reduced FCP
Embedded DRAM Advantages

Memory Advantage
- 2x Cache can provide > 10% Performance
- ~3x Density Advantage over eSRAM
- 1/5x Standby Power Compared to SRAM
- Soft Error Rate 1000x lower than SRAM
- Performance ? DRAM can have lower latency !
- IO Power reduction

Deep Trench Capacitor
- Low Leakage Decoupling
- 25x more Cap / µm² compared to planar
- Noise Reduction = Performance Improvement
- Isolated Plate enables High Density Charge Pump
Cache performance – SRAM vs. DRAM

Chart: Matick & Schuster, op. cit.
Embedded DRAM Performance

45nm eDRAM vs. SRAM Latency

- eDRAM Total Latency
- SRAM Total Latency
- eDRAM Wire/Repeater Delay
- SRAM Wire/Repeater Delay

Memory Block Size Built With 1Mb Macros

Barth ISSCC 2011
Comparing SRAM and eDRAM which of the following is true?

- eDRAM can be faster than SRAM for small size memories
- SRAM is more susceptible to SEUs
- SRAM process of manufacturing is more complicated
- Stand by power in SRAM is lower
Topics

- Introduction to memory
- DRAM basics and bitcell array
- eDRAM operational details (case study)
- Noise concerns
- Wordline driver (WLDRV) and level translators (LT)
- Challenges in eDRAM
- Understanding Timing diagram – An example
Memory Arrays are composed of Row and Columns

Most DRAMs use 1 Transistor as a switch and 1 Cap as a storage element (Dennard 1967)

Single Cell Accessed by Decoding One Row / One Column (Matrix)

Row (Word-Line) connects storage Caps to Columns (Bit-Line)

Storage Cap Transfers Charge to Bit-Line, Altering Bit-Line Voltage
1T1C DRAM Cell Terminals

Voltage Levels?
1T1C DRAM Cell Terminals

Word-Line (VWL to VPP Swing)

Bit-Line (0 to VDD)

Cap (0 to VDD)

Back Bias (VBB - Bulk Only)

VWL: GND or Negative for improved leakage

VPP: 1.5V up to 3.5V depending on Technology

VBB: Typically Negative to improve Leakage

Not practical on SOI

IBM J RES & DEV 2005
DRAM cell Cross section

- Store their contents as charge on a capacitor rather than in a feedback loop.
- 1T dynamic RAM cell has a transistor and a capacitor.

CMOS VLSI design - PEARSON
Storing data ‘1’ in the cell

Vgs for pass transistor reduces as bitcell voltage rises, increasing Ron

Why there is a reduction in cell voltage after WL closes?
Experiment
MIM Cap v/s Trench

- Stack capacitor requires more complex process
- M1 height above gate is increased with stacked capacitor
 - M1 parasitics significantly change when wafer is processed w/o eDRAM
 - Drives unique timings for circuit blocks processed w/ and w/o eDRAM
- Logic Equivalency is compromised – **Trench is Better Choice**
Classical DRAM Organization

- RAM Cell Array
 - Each intersection represents a 1-T DRAM Cell
- Column Selector & I/O Circuits
 - word (row) select
 - bit (data) lines
- Row Decoder
 - row address
- Column Address
 - data

CMOS VLSI design - PEARSON
FIGURE 12.43 DRAM subarray
Trench cell layout and cross-section
In a certain eDRAM process VDD=800mV and the pass transistor has a nominal VTH of 200mV with the worst case VTH variation 50mV. VPP should be

- [] At least 800mV
- [] At least 1050 mV
- [] At most 550 mV
- [] At most 1050 mV
References so far

DRAM Read, Write and Refresh

- **Write:**
 1. Drive bit line
 2. Select row

- **Read:**
 1. Precharge bit line
 2. Select row
 3. Cell and bit line share charges
 - Signal developed on bitline
 4. Sense the data
 5. Write back: restore the value

- **Refresh**
 1. Just do a dummy read to every cell & auto write-back
Cell transfer ratio

