
©
 K

LM
H

Li
en

ig

Netlist and System Partitioning

Presented By:
Sridhar H Rangarajan
IBM STG India Enterprise Systems Development

©
 K

LM
H

Li
en

ig
 2

Netlist and System Partitioning

nIntroduction
nOptimization Goals
nPartitioning Algorithms

¨Kernighan-Lin (KL) Algorithm
¨Extensions of the Kernighan-Lin Algorithm
¨Fiduccia-Mattheyses (FM) Algorithm

nFramework for Multilevel Partitioning
¨Clustering
¨Multilevel Partitioning

©
 K

LM
H

Li
en

ig
 3

Chip partitioning

5 6

4

2

1

3 3

2

4

5 6
1

Graph G2: Nodes 1, 2, 6.

Graph G1: Nodes 3, 4, 5.

Collection of cut edges
Cut set: (1,3), (2,3), (5,6),

Block (Partition)

Cells

©
 K

LM
H

Li
en

ig
 4

Optimization Goals

n Given a graph G(V,E) with |V| nodes and |E| edges
where each node v ⍷ V and each edge e ⍷ E.

n Each node has area s(v) and each edge has cost or
weight w(e).

n The objective is to divide the graph G into k disjoint
subgraphs such that all optimization goals are achieved
and all original edge relations are respected.

©
 K

LM
H

Li
en

ig
 5

Optimization Goals

n In detail, what are the optimization goals?
¨Number of connections between partitions is minimized
¨Each partition meets all design constraints (size, number of
external connections..)
¨Balance every partition as well as possible

n How can we meet these goals?
¨Unfortunately, this problem is NP-hard
¨Efficient heuristics are developed in the 1970s and 1980s.

They are high quality and in low-order polynomial time.

5

©
 K

LM
H

Li
en

ig
 6

Netlist and System Partitioning

nIntroduction
nOptimization Goals
nPartitioning Algorithms

¨Kernighan-Lin (KL) Algorithm
¨Extensions of the Kernighan-Lin Algorithm
¨Fiduccia-Mattheyses (FM) Algorithm

nFramework for Multilevel Partitioning
¨Clustering
¨Multilevel Partitioning

©
 K

LM
H

Li
en

ig
 7

Given: A graph with 2n nodes where each node has the same weight.

Goal: A partition (division) of the graph into two disjoint subsets A and B with
minimum cut cost and |A| = |B| = n.

2

5

6

3

1

4

7

8

Example: n = 4

Block A Block B

Kernighan-Lin (KL) Algorithm

©
 K

LM
H

Li
en

ig
 8

Cost D(v) of moving a node v

D(v) = |Ec(v)| – |Enc(v)| ,

where
Ec(v) is the set of v’s incident edges that are cut by the
cut line, and
Enc(v) is the set of v’s incident edges that are not cut by
the cut line.

High costs (D > 0) indicate that the node
should move, while low costs (D < 0) indicate
that the node should stay within the same
partition.

2

5

6

3

1

4

7

8
Node 3:
D(3) = 3-1=2

Node 7:
D(7) = 2-1=1

Kernighan-Lin (KL) Algorithm – Terminology

©
 K

LM
H

Li
en

ig
 9

Gain of swapping a pair of nodes a und b

Dg = D(a) + D(b) - 2* c(a,b),

where
• D(a), D(b) are the respective costs of nodes a, b
• c(a,b) is the connection weight between a and b:
If an edge exists between a and b,
then c(a,b) = edge weight (here 1),
otherwise, c(a,b) = 0.

The gain Dg indicates how useful the swap between two
nodes will be

The larger Dg, the more the total cut cost will be reduced

2

5

6

3

1

4

7

8

Kernighan-Lin (KL) Algorithm – Terminology

©
 K

LM
H

Li
en

ig
 10

Gain of swapping a pair of nodes a und b

Dg = D(a) + D(b) - 2* c(a,b),

where
• D(a), D(b) are the respective costs of nodes a, b
• c(a,b) is the connection weight between a and b:
If an edge exists between a and b,
then c(a,b) = edge weight (here 1),
otherwise, c(a,b) = 0.

