Class Exercise

Build a schematic of a 6T - SRAM cell with minimum sized
 PFETs, Pull down = 3*PFET size, and Access transistor = 2* PFET
 size. Simulate it and plot butterfly curve for margins
 Change Pull down size to 4*PFET size and re-simulate
 Change Access transistor size to 3*PFET size and re-simulate
 Change pull up device size to 2 original size and re-simulate

Column Select and Half-Select Issue

Prevents multiple-bit soft error

Better aspect ratio

Column Multiplexing

Sometimes, we read subset of bit line data (e.g: 128 columns \rightarrow 16bit data I/O) \rightarrow Need to select part of bit lines to read-out.

No need to use complementary pass-gates. Only NMOS pass-gate is used. Why?

Learning Objectives for SRAM

- Articulate memory hierarchy and the value proposition of
 - SRAMs in the memory chain + utilization in current processors
- Explain SRAM building blocks and peripheral operations and
 - memory architecture (with physical arrangement)
- Articulate commonly used SRAM cells (6T vs 8T), their
 - advantages and disadvantages
- Explain the operation of a non-conventional SRAM cells, and
 - their limitations
- Explain commonly used assist methods
- Explain how variations impact memory cells

Topics

□ Alternative Cell Types (6 to 10T), Asymmetric Cells, Subthreshold Cells, Low - leakage cells

The Balancing Act

Large N: Better READ performance. If too large, trip voltage of inverter becomes so low that cell becomes unstable.

Large A: Better Performance. If too large, storage node voltage goes high during READ, causing cell flip

Large P: Increase stability. If too large, hard to WRITE

6-T Single Ended Read

- Split word line for Read and Write
- Single-ended Read / Differential Write
- Full swing domino Read with short bit line

READ : **R/WWL** = **VDD** and **WWL** = **GND**

WRITE: R/WWL = VDD and WWL = VDD

Refresher Question

Decreasing the size of only one side of NFET transistors

will improve the cell

- a) Cell density
- b) Read margin
- c) Write margin
- d) Hold margin

Asymmetrical 6T SRAM: Device Sizing

- Read word-line separated from Write word-line
- Single-ended Read, differential Write

Asymmetry could be achieved through VT selection as well

(J. Kim, ESSCIRC, 2006)

6T Asym SRAM in Double Gate Technologies

- Bias back-gate of NL to GND. Front-gate as cell device & sizing down NL
- Left and Right SNM become comparable
 - © Optimal SNM of asymmetrical cell

(J. J. Kim et al., ESSCIRC, 2006)

Workhorse 6T-Cell

Asymmetric MOSFET

Asymmetric MOSFET can be realized in multiple ways Net Effect: I (drain – source = I (source – drain)

Asymmetric Access Transistors

Read Operation

Write Operation

- Access Transistor in Fwd Mode
- Weaker than in Sym. Case
- Read Disturb Noise Reduced
- L and R Access Transistor in Fwd and Rev Mode respectively

Asymmetric 6-T Cells

(J. Kim, CICC 2010, J. Kim EDL 2011)

Question

□ Which of the following is not true wrt asymmetric 6-T sram cell

- a) Assymetric transistors can be used for pull down and access transistors
- b) Assymetric sizing based sram cell has reduced pull down width on the side opposite to the read bit-line
- c) Assymetric VT based sram cell does not provide any area benefit
- d) All asymmetric transistor sram cells need single ended read

Decoupled Read – Write Bitlines

(L. Chang et al, VLSI Symp 05)

Decoupled Read – Write Bitlines

(L. Chang et al, VLSI Symp 05)

Half-Select Disturb

- During a Read or Write operation, half-selected cells on the selected wordline are actually experiencing "Read" operation
 - Disturb similar to Read-disturb

Half-Select in 8T

- Array architecture approach
 - No column select. Floorplan such that all bits in a word are spatial adjacent
- Gated Write wordline signal (Byte Write)
 - Local Write wordline "on" only for the selected block
- Write-back scheme
 - RWL activated even during Write, all cell data in selected WL read out to D-latches
 - Dataout is then written back to half-selected cells

Delayed Read-Modify-Write

Selected (WR)

Allow the column-select in 8T cell array by replacing "WRITE" with "READ-MODIFY-WRITE"

One cycle delayed WRITE: Relaxed timing, No bandwidth loss

Question

□ Which of the following is true wrt decoupled Read-Write 8T SRAM Cell

- a) The RBL needs to be on the side of the BL-bar
- b) It is possible to be read and write to the different cell in the same column
- c) The 6-T portion of the SRAM cell is optimized for 'hold' operation
- d) Memory folding cannot be done with 8-T cells

