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Abstract—The emerging massive/large-scale multiple-input
multiple-output (LS-MIMO) systems that rely on very large an-
tenna arrays have become a hot topic of wireless communications.
Compared to multi-antenna aided systems being built at the time
of writing, such as the long-term evolution (LTE) based fourth
generation (4G) mobile communication system which allows for
up to eight antenna elements at the base station (BS), the LS-
MIMO system entails an unprecedented number of antennas,
say 100 or more, at the BS. The huge leap in the number of BS
antennas opens the door to a new research field in communication
theory, propagation and electronics, where random matrix theory
begins to play a dominant role. Interestingly, LS-MIMOs also
constitute a perfect example of one of the key philosophical
principles of the Hegelian Dialectics, namely that “quantitative
change leads to qualitative change”.

In this treatise, we provide a recital on the historic her-
itages and novel challenges facing LS-MIMOs from a detection
perspective. Firstly, we highlight the fundamentals of MIMO
detection, including the nature of co-channel interference (CCI),
the generality of the MIMO detection problem, the received signal
models of both linear memoryless MIMO channels and dispersive
MIMO channels exhibiting memory, as well as the complex-
valued versus real-valued MIMO system models. Then, an
extensive review of the representative MIMO detection methods
conceived during the past fifty years (1965-2015) is presented, and
relevant insights as well as lessons are inferred for the sake of
designing complexity-scalable MIMO detection algorithms that
are potentially applicable to LS-MIMO systems. Furthermore,
we divide the LS-MIMO systems into two types, and elaborate
on the distinct detection strategies suitable for each of them. The
type-I LS-MIMO corresponds to the case where the number of
active users is much smaller than the number of BS antennas,
which is currently the mainstream definition of LS-MIMO. The
type-II LS-MIMO corresponds to the case where the number
of active users is comparable to the number of BS antennas.
Finally, we discuss the applicability of existing MIMO detection
algorithms in LS-MIMO systems, and review some of the recent
advances in LS-MIMO detection.

Index Terms—Co-channel interference (CCI), equalization,
large-scale/massive MIMO, multiuser detection, MIMO detec-
tion.

GLOSSARY

3G third generation.
4G fourth generation.
5G fifth generation.
A-CPDA approximate complex-valued probabilistic data association.
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ACO ant colony optimization.
AME asymptotic-multiuser-efficiency.
APP a posteriori probability.
ASIC application-specific integrated circuit.
AWGN additive white Gaussian noise.
BALM block alternating likelihood maximization.
BC-SDPR bound-constrained semidefinite programming relaxation.
BER bit-error rate.
BI-GDFE block-iterative generalized decision feedback equalizer.
BLER block-error rate.
BP belief propagation.
BPSK binary phase-shift keying.
BS base station.
CAGR compound annual growth rate.
CCI co-channel interference.
CDM code-division multiplexing.
CDMA code-division multiple-access.
CLPS closest lattice-point search.
CMOS complementary metal-oxide semiconductor.
CPDA complex-valued probabilistic data association.
DFD decision-feedback detector.
DS-CDMA direct-sequence code-division multiple-access.
DSNR decreasing signal-to-noise ratio.
EB exabytes.
EM expectation-maximization.
EXIT extrinsic information transfer.
FCSD fixed-complexity sphere decoding/decoder.
FDM frequency-division multiplexing.
FDMA frequency-division multiple-access.
FEC forward-error-correction.
FER frame-error rate.
FH-CDMA frequency-hopped code-division multiple-access.
FIR finite impulse response.
GA genetic algorithm.
GSNR greatest signal-to-noise ratio.
HNN Hopfield neural network.
IAI interantenna interference.
IC integrated circuit.
ICI interchannel interference.
IDD iterative detection and decoding.
IMSE increasing mean-square error.
ISI intersymbol interference.
JPDA joint probabilistic data association.
LAS likelihood ascent search.
LDPC low-density parity-check.
LLL Lenstra-Lenstra-Lovász.
LMSE least mean-square error.
LR lattice-reduction.
LS least-squares.
LS-MIMO large-scale multiple-input multiple-output.
LSD list sphere decoding.
LTE long-term evolution.
LTE-A Long Term Evolution-Advanced.
M2M machine-to-machine.
MAI multiple-access interference.
MAME maximum asymptotic-multiuser-efficiency.
MAP maximum a posteriori.
MBER minimum bit error rate.
MC-CDMA multicarrier code-division multiple-access.
MED minimum Euclidean distance.
MF matched filter.
MFB matched filter bound.
MFSK multiple frequency-shift keying.
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MGS mixed Gibbs sampling.
MIC multistage interference cancellation.
ML maximum likelihood.
MMF multimode fibre.
MMSE minimum mean-square error.
MR multiple restart.
MS mobile station.
MSDSD multiple symbol differential sphere decoder.
MSE mean-square error.
MSI multiple-stream interference.
MUD multiuser detection/detector.
MUI multiuser interference.
NP-complete nondeterministic polynomial-time complete.
NP-hard nondeterministic polynomial-time hard.
OFDM orthogonal frequency-division multiplexing.
OSIC ordered successive interference cancellation.
PAM pulse-amplitude modulation.
PDA probabilistic data association.
PDF probability density function.
PER packet-error rate.
PI-SDPR polynomial-inspired semidefinite programming relaxation.
PIC parallel interference cancellation.
PSK phase-shift keying.
PSO particle swarm optimization.
QAM quadrature amplitude modulation.
QPSK quadrature phase-shift keying.
QRD QR-decomposition.
R-MCMC randomized Markov chain Monte Carlo.
RPDA real-valued probabilistic data association.
RS randomized search.
RTS reactive tabu search.
SA simulated annealing.
SD sphere decoding/decoder.
SDM space-division multiplexing.
SDMA space-division multiple-access.
SDP semidefinite programming.
SDPR semidefinite programming relaxation.
SE Schnorr-Euchner.
SER symbol-error rate.
SIC successive interference cancellation.
SINR signal-to-interference-plus-noise ratio.
SIR signal-to-interference ratio.
SNR signal-to-noise ratio.
STBC space-time block code/coded.
SUMF single-user matched filter.
SUMIS subspace marginalization aided interference suppression.
TDM time-division multiplexing.
TDMA time-division multiple-access.
UEP unequal error protection.
VA-SDPR virtually antipodal semidefinite programming relaxation.
VB Viterbo-Boutros.
VBLAST vertical Bell Laboratories layered space-time.
VER vector-error rate.
VLSI very-large-scale integration.
VNI visual network index.
WLS weighted least-squares.
ZF zero-forcing.