2

5

6

3

1

4

7

8
Node 3:
D(3) = 3-1=2

Node 7:
D(7) = 2-1=1

Dg (3,7) = D(3) + D(7) - 2* c(a,b) = 2 + 1 – 2 = 1

=> Swapping nodes 3 and 7 would reduce the cut size by 1

2

5

6

3

1

4

7

8

Kernighan-Lin (KL) Algorithm – Terminology

©
 K

LM
H

Li
en

ig
 11

Gain of swapping a pair of nodes a und b

Dg = D(a) + D(b) - 2* c(a,b),

where
• D(a), D(b) are the respective costs of nodes a, b
• c(a,b) is the connection weight between a and b:
If an edge exists between a and b,
then c(a,b) = edge weight (here 1),
otherwise, c(a,b) = 0.

2

5

6

3

1

4

7

8
Node 3:
D(3) = 3-1=2

Node 5:
D(5) = 2-1=1

Dg (3,5) = D(3) + D(5) - 2* c(a,b) = 2 + 1 – 0 = 3

=> Swapping nodes 3 and 5 would reduce the cut size by 3

2

5

6

3

1

4

7

8

Kernighan-Lin (KL) Algorithm – Terminology

©
 K

LM
H

Li
en

ig
 12

Gain of swapping a pair of nodes a and b

The goal is to find a pair of nodes a and b to exchange such that Dg is
maximized and swap them.

Kernighan-Lin (KL) Algorithm – Terminology

©
 K

LM
H

Li
en

ig
 13

Maximum positive gain Gm of a pass

The maximum positive gain Gm corresponds to the best prefix of m swaps
within the swap sequence of a given pass.

These m swaps lead to the partition with the minimum cut cost
encountered during the pass.

Gm is computed as the sum of Δg values over the first m swaps of the
pass, with m chosen such that Gm is maximized.

å
=

=
m

i
im gG

1

D

Kernighan-Lin (KL) Algorithm – Terminology

©
 K

LM
H

Li
en

ig
 14

Kernighan-Lin Algorithm
Step 0:
– V = 2n nodes
– {A, B} is an initial arbitrary partitioning
Step 1:
– i = 1
– Compute D(v) for all nodes vÎV
Step 2:
– Choose ai and bi such that Dgi = D(ai) + D(bi) – 2 * c(aibi) is maximized
– Swap and fix ai and bi
Step 3:
– If all nodes are fixed, go to Step 4. Otherwise
– Compute and update D values for all nodes that are not connected to ai and bi and are not fixed.
– i = i + 1
– Go to Step 2
Step 4:
– Find the move sequence 1...m (1 £ m £ i), such that å =

=
m

i im gG
1
Δ is maximized

– If Gm > 0, go to Step 5. Otherwise, END
Step 5:
– Execute m swaps, reset remaining nodes
– Go to Step 1

Kernighan-Lin (KL) Algorithm – One pass

©
 K

LM
H

Li
en

ig
 15

2

5

6

3

1

4

7

8

Cut cost: 9
Not fixed:
1,2,3,4,5,6,7,8

Kernighan-Lin (KL) Algorithm – Example

©
 K

LM
H

Li
en

ig
 16

2

5

6

3

1

4

7

8

Cut cost: 9
Not fixed:
1,2,3,4,5,6,7,8

D(1) = 1 D(5) = 1
D(2) = 1 D(6) = 2
D(3) = 2 D(7) = 1
D(4) = 1 D(8) = 1

Costs D(v) of each node:

