Placement

Presented By:
Sridhar H Rangarajan
IBM Systems India Enterprise Systems
Development

Agenda

- Introduction
- Placement Problem Footprints
- Placement Objective
- Algorithms
\square Min-Cut Placement
\square Analytic Placement
- Quadratic placement
- FDP
\square Simulated Annealing
\square Modern Placement Algorithms
- Summary

Trends in Placement

- Chips are larger
- Footprints are more diverse
- Empty Space \% is growing
- Interconnect delays are larger percentage of chip cycle time
- Placement is no longer a point tool: It's part of a timing closure system.

Standard Cell sea of gates:

Data Path:

Mixed Data Path \& sea of gates:

Core

Reserved areas

IP - Floorplanning

Perimeter IO

Area IO

\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square

Placement Objective

- Find optimal relative ordering of cells
\square minimize wire length and congestion
\square maximize timing slack
- Find optimal spacing of cells
\square eliminate wiring congestion problems
\square provide space for post placement synthesis
- clock trees
- buffer insertion
- timing correction
- Find optimal Global Position

Optimal Relative Order:

A B C

To spread ...

.. or not to spread

Place to the left

... or to the right

.. or near center

Optimal Relative Order:

- A B C

Without "free" space the problem is degenerate: Relative order dominates the solution space.

Problems limited to Relative Order:

Capo HPNL $=1.3 \mathrm{Te}+06$

Problem w/spacing / global position components

\square

Optimization Objectives

Total
Wirelength

Number of Cut Nets

Signal
Delay

Optimization Objectives - Total Wirelength

Wirelength estimation for a given placement
Half-perimeter
wirelength
(HPWL)

Complete
graph
(clique)

> Monotone chain

$H P W L=9$

Clique Length $=$
$(2 / p) \Sigma_{e \in \operatorname{clique}} d_{M}(e)=14.5$

Chain Length $=12$

Star Length $=15$

Optimization Objectives - Total Wirelength

Wirelength estimation for a given placement (cont'd.)
Rectilinear
minimum
spanning
tree (RMST)
Rectilinear
Steiner
minimum
tree (RSMT)
Rectilinear
Steiner
arborescence
model (RSA)

Single-trunk Steiner tree (STST)

RMST Length $=11$

RSMT Length $=10$

RSA Length $=10$

STST Length $=10$

Optimization Objectives - Total Wirelength

Wirelength estimation for a given placement (cont‘d.)

Preferred method: Half-perimeter wirelength (HPWL)

- Fast (order of magnitude faster than RSMT)
- Equal to length of RSMT for 2- and 3-pin nets
- Margin of error for real circuits approx. 8\% [Chu, ICCAD 04]

RSMT Length $=10$

HPWL $=9$
$L_{\mathrm{HPWL}}=w+h$

Optimization Objectives - Total Wirelength

Total wirelength with net weights (weighted wirelength)

- For a placement P, an estimate of total weighted wirelength is

$$
L(P)=\sum_{n e t \in P} w(\text { net }) \cdot L(\text { net })
$$

where $w(n e t)$ is the weight of net, and $L(n e t)$ is the estimated wirelength of net.

- Example:

Nets

$$
\begin{array}{ll}
N_{1}=\left(a_{1}, b_{1}, d_{2}\right) & w\left(N_{1}\right)=2 \\
N_{2}=\left(c_{1}, d_{1}, f_{1}\right) & w\left(N_{2}\right)=4 \\
N_{3}=\left(e_{1}, f_{2}\right) & w\left(N_{3}\right)=1
\end{array}
$$

$$
L(P)=\sum_{n e t \in P} w(n e t) \cdot L(n e t)=2 \cdot 7+4 \cdot 4+1 \cdot 3=33
$$

Optimization Objectives - Number of Cut Nets

Cut sizes of a placement

- To improve total wirelength of a placement P, separately calculate the number of crossings of global vertical and horizontal cutlines, and minimize

$$
L(P)=\sum_{v \in V_{P}} \psi_{P}(v)+\sum_{h \in H_{P}} \psi_{P}(h)
$$

where $\Psi_{P}(c u t)$ be the set of nets cut by a cutline cut

Optimization Objectives - Number of Cut Nets

Cut sizes of a placement

- Example:

Nets

$$
\begin{aligned}
& N_{1}=\left(a_{1}, b_{1}, d_{2}\right) \\
& N_{2}=\left(c_{1}, d_{1}, f_{1}\right) \\
& N_{3}=\left(e_{1}, f_{2}\right)
\end{aligned}
$$