I. INTRODUCTION

A. Why are Large-Scale MIMOs Important?

The multimedia data traffic conveyed by the global mobile

networks has been soaring [1]–[5], and this trend is set to

continue, as indicated by Cisco’s visual networking index

(VNI) forecast [6], [7]. More specifically,1 the global mobile

data traffic grew 81% in 2013, up from 0.82 exabytes (EB),

i.e. 0.82 × 1018 bytes per month at the end of 2012 to 1.5

EB per month at the end of 2013; furthermore, as predicted

in Fig. 1, it will increase nearly 11-fold between 2013 and

2018, which translates to a compound annual growth rate

1Fig. 1 and Fig. 2 are reprinted from the Cisco VNI white paper [6], with
permission of Cisco.

 

 

Fig. 1. Cisco VNI: global mobile data traffic forecast, 2013-2018.

(CAGR) of 61% for the period spanning from 2013 to 2018,

reaching 15.9 EB per month by 2018 [6], [7]. As seen from

Fig. 2, this explosive growth is mainly fuelled by the preva-

lence of smartphones, laptops and tablets, as well as by the

emergence of machine-to-machine (M2M) communications

[8]–[19]. Additionally, the design of wireless communication

systems is highly constrained by the paucity of radio spectrum,

which is exemplified by the overcrowded frequency allocation

chart of the United States [20]. As a consequence of the

combined effect of the mobile data traffic growth trend and the

scarcity of favorable radio spectrum in the low-loss frequency-

range, the forthcoming fifth generation (5G) communication

systems have to resort to the employment of massive/large-

scale multiple-input multiple-output (LS-MIMO) transmission

techniques, which invoke a large number of antenna elements

at the transmitter and/or receiver for achieving a high spectral-

efficiency [21]–[29] and high energy-efficiency [25], [30]–

[32].

A range of other fundamental technologies conceived for

5G communications are closely related to LS-MIMO. For

example, both millimetre wave communications [33] and LS-

MIMOs may be regarded as enabling techniques facilitating

high-dimensional physical-layer communication technologies.

Their difference is that LS-MIMOs achieve high dimension-

ality in the spatial domain, while millimetre wave communi-

cation systems achieve a high dimensionality in the frequency

domain by operating at frequencies ranging from about 30

GHz to 300 GHz, which is much higher than the operating

frequencies of contemporary third generation (3G)/4G systems

(from 450 MHz to 3.5 GHz). Furthermore, owing to the

much shorter wavelength, millimetre wave technologies may

facilitate compacting a large number of antenna elements in

a relatively small space. Additionally, the coverage area of a

single cell of millimetre wave communication systems may

be significantly smaller than a single cell of 3G/4G systems.

As a result, small-cell based heterogeneous network (HetNet)

architecture is required. Therefore, as shown in Fig. 3, there is
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Fig. 2. Cisco VNI: global mobile devices and connections growth forecast, 2013-2018.
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Fig. 3. There is a natural marriage amongst LS-MIMO, millimetre wave,
and small-cell based HetNet, which constitute three fundamental technologies
for 5G wireless communications.

a natural marriage amongst LS-MIMO, millimetre wave and

small-cell technologies.

B. Why is MIMO Detection Important and Challenging?

As Claude Shannon pointed out, “The fundamental problem

of communication is that of reproducing at one point either

exactly or approximately a message selected at another point”

[34]. Compared to conventional single-input single-output sys-

tems, e.g. the single-antenna point-to-point system, in MIMO

systems we have multiple interfering messages/symbols trans-

mitted concurrently, and at the receiver these symbols are

expected to be detected/decoded subject to the contamination

of random noise or interference, as shown in Fig. 4. The

multiple symbols may be detected separately or jointly. As

opposed to separate detection, in joint detection each symbol
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Fig. 4. Conceptual illustration of the MIMO detection problem.

has to be detected taking into account the characteristics of the

other symbols. As a beneficial result, typically joint detection

is capable of achieving a significantly better performance than

separate detection, although joint detection imposes a higher

computational complexity.

