Netlist and System Partitioning

Presented By:
Sridhar H Rangarajan
IBM STG India Enterprise Systems Development

Netlist and System Partitioning

-Introduction
-Optimization Goals
-Partitioning Algorithms
$\square K e r n i g h a n-L i n(K L) ~ A l g o r i t h m ~$
\square Extensions of the Kernighan-Lin Algorithm
\square Fiduccia-Mattheyses (FM) Algorithm
-Framework for Multilevel Partitioning
\square Clustering
\square Multilevel Partitioning

Chip partitioning

Graph G_{1} : Nodes 3, 4, 5.

Graph G_{2} : Nodes 1, 2, 6.

Collection of cut edges
Cut set: $(1,3),(2,3),(5,6)$,

Optimization Goals

- Given a graph $G(V, E)$ with $|V|$ nodes and $|E|$ edges where each node $v \underline{\in} V$ and each edge $e \underline{\epsilon} E$.
- Each node has area $s(v)$ and each edge has cost or weight $w(e)$.
- The objective is to divide the graph G into k disjoint subgraphs such that all optimization goals are achieved and all original edge relations are respected.

Optimization Goals

- In detail, what are the optimization goals?
\square Number of connections between partitions is minimized
\square Each partition meets all design constraints (size, number of external connections..)
\square Balance every partition as well as possible
- How can we meet these goals?
\square Unfortunately, this problem is NP-hard
\square Efficient heuristics are developed in the 1970s and 1980s.
They are high quality and in low-order polynomial time.

Netlist and System Partitioning

- Introduction
- Optimization Goals
-Partitioning Algorithms
\square Kernighan-Lin (KL) Algorithm
$\square E x t e n s i o n s$ of the Kernighan-Lin Algorithm
-Fiduccia-Mattheyses (FM) Algorithm
■Framework for Multilevel Partitioning
\square Clustering
\square Multilevel Partitioning

Kernighan-Lin (KL) Algorithm

Given: A graph with $2 n$ nodes where each node has the same weight.
Goal: A partition (division) of the graph into two disjoint subsets A and B with minimum cut cost and $|A|=|B|=n$.

Example: $n=4$

Kernighan-Lin (KL) Algorithm - Terminology

Cost $D(v)$ of moving a node v
$D(v)=\left|E_{\mathrm{c}}(v)\right|-\left|E_{\mathrm{nc}}(v)\right|$,
where
$E_{\mathrm{c}}(v)$ is the set of v 's incident edges that are cut by the cut line, and
$E_{\text {nc }}(v)$ is the set of v 's incident edges that are not cut by the cut line.

High costs ($D>0$) indicate that the node should move, while low costs $(D<0)$ indicate that the node should stay within the same partition.

Node 3:

$$
D(3)=3-1=2
$$

Node 7:
$D(7)=2-1=1$

Kernighan-Lin (KL) Algorithm - Terminology

Gain of swapping a pair of nodes a und b
$\Delta g=D(a)+D(b)-2 * c(a, b)$,
where

- $D(a), D(b)$ are the respective costs of nodes a, b
- $c(a, b)$ is the connection weight between a and b :
 If an edge exists between a and b, then $c(a, b)=$ edge weight (here 1), otherwise, $c(a, b)=0$.

The gain Δg indicates how useful the swap between two nodes will be

The larger Δg, the more the total cut cost will be reduced

Kernighan-Lin (KL) Algorithm - Terminology

Gain of swapping a pair of nodes a und b
$\Delta g=D(a)+D(b)-2^{\star} c(a, b)$,
where

- $D(a), D(b)$ are the respective costs of nodes a, b
- $c(a, b)$ is the connection weight between a and b : If an edge exists between a and b, then $c(a, b)=$ edge weight (here 1), otherwise, $c(a, b)=0$.

$$
\Delta g(3,7)=D(3)+D(7)-2^{*} c(a, b)=2+1-2=1
$$

=> Swapping nodes 3 and 7 would reduce the cut size by 1

Kernighan-Lin (KL) Algorithm - Terminology

Gain of swapping a pair of nodes a und b
$\Delta g=D(a)+D(b)-2 * c(a, b)$,
where

- $D(a), D(b)$ are the respective costs of nodes a, b
- $c(a, b)$ is the connection weight between a and b : If an edge exists between a and b, then $c(a, b)=$ edge weight (here 1), otherwise, $c(a, b)=0$.

$$
\Delta g(3,5)=D(3)+D(5)-2 * c(a, b)=2+1-0=3
$$

=> Swapping nodes 3 and 5 would reduce the cut size by 3

Kernighan-Lin (KL) Algorithm - Terminology

Gain of swapping a pair of nodes a and b

The goal is to find a pair of nodes a and b to exchange such that Δg is maximized and swap them.

