Overview on OFDM Design

Ho Chin Keong

Communication Systems & Signal Processing Centre for Wireless Communications National University of Singapore

November 9, 2001

- OFDM Transmitter Design Considerations
- Design Considerations in Transmission through Multipath Channel
- Additional OFDM Receiver Design Considerations

OFDM Transmitter Design Considerations

- OFDM modulation in IF vs OFDM modulation using IFFT
- OFDM symbol windowing
- OFDM spectrum

CENTRE FOR WIRELESS COMMUNICATIONS

OFDM modulation using IF circuitry

(a) One sub-carrier at IF.

(b) OFDM modulation implemented at IF.

$$x'(t) = \sum_{k=0}^{N-1} x_R(k) \cos(2\pi k f_o t) - x_I(t) \sin(2\pi k f_o t)$$
(1)

OFDM modulation at baseband

(a) One sub-carrier at baseband.

(b) OFDM modulation implemented at baseband.

$$x(t) = \sum_{k=0}^{N-1} X(k) \exp(j2\pi k f_o t)$$
 (2)

OFDM modulation at baseband using IFFT

• obtain discrete values at t = nT, select $f_o = \frac{1}{NT}$

$$x(n) = x(t = nT) = \sum_{k=0}^{N-1} X(k) \exp(j2\pi nk/N)$$
(3)

- becomes IDFT of $\{X(k)\}_k \mod N$
- implemented using IFFT, then use DAC

OFDM symbol windowing - allows other **OFDM** symbols transmissive **CENTRE FOR** ICATIONS

(a) Time domain before/after windowing. (b) Freq. domain before/after windowing.

• before windowing: $X(f) = X(k)\delta(f - kf_o)$

• after windowing:
$$X(f)W(f) = X(k)\delta(f - kf_o) \otimes \operatorname{sinc}(f/f_o) = X(k)\operatorname{sinc}(f/f_o - k)$$

Note: X(f) from here on will be assumed to be windowed with rectangular window.

Spectrum efficiency η for single carrier vs OFDM

assume R is data rate of each (sub)carrier, bandwidth defined from null-to-null, N subcarriers

• for single carrier : $\eta = \frac{R}{2f_o}$

• for OFDM :
$$\eta = \frac{NR}{(N+1)f_o}$$

• for OFDM : as
$$N \to \infty, \eta \to \frac{R}{f_o}$$

- but windowing possible for single carrier to improve η
- windowing not possible on a subcarrier to exploit implementation simplicity of IFFT

Digital to Analogue Converter (DAC)

Need to perform upsampling for interpolation.

Solutions:

- null subcarriers to ease filter design
- windowing spectrum decays at 1/|f| for rectangular window
- digital filtering usually FIR

Effects of windowing and null subcarriers.

Spectrum of OFDM symbol before DAC in KRONDOR.

High peak-to-average power ratio (PAPR)

- x(n) is Gaussian distributed by law of large number leads to high PAPR
- $\bullet\,$ effect is more prominent as N increases
- requires expensive and high power amplifier with high dynamic range, or else
 - distorts time domain signal
 - non-linearity or clipping introduces out-of-band spectral regrowth
- solutions

Design Considerations in Transmission through Multipath Chammer Cations

- multi-dimension interference (MDI)
 - inter-[OFDM] symbol interference (ISI)
 - inter-[sub]carrier interference (ICI)
- use of guard interval to remove ISI
- use of cyclic prefix to remove ICI

Time selective channel

- usually valid to treat channel as time invariant over each OFDM symbol
- channel changes after every OFDM symbol

Frequency selective channel

- use discrete time baseband representation
- $y(n) = x(n) \otimes h(n) + v(n)$ where v(n) is AWGN, \otimes is linear convolution
- ISI occurs which spills to other OFDM symbols

Mitigation of ISI

- \bullet append guard interval (GI) at transmitter
- GI longer than maximum delay spread
- remove GI at receiver

Introduce cyclic prefix (CP)

- how to remove ISI within OFDM symbol? we don't
- fill appended GI with cyclic data to form CP
- $\bullet\,$ define $\bigcirc\,$ to be circular convolution modulo N ,

$$y(n) = x(n) \otimes h(n)$$

$$\rightarrow y_{cp}(n) = x_{cp}(n) \otimes h(n)$$

$$\rightarrow y(n) = x(n) \bigcirc h(n)$$
(4)

Note: All discrete index from now on will be assumed to be modulo N.

ICI removed through cyclic prefix (CP)

• removing cyclic prefix, received time domain signal is

$$y(n) = \sum_{k=0}^{N-1} H(k)X(k) \exp(j2\pi nk/N),$$
 (5)

where $H(k) = \sum_{n=0}^{N-1} h(n) \exp(-j2\pi nk/N)$.