The joint detection of multiple symbols in MIMO systems

is of central importance for the sake of realizing the substantial

benefits of various MIMO techniques. This is because the co-

channel interference (CCI) routinely encountered in MIMO-

based communication systems constitutes a fundamental lim-

iting characteristic [24], [35]–[44]. Unfortunately, the opti-

mum MIMO detection problem was proven non-deterministic

polynomial-time hard (NP-hard) [45]–[47], thus all known

algorithms conceived for solving the problem optimally have

a complexity exponentially increasing with the number of

decision variables. As a result, the computational complexity

of the optimum maximum-likelihood (ML) criterion or the

maximum a posteriori (MAP) criterion based MIMO detec-

tion algorithms quickly become excessive as the number of

decision variables increases. Thanks to the rapid develop-

ment of the semiconductor industry, the hardware computing

power has been dramatically increasing over the years, and in

some cases a “not-so-extreme” computational complexity is

no longer regarded as a bottleneck of practical applications.

However, it should be noted that while transistors get faster

and smaller, supply voltages cannot be reduced significantly in

modern complementary metal-oxide semiconductor (CMOS)

processes. Therefore, virtually all modern integrated circuits
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(ICs) encounter an integration density limit owing to the max-

imum tolerable internal temperature imposed by the excessive

power consumption or power density. In other words, this

power bottleneck still limits today’s IC development. As a

consequence, one cannot simply rely on Moore’s law, and

even modest-complexity MIMO detection algorithms could be

too power hungry for battery-powered devices. Hence low-

complexity, yet high-performance suboptimum MIMO detec-

tion algorithms are needed for practical MIMO applications.

C. The Contributions of This Paper

In this paper, an extensive review of the family of repre-

sentative MIMO detection methods invented during the past

fifty years is presented in a unified mathematical model2,

although practical MIMO schemes have various subtleties. Our

particular focus is on complexity-scalable MIMO detection

algorithms potentially applicable to LS-MIMO systems [25].

The algorithms surveyed include the classic linear MIMO de-

tection, the interference-cancellation based MIMO detection,

the tree-search based MIMO detection, the probabilistic data

association (PDA) based MIMO detection, and the semidefi-

nite programming relaxation (SDPR) based MIMO detection.

Several high-quality books or reviews were published on

MIMO detection [48]–[52]. They were predominantly dedi-

cated to CDMA systems in the 1990s [48]–[50] or to conven-

tional small-/medium-scale MIMO systems [51], [52], whereas

LS-MIMOs just became a hot research topic at the time of

writing [25]. On the other hand, they mainly covered the

most common suboptimum MIMO detection methods, such

as the linear zero-forcing (ZF) detector, the linear minimum

mean-square error (MMSE) detector and various interference

cancellation based detectors [48]–[51], or focused largely on

a single type of MIMO detector [52]. In comparison, there

is a paucity of reviews on more advanced MIMO detection

methods, such as the tree-search based MIMO detectors (the

sphere decoder (SD) constitutes an instance of the tree-

search based MIMO detectors) [53]–[82], the lattice-reduction

(LR) based MIMO detectors [83]–[103], as well as the PDA

[104]–[133] and the SDPR [134]–[147] based detectors etc.,

although a concise tutorial on some of these detectors was

given in [148]. Additionally, most of the existing research on

LS-MIMO is focused on the precoding/beamforming based

downlink of a special case of LS-MIMO, where one side of

the communication link has a significantly higher number of

antennas than the other. By contrast, only limited attention has

been dedicated to the uplink of general LS-MIMOs. Hence,

our goal is to fill these gaps in the open literature. For the

sake of clarity, the organization of this paper is shown in Fig.

5.

II. THE NATURE OF CO-CHANNEL INTERFERENCE

To gain profound insights into the intricacies of the MIMO

detection problem, let us briefly reflect on the nature of the

CCI in this section. The nature of CCI depends on the specific

2This means the algorithms conceived for equalization, multiuser detection
and multi-antenna detection are treated under the same umbrella of MIMO
detection.

context. In this paper, it is defined in its most generic form

as the interfering signal imposed by multiple transmissions

taking place on channels which are mutually non-orthogonal.

Mathematically, CCI may also be interpreted as interfering

signals that span a subspace having a “non-empty” intersection

with the subspace spanned by the desired signals. The channel-

induced non-orthogonality may be observed in the frequency,

time and/or space domain, as shown in Fig. 6. To recover

the desired signal at the receiver, the desired signal has to be

distinguishable from the interference in at least one domain.

In the extreme case, if the multiple transmissions are highly

non-orthogonal in all domains, then it may become impossible

to recover the desired signal by any means.

In essence, the CCI originates from signal-feature-

overlapping of multiple transmissions. For example, in

spectrum-efficient communication systems such as the code-

division multiplexing /multiple-access (CDM/CDMA) systems

[149]–[151] and the space-division multiplexing /multiple-

access (SDM/SDMA) systems [21], [44], [152]–[158], mul-

tiple transmissions are often deliberately arranged to take

place simultaneously over the same frequency band. These

“frequency sharing” and “time sharing” strategies result in

a “frequency-overlapping” and a “time-overlapping” phe-

nomenon, respectively. It is worth pointing out that as far as

radio waves are concerned, rigorously the CCI always tends to

exist in the frequency, time and space domains. For example,

when no deliberate frequency-overlapping is arranged, the

“frequency-overlapping” is due to the underlying fact that for

all realizable, time-limited radio waveforms, their absolute

bandwidth is infinite [159], [160], as shown in Fig. 7. In

other words, every active radio transmitter has an impact

on every operating radio receiver. Similarly, for a strictly

bandwidth-limited signal, its time duration has to be infinite.

