High-Performance SRAM Design

Rahul Rao

IBM Systems and Technology Group

Worst case read condition

: Worst case Bitline Leakage when reading a "1"

Data Independent Leakage Cell

Figure 9 (c): Schematic of Ten transistors with M9 and M10 added to schematic of eight transistor to lower leakage power

(Calhoun, 2010)

Mechanisms of Parametric Failures

Question

□ Which of the following are true for the 6-T SRAM cell

- A cell with poor READ margin is unlikely to have access failure
- b) Differential read means there is no worst case data condition for read
- c) The worst case write condition is having cells with alternateOs and 1 along the column
- Access fails can be minimized by running the array at a slower frequency

Topics

- Introduction to memory
- □ SRAM basics and bitcell array (refresher)
- Current Challenges
- □ Alternative Cell Types (6 to 10T), Asymmetric Cells, Sub-

threshold Cells, Low - leakage cells

□ Impact of Variation, Assist Circuits

- □ BTI and impact on SRAMs
- Power

Sources of Manufacturing Variations

Variation in Process Parameters

Impact of Manufacturing Variations

Location of Identical Ring Oscillators on a Die

Frequency Correlation

(averaged over 300 die)

Environmental Variations

Temperature Variation

- Switching Characteristics of Blocks
- Material Properties: Thermal Coefficient
- Cooling and Packaging Solutions
- Workload and Thermal Management Policies

Delay and leakage increase with temperature

Power Supply Variation

- IR drop: Leakage, Power grid robustness
- Ldi/dt: Transient activity, decoupling capacitors
- Power Efficient Design Strategies: Clock Gating, Power Gating

Delay increases with power supply droop

P. Restle, ICCAD 2006

Global and Local Variations

S. Mukhopadhyay, ITC 2010

S. Mukhopadhyay, ITC 2010

Question

Mark worst case VT variation condition for each device for write failure

Inter-die Variation & Cell Failures

• *P_{COL}*: Probability that any of the cells in a column fail

$$P_{COL} = 1 \quad (1 \quad P_F)^{N_{ROW}}$$

Impact of Redundancy on Memory Failure

Larger redundancy

Redundant Col / Total Col. [%]

- (1) more column to replace (less memory failure).
- (2) smaller cell area (larger cell failure).

Transistor Sizing

• Slide contributed by K. Roy, Purdue

Question

Array redundancy

- a) Improves cell stability
- b) Degrades cell performance (i.e increases read and write times)
- c) Does not require any change to cell peripheral circuits
- d) Row redundancy is better than column redundancy

Example: Multi-VCC for SRAM Cell

 Create differential voltage between WL and Cell to decouple the Read & Write

- Write: V_WL > V_Cell
- Read: V_WL < V_Cell</p>

Dynamic Circuit Techniques for Variation Tolerant SRAM

	Read	Write
V _{WL}	Lower V _{WL} => lower V _{read} (weak AX)	Higher V _{WL} => Strong AX helps discharge
V _{cs}	Higher V _{cs} => lower V _{read} (strong PD) Higher V _{trip}	Lower V _{cs} => Weak PUP
V _{BL}	Weak impact	Negative V _{BL} for 0 => strong AX helps
		uischarge

Example: Dual-Vcc based Dynamic Circuit Techniques

- Dynamic VCC MUX is integrated into subarray
- VCC selection is along column direction to decouple the Read & Write

Implementation Consideration: Half-Select Stability

• Higher V_{WL}

- Row-based scheme
- Degrades half-select read stability of the unselected columns
- Lower V_{cell} or negative bit-line
 - + Column-based scheme
 - + Half-select read stability remains same

Negative Bit Line Scheme

Source: S. Mukhopadhyay, R. Rao et. al, TVLSI 2009

- Various dynamic schemes have different effectiveness in improving writability for similar read stability
 - Higher V_{WL} is most effective

Source: S. Mukhopadhyay, R. Rao et. al, TVLSI 2009

Impact on Active Data-Retention

- Column based read-write control adversely impact the active data-retention failures
 - DC negative bitline has higher active data-retention failures
 - Tran-NBL and lower V_{cs} have comparable failure rates

Source: S. Mukhopadhyay, R. Rao et. al, TVLSI 2009

Assist Methods

WLOD (WL Overdrive)

Strengthen PG

VCDL (V_{DD,CELL} Lowering)

NBL (Negative BL)

Strengthen PG

SBL (Suppressed BL)

Weaken BL noise

WLUD (WL Underdrive)

Weaken PG

Proposed Dual-Transient WL (DTWL)

- Dual-Transient WL (DTWL) controls WL transiently
- DTWL provides mix-up assist for read and write
 - Covers different process-corner
 - DTWL mitigate the impact of WLOD (WA)

Question

□ Of the various assist methods

- a) Negative bit line scheme does not help 8-T sram cell
- b) Word line under drive does not help 8-T sram cell
- c) Word line over drive does not help 7-T conditionally decoupled sram cell
- d) VCDL does not help any kind of assymetric sram cell

Slide 31