Kernighan-Lin (KL) Algorithm - Terminology

Maximum positive gain G_{m} of a pass

The maximum positive gain G_{m} corresponds to the best prefix of m swaps within the swap sequence of a given pass.

These m swaps lead to the partition with the minimum cut cost encountered during the pass.
G_{m} is computed as the sum of Δg values over the first m swaps of the pass, with m chosen such that G_{m} is maximized.

$$
G_{m}=\sum_{i=1}^{m} \Delta g_{i}
$$

Kernighan-Lin (KL) Algorithm - One pass

Step 0:

- $\quad V=2 n$ nodes
$-\quad\{A, B\}$ is an initial arbitrary partitioning
Step 1:
- $\quad i=1$
- Compute $D(v)$ for all nodes $v \in V$

Step 2:

- Choose a_{i} and b_{i} such that $\Delta g_{i}=D\left(a_{i}\right)+D\left(b_{i}\right)-2{ }^{*} c\left(a_{i} b_{i}\right)$ is maximized
- Swap and fix a_{i} and b_{i}

Step 3:

- If all nodes are fixed, go to Step 4. Otherwise
- Compute and update D values for all nodes that are not connected to a_{i} and b_{i} and are not fixed.
- $\quad i=i+1$
- Go to Step 2

Step 4:

- Find the move sequence $1 \ldots m(1 \leq m \leq i)$, such that $G_{m}=\sum_{i=1}^{m} \Delta g_{i}$ is maximized
$-\quad$ If $G_{m}>0$, go to Step 5. Otherwise, END
Step 5:
- Execute m swaps, reset remaining nodes

Kernighan-Lin (KL) Algorithm - Example

Cut cost: 9 Not fixed:
1,2,3,4,5,6,7,8

Kernighan-Lin (KL) Algorithm - Example


```
Cut cost: }
Not fixed:
1,2,3,4,5,6,7,8
```

Costs $D(v)$ of each node:

$$
\begin{array}{ll}
D(1)=1 \\
D(2)=1 \\
D(3)=2 \\
D(4)=1
\end{array} \begin{aligned}
& D(5)=1 \\
& D(6)=2 \\
& D(7)=1 \\
& D(8)=1
\end{aligned} \quad \begin{aligned}
& \text { Nodes that lead to } \\
& \text { maximum gain }
\end{aligned}
$$

Kernighan-Lin (KL) Algorithm - Example


```
Cut cost: }
Not fixed:
1,2,3,4,5,6,7,8
```

Costs $D(v)$ of each node:

$D(1)=1$	$D(5)=1$	
$D(2)=1$	$D(6)=2$	Nodes that lead to
$D(3)=2$	$D(7)=1$	
$D(4)=1$	$D(8)=1$	
$\Delta g_{1}=2+1-0=3$	maximum gain	
Swap $(3,5)$		
$G_{1}=\Delta g_{1}=3$		Gain in the current pass

Kernighan-Lin (KL) Algorithm - Example

Cut cost: 9
 Not fixed:
 1,2,3,4,5,6,7,8

Kernighan-Lin (KL) Algorithm - Example

Cut cost: 9
Not fixed:
$1,2,3,4,5,6,7,8$

> Cut cost: 6 Not fixed:
> $1,2,4,6,7,8$

$D(1)=1$	$D(5)=1$
$D(2)=1$	$D(6)=2$
$D(3)=2$	$D(7)=1$
$D(4)=1$	$D(8)=1$
$\Delta g_{1}=2+1-0=3$	
Swap $(3,5)$	
$G_{1}=\Delta g_{1}=3$	