With respect to the space domain, it is well known that

the propagation of electromagnetic energy in free space is

determined by the inverse square law [21], [158], [161], i.e.

we have S = Pt/4πd
2, where S is the power per unit area or

power spatial density (in Watts per metre-squared) at distance

d, and Pt is the total power transmitted (in Watts). Hence,

theoretically, the radio signals cannot be stopped, they are only

attenuated in the frequency, time and space domains.

In engineering practice, fortunately, by using well-designed

filters [162], [163], typically the waveform of the time-limited

signal can be shaped so that most energy of the signal can

be kept within a given limited frequency-band, and thus the

signal energy leakage outside the target frequency-band can

be reduced to a sufficiently low level. Similarly, in the space

domain, two transmissions taking place at a sufficiently far dis-

tance can also be regarded as non-interfering with each other.

Therefore, despite the fact that the signal-feature-overlapping

in frequency, time and space domains is inevitable from the

theoretic point of view, in practical spectrum-efficient systems

we can typically assume that the signal-feature-overlapping

in these three domains is a result of a deliberate design. In

this context, the signals are made as much distinguishable as

possible in one domain, and as much overlapping as possible

in the remaining domains. Our task is to recover the desired

signal based on this deliberate arrangement.
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Fig. 5. The organization of this paper.

Time

Frequency
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Fig. 6. The multiple signals have to be distinguishable in at least one of the
three fundamental domains of time, frequency and space.

Since the frequency, time and space domains represent the

fundamental physical features of signal transmission, each

of them corresponds to a distinct multiplexing/multiple-

access scheme [164], namely the frequency-division

multiplexing/multiple-access (FDM/FDMA), time-

division multiplexing/multiple-access (TDM/TDMA), and

SDM/SDMA, respectively. It is worth noting that compared

to these three fundamental domains, the spreading code

sequences used in CDM/CDMA systems do not constitute

an independent domain. This is because the orthogonality of

the spreading code sequences is essentially a special case

of time-domain orthogonality. In systems using spreading

codes, in principle we pursue to transmit orthogonal code

sequences to minimize the inter-code interference. Although

it is mathematically possible to construct perfectly orthogonal

code sequences, the orthogonality of these code sequences is

typically degraded in practical transmissions [151]. Moreover,

since the number of theoretically orthogonal code sequences

is rather limited, often quasi-orthogonal code sequences are

adopted in practice [151]. Therefore, typically substantial

interference is imposed by the non-orthogonality of spreading

code sequences in practical CDM/CDMA systems [165].

In analogy to CDM/CDMA, the conventional frequency-

division pattern, time-division pattern and space-division pat-

tern can also be regarded as a special case of “spreading

codes” in the frequency domain, time domain and space

domain, respectively. Note, however, that there exist a certain

degree of differences in terms of their multiplexing/multiple-

access resolution in these three domains. More specifically, in

practice, by using guard intervals in the corresponding domain,

a good resolution of frequency-division and time-division may

be readily maintained – in other words, the orthogonality of

“spreading codes” in frequency- and time-division systems

may be relatively easy to obtain [164]. By contrast, the
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Fig. 7. All realizable, duration-time limited waveforms has a infinite
frequency band.

resolution of space-division tends to be undermined by the

physical size of transmitters/receivers and by the random

propagation channel, hence typically substantial interference

is imposed by the non-orthogonality of “spreading codes” in

practical space-division systems [21], [44], [152]–[158]. This

is similar to the case in CDM/CDMA systems and explains

why MIMO detection typically represents a more significant

problem in CDM/CDMA systems and SDM/SDMA systems

than in FDM/FDMA and TDM/TDMA systems.

In this paper, the CCI considered mainly refers to the

interference in SDM/SDMA or CDM/CDMA systems, where

multiple transmissions often take place simultaneously, or

partially simultaneously over the same frequency. Depending

on specific applications, CCI is often alternatively termed as

intersymbol interference (ISI), interchannel interference (ICI),

interantenna interference (IAI), multiuser interference (MUI),

multiple-access interference (MAI), and multiple-stream inter-
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Fig. 8. Point-to-point MIMO channel.

ference (MSI) etc.

III. CONCEPT AND GENERALITY OF MIMO DETECTION

As a family of physical-layer CCI management techniques,

MIMO detection deals with the joint detection of several

information-bearing symbols transmitted over a communica-

tion channel having multiple inputs and multiple outputs.

This problem is of fundamental importance for modern high-

throughput digital communications. Rigorously, the MIMO

detection problem arises if and only if the respective subchan-

nels of the multiple inputs are not orthogonal to each other,

and hence there exists interference between the outputs. As

a generic mathematical model, the MIMO detection problem

underpins numerous relevant applications, and the physical

meaning of the inputs and outputs herein may vary in different

contexts. For instance, in single-user SDM-MIMO systems

equipped with multiple transmit and receive antennas [166]–

[168], the inputs refer to the vector of modulated symbols that

are transmitted from multiple collocated transmit antennas,

while the outputs refer to the vector of received signals

recorded at multiple collocated receive antennas, as shown

in Fig. 8. This is indeed a canonical scenario of investigat-

ing MIMO detection algorithms [148]. A second example

is the uplink of multiuser multiple-antenna systems [169],

[170], where the inputs may be multiple transmitted symbols

belonging to a cluster of geographically distributed single-

antenna mobile stations (MSs), and the outputs may be the

signals received at the serving base station (BS) equipped

with multiple collocated antennas, as shown in Fig. 9. This is

actually the so-called SDMA system [21], [44], [152]–[158].