- Cut values for each global cutline $\psi_{\mathrm{P}}\left(v_{1}\right)=1 \psi_{\mathrm{P}}\left(v_{2}\right)=2$ $\psi_{\mathrm{P}}\left(h_{1}\right)=3 \psi_{\mathrm{P}}\left(h_{2}\right)=2$
- Total number of crossings in P

$\Psi_{P}\left(v_{1}\right)+\Psi_{P}\left(v_{2}\right)+\Psi_{P}\left(h_{1}\right)+\Psi_{P}\left(h_{2}\right)=1+2+3+2=8$
- Cut sizes
$X(P)=\max \left(\Psi_{P}\left(v_{1}\right), \Psi_{P}\left(v_{2}\right)\right)=\max (1,2)=2$
$Y(P)=\max \left(\Psi_{P}\left(h_{1}\right), \Psi_{P}\left(h_{2}\right)\right)=\max (3,2)=3$

Optimization Objectives - Wire Congestion

Routing congestion of a placement

- Ratio of demand for routing tracks to the supply of available routing tracks
- Estimated by the number of nets that pass through the boundaries of individual routing regions

Optimization Objectives - Wire Congestion

Routing congestion of a placement

- Formally, the local wire density $\varphi_{P}(e)$ of an edge e between two neighboring grid cells is

$$
\varphi_{P}(e)=\frac{\eta_{P}(e)}{\sigma_{P}(e)}
$$

where $\operatorname{sid}_{P}(e)$ is the estimated number of nets that cross e and $\sigma_{P}(e)$ is the maximum number of nets that can cross e

- If $\varphi_{P}(e)>1$, then too many nets are estimated to cross e, making P more likely to be unroutable.
- The wire density of P is $\quad \Phi(P)=\max _{e \in E}\left(\varphi_{P}(e)\right)$
where E is the set of all edges
■ If $\Phi(P)$ 1, then the design is estimated to be fully routable, otherwise routing will need to detour some nets through less-congested edges

Optimization Objectives - Wire Congestion

Wire Density of a placement

$$
\begin{array}{ll}
\eta_{P}\left(h_{1}\right)=1 & \eta_{P}\left(v_{1}\right)=1 \\
\eta_{P}\left(h_{2}\right)=2 & \eta_{P}\left(v_{2}\right)=0 \\
\eta_{P}\left(h_{3}\right)=0 & \eta_{P}\left(v_{3}\right)=0 \\
\eta_{P}\left(h_{4}\right)=1 & \eta_{P}\left(v_{4}\right)=0 \\
\eta_{P}\left(h_{5}\right)=1 & \eta_{P}\left(v_{5}\right)=2 \\
\eta_{P}\left(h_{6}\right)=0 & \eta_{P}\left(v_{6}\right)=0
\end{array}
$$

Maximum:

$$
\eta_{P}(e)=2
$$

$$
\Phi(P)=\frac{\eta_{P}(e)}{\sigma_{P}(e)}=\frac{2}{3}
$$

Optimization Objectives - Signal Delay

Circuit timing of a placement

- Static timing analysis using actual arrival time (AAT) and required arrival time (RAT)
$\square A A T(v)$ represents the latest transition time at a given node v measured from the beginning of the clock cycle
$\square R A T(v)$ represents the time by which the latest transition at v must complete
in order for the circuit to operate correctly within a given clock cycle.

■ For correct operation of the chip with respect to setup (maximum path delay) constraints, it is required that $A A T(v) \leq R A T(v)$.

Placement Algorithms

- Min-Cut Placement
- Analytic Placement
- Simulated Annealing

■ Modern Placement Algorithms

Global Placement

- Partitioning-based algorithms:
\square The netlist and the layout are divided into smaller sub-netlists and subregions, respectively
\square Process is repeated until each sub-netlist and sub-region is small enough to be handled optimally
\square Detailed placement often performed by optimal solvers, facilitating a natural transition from global placement to detailed placement
\square Example: min-cut placement
- Analytic techniques:
\square Model the placement problem using an objective (cost) function, which can be optimized via numerical analysis
\square Examples: quadratic placement and force-directed placement
- Stochastic algorithms:
\square Randomized moves that allow hill-climbing are used to optimize the cost function
\square Example: simulated annealing