Conditionally decoupling regeneration

(K. Takeda et al, ISSCC 05)

Conditionally decoupling regeneration

5T Sram with floating ground

(K. Takeda et al, ISSCC 05)

Portless SRAM cell

(K. Takeda et al, ISSCC 05)

Modifying power supply

Differentially Data Aware Power Supplied

(Chang, 2009a)

(Adam, et. al)

Question

- Which of the following is not a useful approach
- a) Conditionally break the back to back inverters during read operation
- b) Conditionally break the back to back inverters during write operation
- c) Conditionally float the cell supply depending on the data being written
- d) Conditionally disconnect the ground connection during write operation

Sub-threshold 8-T SRAM

(B. Zhai, JSSC 08)

Horizontal and Vertical Word Line Cell

Yaabuchi, 2009

Dual Ended Transmission Gate Cell

(Agarwal, 2010

Low leakage SRAM

The Phoenix Processor: A 30pW Platform for Sensor Applications

(S. Hanson, VLSI Symp '08)

Question

An SRAM cell with multiple word lines (read or write)

- a) Enables both read and write operation at the same time
- b) Reduces cell access failure due to 'beneficial' coupling
- c) Is likely to become wiring limited as technology scales
- d) Improves hold margin of the cell

□ Impact of variation on sram stability and assist circuits

- A 40 nm Sub-Threshold 5T SRAM Bit Cell with Improved Read and Write Stability
 Adam Teman, Student Member, IEEE, Anatoli Mordakhay, Janna Mezhibovsky and Alexander Fish, Member, IEEE
- A Variation-Tolerant Sub-200 mV 6-T Subthreshold SRAM

Bo Zhai, Scott Hanson, *Student Member, IEEE*, David Blaauw, *Member, IEEE*, and Dennis Sylvester, *Senior Member, IEEE*

 The Phoenix Processor: A 30pW Platform for Sensor Applications

Mingoo Seok, Scott Hanson, Yu-Shiang Lin, Zhiyoong Foo, Daeyeon Kim, Yoonmyung Lee, Nurrachman Liu, Dennis Sylvester, David Blaauw

- Agarwal et al., A 32 nm 8.3 GHz 64-entry 9 32b
 Variation Tolerant Near-Threshold Voltage Register
 File. Symposium on VLSI Circuits Digest of Technical
 Papers, pp. 105-157 (2010)
- B.H. Calhoun et al., A 256 k Sub threshold SRAM Using 65 nm CMOS. Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), pp. 628-629, Feb 2006
- L. Chang et al., Stable SRAM Cell Design for the 32 nm Node and Beyond. Symposium on VLSI Circuits Digest of Technical Papers, pp. 128-129 (2005)
- L. Chang et al., An 8T-SRAM for variability tolerance and low-voltage operation in high- performances caches. IEEE J. Solid-State Circuits, 43, 4, April (2008)

- M.F. Chang et al., A Differential Data Aware Powersupplied (D2AP) 8T SRAM Cell with Expanded Write/Read Stabilities for Lower VDDmin Applications. Symposium on VLSI Circuits Digest of Technical Papers, pp. 156-157 (2009a)
- I.J. Chang et al., A 32 kb 10T sub-threshold SRAM array with bit-interleaving and differential read scheme in 90 nm CMOS. IEEE J. Solid-State Circuits 44(2), 650-658 (2009b)
- T.H. Kim et al., A High-Density Sub threshold SRAM with Data-Independent Bitline Leakage and Virtual Ground Replica Scheme. Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), pp. 330-331, Feb 2007

- T. Suzuki et al., 0.5 V, 150 MHz, Bulk-CMOS SRAM with Suspended Bit-Line Read Scheme, Proceedings of IEEE European Solid-State Circuits Conference (ESSCIRC), pp. 354-357, Sept 2010
- K. Takeda et al., A read-static-noise-margin-free SRAM cell for low-VDD and high-speed applications. IEEE J. Solid-State Circuits 41(1), 113-121 (2006)
- K. Utsumi et al., A 65 nm low power CMOS platform with 0.495 lm2 SRAM for digital processing and mobile applications. Proceedings of IEEE Symposium VLSI Technology, pp. 216-217 June 2005
- M. Yabuuchi et al., A 45 nm low-standby-power embedded SRAM with improved immunity against process and temperature variations. Proceedings of IEEE International Solid-State Circuits Conference, pp. 326-327, Feb 2007