Yet another important example represented by Fig. 9 is the

uplink of CDMA systems [48]–[51], where the inputs are the

transmitted symbols of distributed single-antenna MSs, and the

outputs are typically generated by filtering the signal received

at the single-antenna BS with a bank of matched filters (MFs),

whose impulse responses are matched to a set of a priori

known user-signature waveforms.
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Here, it should be emphasized that whether the multiple

inputs and/or the multiple outputs are “collocated or not

is extremely important in determining the signal processing

techniques to be used. If multiple inputs/outputs are collocated,

the cooperative joint encoding/decoding of the inputs/outputs

can be conducted [21], [44], [158], [171]–[177], which renders

joint MIMO transmission/detection feasible. For example, the

single-user MIMO system shown in Fig. 8 has both its transmit

and receive antennas collocated, hence it enjoys the privilege

of performing both joint encoding and joint decoding. As

a benefit, both simultaneous transmission and simultaneous

reception can be attained relatively simply. By contrast, the

multiple-access MIMO system of Fig. 9 is typically not

capable of joint encoding at the user side, hence the uplink

transmissions of both CDMA and SDMA systems are asyn-

chronous by nature.

Additionally, as far as the downlink of multiuser MIMO

systems, namely the multiuser MIMO broadcast channel of

Fig. 10 is concerned, typically most of the sophisticated signal

processing tasks are conducted in the form of transmit pre-

processing (i.e. precoding) at the BS, where collocated inputs

are available for cooperative joint encoding [178]–[183]. As a

result, detection at the user becomes less challenging. Since

the investigation of MIMO transmit preprocessing techniques

is beyond the scope of this paper, we will not elaborate on it

in the sequel.

Finally, when both the transmitters and the receivers are

geographically distributed, the MIMO channel turns into either

an interference channel [184]–[192] or an X channel [193]–

[196], which are shown in Fig. 11 and Fig. 12, respectively.

An interference channel characterizes a situation where each

transmitter, potentially equipped with multiple antennas, only

wants to communicate with its dedicated receiver, and each

receiver, possibly equipped with multiple antennas as well,

only cares about the information arriving from the correspond-

ing transmitter. There is a strict one-to-one correspondence

between the multiple transmitters and the multiple receivers.
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[W [1L], · · · , W [KL]]T

[W [12], · · · , W [K2]]T [Ŵ [21], · · · , Ŵ [2L]]T

[Ŵ [K1], · · · , Ŵ [KL]]T

[Ŵ [11], · · · , Ŵ [1L]]T[W [11], · · · , W [K1]]T

Fig. 12. MIMO X channel, where W [kl] represents the message that

originates at transmitter l and is intended for receiver k, while Ŵ [kl] denotes

the recovered version of W [kl], k = 1, · · · ,K, l = 1, · · · , L.

Therefore, each transmission link interferes with the others. By

comparison, in the MIMO X channel relying on L transmitters

and K receivers, each transmitter has an independent message

for each receiver. Hence, there are a total of KL independent

messages to deliver. The MIMO X channel is a more gener-

alized model, which encompasses the MIMO multiple access

channel of Fig. 9, the MIMO broadcast channel of Fig. 10 and

the MIMO interference channel of Fig. 11 as its special cases.

Despite their difference, the MIMO interference channel and

X channel share a key common feature, namely they both have

distributed transmitters and receivers. The distributed nature of

transmitters and receivers makes the signal processing required

for mitigating the detrimental effects of the MIMO interference

channel and X channel far more challenging compared to

the single-user MIMO channel. In fact, the capacity analysis

and the signal processing techniques for MIMO interference

channel and X channel still constitute a largely open field,

and most of existing efforts have aimed for transforming the

MIMO interference channel and X channel so that coopera-

tion at the transmitter/receiver side can be exploited to some

degree, at least in some specific scenarios. For example, in

multicell systems, BS cooperation [131], [181], [197]–[206],

also known as joint multicell processing [24], [181], has been

advocated for the sake of transforming the MIMO interference

channel and X channel to a number of cooperative multiuser

MIMO channels. Additionally, the recent advances in the

capacity analysis of the MIMO interference channel and X
channel have stimulated significant interests in interference

alignment [194], [195], [195], [196], [207]–[212], which is

essentially constituted by a family of precoding/beamforming

techniques for the MIMO interference channel and X channel.

The problems related to interference alignment are also beyond

the scope of this paper and will not be discussed in detail.

IV. FORMAL DEFINITION OF THE MIMO DETECTION

PROBLEM

Despite the fact that similar problems have been known

for a while [46], [50], [51], [213]–[248], the term “MIMO

detection” became widespread mainly with the advent of
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multiple-antenna techniques during the mid-1990s3 [152]–

[156], [166]–[168], [249]–[260]. As a result, in the narrow

sense, MIMO detection usually refers to the symbol detection

problem encountered in narrow-band SDM based multiple-

antenna systems, such as the vertical Bell Laboratories lay-

ered space-time (VBLAST) system [166]–[168]. However, we

emphasize that as a family of important signal processing

techniques, MIMO detection should be interpreted based on a

generic mathematical model, as detailed below.