Uncharged

Charged

C_{BL}

C_{CELL}

$V_{INITIAL}$

V_{FINAL}
Cell Charge Transfer

\[
\Delta V = (V_{bl} - V_{cell}) \left[\frac{C_{cell}}{C_{bl} + C_{cell}} \right]
\]

Transfer ratio
Bits per Bit-Line v/s Transfer Ratio

TR = Transfer Ratio = \(\frac{C_{cell}}{C_{cell}+C_{bl}} \)

1. 2x Faster Charge Transfer (90%)
 \(t = 2.3 \cdot R_{dev} \cdot (C_{bl} \cdot C_{cell}) / (C_{bl} + C_{cell}) \)

2. 2.3x More Signal

3. 10% More Write Back
Array Segmentation Refers to WL / BL Count per Sub-Array

Longer Word-Line (More Bit-Lines per Word-Line)
- Slower but more area efficient – Less Decoders and drivers

Longer Bit-Line (more Word-Lines per Bit-Line)
- Less Signal (Higher Bit-Line Capacitance = Lower Transfer Ratio)
- More Power (Bit-Line CV is Significant Component of DRAM Power)
- Slower Performance (Higher Bit-Line Capacitance = Slower Sense Amp)
- More Area Efficient (Fewer Sense Amps)

Number of WLs Activated determines Refresh Interval and Power
- All Cells on Active Word-Line are Refreshed
- All Word-Lines must be Refreshed before Cell Retention Expires
- 64ms Cell Retention / 8K Word Lines = 7.8us between refresh cycles
- Activating 2 Word-Lines at a time = 15.6us, 2x Bit-Line CV Power
Depending on signal developed SA architecture is chosen

Direct sensing
- Requires large signal development
- An inverter can be used for sensing
- Micro sense amp (uSA) is another option

Differential sense amp
- Can sense low signal developed

This is choice between area, speed/performance
The diffusion capacitance of the pass transistor is 100 aF. If metal capacitance is negligible, in order to achieve a transfer ratio of at least 0.7 with 33 cells connected to a BL, the cell capacitance should be

- [] At least 7.7 fF
- [] At least 7.7 pF
- [] At most 7.7 fF
- [] At most 7.7 pF
Topics

- Introduction to memory
- DRAM basics and bitcell array
- eDRAM operational details (case study)
- Noise concerns
- Wordline driver (WLDRV) and level translators (LT)
- Challenges in eDRAM
- Understanding Timing diagram – An example
DRAM Operation Details (Case Study)

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 1, JANUARY 2008

A 500 MHz Random Cycle, 1.5 ns Latency, SOI Embedded DRAM Macro Featuring a Three-Transistor Micro Sense Amplifier (John Barth/IBM)
Micro Sense Architecture

- Hierarchical Direct Sense
- Short Local Bit-Line (LBL)
 - 33 Cells per LBL
- 8 Micro Sense Amps (µSA) per Global Sense Amp (GSA)
- Write Bit-Line (WBL)
 Uni-Directional
- Read Bit-Line (RBL)
 Bi-Directional
Micro Sense Hierarchy – Three levels

- GSA
- µSA

Data Sense Amp (DSA)

- Local Data (M2)
- Global Data (M4)

Global Bit (M2)

JSSC11
3T uSA operation

Pre-charge
WL is low. WBL and RBL both pre-charged to HIGH. Next GSA drives WBL low. **LBL floats to GND level**

Read “0”
LBL remains LOW. RBL is HIGH. Sensed as a “0”

Read “1”
LBL is HIGH. Turns on RH, pulls RBL LOW. + feedback as pFET FB turns ON. Sensed as a “1”

Write “1”
GSA pulls RBL to GND. FB pFET turns ON
Happens while WL rises (direct write)

Write “0”
WBL is HIGH, PCW0 ON. Clamps LBL to GND
As WL activates.
Micro Sense Amp Simulations