Nodes that lead to
maximum gain

Kernighan-Lin (KL) Algorithm – Example

©
 K

LM
H

Li
en

ig
 17

2

5

6

3

1

4

7

8

Cut cost: 9
Not fixed:
1,2,3,4,5,6,7,8

D(1) = 1 D(5) = 1
D(2) = 1 D(6) = 2
D(3) = 2 D(7) = 1
D(4) = 1 D(8) = 1

Dg1 = 2+1-0 = 3
Swap (3,5)
G1 = Dg1 =3

Nodes that lead to
maximum gain

Gain in the current pass

Costs D(v) of each node:

Gain after node swapping

Kernighan-Lin (KL) Algorithm – Example

©
 K

LM
H

Li
en

ig
 18

Cut cost: 9
Not fixed:
1,2,3,4,5,6,7,8

2

5

6

3

1

4

7

8

D(1) = 1 D(5) = 1
D(2) = 1 D(6) = 2
D(3) = 2 D(7) = 1
D(4) = 1 D(8) = 1

Dg1 = 2+1-0 = 3
Swap (3,5)
G1 = Dg1 =3

Nodes that lead to
maximum gain

Gain in the current pass

Gain after node swapping

Kernighan-Lin (KL) Algorithm – Example

2

5

6

3

1

4

7

8

©
 K

LM
H

Li
en

ig
 19

Cut cost: 9
Not fixed:
1,2,3,4,5,6,7,8

Cut cost: 6
Not fixed:
1,2,4,6,7,8

D(1) = 1 D(5) = 1
D(2) = 1 D(6) = 2
D(3) = 2 D(7) = 1
D(4) = 1 D(8) = 1

Dg1 = 2+1-0 = 3
Swap (3,5)
G1 = Dg1 =3

Kernighan-Lin (KL) Algorithm – Example

2

5

6

3

1

4

7

8

2

5

6

3

1

4

7

8

©
 K

LM
H

Li
en

ig
 20

Cut cost: 9
Not fixed:
1,2,3,4,5,6,7,8

Cut cost: 6
Not fixed:
1,2,4,6,7,8

D(1) = 1 D(5) = 1
D(2) = 1 D(6) = 2
D(3) = 2 D(7) = 1
D(4) = 1 D(8) = 1

Dg1 = 2+1-0 = 3
Swap (3,5)
G1 = Dg1 =3

D(1) = -1 D(6) = 2
D(2) = -1 D(7)=-1
D(4) = 3 D(8)=-1

Kernighan-Lin (KL) Algorithm – Example

2

5

6

3

1

4

7

8

2

5

6

3

1

4

7

8

©
 K

LM
H

Li
en

ig
 21

Cut cost: 9
Not fixed:
1,2,3,4,5,6,7,8

Cut cost: 6
Not fixed:
1,2,4,6,7,8

2

5

6

3

1

4

7

8

D(1) = 1 D(5) = 1
D(2) = 1 D(6) = 2
D(3) = 2 D(7) = 1
D(4) = 1 D(8) = 1

Dg1 = 2+1-0 = 3
Swap (3,5)
G1 = Dg1 =3

D(1) = -1 D(6) = 2
D(2) = -1 D(7)=-1
D(4) = 3 D(8)=-1

Dg2 = 3+2-0 = 5
Swap (4,6)
G2 = G1+Dg2 =8

Nodes that lead to
maximum gain

Gain in the current pass

Gain after node swapping

Kernighan-Lin (KL) Algorithm – Example

2

5

6

3

1

4

7

8

2

5

6

3

1

4

7

8

©
 K

LM
H

Li
en

ig
 22

Cut cost: 9
Not fixed:
1,2,3,4,5,6,7,8

Cut cost: 6
Not fixed:
1,2,4,6,7,8

Cut cost: 1
Not fixed:
1,2,7,8

2

5

6

3

1

4

7

8

Cut cost: 7
Not fixed:
2,8

D(1) = 1 D(5) = 1
D(2) = 1 D(6) = 2
D(3) = 2 D(7) = 1
D(4) = 1 D(8) = 1

Dg1 = 2+1-0 = 3
Swap (3,5)
G1 = Dg1 =3

D(1) = -1 D(6) = 2
D(2) = -1 D(7)=-1
D(4) = 3 D(8)=-1

Dg2 = 3+2-0 = 5
Swap (4,6)
G2 = G1+Dg2 =8

D(1) = -3 D(7)=-3
D(2) = -3 D(8)=-3

Dg3 = -3-3-0 = -6
Swap (1,7)
G3= G2 +Dg3 = 2 Gain in the current pass

Nodes that lead to
maximum gain

Gain after node swapping

Kernighan-Lin (KL) Algorithm – Example

2

5

6

3

1

4

7

8

2

5

6

3

1

4

7

8

2

5

6

3

1

4

7

8

©
 K

LM
H

Li
en

ig
 23

Cut cost: 9
Not fixed:
1,2,3,4,5,6,7,8

2

5

6

3

1

4

7

8

Cut cost: 9
Not fixed:
–

Cut cost: 6
Not fixed:
1,2,4,6,7,8

Cut cost: 1
Not fixed:
1,2,7,8

Cut cost: 7
Not fixed:
2,8

D(1) = 1 D(5) = 1
D(2) = 1 D(6) = 2
D(3) = 2 D(7) = 1
D(4) = 1 D(8) = 1

Dg1 = 2+1-0 = 3
Swap (3,5)
G1 = Dg1 =3

D(1) = -1 D(6) = 2
D(2) = -1 D(7)=-1
D(4) = 3 D(8)=-1

Dg2 = 3+2-0 = 5
Swap (4,6)
G2 = G1+Dg2 =8

D(1) = -3 D(7)=-3
D(2) = -3 D(8)=-3

Dg3 = -3-3-0 = -6
Swap (1,7)
G3= G2 +Dg3 = 2

D(2) = -1 D(8)=-1

Dg4 = -1-1-0 = -2
Swap (2,8)
G4 = G3 +Dg4 = 0

Kernighan-Lin (KL) Algorithm – Example

2

5

6

3

1

4

7

8

2

5

6

3

1

4

7

8

2

5

6

3

1

4

7

8

2

5

6

3

1

4

7

8

©
 K

LM
H

Li
en

ig
 24

Maximum positive gain Gm = 8 with m = 2.

D(1) = 1 D(5) = 1
D(2) = 1 D(6) = 2
D(3) = 2 D(7) = 1
D(4) = 1 D(8) = 1

Dg1 = 2+1-0 = 3
Swap (3,5)
G1 = Dg1 =3

D(1) = -1 D(6) = 2
D(2) = -1 D(7)=-1
D(4) = 3 D(8)=-1

Dg2 = 3+2-0 = 5
Swap (4,6)
G2 = G1+Dg2 =8

D(1) = -3 D(7)=-3
D(2) = -3 D(8)=-3

Dg3 = -3-3-0 = -6
Swap (1,7)
G3= G2 +Dg3 = 2

D(2) = -1 D(8)=-1

Dg4 = -1-1-0 = -2
Swap (2,8)
G4 = G3 +Dg4 = 0

Kernighan-Lin (KL) Algorithm – Example

©
 K

LM
H

Li
en

ig
 25

D(1) = 1 D(5) = 1
D(2) = 1 D(6) = 2
D(3) = 2 D(7) = 1
D(4) = 1 D(8) = 1

Dg1 = 2+1-0 = 3
Swap (3,5)
G1 = Dg1 =3

D(1) = -1 D(6) = 2
D(2) = -1 D(7)=-1
D(4) = 3 D(8)=-1

Dg2 = 3+2-0 = 5
Swap (4,6)
G2 = G1+Dg2 =8

D(1) = -3 D(7)=-3
D(2) = -3 D(8)=-3

Dg3 = -3-3-0 = -6
Swap (1,7)
G3= G2 +Dg3 = 2

D(2) = -1 D(8)=-1

Dg4 = -1-1-0 = -2
Swap (2,8)
G4 = G3 +Dg4 = 0

Since Gm > 0, the first m = 2 swaps
(3,5) and (4,6) are executed.