In the generic sense, the MIMO detection problem can be

defined for an NI -input linear system whose transfer function

is described by a matrix having non-orthogonal columns and

its NO outputs are contaminated by additive random noise.

Note that the noise does not necessarily obey the Gaussian

distribution. The multiple inputs can be denoted as a vector s,

which is randomly drawn from the set ANI composed by NI -

element vectors, whose components are from a finite set A =
{am|m = 1, · · · ,M} and the a priori probability of selecting

each vector from A
NI is identical. The set A is usually referred

to as the constellation alphabet, whose elements can take either

real or complex values. Additionally, sn, n = 1, · · · ,MNI ,

represents the realizations of s, hence they are the elements of

A
NI . Then the relationship between the inputs and the outputs

of this linear system can be characterized by

y = Hs+ n, (1)

where y ∈ F
NO is the received signal vector, H ∈ F

NO×NI

is the transfer function/channel matrix of the system, and n ∈
F
NO represents the additive random noise vector. Depending

on the specific applications considered, F can be either the

field of real numbers, R, or the field of complex numbers,

C. Concisely speaking, any system having multiple inputs,

multiple outputs and subject to additive random noise can be

regarded as a MIMO system, but the MIMO detection problem

considered herein is only confronted in MIMO systems whose

channel matrix is non-orthogonal in columns. It is worth noting

that the constellation alphabet A, the number of inputs NI and

the number of outputs NO are typically regarded as constant

quantities4 for a given system. Hence, they are assumed to

be known by default, although this will not be explicitly

emphasized, unless necessary. As a further note, when the

input symbol vectors of multiple consecutive time slots are

associated with each other via space-time coding [253]–[261],

the MIMO system model is given by

Y = HC+N, (2)

where Y is a matrix denoting the signal received in multiple

3Note that the first multi-antenna based MIMO system was attributed to
a patent granted to Paulraj and Kailath in 1994 [249]. Gerlach [153], Roy
[152], [155] and Ottersten [152], [154] initiated the earliest research on SDMA
systems. The earliest contribution demonstrating the huge capacity of multi-
antenna based MIMO systems may be attributed to Telatar [250], [251], as
well as Foschini [166], [252] and Gans [252], followed by other members of
the team at Bell Labs [167], [168]. On the other hand, Tarokh, Jafarkhani,
Calderbank, Naguib et al. [253]–[259] as well as Alamouti [260] are pioneers
of space-time code design.

4However, in an adaptive system both the constellation alphabet A and
the number of inputs NI might be varying. But this adaptation is typically
constrained by a discrete size-limited codebook.

time slots, C is a matrix representing the space-time codeword,

and N is the corresponding noise matrix. We can obtain (1)

from (2) by setting the number of time slots considered to

one. In this regard, (2) is more general than (1). However,

(2) is mainly used for characterizing space-time coding aided

MIMO systems, where typically the MIMO detection problem

defined in this paper does not exist. This is because the optimal

ML decoding can be simply implemented using the separate

symbol-by-symbol decoding strategy [for orthogonal space-

time block codes (STBCs)] or the pairwise decoding strategy

(for quasi-orthogonal STBCs) [261]. Therefore, in most cases

associated with MIMO detection, we rely on the system model

(1).

Based on the generic mathematical model of (1), the basic

task of MIMO detection is to estimate the input vector s

relying on the knowledge of the received signal vector y

and the channel matrix H. Note that for y, typically its

exact value has to be known, while for H, sometimes only

the knowledge of its statistical parameters is available. To

elaborate a little further, if the instantaneous value of H is

known from explicit channel estimation, the detection of s is

said to rely on coherent detection. By contrast, if the explicit

estimation of the instantaneous channel state is avoided, the

detection of s belongs to the family of noncoherent detection

schemes. In the latter case, the channel estimation is either

performed implicitly in signal detection, or it is completely

avoided, whereas typically the statistical knowledge of the

channel matrix H is invoked for supporting signal detec-

tion. Additionally, the noncoherent MIMO detection schemes

usually require that the input symbols are subject to some

form of differential encoding, which imposes correlation on

the input symbols, and as a result, typically a block-by-block

based sequence detection has to be employed. This is the

so-called multiple-symbol differential detection [261]–[270],

which usually leads to higher computational complexity than

the symbol-by-symbol based detectors of coherent MIMO

systems. Moreover, the noncoherent detectors typically exhibit

degraded power efficiency, which results in an inherent perfor-

mance loss compared to their coherent counterparts, unless the

block size is sufficiently large. Therefore, we have to consider

the performance-versus-complexity tradeoff in choosing the

proper block size. However, similar to the coherent detection

of STBCs, there exist simple symbol-by-symbol or pairwise

noncoherent detection schemes [263], [264] for differential

space-time modulation. As a result, the decoding complexity

of the differential space-time modulation increases linearly,

instead of exponentially, with the number of antennas [261].