Global Placement

Min-Cut Placement

- Uses partitioning algorithms to divide the netlist and the layout region into smaller sub-netlists and sub-regions
- Conceptually, each sub-region is assigned a portion of the original netlist
- Each cut heuristically minimizes the number of cut nets using, for example,
\square Kernighan-Lin (KL) algorithm
\square Fiduccia-Mattheyses (FM) algorithm

Min-Cut Placement

Alternating cutline directions

Repeating cutline directions

Min-Cut Placement

Input: netlist Netlist, layout area $L A$, minimum number of cells per region cells_min Output: placement P

$$
P=\varnothing
$$

regions $=$ ASSIGN(Netlist,LA)
while (regions != Ø)
region = FIRST_ELEMENT(regions)
REMOVE(regions, region)
if (region contains more than cell_min cells)
(sr1,sr2) = BISECT(region)

ADD_TO_END(regions,sr1)
ADD_TO_END(regions,sr2)
else
PLACE(region)
ADD(P,region)
// assign netlist to layout area
// while regions still not placed
// first element in regions
// remove first element of regions
// divide region into two subregions
// sr1 and sr2, obtaining the sub-
// netlists and sub-areas
$/ /$ add $s r 1$ to the end of regions
$/ /$ add $s r 2$ to the end of regions
// place region
// add region to P

Min-Cut Placement - Example

Given:

Task: 4×2 placement with minimum wirelength using alternative cutline directions and the KL algorithm

$$
\begin{aligned}
& \square \square \square \square \\
& \square \square \square \square \square
\end{aligned}
$$

Vertical cut cut $_{1}: L=\{1,2,3\}, R=\{4,5,6\}$

Horizontal cut cut $_{2 \mathrm{~L}}: T=\{1,4\}, B=\{2,0\}$
Horizontal cut cut $_{2 \mathrm{R}}: T=\{3,5\}, B=\{6,0\}$

Min-Cut Placement

- Advantages:
\square Reasonably fast
\square Objective function can be adjusted, e.g., to perform timing-driven placement
\square Hierarchical strategy applicable to large circuits
- Disadvantages:
\square Randomized, chaotic algorithms - small changes in input lead to large changes in output (Stability is poor)
\square Optimizing one cutline at a time may result in routing congestion elsewhere

Analytic Placement - Quadratic Placement

- Objective function is quadratic; sum of (weighted) squared Euclidean distance represents placement objective function

$$
L(P)=\frac{1}{2} \sum_{i, j=j}^{n} c_{i j}\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right)
$$

where n is the total number of cells, and $c(i, j)$ is the connection cost between cells i and j.

- Minimize objective function by equating its derivative to zero which reduces to solving a system of linear equations

Analytic Placement - Quadratic Placement

$$
L(P)=\frac{1}{2} \sum_{i, j=1}^{n} c_{i j}\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right)
$$

where n is the total number of cells, and $c(i, j)$ is the connection cost between cells i and j.

- Each dimension can be considered ${ }_{n}$ independently:

$$
L_{x}(P)=\sum_{i=1, j=1}^{n} c(i, j)\left(x_{i}-x_{j}\right)^{2} \quad L_{y}(P)=\sum_{i=1, j=1}^{n} c(i, j)\left(y_{i}-y_{j}\right)^{2}
$$

- Convex quadratic optimization problem: any local minimum solution is also a global minimum
- Optimal x - and y-coordinates can be found by setting the partial derivatives of $L_{x}(P)$ and $L_{y}(P)$ to zero

Analytic Placement - Quadratic Placement

$$
L(P)=\frac{1}{2} \sum_{i, j=1}^{n} c_{i j}\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right)
$$

where n is the total number of cells, and $c(i, j)$ is the connection cost between cells i and j.

$$
L_{x}(P)=\sum_{i=1, j=1}^{n} c(i, j)\left(x_{i}-x_{j}\right)^{2} \quad L_{y}(P)=\sum_{i=1, j=1}^{n} c(i, j)\left(y_{i}-y_{j}\right)^{2}
$$

- Each dim sion can be considered indepi lently:

$$
\frac{\partial L_{x}(P)}{\partial X}=A X-b_{x}=0 \quad \frac{\partial L_{y}(P)}{\partial Y}=A Y-b_{y}=0
$$

where A is a matrix with $A[7][]=c(i, j)$ when $i \neq j$, and $A[][]=$ the sum of incident connection weights of cell i.
X is a vector of all the x-coordinates of the non-fixed cells, and b_{x} is a vector with $b_{x}[I]=$ the sum of x-coordinates of all fixed cells attached to i.
Y is a vector of all the y-coordinates of the non-fixed cells, and b_{y} is a vector with $b_{y}[1]=$ the sum of y-coordinates of all fixed cells attached to i.