Kernighan-Lin (KL) Algorithm - Example

Cut cost: 9	Cut cost: 6
Not fixed:	Not fixed:
$1,2,3,4,5,6,7,8$	$1,2,4,6,7,8$

$D(1)=1$	$D(5)=1$	$D(1)=-1$	$D(6)=2$
$D(2)=1$	$D(6)=2$	$D(2)=-1$	$D(7)=-1$
$D(3)=2$	$D(7)=1$	$D(4)=3$	$D(8)=-1$
$D(4)=1$	$D(8)=1$		
$\Delta g_{1}=2+1-0=3$			
Swap $(3,5)$			
$G_{1}=\Delta g_{1}=3$			

Kernighan-Lin (KL) Algorithm - Example

Cut cost: 9 Not fixed:
 1,2,3,4,5,6,7,8

Cut cost: 6

Not fixed:
1,2,4,6,7,8

$$
\begin{array}{ll}
D(1)=1 & D(5)=1 \\
D(2)=1 & D(6)=2 \\
D(3)=2 & D(7)=1 \\
D(4)=1 & D(8)=1 \\
& \\
\Delta g_{1}=2+1-0=3 \\
\text { Swap }(3,5) \\
G_{1}=\Delta g_{1}=3
\end{array}
$$

Kernighan-Lin (KL) Algorithm - Example

Kernighan-Lin (KL) Algorithm - Example

Kernighan-Lin (KL) Algorithm - Example

$D(1)=1$	$D(5)=1$	$D(1)=-1$	$D(6)=2$	$D(1)=-3$	$D(7)=-3$	$D(2)=-1 \quad D(8)=-1$			
$D(2)=1$	$D(6)=2$	$D(2)=-1$	$D(7)=-1$	$D(2)=-3 \quad D(8)=-3$					
$D(3)=2$	$D(7)=1$	$D(4)=3 \quad D(8)=-1$							
$D(4)=1$	$D(8)=1$								
$\begin{aligned} & \Delta g_{1}=2+1-0=3 \\ & \text { Swap }(3,5) \\ & G_{1}=\Delta g_{1}=3 \end{aligned}$		$\Delta g_{2}=3+2-0=5$ Swap (4,0) $G_{2}=G_{1}+\Delta g_{2}=8$				$\begin{aligned} & \Delta g_{3}=-3-3 \\ & \text { Swap }(1,7 \\ & G_{3}=G_{2}+\Delta \end{aligned}$		$\Delta g_{4}=-1$ Swap $G_{4}=G_{3}$	$\begin{aligned} & =-2 \\ & y_{4}=0 \end{aligned}$

Kernighan-Lin (KL) Algorithm - Example

Since $G_{m}>0$, the first $m=2$ swaps $(3,5)$ and $(4,6)$ are executed.

Since $G_{m}>0$, more passes are needed until $G_{m} \leq 0$.

Extensions of the Kernighan-Lin (KL) Algorithm

- Unequal partition sizes
\square Apply the KL algorithm with only $\min (|A|,|B|)$ pairs swapped
- Unequal node weights
$\square \quad$ Try to rescale weights to integers, e.g., as multiples of the greatest common divisor of all node weights
\square Maintain area balance or allow a one-move deviation from balance
- k-way partitioning (generating k partitions)
\square Apply the KL two-way partitioning algorithm to all possible pairs of partitions
$\square \quad$ Recursive partitioning (convenient when k is a power of two)
\square Direct k-way extensions exist

Netlist and System Partitioning

■Introduction

- Optimization Goals

■Partitioning Algorithms
-Kernighan-Lin (KL) Algorithm
\square Extensions of the Kernighan-Lin Algorithm
Fiduccia-Mattheyses (FM) Algorithm
■Framework for Multilevel Partitioning
\square Clustering
\square Multilevel Partitioning

Fiduccia-Mattheyses (FM) Algorithm

- Single cells are moved independently instead of swapping pairs of cells --cannot and do not need to maintain exact partition balance
- The area of each individual cell is taken into account
- Applicable to partitions of unequal size and in the presence of initially fixed cells
- Cut costs are extended to include hypergraphs
- nets with $2+$ pins
- While the KL algorithm aims to minimize cut costs based on edges, the FM algorithm minimizes cut costs based on nets
- Nodes and subgraphs are referred to as cells and blocks, respectively

