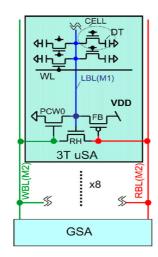
EE6361 – Advanced Topics in VLSI

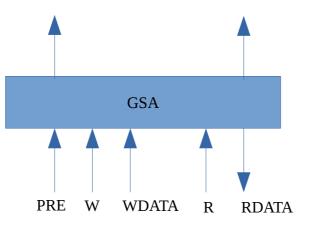
Assignment – 1 – 28 January 2017

Due: 13th February 2017 (11:59 PM)

Instructions:


- 1. Submit only a soft copy as a PDF (NO WORD DOC please)
- 2. Exact submission procedure will be made clear within a week
- 3. Keep the answers crisp and precise

Given:


- 1. All transistors are modelled using the Berkeley PTM 22nm LP and HP models
- 2. G = Gate , D = Drain , S = Source, B = Body
- 3. Deep trench capacitor in this technology = 20fF, Series resistance = $5K\Omega$
- 4. Use the LP (Low power) NFET as the access device of the eDRAM cell
- 5. Use the HP (High performance) FETs for other circuitry like sense amp etc
- 6. For all FETs: L = 25nm and Wmin = 50nm
- 7. VDD = 0.8V

Questions

- 1. Characterise the LP and HP NFETs to extract
 - 1. Threshold voltage Defined as the VG when $ID = (W/L)I_{TH}$ where $I_{TH} = 300$ nA and VD = VDD
 - 2. The gate voltage at which GIDL sets in
- 2. For an eDRAM in this technology specify the operating voltages of the following assuming that the threshold variation is ~15% of the mean value
 - 1. BL
 - 2. WL
- 3. Model a single Bit-line slice with N cells connected to $3T-\mu SA$ as shown below
 - \circ Model the load from N-1 cells using a single transistor with m = N-1
 - Assume that LBL metal capacitance is negligible
 - Assume that the WBL and RBL are driven directly / initialized in the simulation
 - Answer the following:
 - 1. What are the sizes of the cell access device, PCW0, RH and FB? Justify
 - 2. Simulate the waveforms for a WRITE 1
 - 3. Indicate the pre-charge, signal development and write back phases on a READ1 waveform
 - 4. Set N to 32, 64 and 128 and compare the Write and read times

4. **BONUS question**: Assume that the GSA has the following input/ output

PRE	W	WDATA	R	RDATA	WBL	RBL
1	X	Х	X		1	1
0	0	0	0	Float low	0	Float High
0	1	0	0	Float low	1	1
0	1	1	0	Float low	0	0
0	0	Х	1	DATA	0	Float High

Design the logic circuit in the GSA to implement the above truth table.