Analytic Placement - Quadratic Placement

$$
L(P)=\frac{1}{2} \sum_{i, j=1}^{n} c_{i j}\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right)
$$

where n is the total number of cells, and $c(i, j)$ is the connection cost between cells i and j.
$L_{x}(P)=\sum^{n} c(i, j)\left(x_{i}-x_{j}\right)^{2} \quad L_{y}(P)=\sum^{n} c(i, j)\left(y_{i}-y_{j}\right)^{2}$

- Each dimen, sion can be considered independdently:

$$
\frac{\partial L_{x}(P)}{\partial X}=A X-b_{x}=0
$$

$$
\frac{\partial L_{y}(P)}{\partial Y}=A Y-b_{y}=0
$$

■ System of linear equations for which iterative numerical methods can be used to find a solution

Why formulate the problem this way?

- Known techniques make solution easy to find
- There is only one solution
- The solution is a global optimum
- The solution conveys "relative order" information
- The solution conveys "global position" information

Analytic Placement - Quadratic Placement

- Mechanical analogy: mass-spring system

\square Squared Euclidean distance is proportional to the energy of a spring between these points
\square Quadratic objective function represents total energy of the spring system; for each movable object, the $x(y)$ partial derivative represents the total force acting on that object
\square Setting the forces of the nets to zero, an equilibrium state is mathematically modeled that is characterized by zero forces acting on each movable object
\square At the end, all springs are in a force equilibrium with a minimal total spring energy; this equilibrium represents the minimal sum of squared wirelength
\rightarrow Result: many cell overlaps

Analytic Placement - Quadratic Placement

- Second stage of quadratic placers: cells are spread out to remove overlaps
- Methods:
\square Adding fake nets that pull cells away from dense regions toward anchors
\square Geometric sorting and scaling
\square Repulsion forces, etc.

What does the solution look like?

- To get an intuitive feel for the solution, examine the relaxation method for solving $\mathrm{Ax}+\mathrm{B}=0$
- Actual program implementation may use other solution methods (that are generally less intuitive).

Solution of Q uadratic Using nelaxation:

Analytic Placement - Quadratic Placement

- Advantages:
\square Captures the placement problem concisely in mathematical terms
\square Leverages efficient algorithms from numerical analysis and available software
\square Can be applied to large circuits without netlist clustering (flat)
\square Stability: small changes in the input do not lead to large changes in the output
- Disadvantages:
\square Connections to fixed objects are necessary: I/O pads, pins of fixed macros, etc.

Analytical Constraint Generation: A Hybrid Approach

- Combine Quadratic techniques with MLP
- Use Quadratic solution to determine global position (ie balance)
- Use MLP to determine relative ordering of cells
[9] C. J. Alpert, G.-J. Nam, and P. G. Villarrubia, "Free Space Management for Cut-Based Placement"
Proc. IEEE Intl. Conf. on Computer-Aided Design\}, November, 2002.

Analytical Constraint Generation

Select a command
Level PBLK: Visibility altered
Visibility has been altered for more than 1 level, only one modification is listed
Command>

Select a command
Level PBLK: Visibility altered
Visibility has been altered for more than 1 level, only one modification is listed
Command>

Select a command
Level PBLK: Visibility altered
Visibility has been altered for more than 1 level, only one modification is listed
Gommand:

Visibility has been altered for more than 1 level, only one modification is listed Select a command
Level FX: Visibility altered
Command)

Command $>$

Select a command
Level PBLK: Visibility altered
Visibility has been altered for more than 1 level, only one modification is listed
Command>

Select a command

Level PBLK: Visibility altered
Visibility has been altered for more than 1 level, only one modification is listed

Geometric Partitioning

J. Vygen, "Algorithms for Large-Scale Flat Placement",

Proc. 34th IEEE/ACM Design Automation Conference, 1988,pp 746-751

GymBrowser (3.08.03) Physical View(INT):GUL Mode:Browse(INT.int.all.Tier<*>) Loaded:/tmp/g| file_1_1

