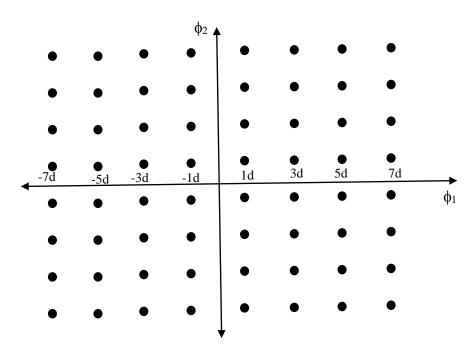
Department of Electrical Engineering Indian Institute of Technology, Madras

EE 5140: Digital Modulation & Coding

September 2017 Tutorial #2 KG/IITM

- 1. Consider a band-pass signal $s(t) = I(k)g(t)Cos(2\pi f_c t)$ for $kT \le t \le (k+1)T$ where the pulse shape $g(t) = \operatorname{sqrt}(2/T)$ for $0 \le t \le T$. Here, message symbol $I(k) \in \{+3d, +d, -d, -3d\}$, and the received sample at the output of the matched filter can be written as $z(k) = \alpha I(k) + v(k)$ where v(k) is WGN with variance No/2, and the real scalar α accounts for any possible gain(scaling) error encountered in the AGC-ADC operations.
 - (a) If the average energy E_a for this signal set is 4 Joules, what is *d*? *Hint*: Also, relate this E_a to the distance 2d between the neighbouring points in the constellation in order to answer part-(c).
 - (b) For $\alpha=1$, find the exact expression for the average probability of symbol error P_e in the above AWGN channel. Express your answer in terms of $q(d) = Q\left(\frac{d}{\sqrt{N_0/2}}\right)$ with 2d as in part (a).
 - (c) Now, if α =1.5 and this knowledge is not known at the receiver, find the new expression for P_e when the same decoder (decision regions) as in part (b) is used.
- **2.** Derive the average probability of symbol error P(e) for the square 64-QAM constellation shown below in terms of q(d).
 - (a) Assume instead that the union bound is used only on the "nearest neighbor" symbols. Use this to compute bound on $P_{UB}(e)$. What is this expression?
 - (b) How does this compare with the true P(e)? Numerically evaluate both of them for Eb/No = 10dB.



- 3. Consider a band-pass signal $s(t)=I_1(k)g(t)Cos(2\pi f_c t)+I_2(k)g(t)Sin(2\pi f_c t)$, for $kT \le t \le (k+1)T$, where the pulse shape g(t)=sqrt(2/T) for $0 \le t \le T$. If $I_1(k) \in \{+1,-1\}$, while $I_2(k) \in \{+3,+1,-1,-3\}$, determine the following:
 - (a) What is the ortho-normal basis set and plot the corresponding signal constellation.
 - (b) What is the average energy E_a for this signal set? *Hint*: Also, relate this E_a to the distance 2d between the neighbouring points in the constellation in order to answer part-(c).
 - (c) Find the exact expression for the probability of symbol error in an AWGN channel with PSD No/2. Express your answer in terms of q where q(d)=Q(d/sqrt(No/2)) with 2d as in part (b).
 - (d) Perform Gray coding for the constellation. Using this, provide the expression for the <u>bit</u> error probability (i.e., bit error rate) for the above measurement model.
- **4.** Consider the "square" 4-QAM (set x), 16-QAM (set y), and 64-QAM (set z) signal sets, discussed in class and/or tutorial.
 - (a) How many bits per symbol are carried by each of the 3 sets?
 - (b) Plot the 16-QAM signal constellation with "Gray Coding" to ensure that all the nearest neighbor symbols differ only by 1-bit labels.
 - (c) For the *same* average energy per bit, E_b , find the minimum distances d_x of 4-QAM and d_y of 16-QAM in terms of the minimum distance d_z of the 64-QAM constellation.
- 5. Consider the signal constellation in Fig. 2 with minimum distance 2*d*. When this signal is sent through an ideal channel and corrupted by additive white Gaussian noise with variance No/2, and after matched filtering and sampling, the received samples are given by $r(k) = s_i(k) + n(k)$ where $i \in \{1,2,...,6\}$.

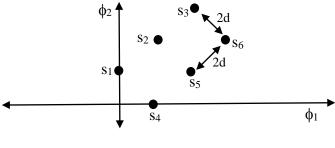


Fig. 2

(a) Assuming that all the symbols are equi-probable, find the exact expression for the average probability of symbol error P_e in the above AWGN channel. Express your answer in terms of

$$q(d) = Q\left(\frac{d}{\sqrt{N_0/2}}\right)$$
 with 2d as the minimum distance.

(b) Now instead, if the probability of occurrence of symbols s_2 and s_5 is 1/3, while that of the remaining 4 symbols is 1/12 each, find the new expression for P_e . Make a rough plot of the new decision regions, if any.

- **6.** Consider a band-pass signal $s_{i,j}(t) = d_i(k) \varphi_j(t)$, for $kT \le t \le (k+1)T$, where $\varphi_j(t)$, j=1,2,...,N, are orthonormal basis functions defined between $0 \le t \le T$, and $d_i(k)$ is uniformly drawn from $\{+3d, +1d, -1d, -3d\}$. Given that the total number of signals in the constellation is therefore given by $i \times j = 4 \times N$, answer the following:
 - (a) For N=2, plot the signal constellation.
 - (b) For N=2, what is the exact expression for average probability of symbol error P_e in AWGN channels in terms of d and noise variance No/2?
 - (c) Develop an approximate expression for P_e for N=2 by considering the Union Bound with only the nearest neighbours.
- **7.** Do the following problems from the 7th chapter in the text-book (Proakis and Salehi), starting with page. 453 in the E-version. The problems marked with "*" are a little bit harder, since they were not discussed in the class (as yet).
 - \rightarrow All problems from <u>7.10 to 7.35</u> excepting 7.17. The possibly hard-ones are 7.23*, 7.28*, 7.31*, 7.32*, and 7.35*
 - \rightarrow All problems from 7.42 to 7.46.