Fiduccia-Mattheyses (FM) Algorithm

Given: a hypergraph $G(V, H)$ with nodes and weighted hyperedges partition size constraints

Goal: to assign all nodes to disjoint partitions, so as to minimize the total cost (weight) of all cut nets while satisfying partition size constraints

Fiduccia-Mattheyses (FM) Algorithm

Gain $\Delta g(c)$ for cell c
$\Delta g(c)=F S(c)-T E(c)$,
where
the "moving force" $F S(c)$ is the number of nets connected to c but not connected to any other cells within c's partition, i.e., cut nets that connect only to c, and
the "retention force" $T E(c)$ is the number of uncut nets connected to c.

The higher the gain $\Delta g(c)$, the higher is the priority to move the cell c to the other partition.

Fiduccia-Mattheyses (FM) Algorithm-Terminology

Gain $\Delta g(c)$ for cell c
$\Delta g(c)=F S(c)-T E(c)$,
where
the "moving force" $F S(c)$ is the number of nets connected
 to c but not connected to any other cells within c's partition, i.e., cut nets that connect only to c, and
the "retention force" $T E(c)$ is the number of uncut nets connected to c.

Cell 1:	$F S(1)=2$	$T E(1)=1$	$\Delta g(1)=1$
Cell 2:	$F S(2)=0$	$T E(2)=1$	$\Delta g(2)=-1$
Cell 3:	$F S(3)=1$	$T E(3)=1$	$\Delta g(3)=0$
Cell 4:	$F S(4)=1$	$T E(4)=1$	$\Delta g(4)=0$
Cell 5:	$F S(5)=1$	$T E(5)=0$	$\Delta g(5)=1$

Fiduccia-Mattheyses (FM) Algorithm-Terminology

Maximum positive gain G_{m} of a pass

The maximum positive gain G_{m} is the cumulative cell gain of m moves that produce a minimum cut cost.
G_{m} is determined by the maximum sum of cell gains Δg over a prefix of m moves in a pass

$$
G_{m}=\sum_{i=1}^{m} \Delta g_{i}
$$

Fiduccia-Mattheyses (FM) Algorithm-Terminology

Ratio factor

The ratio factor is the relative balance between the two partitions with respect to cell area

It is used to prevent all cells from clustering into one partition.

The ratio factor r is defined as

$$
r=\frac{\operatorname{area}(A)}{\operatorname{area}(A)+\operatorname{area}(B)}
$$

where $\operatorname{area}(A)$ and $\operatorname{area}(B)$ are the total respective areas of partitions A and B

Fiduccia-Mattheyses (FM) Algorithm- Terminology

Balance criterion

The balance criterion enforces the ratio factor.

To ensure feasibility, the maximum cell area $\operatorname{area}_{\max }(V)$ must be taken into account.

A partitioning of V into two partitions A and B is said to be balanced if

$$
\left[r \cdot \operatorname{area}(V)-\operatorname{area}_{\max }(V)\right] \leq \operatorname{area}(A) \leq\left[r \cdot \operatorname{area}(V)+\operatorname{area}_{\max }(V)\right]
$$

Fiduccia-Mattheyses (FM) Algorithm-Terminology

Base cell

A base cell is a cell c that has the greatest cell gain $\Delta g(c)$ among all free cells, and whose move does not violate the balance criterion.

Fiduccia-Mattheyses (FM) Algorithm - One pass

Step 0: Compute the balance criterion
Step 1: Compute the cell gain Δg_{1} of each cell
Step 2: $i=1$
$-\quad$ Choose base cell c_{1} that has maximal gain Δg_{1}, move this cell
Step 3:

- Fix the base cell c_{i}
- Update all cells' gains that are connected to critical nets via the base cell c_{i}

Step 4:

- If all cells are fixed, go to Step 5. If not:
- Choose next base cell c_{i} with maximal gain Δg_{i} and move this cell
$-\quad i=i+1$, go to Step 3
Step 5:
- Determine the best move sequence $c_{1}, c_{2}, . ., c_{m}(1 \leq m \leq i)$, so that $G_{m}=\sum_{i=1}^{m} \Delta g_{i}$ is maximized
$-\quad$ If $G_{m}>0$, go to Step 6. Otherwise, END
Step 6:

Fiduccia-Mattheyses (FM) Algorithm - Example


```
Given:
Ratio factor r=0.375
area(Cell_1) = 2
area(Cell_2) = 4
area(Cell_3) = 1
area(Cell_4) = 4
area(Cell_5) = 5.
```

Step 0: Compute the balance criterion
$\left[r \cdot \operatorname{area}(V)-\operatorname{area}_{\max }(V)\right] \leq \operatorname{area}(A) \leq\left[r \cdot \operatorname{area}(V)+\operatorname{area}_{\max }(V)\right]$
$0,375 * 16-5=1 \leq \operatorname{area}(A) \leq 11=0,375 * 16+5$.

Fiduccia-Mattheyses (FM) Algorithm - Example

Step 1: Compute the gains of each cell

```
Cell 1: FS(Cell_1) = 2
TE(Cell_1) = 1
\Deltag(Cell_1) = 1
Cell 2: FS(Cell_2) = 0
Cell 3: FS(Cell_3)=1
Cell 4: FS(Cell_4) = 1
Cell 5: FS(Cell_5) = 1 TE(Cell_5 ) = 0 \Deltag(Cell_5) = 1
TE(Cell_2) = 1 \Deltag(Cell_2) = -1
TE(Cell_3) = 1
\Deltag(Cell_3) = 0
TE(Cell_4) = 1
\Deltag(Cell_4) = 0
```


Fiduccia-Mattheyses (FM) Algorithm - Example

Cell1:	FS(Cell_1) $=2$	TE(Cell_1 $)=1$	$\Delta g($ Cell_1 $)=1$
Cell 2:	FS(Cell_2) $=0$	TE(Cell_2 $=1$	$\Delta g($ Cell_2 $)=-1$
Cell 3:	FS(Cell_3) $=1$	TE(Cell_3 $=1$	$\Delta g($ Cell_3 $)=0$
Cell 4:	FS(Cell_4) $=1$	TE(Cell_4) $=1$	$\Delta g($ Cell_4 $)=0$
Cell 5:	FS(Cell_5) $=1$	TE(Cell_5 $)=0$	$\Delta g($ Cell_5 $)=1$

Step 2: Select the base cell

Possible base cells are Cell 1 and Cell 5
Balance criterion after moving Cell 1: $\operatorname{area}(A)=\operatorname{area}($ Cell_2) $=4$
Balance criterion after moving Cell 5: $\operatorname{area}(A)=\operatorname{area}($ Cell_1 $)+\operatorname{area}($ Cell_2 $)+\operatorname{area}($ Cell_5 $)=11$
Both moves respect the balance criterion, but Cell 1 is selected, moved,
and fixed as a result of the tie-breaking criterion.

Fiduccia-Mattheyses (FM) Algorithm - Example

Step 3: Fix base cell, update Δg values

Cell 2:	FS(Cell_2 $)=2$	TE(Cell_2 $)=0$	$\Delta g($ Cell_2 $)=2$
Cell 3:	FS $($ Cell_3 $)=0$	$T E($ Cell_3 $)=1$	$\Delta g($ Cell_3 $)=-1$
Cell 4:	FS $($ Cell_4 $)=0$	$T E($ Cell_4 $)=2$	$\Delta g($ Cell_4 $)=-2$
Cell 5:	FS(Cell_5 $=0$	$T E($ Cell_5 $)=1$	$\Delta g($ Cell_5 $)=-1$

After Iteration $i=1$: Partition $A_{1}=\{2\}$, Partition $B_{1}=\{1,3,4,5\}$, with fixed cell $\{1\}$.