Repaint
EndCommand

\square Grid
 \downarrow Tic

Color has been altered for more than 1 level, only one modification is listed

Fill has been altered for more than 1 level, only one modification is listed
Level CKTROW: Visibility altered

Command

GymBrowser (3.08.03) Physical View(INT):GUL Mode:Browse(INT.int.all.Tier<*>) Loaded//tmp/g|1 file_3_1

Repaint

Repaint

Grid

\square Tic

Repaint EndCommand

Grid

\checkmark Tic

Mag	Pan
ZmIn	ZmOut
Prev	Max
Fit	SS
$\mathrm{x}=$	-614.7
$\mathbf{y}=$	5950.8
$\mathbf{r x}=$	0.0
$\mathbf{r y}=$	25.0
dx=	-614.7
dy=	5925.8

Repaint

Analytic Placement - Force-directed Placement

- Cells and wires are modeled using the mechanical analogy of a mass-spring system, i.e., masses connected to Hooke's-Law springs

- Attraction force between cells is directly proportional to their distance
- Cells will eventually settle in a force equilibrium
\square minimized wirelength

Analytic Placement - Force-directed Placement

- Given two connected cells a and b, the attraction force $\overrightarrow{F_{a b}}$ exerted on a by b is

$$
\overrightarrow{F_{a b}}=c(a, b) \cdot(\vec{b}-\vec{a})
$$

where
$\square c(a, b)$ is the connection weight (priority) between cells a and b, and
$\square(\vec{b}-\vec{a})$ is the vector difference of the positions of a and b in the Euclidean plane

- The sum of forces exerted on a cell i connected to other cells $1 \ldots j$ is $\quad \vec{F}_{i}=\sum_{c(i, j) \neq 0} \vec{F}_{i j}$
- Zero-force target (ZFT): position that minimizes this sum of forces

Analytic Placement - Force-directed Placement

Zero-Force-Target (ZFT) position of cell i

$\min \overrightarrow{F_{i}}=c(i, a) \cdot(\vec{a}-\vec{i})+c(i, b) \cdot(\vec{b}-\vec{i})+c(i, c) \cdot(\vec{c}-\vec{i})+c(i, d) \cdot(\vec{d}-\vec{i})$

Analytic Placement - Force-directed Placement

Basic force-directed placement

- Iteratively moves all cells to their respective ZFT positions
- x - and y-direction forces are set to zero:

$$
\sum_{c(i, j) \neq 0} c(i, j) \cdot\left(x_{j}^{0}-x_{i}^{0}\right)=0 \quad \sum_{c(i, j) \neq 0} c(i, j) \cdot\left(y_{j}^{0}-y_{i}^{0}\right)=0
$$

- Rearranging the variables to solve for x_{i}^{0} and y_{i}^{0} yields

$$
x_{i}^{0}=\frac{\sum_{c(i, j) \neq 0} c(i, j) \cdot x_{j}^{0}}{\sum_{c(i, j) \neq 0} c(i, j)} \quad y_{i}^{0}=\frac{\sum_{c(i, j) \neq 0} c(i, j) \cdot y_{j}^{0}}{\sum_{c(i, j) \neq 0} c(i, j)} \quad \begin{aligned}
& \text { Computation of } \\
& \text { ZFT position of cell } i \\
& \text { connected with } \\
& \text { cells } 1 \ldots j
\end{aligned}
$$

Analytic Placement - Force-directed Placement

Example: ZFT position

Given:

\square Circuit with NAND gate 1 and four I/O pads on a 3×3 grid
\square Pad positions: In1 (2,2), In2 (0,2), In3 (0,0), Out $(2,0)$
\square Weighted connections: $c(a, \ln 1)=8, \quad c(a, \ln 2)=10, \quad c(a, \ln 3)$

$$
=2, \quad c(a, O u t)=2
$$

Task: find the ZFT position of cell a

Analytic Placement - Force-directed Placement

Example: ZFT position

Given:
\square Circuit with NAND gate 1 and four I/O pads on a 3×3 grid
\square Pad positions: In1 (2,2), In2 (0,2), In3 (0,0), Out (2,0)