2

5

6

3

1

4

7

8

Kernighan-Lin (KL) Algorithm – Example

Since Gm > 0, more passes are needed until
Gm £ 0.

Maximum positive gain Gm = 8 with m = 2.

©
 K

LM
H

Li
en

ig
 26

Extensions of the Kernighan-Lin (KL) Algorithm
n Unequal partition sizes

¨ Apply the KL algorithm with only min(|A|,|B|) pairs
swapped

n Unequal node weights
¨ Try to rescale weights to integers, e.g., as multiples

of the greatest common divisor of all node weights
¨ Maintain area balance or allow a one-move deviation

from balance

n k-way partitioning (generating k partitions)
¨ Apply the KL two-way partitioning algorithm to all possible

pairs of partitions
¨ Recursive partitioning (convenient when k is a power of

two)
¨ Direct k-way extensions exist 26

©
 K

LM
H

Li
en

ig
 27

Netlist and System Partitioning

nIntroduction
nOptimization Goals
nPartitioning Algorithms

¨Kernighan-Lin (KL) Algorithm
¨Extensions of the Kernighan-Lin Algorithm
¨Fiduccia-Mattheyses (FM) Algorithm

nFramework for Multilevel Partitioning
¨Clustering
¨Multilevel Partitioning

©
 K

LM
H

Li
en

ig
 28

• Single cells are moved independently instead of swapping pairs of cells ---
cannot and do not need to maintain exact partition balance

• The area of each individual cell is taken into account

• Applicable to partitions of unequal size
and in the presence of initially fixed cells

• Cut costs are extended to include hypergraphs

• nets with 2+ pins

• While the KL algorithm aims to minimize cut costs based on edges,
the FM algorithm minimizes cut costs based on nets

• Nodes and subgraphs are referred to as cells and blocks, respectively

Fiduccia-Mattheyses (FM) Algorithm

©
 K

LM
H

Li
en

ig
 29

Given: a hypergraph G(V,H) with nodes and weighted hyperedges
partition size constraints

Goal: to assign all nodes to disjoint partitions,
so as to minimize the total cost (weight) of all cut nets
while satisfying partition size constraints

Fiduccia-Mattheyses (FM) Algorithm

©
 K

LM
H

Li
en

ig
 30

Gain Dg(c) for cell c

Dg(c) = FS(c) – TE(c) ,

where

the “moving force“ FS(c) is the number of nets connected
to c but not connected to any other cells within c’s
partition, i.e., cut nets that connect only to c, and

the “retention force“ TE(c) is the number of uncut nets
connected to c.

The higher the gain Dg(c), the higher is the
priority to move the cell c to the other partition.

Cell 2: FS(2) = 0 TE(2) = 1 Dg(2) = -1

1

3

4

2

5

a
b

c
d

e

Fiduccia-Mattheyses (FM) Algorithm

©
 K

LM
H

Li
en

ig
 31

Gain Dg(c) for cell c

Dg(c) = FS(c) – TE(c) ,

where

the “moving force“ FS(c) is the number of nets connected
to c but not connected to any other cells within c’s
partition, i.e., cut nets that connect only to c, and

the “retention force“ TE(c) is the number of uncut nets
connected to c.

Cell 1: FS(1) = 2 TE(1) = 1 Dg(1) = 1

Cell 2: FS(2) = 0 TE(2) = 1 Dg(2) = -1

Cell 3: FS(3) = 1 TE(3) = 1 Dg(3) = 0

Cell 4: FS(4) = 1 TE(4) = 1 Dg(4) = 0

Cell 5: FS(5) = 1 TE(5) = 0 Dg(5) = 1

1

3

4

2

5

a
b

c
d

e

1

3

4

2

5

a
b

c
d

e

Fiduccia-Mattheyses (FM) Algorithm–Terminology

©
 K

LM
H

Li
en

ig
 32

Maximum positive gain Gm of a pass

The maximum positive gain Gm is the cumulative cell gain of m moves
that produce a minimum cut cost.