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 1, JANUARY 2008

A 500 MHz Random Cycle, 1.5 ns Latency, SOI Embedded DRAM Macro Featuring a Three-Transistor Micro Sense Amplifier
Layout Floor plan of Array+SA

GSA Should fit into the bitcell width or n*bitcell width
Thus, distributed GSA on two sides of bitcell array
Column Interleave

- 1 of 8 Column Select Lines (CSL)
- Fire Early for Write
- Fire Late to Support Concurrent Cache Directory Lookup
Q6. In a 3T micro sense amp, sensing a one is controlled is directly controlled by the trip point of

- NFET RH
- Pre-charge NFET (PC)
- Pull up PFET (FB)
- Pass transistor of the cell being read
Q7. The problem with the 3T micro sense family is that

- It is slow to sense a ZERO
- It cannot accommodate more than 33 cells per LBL
- It consumes too much dynamic and leakage power
- It is too slow to sense a ONE
LAYOUT of array

WL POLY

WL M3

WL POLY

WL M3

RBL0
LBL0
WBL0
RBL1
LBL0
WBL1
Single Ended Sense – Twist not effective
Line to Line Coupling must be managed
Q2. In a 3T micro sense amp, in stand by mode, the following leakage current is a serious concern

- Through PCW0
- Through RH
- Through FB
- Stand by leakage is not a concern
Micro Sense Coupling Mechanisms

1. Write ‘1’ Couples **WBL** below Ground Increasing RH leakage during Refresh ‘0’
2. Write ‘0’ Couples **RBL** above VDD Delaying Feedback during Refresh ‘1’
3. Read ‘1’ Couples Half-Selected LBL Below GND Increasing Array Device Sub-VT Leakage
Micro Sense Evolution

1. Write Zero (W0)
2. Read Head (RH)
3. Feed-Back (FB)
4. PFET Header (PH)
 - LBL Power Gate
 - LBL Leakage
5. Pre-Charge (PC)
 - WBL Power (Write ‘0’ Only)
6. NFET Footer (NF)
 - RBL Leakage
 - Decompose Pre-Charge and Read Enable (MWL_RE)

Power Reduction
Traded for Transistor Count

Increased Transistor Count

Barth, ISSCC’07
Klim, VLSI’07
JSSC11
Micro Sense Architecture (µSA)

3 Transistors

LBL(M1)

Cell(20fF)

Local BL 32 Cells

Global BL 8 µSA

Secondary Sense Amp

Sett

Seqn

Ldlc

Ldlt

Lbll(M1)

WBL(M2)

RBL(M2)

WBL(12fF)

RBL(12fF)

32 Cells

Cell(20fF)

µSA

Global BL 8 µSA

Local BL 32 Cells

Micro Sense

WBL(M2)

RBL(M2)

WBL(12fF)

RBL(12fF)
Data Sense Amp (DSA)

- LDC LDT (Local Data to/from GSA)
- WDT/WDC Driven from Lower Voltage Domain
- P0/P1 Provide Improved Voltage Level Shifting
- RDC (Read Data)

WDC (Write 0)
WDT (Write 1)
ENABLE
Micro Sense Advantage

Fast Performance of Short Bit-Line
Area Overhead of 4x Longer Bit-Line

<table>
<thead>
<tr>
<th>Bits/BL</th>
<th>256</th>
<th>128</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sense Amp</td>
<td>10%</td>
<td>20%</td>
<td>19%</td>
</tr>
<tr>
<td>Reference Cells</td>
<td>2.3%</td>
<td>4%</td>
<td>-</td>
</tr>
<tr>
<td>Twist Region</td>
<td>2%</td>
<td>2.6%</td>
<td>-</td>
</tr>
<tr>
<td>Second Sense Amp</td>
<td>-</td>
<td>-</td>
<td>8%</td>
</tr>
<tr>
<td>Total</td>
<td>14.3%</td>
<td>26.6%</td>
<td>27%</td>
</tr>
</tbody>
</table>