Solution:

$$
\begin{aligned}
& x_{a}^{0}=\frac{\sum_{c(i, j) \neq 0} c(a, j) \cdot x_{j}^{0}}{\sum_{c(i, j) \neq 0} c(a, j)}=\frac{c(a, \operatorname{In} 1) \cdot x_{\text {In } 1}+c(a, \operatorname{In} 2) \cdot x_{\text {In } 2}+c(a, \operatorname{In} 3) \cdot x_{\text {In } 3}+c(a, \text { Out }) \cdot x_{\text {Out }}}{c(a, \operatorname{In} 1)+c(a, \operatorname{In} 2)+c(a, \operatorname{In} 3)+c(a, \text { Out })}=\frac{8 \cdot 2+10 \cdot 0+2 \cdot 0+2 \cdot 2}{8+10+2+2}=\frac{20}{22} \approx 0.9 \\
& y_{a}^{0}=\frac{\sum_{c(i, j) \neq 0} c(a, j) \cdot y_{j}^{0}}{\sum_{c(i, j) \neq 0} c(a, j)}=\frac{c(a, \operatorname{In} 1) \cdot y_{\text {In } 1}+c(a, \operatorname{In} 2) \cdot y_{\operatorname{In} 2}+c(a, \operatorname{In} 3) \cdot y_{\text {In } 3}+c(a, \text { Out }) \cdot y_{\text {Out }}}{c(a, \operatorname{In} 1)+c(a, \operatorname{In} 2)+c(a, \operatorname{In} 3)+c(a, \text { Out })}=\frac{8 \cdot 2+10 \cdot 2+2 \cdot 0+2 \cdot 0}{8+10+2+2}=\frac{36}{22} \approx 1.6
\end{aligned}
$$

ZFT position of cell a is $(1,2)$

Analytic Placement - Force-directed Placement

Example: ZFT position
Given:
\square Circuit with NAND gate 1 and four I/O pads on a 3×3 grid
\square Pad positions: In1 (2,2), In2 (0,2), In3 (0,0), Out $(2,0)$

Solution:

ZFT position of cell a is $(1,2)$

Analytic Placement - Force-directed Placement

Input: set of all cells V
Output: placement P

```
P = PLACE(V)
loc = LOCATIONS(P)
foreach (cell c\inV)
    status[c] = UNMOVED
while (ALL_MOVED(V) || !STOP())
    c = MAX_DEGREE(V,status)
    ZFT_pos = ZFT_POSITION(c)
    if (loc[ZFT_pos] == Ø)
        loc[ZFT_pos] = c
    else
        RELOCATE(c,loc)
    status[c] = MOVED
```

// arbitrary initial placement
// set coordinates for each cell in P
// continue until all cells have been
// moved or some stopping
// criterion is reached
// unmoved cell that has largest
// number of connections
// ZFT position of c
// if position is unoccupied,
// move c to its ZFT position
// use methods discussed next
// mark c as moved

Analytic Placement - Force-directed Placement

- Finding a valid location for a cell with an occupied ZFT position (p : incoming cell, q : cell in p s ZFT position)
- If possible, move p to a cell position close to q.
- Chain move: cell p is moved to cells q 's location.
\square Cell q, in turn, is shifted to the next position. If a cell r is occupying this space, cell r is shifted to the next position.
\square This continues until all affected cells are placed.
- Compute the cost difference if p and q were to be swapped. If the total cost reduces, i.e., the weighted connection length $L(P)$ is smaller, then swap p and q.

Analytic Placement - Force-directed Placement (Example)

Given:

```
Nets
N}=(\mp@subsup{b}{1}{},\mp@subsup{b}{3}{}
N}=(\mp@subsup{b}{2}{},\mp@subsup{b}{3}{}
\(N_{1}=\left(b_{1}, b_{3}\right)\)
\(N_{2}=\left(b_{2}, b_{3}\right)\)
```

Weight
$\mathrm{c}\left(N_{1}\right)=2$
$c\left(N_{2}\right)=1$

Analytic Placement - Force-directed Placement (Example)

Given:

```
Nets
N}=(\mp@subsup{b}{1}{},\mp@subsup{b}{3}{}
N}=(\mp@subsup{b}{2}{},\mp@subsup{b}{3}{}
Weight
\(\mathrm{c}\left(N_{1}\right)=2\)
\(c\left(N_{2}\right)=1\)
```


Analytic Placement - Force-directed Placement (Example)

Given:

Nets
$N_{1}=\left(b_{1}, b_{3}\right)$
$N_{2}=\left(b_{2}, b_{3}\right)$
$\mathrm{c}\left(N_{1}\right)=2$
$c\left(N_{2}\right)=1$

