Physical Synthesis

What's Physical Synthesis

- A design satisfies timing constraint after logic synthesis will not necessarily meet timing constraints after P&R due to wire delays
- Physical synthesis has been emerged as a necessary weapon for design closure.
 - Begins with mapped netlist generated by logic synthesis
 - Generates a new optimized netlist and a corresponding layout
 - Objective are combination:
 - Timing, area, power and routability
- Think of this as a wrapper around traditional P&R where synthesis based optimization are interwoven with placement & routing.

What Does Physical Synthesis Mean?

Global Interconnect Dominance

Process Technology Node (nm)

Physical Synthesis with Real Wires

Physical Synthesis with Global Wires

Variable Optimization and Accuracy

What Is Incremental Synthesis?

Example Incremental Synthesis Transforms

- Buffering or repeater insertion
- Layer assignment
- Gate sizing or repowering
- Vt swapping
- Cell movement
- Inverter absorption / inverter decomposition
- Cloning
- Inverter / buffer deletion
- Composition / decomposition

Buffer Insertion

 Buffer insertion and sizing is one of the most effective method for reducing interconnect delay and achieving timing closure.

Given: Source and sink locations, sink capacitances and RATs, a buffer type, source delay rules, unit wire resistance and capacitance

Find: Buffer locations and a routing tree such that slack at the source is minimized

$$q(s_0) = \min_{1 \le i \le 4} \{RAT(s_i) - delay(s_0, s_i)\}$$

Slack Example

Buffering Long Nets

Buffering a Net to Reduce Fanout (After)

Layer Assignment

What is Wire (Interconnect) Synthesis?

What Does Wire Synthesis Really Mean?

What Does Wire Synthesis Really Mean?

Was Wire Tapering Worthwhile?

- Routers could not handle these structures well if at all
- Even if they could, routability would suffer

- With simultaneous buffering, results close to tapering
- Theoretical formula: 3.5% difference in optimal cases

Performing Layer Assignment

Metal RC Characteristics

cu65	Width (micron)	Resistance (kohm/mm)	Capacitance (ff/mm)
1x (M3)	0.1	1.82	192
2x (B1)	0.2	0.37	209
4X (EA)	0.4	0.10	232

cu45	Width (micron)	Resistance (kohm/mm)	Capacitance (ff/mm)
1x (M2)	0.07	2.824	219
1.3x (C1)	0.1	1.773	201
2x (B1)	0.14	0.710	180
10X (UB)	0.8	0.024	216

cu32	Resistance (kohm/mm)	Capacitance (ff/mm)
1x (M4)	5.758	235
2x (B1)	1.171	208
16X (MA)	0.024	276

Technology	45 nm		32 nm	
Layers	2x layer	10x layer	2x layer	16x layer
Time of Flight (ps/mm)	104	51	243	148
Optimal Buff Dist (mm)	0.52	2.94	0.36	1.39

 Signals can travel about 2x and 3.5X further and obtain 2x and 3x delay reduction, respectively for the 2x and 4x layers.

	45 nm		32 nm	
	2x layer	10x layer	2x layer	16x layer
Slew reach	1.7 mm	2.9 mm	0.5 mm	0.7 mm
Optimal timing	0.52 mm	2.9 mm	0.35 mm	1.38 mm

- Plane and wire code constraints:
 - Define the routing layers range: B1 to UB;
 - Define the wire width and space for certain layer range: 2X spacing and width from M1 to B3;

Slew Based Wire Synthesis

Wire Synthesis

Gate Sizing or Repowering

Cell Movement

Inverter Absorption / Decomposition

Composition / Decomposition

Most critical books

All modifiable books

Books with negative slack

Boxes with positive slack

All moveable latches

Boxes in congested areas

Improves Timing

Fixes slew / cap violation

Reduces area

Improves vt distribution

Improves wirelength

Improves routing congestion

Eliminates opens / shorts

Selection: boxes with negative slack

Order: Most-to-least critical

Transform: logic decomposition

Success: timing improves + No slew and capacitance violations + tolerable area increase Selection: boxes with positive slack

Order: Least-to-most critical

Transform: repowering / buffer deletion

Success: area improves + Timing does not become negative + No slew and capacitance violations Variable Optimization and Accuracy

Basic Physical Synthesis Flow

Trends in Physical Synthesis

- Historically all about timing
- Now: physical effects of routing paramount
 - Switching from Steiners to detailed routes disruptive
 - Must model wires earlier in the flow
- Parallelization
- Higher densities