Gm is determined by the maximum sum of cell gains Dg over a prefix of
m moves in a pass

å
=

=
m

i
im gG

1

D

Fiduccia-Mattheyses (FM) Algorithm–Terminology

©
 K

LM
H

Li
en

ig
 33

Ratio factor

The ratio factor is the relative balance between the two partitions
with respect to cell area

It is used to prevent all cells from clustering into one partition.

The ratio factor r is defined as

where area(A) and area(B) are the total respective areas of partitions A and B

)()(
)(
BareaAarea

Aarear
+

=

Fiduccia-Mattheyses (FM) Algorithm-Terminology

©
 K

LM
H

Li
en

ig
 34

Balance criterion

The balance criterion enforces the ratio factor.

To ensure feasibility, the maximum cell area areamax(V)
must be taken into account.

A partitioning of V into two partitions A and B is said to be balanced if

[r ∙ area(V) – areamax(V)] ≤ area(A) ≤ [r ∙ area(V) + areamax(V)]

Fiduccia-Mattheyses (FM) Algorithm- Terminology

©
 K

LM
H

Li
en

ig
 35

Base cell

A base cell is a cell c that has the greatest cell gain Dg(c) among all free cells,
and whose move does not violate the balance criterion.

Cell 1: FS(1) = 2 TE(1) = 1 Dg(1) = 1

Cell 2: FS(2) = 0 TE(2) = 1 Dg(2) = -1

Cell 3: FS(3) = 1 TE(3) = 1 Dg(3) = 0

Cell 4: FS(4) = 1 TE(4) = 1 Dg(4) = 0

Base cell

Fiduccia-Mattheyses (FM) Algorithm-Terminology

©
 K

LM
H

Li
en

ig
 36

Fiduccia-Mattheyses Algorithm
Step 0: Compute the balance criterion
Step 1: Compute the cell gain Dg1 of each cell
Step 2: i = 1
– Choose base cell c1 that has maximal gain Dg1 , move this cell
Step 3:
– Fix the base cell ci
– Update all cells’ gains that are connected to critical nets via the base cell ci
Step 4:
– If all cells are fixed, go to Step 5. If not:
– Choose next base cell ci with maximal gain Dgi and move this cell
– i = i + 1, go to Step 3
Step 5:
– Determine the best move sequence c1, c2, .., cm (1 £ m £ i) , so that å =

=
m

i im gG
1
Δ is maximized

– If Gm > 0, go to Step 6. Otherwise, END
Step 6:
– Execute m moves, reset all fixed nodes
– Start with a new pass, go to Step 1

Fiduccia-Mattheyses (FM) Algorithm - One pass

©
 K

LM
H

Li
en

ig
 37

1

3

4

2

5

A B

a
b

c
d

e

Fiduccia-Mattheyses (FM) Algorithm – Example

Step 0: Compute the balance criterion

[r ∙ area(V) – areamax(V)] ≤ area(A) ≤ [r ∙ area(V) + areamax(V)]

0,375 * 16 – 5 = 1 £ area(A) £ 11 = 0,375 * 16 +5.

Given:
Ratio factor r = 0.375
area(Cell_1) = 2
area(Cell_2) = 4
area(Cell_3) = 1
area(Cell_4) = 4
area(Cell_5) = 5.