Cell $q \quad \begin{aligned} & L(P) \\ & \text { before } \\ & \text { move }\end{aligned} \quad \begin{aligned} & L(P) / \text { placement } \\ & \text { after move }\end{aligned}$
$b_{1} \quad L(P)=5 \quad L(P)=5$

\rightarrow No swapping of b_{3} and b_{1}

$$
\begin{aligned}
& b_{2} \quad x_{b_{2}}^{0}=\frac{\sum_{c\left(b_{2}, j\right) \neq 0} c\left(b_{2}, j\right) \cdot x_{j}^{0}}{\sum_{c\left(b_{2}, j\right) \neq 0} c\left(b_{2}, j\right)}=\frac{1 \cdot 2}{1}=2 \quad b_{3} \quad L(P)=5 \quad L(P)=3 \quad b_{1} \ldots b_{3} \quad b_{2} \\
& \rightarrow \text { Swapping of } b_{2} \text { and } b_{3}
\end{aligned}
$$

- 6 Movable Objects
- 2 PIOs
- Connections between objects (Nets)

FDP Flow

(2)

Step 1: Solve convex quadratic program

FDP Flow

Step 2: Spread objects to reduce overlap

FDP Flow

(4)

Step 3: Add spreading forces to objects for next quadratic program

Addition of Spreading Forces

Importance of Spreading

Solve initial convex quadratic program (QP)
While target density is not met
Spread objects to reduce overlap
Add spreading forces to QP formulation
Solve the convex quadratic program
end while

■ Need to carefully control the magnitude of the spreading forces
\square Fast spreading will severely degrade wirelength
\square Slow spreading affects turn-around-time

Force Directed Placement

Analytic Placement - Force-directed Placement

- Advantages:
\square Conceptually simple, easy to implement
\square Primarily intended for global placement, but can also be adapted to detailed placement
- Disadvantages:
\square Does not scale to large placement instances
\square Is not very effective in spreading cells in densest regions
\square Poor trade-off between solution quality and runtime
- In practice, FDP is extended by specialized techniques for cell spreading
\square This facilitates scalability and makes FDP competitive

Force Directed Placement Example

Force-vector modulation

Proposes to modulate the spreading force vectors within analytical placement

FDP Flow with Modulation

Solve initial convex quadratic program (QP)
While target density is not met
Spread objects to reduce overlap
Order objects based on spreading force magnitude Modulate spreading forces for top x\% of objects
Add spreading forces to QP formulation
Solve the convex quadratic program
end while

Spreading forces

Nullify Top x\% of Spreading Forces

Rank Modules based on the spreading force magnitude

Nullify the spreading force magnitude for top $\mathrm{x} \%$ of modules

> Typically $x=5-10 \%$ within RQL

Advantages of modulation

Improves Wirelength

Reorders modules at a global scale

No Impact on spreading

Can be incorporated within any analytical placer

Simulated Annealing

- Analogous to the physical annealing process
\square Melt metal and then slowly cool it
\square Result: energy-minimal crystal structure
- Modification of an initial configuration (placement) by moving/exchanging of randomly selected cells
\square Accept the new placement if it improves the objective function
\square If no improvement: Move/exchange is accepted with temperaturedependent (i.e., decreasing) probability

Simulated Annealing - Algorithm

Input: set of all cells V
Output: placement P

```
T=T
P = PLACE(V)
while (T> T Tmin}
// set initial temperature
// arbitrary initial placement
```

```
while (!STOP())
```

while (!STOP())
new_P = PERTURB(P)
new_P = PERTURB(P)
\Deltacost = COST(new_P) - COST(P)
\Deltacost = COST(new_P) - COST(P)
if (}\Delta\mathrm{ cost < 0)
if (}\Delta\mathrm{ cost < 0)
P= new_P
P= new_P
else
else
r= RANDOM(0,1)
r= RANDOM(0,1)
if (r<e-\DeltacostT)
if (r<e-\DeltacostT)
P = new_P
P = new_P
T=\alpha\cdotT
T=\alpha\cdotT

```
// not yet in equilibrium at T
```

// not yet in equilibrium at T
// cost improvement
// cost improvement
// accept new placement
// accept new placement
// no cost improvement
// no cost improvement
// random number [0,1)
// random number [0,1)
// probabilistically accept
// probabilistically accept
// reduce T, 0<\alpha<1

```
    // reduce T, 0<\alpha<1
```