Same Overhead
Array utilization

Utilization = \frac{\text{Cell Area}}{\text{Mbits/mm}^2}

Cell Area

W

L

D

S

A

IO + Predecode + Redundancy
Access Shmoo

1.5ns Access @1V 85C

4ns Access @600mV
Redundancy

Notebook

Page 111

Extra Page R05

eFuse based repair table

(see page R05)
Topics

- Introduction to memory
- DRAM basics and bitcell array
- eDRAM operational details (case study)
- Noise concerns
- Wordline driver (WLDRV) and level translators (LT)
- Challenges in eDRAM
- Understanding Timing diagram – An example
Noise

coupling and Local Process Variation effectively degrades signal

External Noise (Wire or Sx) Reduced to Common Mode by Folding

Line to Line Coupling Limited by Bit-Line Twisting

V_t and Mis-Match Limited by Longer Channel Length

Overlay Mis-Alignment Limited by Identical Orientation

Capacitive Mis-Match Limited by careful Physical Design (Symmetry)
Interleaved Sense Amp w/ Bit-Line Twist

Local Array

1 of 8 Column Decode

Column Decode

Data Bit 0
Data Bit N
Data Bit 127

Write Local Read

CMOS VLSI design - PEARSON
Open and Folded Bitline Schematic
Folded Bitline Layout

FIGURE 12.46 Layout of folded bitline subarray
Topics

- Introduction to memory
- DRAM basics and bitcell array
- eDRAM operational details (case study)
- Noise concerns
- Wordline driver (WLDRV) and level translators (LT)
- Challenges in eDRAM
- Understanding Timing diagram – An example
Retention

Transfer Device and Storage Cap are NOT ideal devices: they LEAK
Leakage Mechanisms include: Ioff, Junction Leakage, GIDL,…
Junction Leakage Temperature Dependence = 2x/10°C

Cell Charge needs to be replenished (Refreshed),
Median Retention Time:

\[T = C \Delta V = 35 \text{fF} \times 400 \text{mV} = 7 \text{ seconds} \]

Where \(\Delta V \) is acceptable loss
C is Cell Capacitance
\(I_{\text{leak}} \) is Total Leakage

Retention Distribution has Tails
created by Defects and Leaky Cells

Weak Cells Tested out (5x Guardband)
and replaced with Redundancy

Customer issues periodic Refresh Cycle
Pass transistor leakage

$V_{DS} = 1V$

I_{ON}

I_{OFF}

$V_{GS} = 0V$

$I_D (\log)$

DIBL

GIDL
Floating Body Effects

Body potential modulated by coupling and leakage

During write back, body voltage increases
⇒ Threshold voltage decreases ⇒ Better WRITE 1

Degraded I_{off} / Retention if body floats high (body leakage)
⇒ GND pre-charge keeps body low
⇒ Eliminate long periods with BL high (limit page mode)

$\text{IL}_{\text{FWD}} > \text{IL}_{\text{REV}}$

When BL = GND
Body ⇒ GND

1Volt

JSSC08
Array Body Charging

Commodity DRAM (long page mode)

Bit-Line

Net Body Charge from Leakage

µs

embedded DRAM (limited page mode)

Bit-Line

Net Body Charge from Leakage

ns

High Cell Leakage Period

JSSC08
eDRAM vs. SRAM Cycle-Time Comparison

1. WL Activation
2. Charge Transfer to Bit-Line
 \(I_{READ}\) Similar to SRAM
3. Amplification
4. Write-Back
5. Precharge

NET: SRAM Random Cycle will continue to lead!
Topics

- Introduction to memory
- DRAM basics and bitcell array
- eDRAM operational details (case study)
- Noise concerns
- Gated Feedback Sense Amplifier
- Challenges in eDRAM
- Understanding Timing diagram – An example
Gated Feedback Sense Amp
Q3. The logic one voltage level of BLMUX in a Gated Feedback Sense Amp (GSA) should be

- [] VDD
- [] VPP
- [] At least VDD + VT
- [] At most VPP - VT
Q4. SETPn and SETP are respectively used in a GSA to

- Prevent early feedback and reduce leakage
- Reduce leakage and prevent early feedback
- Reduce leakage
- Prevent early feedback
Q5. With regard to multiplexing BLs and sharing GSAs which of the following is true?