©
 K

LM
H

Li
en

ig
 38

1

3

4

2

5

A B

a
b

c
d

e

Step 1: Compute the gains of each cell

Cell 1: FS(Cell_1) = 2 TE(Cell_1) = 1 Dg(Cell_1) = 1
Cell 2: FS(Cell_2) = 0 TE(Cell_2) = 1 Dg(Cell_2) = -1
Cell 3: FS(Cell_3) = 1 TE(Cell_3) = 1 Dg(Cell_3) = 0
Cell 4: FS(Cell_4) = 1 TE(Cell_4) = 1 Dg(Cell_4) = 0
Cell 5: FS(Cell_5) = 1 TE(Cell_5) = 0 Dg(Cell_5) = 1

Fiduccia-Mattheyses (FM) Algorithm – Example

©
 K

LM
H

Li
en

ig
 39

1

3

4

2

5

A B

a
b

c
d

e
Cell1: FS(Cell_1) = 2 TE(Cell_1) = 1 Dg(Cell_1) = 1
Cell 2: FS(Cell_2) = 0 TE(Cell_2) = 1 Dg(Cell_2) = -1
Cell 3: FS(Cell_3) = 1 TE(Cell_3) = 1 Dg(Cell_3) = 0
Cell 4: FS(Cell_4) = 1 TE(Cell_4) = 1 Dg(Cell_4) = 0
Cell 5: FS(Cell_5) = 1 TE(Cell_5) = 0 Dg(Cell_5) = 1

Step 2: Select the base cell

Possible base cells are Cell 1 and Cell 5
Balance criterion after moving Cell 1: area(A) = area(Cell_2) = 4
Balance criterion after moving Cell 5: area(A) = area(Cell_1) + area(Cell_2) + area(Cell_5) = 11
Both moves respect the balance criterion, but Cell 1 is selected, moved,
and fixed as a result of the tie-breaking criterion.

Fiduccia-Mattheyses (FM) Algorithm – Example

©
 K

LM
H

Li
en

ig
 40

1

3

4

2

5

A B

a
b

c
d

e

Step 3: Fix base cell, update Dg values

Cell 2: FS(Cell_2) = 2 TE(Cell_2) = 0 Dg(Cell_2) = 2
Cell 3: FS(Cell_3) = 0 TE(Cell_3) = 1 Dg(Cell_3) = -1
Cell 4: FS(Cell_4) = 0 TE(Cell_4) = 2 Dg(Cell_4) = -2
Cell 5: FS(Cell_5) = 0 TE(Cell_5) = 1 Dg(Cell_5) = -1

After Iteration i = 1: Partition A1 = í2ý, Partition B1 = í1,3,4,5ý, with fixed cell í1ý.

Fiduccia-Mattheyses (FM) Algorithm – Example

©
 K

LM
H

Li
en

ig
 41

1

3

4

2

5

A B

a
b

c
d

e
Cell 2: FS(Cell_2) = 2 TE(Cell_2) = 0 Dg(Cell_2) = 2
Cell 3: FS(Cell_3) = 0 TE(Cell_3) = 1 Dg(Cell_3) = -1
Cell 4: FS(Cell_4) = 0 TE(Cell_4) = 2 Dg(Cell_4) = -2
Cell 5: FS(Cell_5) = 0 TE(Cell_5) = 1 Dg(Cell_5) = -1

Iteration i = 2

Cell 2 has maximum gain Dg2 = 2, area(A) = 0, balance criterion is violated.
Cell 3 has next maximum gain Dg2 = -1, area(A) = 5, balance criterion is met.
Cell 5 has next maximum gain Dg2= -1, area(A) = 9, balance criterion is met.

Move cell 3, updated partitions: A2 = {2,3}, B2 = {1,4,5}, with fixed cells {1,3}

Iteration i = 1

Fiduccia-Mattheyses (FM) Algorithm – Example

©
 K

LM
H

Li
en

ig
 42

Cell 2: Dg(Cell_2) = 1
Cell 4: Dg(Cell_4) = 0
Cell 5: Dg(Cell_5) = -1

Iteration i = 3

Cell 2 has maximum gain Dg3 = 1, area(A) = 1, balance criterion is met.