In this paper, we focus our attention on coherent MIMO de-

tection. Then, from the perspective of mathematical mapping,

a coherent MIMO detector is defined as:

ŝ = D(y,H) : FNO × F
NO×NI 7→ A

NI , (3)

where ŝ is the estimate of s.

V. MIMO SYSTEM MODEL FOR LINEAR MEMORYLESS

CHANNELS

Bearing in mind specific applications, the system model of

(1) may be established either in the time domain or in the
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Fig. 13. Schematic of VBLAST-style SDM-MIMO systems communicating
over flat fading channels.

frequency domain, and may be applied to both memoryless

channels and dispersive channels exhibiting memory [21],

[44], [50], [51], [158], [248]. With respect to linear mem-

oryless MIMO channel, a canonical example is the narrow-

band single-carrier synchronous VBLAST-style SDM-MIMO

system [166]–[168] communicating over flat fading channels,

as shown in Fig. 13. Because the system’s outputs at the

current time interval are independent of the system’s inputs

at previous time intervals, its baseband equivalent discrete-

time (i.e. sampled) system model, representing an instance of

the generic model (1), can be written as












y1

y2
...

yNr













=













h1,1 h1,2 · · · h1,Nt

h2,1 h2,2 · · · h2,Nt

...
...

. . .
...

hNr,1 hNr,2 · · · hNr,Nt

























s1

s2
...

sNt













(4)

+













n1

n2

...

nNr













.

In this specific application, we have Nt = NI and Nr = NO,

which represent the number of transmit and receive antennas,

respectively. Furthermore, hj,i denotes the (complex-valued)

impulse response between the ith transmit antenna and the jth

receive antenna, with i = 1, 2, · · · , Nt and j = 1, 2, · · · , Nr.

Another example is the multiple-antenna aided orthogonal

frequency-division multiplexing (OFDM) system [270] com-

municating over frequency-selective channels, where each

subcarrier subjected to a specific frequency-domain attenuation

is narrowband and the model (4) applies to each subcarrier.

Notably, for this linear memoryless MIMO channel, the one-

shot detection which relies only on a single received signal

vector y = [y1, y2, · · · , yNr
]T is adequate. Additionally, for

the sake of fair comparison with the single-input single-output

systems, typically the energy normalization of E(si) = 1 or

E(s) = 1 is imposed on the transmitted symbols.

VI. MIMO SYSTEM MODEL FOR DISPERSIVE CHANNELS

EXHIBITING MEMORY

On the other hand, when considering the stand-alone

wideband VBLAST system5 communicating over frequency-

selective MIMO channels [112], [271]–[274], the link between

each input-output pair may be modelled by a linear finite

impulse response (FIR) dispersive channel, whose sampled

version can be denoted as the (possibly complex-valued)

vector hj,i = (h0
j,i, h

1
j,i, · · · , h

L−1
j,i )T . Here L is the maximum

number of multipath components in each link, and it is also

known as the channel memory length. In this case, the one-shot

detection which utilizes a single Nr-element received signal

vector is not optimal. Instead, the sequence detection using

multiple Nr-element received vectors has to be used.

We assume that a block-based transmission structure relying

on zero-padding for eliminating the interblock interference

is used, which is beneficial for alleviating the performance

degradation imposed by noise enhancement or error propa-

gation [275]. Following zero-padding, a transmission block

becomes a frame which occupies K = N + P sampling

intervals, where N is the number of sampling intervals oc-

cupied by information-bearing symbol vectors in the frame,

while P ≥ L− 1 represents the number of sampling intervals

during which P consecutive Nt-element zero vectors are

inserted at the tail of the frame. Here we set P = L − 1.

Given the above-mentioned transmitted frame, the entire re-

ceived signal vector may be generated by a concatenation

of K noise-contaminated sampled received signal vectors,

namely, y = (yT [0],yT [1], · · · ,yT [K − 1])T , where y[k] =
(y1[k], y2[k], · · · , yNr

[k])T represents the Nr outputs at the

kth sampling instant, k = 0, 1, · · · ,K−1. Then, the baseband

signal received by the jth receive antenna at the kth sampling

instant is given by

yj [k] =

Nt
∑

i=1

L−1
∑

l=0

hl
j,isi [k − l] + nj [k], (5)

where hl
j,i, the lth element of hj,i, l = 0, 1, · · · , L − 1,

denotes the channel gain of the lth path between the ith
transmit antenna and the jth receive antenna. Furthermore,

si[k] is the symbol transmitted from the ith transmit antenna

at the kth sampling instant, and nj [k] represents the noise

imposed on the jth receive antenna at the kth sampling instant.

Similar to y[k], we define s[k] = (s1[k], s2[k], · · · , sNt
[k])T

and n[k] = (n1[k], n2[k], · · · , nNr
[k])T . Additionally, similar

to y, we may construct s = (sT [0], sT [1], · · · , sT [N − 1])T

and n = (nT [0],nT [1], · · · ,nT [K − 1])T . Then, the received

signal corresponding to a transmitted frame can also be written

following the matrix notation of (1), where the size of y and n

is NO = KNr = (N+L−1)Nr, while that of s is NI = NNt,

and the MIMO channel matrix H exhibits the banded Toeplitz

5The multicarrier techniques such as OFDM are not used in this system.
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structure [275] of:

H =






























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... H0
. . .

...

HL−1
...

. . . 0

0 HL−1
. . . H0

...
...

. . .
...