Simulated Annealing

- Advantages:
\square Can find global optimum (given sufficient time)
\square Well-suited for detailed placement
- Disadvantages:
\square Very slow
\square To achieve high-quality implementation, laborious parameter tuning is necessary
\square Randomized, chaotic algorithms - small changes in the input lead to large changes in the output
- Practical applications of SA:
\square Very small placement instances with complicated constraints
\square Detailed placement, where SA can be applied in small windows (not common anymore)
\square FPGA layout, where complicated constraints are becoming a norm

Modern Placement Algorithms

- Predominantly analytic algorithms
- Solve two challenges: interconnect minimization and cell overlap removal (spreading)
- Two families:

Non-convex optimization placers

Modern Placement Algorithms

Quadratic placers

Non-convex
optimization placers

- Solve large, sparse systems of linear equations (formulated using force-directed placement) by the Conjugate Gradient algorithm
- Perform cell spreading by adding fake nets that pull cells away from dense regions toward carefully placed anchors

Modern Placement Algorithms

Quadratic placers

- Model interconnect by sophisticated differentiable functions, e.g., log-sum-exp is the popular choice
- Model cell overlap and fixed obstacles by additional (non-convex) functional terms
- Optimize interconnect by the non-linear Conjugate Gradient algorithm
- Sophisticated, slow algorithms
- All leading placers in this category use netlist clustering to improve computational scalability (this further complicates the implementation)

Modern Placement Algorithms

Non-convex
optimization placers

Pros and cons:

- Quadratic placers are simpler and faster, easier to parallelize
- Non-convex optimizers tend to produce better solutions
- As of 2011, quadratic placers are catching up in solution quality while running 5-6 times faster

Legalization and Detailed Placement

- Global placement must be legalized
\square Cell locations typically do not align with power rails
\square Small cell overlaps due to incremental changes, such as cell resizing or buffer insertion
- Legalization seeks to find legal, non-overlapping placements for all placeable modules
- Legalization can be improved by detailed placement techniques, such as
\square Swapping neighboring cells to reduce wirelength
\square Sliding cells to unused space
- Software implementations of legalization and detailed placement are often bundled

Legalization and Detailed Placement

Legal positions of standard cells between VDD and GND rails

Summary

- Row-based standard-cell placement
\square Cell heights are typically fixed, to fit in rows (but some cells may have double and quadruple heights)
\square Legal cell sites facilitate the alignment of routing tracks, connection to power and ground rails
- Wirelength as a key metric of interconnect
\square Bounding box half-perimeter (HPWL)
\square Cliques and stars
\square RMSTs and RSMTs
- Objectives: wirelength, routing congestion, circuit delay
\square Algorithm development is usually driven by wirelength
\square The basic framework is implemented, evaluated and made competitive on standard benchmarks
\square Additional objectives are added to an operational framework

Summary

- Combinatorial optimization techniques: min-cut and simulated annealing
\square Can perform both global and detailed placement
\square Reasonably good at small to medium scales
\square SA is very slow, but can handle a greater variety of constraints
\square Randomized and chaotic algorithms - small changes at the input can lead to large changes at the output
- Analytic techniques: force-directed placement and non-convex optimization
\square Primarily used for global placement
\square Unrivaled for large netlists in speed and solution quality
\square Capture the placement problem by mathematical optimization
\square Use efficient numerical analysis algorithms
\square Ensure stability: small changes at the input can cause only small changes at the output
\square Example: a modern, competitive analytic global placer takes 20mins for global placement of a netlist with 2.1 M cells (single thread, 3.2 GHz Intel CPU)

Legalization and Detailed Placement

- Legalization ensures that design rules \& constraints are satisfied
\square All cells are in rows
\square Cells align with routing tracks
\square Cells connect to power \& ground rails
\square Additional constraints are often considered, e.g., maximum cell density
- Detailed placement reduces interconnect, while preserving legality
\square Swapping neighboring cells, rotating groups of three
\square Optimal branch-and-bound on small groups of cells
\square Sliding cells along their rows
\square Other local changes
- Extensions to optimize routed wirelength, routing congestion and circuit timing
- Relatively straightforward algorithms, but high-quality, fast implementation is important
- Most relevant after analytic global placement, but are also used after min-cut placement
- Rule of thumb: 50% runtime is spent in global placement, 50% in detailed placement

State-of-the-art Analytical Placers

| | APlace | mPL6 | NTUP3 |
| :---: | :---: | :---: | :---: | FDP

The mountain hike analogy