Move cell 2, updated partitions: A3 = {3}, B3 = {1,2,4,5}, with fixed cells {1,2,3}

1

3

4

2

5

A

Ba b

c
d

e

Iteration i = 2

Fiduccia-Mattheyses (FM) Algorithm – Example

©
 K

LM
H

Li
en

ig
 43

Cell 4: Dg(Cell_4) = 0
Cell 5: Dg(Cell_5) = -1

Iteration i = 4

Cell 4 has maximum gain Dg4 = 0, area(A) = 5, balance criterion is met.

Move cell 4, updated partitions: A4 = {3,4}, B3 = {1,2,5}, with fixed cells {1,2,3,4}

1

3

4

2

5

B A

a b

c
d

e

Iteration i = 3

Fiduccia-Mattheyses (FM) Algorithm – Example

©
 K

LM
H

Li
en

ig
 44

Cell 5: Dg(Cell_5) = -1

Iteration i = 5

Cell 5 has maximum gain Dg5 = -1, area(A) = 10, balance criterion is met.

Move cell 5, updated partitions: A4 = {3,4,5}, B3 = {1,2}, all cells {1,2,3,4,5} fixed.

1

3

4

2

5

B A

a b

c
d

e

Iteration i = 4

Fiduccia-Mattheyses (FM) Algorithm – Example

©
 K

LM
H

Li
en

ig
 45

Step 5: Find best move sequence c1 … cm

G1 = Dg1 = 1
G2 = Dg1 + Dg2 = 0
G3 = Dg1 + Dg2 + Dg3 = 1
G4 = Dg1 + Dg2 + Dg3 + Dg4 = 1
G5 = Dg1 + Dg2 + Dg3 + Dg4 + Dg5 = 0.

Maximum positive cumulative gain 1
1

=D=å
=

m

i
im gG

found in iterations 1, 3 and 4.

The move prefix m = 4 is selected due to the better balance ratio (area(A) = 5);
the four cells 1, 2, 3 and 4 are then moved.

Result of Pass 1: Current partitions: A = {3,4}, B = {1,2,5}, cut cost reduced from 3 to 2.

1

3

4

2

5

B A

a b

c
d

e

Fiduccia-Mattheyses (FM) Algorithm – Example

©
 K

LM
H

Li
en

ig
 46

Runtime difference between KL & FM

n Runtime of partitioning algorithms
¨ KL is sensitive to the number of nodes and edges
¨ FM is sensitive to the number of nodes and nets

(hyperedges)

n Asymptotic complexity of partitioning algorithms
¨ KL has cubic time complexity per pass
¨ FM has linear time complexity per pass

46

©
 K

LM
H

Li
en

ig
 47

Clustering

47

• To simplify the problem, groups of tightly-connected nodes can be clustered,
absorbing connections between these nodes

• Size of each cluster is often limited so as to prevent degenerate clustering,
i.e. a single large cluster dominates other clusters

• Refinement should satisfy balance criteria

©
 K

LM
H

Li
en

ig
 48

Clustering

a

b c

d

e

a,b,c

d

e

a

b

d

c,e

Initital graph Possible clustering hierarchies of the graph

©
 2

01
1

Sp
rin

ge
r

©
 K

LM
H

Li
en

ig
 49

Multilevel Partitioning

©
 2

01
1

Sp
rin

ge
r V

er
la

g

©
 K

LM
H

Li
en

ig
 50

Summary
n Circuit netlists can be represented by graphs

n Partitioning a graph means assigning nodes to disjoint partitions
¨ Total size of each partition (number/area of nodes) is limited
¨ Objective: minimize the number connections between partitions

n Basic partitioning algorithms
¨ Move-based, move are organized into passes
¨ KL swaps pairs of nodes from different partitions
¨ FM re-assigns one node at a time
¨ FM is faster, usually more successful

n Multilevel partitioning
¨ Clustering
¨ FM partitioning
¨ Refinement (also uses FM partitioning)