Fiduccia-Mattheyses (FM) Algorithm - Example

Iteration $i=1$			
Cell 2:	FS(Cell_2) $=2$	TE(Cell_2) $=0$	$\Delta g($ Cell_2 $)=2$
Cell 3:	FS(Cell_3) $=0$	TE(Cell_3) $=1$	$\Delta g($ Cell_3 $=-1$
Cell 4:	FS(Cell_4) $=0$	TE(Cell_4) $=2$	$\Delta g($ Cell_4 $)=-2$
Cell 5:	FS(Cell_5 $=0$	TE(Cell_5 $)=1$	$\Delta g($ Cell_5 $)=-1$

Iteration $i=2$

Cell 2 has maximum gain $\Delta g_{2}=2$, area $(A)=0$, balance criterion is violated.
Cell 3 has next maximum gain $\Delta g_{2}=-1$, area $(A)=5$, balance criterion is met.
Cell 5 has next maximum gain $\Delta g_{2}=-1$, area $(A)=9$, balance criterion is met.

Move cell 3 , updated partitions: $A_{2}=\{2,3\}, B_{2}=\{1,4,5\}$, with fixed cells $\{1,3\}$

Fiduccia-Mattheyses (FM) Algorithm - Example

Iteration $i=3$

Cell 2 has maximum gain $\Delta g_{3}=1$, area $(A)=1$, balance criterion is met.

Move cell 2, updated partitions: $A_{3}=\{3\}, B_{3}=\{1,2,4,5\}$, with fixed cells $\{1,2,3\}$

Fiduccia-Mattheyses (FM) Algorithm - Example

Iteration $i=4$

Cell 4 has maximum gain $\Delta g_{4}=0, \operatorname{area}(A)=5$, balance criterion is met.

Move cell 4, updated partitions: $A_{4}=\{3,4\}, B_{3}=\{1,2,5\}$, with fixed cells $\{1,2,3,4\}$

Fiduccia-Mattheyses (FM) Algorithm - Example

Iteration $i=5$

Cell 5 has maximum gain $\Delta g_{5}=-1$, area $(A)=10$, balance criterion is met.

Move cell 5, updated partitions: $A_{4}=\{3,4,5\}, B_{3}=\{1,2\}$, all cells $\{1,2,3,4,5\}$ fixed.

Fiduccia-Mattheyses (FM) Algorithm - Example

Step 5: Find best move sequence $\mathrm{c}_{1} \ldots \mathrm{c}_{m}$
$G_{1}=\Delta g_{1}=1$
$G_{2}=\Delta g_{1}+\Delta g_{2}=0$
$G_{3}=\Delta g_{1}+\Delta g_{2}+\Delta g_{3}=1$
$G_{4}=\Delta g_{1}+\Delta g_{2}+\Delta g_{3}+\Delta g_{4}=1$
$G_{5}=\Delta g_{1}+\Delta g_{2}+\Delta g_{3}+\Delta g_{4}+\Delta g_{5}=0$.

Maximum positive cumulative gain $G_{m}=\sum_{i=1}^{m} \Delta g_{i}=1$
found in iterations 1, 3 and 4.
The move prefix $m=4$ is selected due to the better balance ratio $(\operatorname{area}(A)=5)$; the four cells $1,2,3$ and 4 are then moved.

Result of Pass 1: Current partitions: $A=\{3,4\}, B=\{1,2,5\}$, cut cost reduced from 3 to 2 .

Runtime difference between KL \& FM

- Runtime of partitioning algorithms
$\square \quad \mathrm{KL}$ is sensitive to the number of nodes and edges
$\square \quad$ FM is sensitive to the number of nodes and nets (hyperedges)

■ Asymptotic complexity of partitioning algorithms
$\square \quad$ KL has cubic time complexity per passFM has linear time complexity per pass

Clustering

- To simplify the problem, groups of tightly-connected nodes can be clustered, absorbing connections between these nodes
- Size of each cluster is often limited so as to prevent degenerate clustering, i.e. a single large cluster dominates other clusters
- Refinement should satisfy balance criteria

Clustering

Possible clustering hierarchies of the graph

Multilevel Partitioning

Summary

- Circuit netlists can be represented by graphs
- Partitioning a graph means assigning nodes to disjoint partitions
\square Total size of each partition (number/area of nodes) is limited
\square Objective: minimize the number connections between partitions
- Basic partitioning algorithms
\square Move-based, move are organized into passes
\square KL swaps pairs of nodes from different partitions
\square FM re-assigns one node at a time
\square FM is faster, usually more successful
- Multilevel partitioning
\square Clustering
\square FM partitioning
\square Refinement (also uses FM partitioning)