• demodulation using FFT,

$$Y(k) = \sum_{n=0}^{N-1} y(n) \exp(-j2\pi nk/N) = X(k)H(k) + V(k)$$
(6)

when orthogonality is satisfied, i.e. $\sum_{n=0}^{N-1} \exp(-j2\pi nk/N) \exp(j2\pi nk'/N) = \delta(k-k')$

Additional OFDM Receiver Design Considerations

- Time/frequency duality
- Timing Synchronization
- Frequency Synchronization
- Channel Estimation

Time/frequency duality

• single carrier in time selective channel vs OFDM in frequency selective channel

$$y(n) = x(n)h(n) + v(n) \rightsquigarrow Y(k) = X(k)H(k) + V(k)$$

• single carrier in frequency selective channel vs OFDM with time selective channel

$$y(n) = Ax(n)h(n) + \mathsf{ISI} + v(n) \rightsquigarrow Y(k) = BX(k)H(k) + \mathsf{ICI} + V(k)$$

where A, B are complex attenuation factors

- ISI occurs for single carrier satisfying Nyquist pulse-shaping criterion when sampling offset occurs
- ICI occurs for OFDM when frequency offset occurs

Synchronization in general

• timing synchronization errors- correctable in a pilot based system

$$y(n + \Delta_t) \rightleftharpoons Y(k) \exp(j2\pi k \Delta_t / N)$$
(7)

- frequency synchronization errors when
 - carrier frequency offset
 - phase jitter
 - Doppler spread
- frequency synchronization errors- introduces ICI

$$y(n) \exp(j2\pi n\Delta/N) \rightleftharpoons Y(k+\Delta)$$
 (8)

Windowing at receiver

• consider windowing after removing cyclic prefix, before FFT

$$y_w(n) = y(n)w(n)$$

= $[x(n) \odot h(n)]w(n)$ (9)

• the DFT is

$$Y_{w}(k) = [X(k)H(k)] \odot W(k) = \sum_{l=0}^{N-1} X(l)H(l)W(k-l)$$
(10)

Effects of Frequency Offset

• presence of normalized frequency offset Δ between tx and rx, (5) becomes

$$y(n) = \sum_{k=0}^{N-1} H(k)X(k) \exp(j2\pi nk/N) \exp(j2\pi n\Delta/N), \quad (11)$$

- define $w(n;\Delta)=\exp(j2\pi n\Delta/N)$ and thus $W(k;\Delta)$ is the dirichlet kernel
- using (9) and (10), we can re-write the DFT of (11) as

$$Y(k) = H(k)X(k)W(0;\Delta) + I(k)$$
 (12)

where the ICI is

$$I(k) = \sum_{l=0, l \neq k}^{N-1} H(l)X(l)W(k-l;\Delta)$$
(13)

Ho Chin Keong: Overview on OFDM Design

19

ICI due to frequency offset illustrated

ICI occurs when sampling at frequency $k + \Delta$ instead of k .

Remove ICI caused by frequency offset

- time domain methods:
 - estimate Δ using averaging of phase difference of repeated samples, multiply complex term to de-rotate signal with increasing phase
 - use windowing to reduce ICI
- frequency domain method:
 - estimate $\Delta,$ then
 - express as matrix form

$$\mathbf{y} = \mathbf{W}(\Delta) \mathsf{diag}\{\mathbf{x}\}\mathbf{h} + \mathbf{v}$$
(14)
=
$$\mathbf{W}(\Delta) \mathsf{diag}\{\mathbf{h}\}\mathbf{x} + \mathbf{v}$$
(15)

– solve for ${\bf h}$ or ${\bf x}$ in the frequency domain using least squares by minimizing 2-norm of ${\bf v}$

OFDM model with respect channel estimation methodology

Note: Some notations here are not inconsistent with this presentation.

Channel estimation in OFDM systems

- (semi-)blind methods based on cyclic prefix or cyclostationarity properties
- decision feedback not popular, probably due to large processing delay in FFT
- training substantial initialization, usually for fixed line, not for packet based system
- pilots most common method for wireless applications

Slow convergence found in some blind schemes.

CENTRE FOR WIRELESS COMMUNICATIONS

Pilot based channel estimation

- useful to think of OFDM symbols in a 2-dimensional (2D) time/frequency grid
- usually time correlation is higher than frequency correlation
- pilots used to sample 2D channel need to satisfy sampling theorem (2 times of coherence bandwidth/time)
- 2D filters used for interpolation