- Like in SRAM LBLs can be column multiplexed and shared with a GSA if the GSA is large enough
- Column multiplexing LBLs with the GSA saves area but is a minor advantage
- Depends on the layout symmetry
- Each LBL should necessarily be connected to a GSA
Q6. In a particular lot, the NFET is much slower and the PFET is much faster than expected. This will cause

- Read 0 to be slower
- Read 1 to be slower
- Read 0 to be faster
- Read 1 to be faster
Topics

- Introduction to memory
- DRAM basics and bitcell array
- eDRAM operational details (case study)
- Noise concerns
- Wordline driver (WLDRV) and level translators (LT)
- Challenges in eDRAM
- Understanding Timing diagram – An example
WLDRV

Driver with Low voltage transistors → Logic transistors
No thick gate oxide transistors required!!
Voltage across any two terminals should not exceed reliability limits

1. US patent No: 8,120,968 → William Robert Reohr, John E Barth
LEVEL Shifter

VWL Level shifter

VPP Level shifter

1. US patent No: 8,120,968 — William Robert Reohr, John E Barth
2. A Low Voltage to High Voltage Level Shifter Circuit for MEMS Application — Dong Pan
Orthogonal WLD and pyramid wiring (M3/M4)
Q7. Applying a voltage swing of VPP to VWL (~2 V) across a standard NFET is not advisable because

- It can break the device
- Causes the VT of the device to reduce over time
- Causes the VT of the device to increase over time
- It’s maybe a reliability concern depending on where it is placed in the layout
Topics

- Introduction to memory
- DRAM basics and bitcell array
- eDRAM operational details (case study)
- Noise concerns
- Wordline driver (WLDRV) and level translators (LT)
- Challenges in eDRAM
- Understanding Timing diagram – An example
• Control Signals (RAS_L, CAS_L, WE_L, OE_L) are all active low
• Din and Dout are combined (D):
 – WE_L is asserted (Low), OE_L is disasserted (High)
 • D serves as the data input pin
 – WE_L is disasserted (High), OE_L is asserted (Low)
 • D is the data output pin
• Row and column addresses share the same pins (A)
 – RAS_L goes low: Pins A are latched in as row address
 – CAS_L goes low: Pins A are latched in as column address
 – RAS/CAS edge-sensitive
DRAM logical organization (4 Mbit)

- A0…A10
- Address Buffer
- Row Decoder
- Column Decoder
- Sense Amps & I/O
- Memory Array (2,048 x 2,048)
- Word Line
- Storage Cell

° Square root of bits per RAS/CAS

Din Dout can be clubbed together with a BiDi buffer
DRAM Read Timing

- Every DRAM access begins at:
 - The assertion of the RAS_L
 - 2 ways to read:
 early or late v. CAS

- DRAM Read Cycle Time
- RAS_L
- CAS_L
- Row Address
- Col Address
- Junk
- Row Address
- Col Address
- Junk
- WE_L
- OE_L
- High Z
- Data Out
- Read Access Time
- Output Enable Delay

Early Read Cycle: OE_L asserted before CAS_L
Late Read Cycle: OE_L asserted after CAS_L
DRAM Write Timing

- Every DRAM access begins at:
 - The assertion of the RAS_L
 - 2 ways to write: early or late v. CAS

256K x 8 DRAM

RAS_L CAS_L WE_L OE_L

A → 9 8 → D

DRAM WR Cycle Time

Early Wr Cycle: WE_L asserted before CAS_L
Late Wr Cycle: WE_L asserted after CAS_L

• Every DRAM access begins at:
 - The assertion of the RAS_L
 - 2 ways to write: early or late v. CAS
Conclusion

• Pulling more DRAM cache (L2, L3) inside the processor improves overall performance
• eDRAM design using logic process is a challenge
• Case study is done, covering many of the eDRAM design aspects
References

References