0 0 · · · HL−1































, (6)

whose dimension is (KNr ×NNt), and each entry Hl of (6)

is an (Nr ×Nt)-element matrix containing the channel gains

between all pairs of transmit and receive antennas for the lth
path, i.e. we have

Hl =













hl
1,1 hl

1,2 · · · hl
1,Nt

hl
2,1 hl

2,2 · · · hl
2,Nt

...
... · · ·

...

hl
Nr,1

hl
Nr,2

· · · hl
Nr,Nt













. (7)

It is worth noting that the linear memoryless MIMO model

and the linear MIMO model exhibiting memory may also

be used for characterizing the family of synchronous and

asynchronous CDMA systems, respectively. Additionally, the

asynchronous CDMA systems can also be characterized by (1)

in the z domain [50].

VII. COMPLEX-VALUED VERSUS REAL-VALUED MIMO

SYSTEM MODEL

As we mentioned in Section IV, the generic MIMO system

model of (1) can be defined both in the field of real num-

bers, R, and in the field of complex numbers, C. Since the

complex-valued modulation constellations, such as quadrature

amplitude modulation (QAM) and phase-shift keying (PSK),

are often employed in digital communications, the complex-

valued MIMO system model is typically a natural and more

concise choice for the formulation and performance analysis

of the algorithms considered.

The complex-valued and the real-valued MIMO system

models are often mutually convertible. More specifically, if we

assume that the generic MIMO system model of (1) is defined

in C, and assume that the real part and the imaginary part of

s are uncorrelated,6 then the complex-valued MIMO system

model of (1) can be transformed to an equivalent real-valued

system model of

ỹ = H̃s̃+ ñ, (8)

where ỹ =

[

ℜ(y)

ℑ(y)

]

, s̃ =

[

ℜ(s)

ℑ(s)

]

, ñ =

[

ℜ(n)

ℑ(n)

]

, and

H̃ =

[

ℜ(H) −ℑ(H)

ℑ(H) ℜ(H)

]

.

6For rectangular QAM, this uncorrelatedness assumption is almost always
adopted for ease of decoding, even in single-input single-output systems. In
channel-coded systems, where the channel codes may introduce correlation
between the coded bits. However, in such systems, typically an interleaver is
invoked after the encoder, which mitigates the correlation.

However, the above real-valued decomposition is only appli-

cable to MIMO systems employing real-valued constellations

or rectangular QAM constellations (but not for PSK, star

QAM [276]–[279] and near-Gaussian constellations [280],

[281] etc.), which severely limits its applicability. Furthermore,

in many applications, complex-valued operations are more

efficient for hardware implementation. The reason for this

fact is twofold. Firstly, decomposing an (Nt × Nr)-element

MIMO system into a real-valued system requires storage of

the (2Nr×2Nt)-element real-valued channel matrix H̃, which

is twice larger than having 2NtNr real-valued elements that

would be needed for a standard representation of the original

complex-valued channel matrix H. Secondly, implementing

complex-valued arithmetics in hardware (e.g. very-large-scale

integration (VLSI) based circuits) is straightforward and does

not result in more complex hardware. For example, a complex-

valued multiplier can be built using 4 real multipliers and

2 real adders, because we have (a + jb)(c + jd) = ac −
bd + j(ad + bc), or using 3 real multiplications and 5 real

additions, because alternatively we have (a + jb)(c + jd) =
ac − bd + j[(a + b)(c + d) − ac − bd], which is known

as the Gaussian technique of multiplying complex numbers

[282]. As a result, the complex-valued model imposes a

lower silicon complexity than that required by the real-valued

decomposition based model. Therefore, in many cases the real-

valued decomposition can be detrimental and hence MIMO

detector designers are typically in favor of the complex-valued

system model, owing to its flexibility concerning the choice

of constellations and its efficiency in VLSI implementations.

On the other hand, the real-valued MIMO system model

may also enjoy some advantages, such as the increased free-

dom of manipulation in signal processing. To elaborate a little

further, as far as the achievable performance is concerned, in

most cases signal processing algorithms based on the complex-

valued model of (1) and the real-valued MIMO system model

of (8) deliver an equivalent performance. For example, [251]

showed the equivalence between the complex-valued and the

real-valued MIMO system models in the derivation of the op-

timal ML detector and the MIMO channel capacity. However,

this equivalence does not always hold. For example, it was

shown in [283] that the real-valued VBLAST detector outper-

forms its complex-valued counterpart, owing to its additional

freedom in selecting the optimum detection ordering. Hence, a

beneficial performance gain may be gleaned from transforming

the complex-valued system model to the double-dimensional

real-valued system model. This is also true for the tree-search

based MIMO detectors, which will be introduced in Section

VIII-D, when they invoke symbol detection ordering. More

generally, the key insight inferred here is that for all MIMO

detection algorithms whose performance is related to detection

ordering, the real-valued system model based formulation is

capable of providing a better performance than its complex-

valued counterpart. This gain is achieved at the expense of

extra redundancy in storage of the channel matrix H̃, and

if the symbol detection ordering technique is invoked, this

redundancy cannot be avoided.

Additionally, it is worth noting that the real-valued formula-

tion of the complex-valued MIMO system model is not unique.
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For example, a pairwise real-valued MIMO system model was

used in [284], [285], which was shown to result in a reduced

complexity compared to the conventional real-valued MIMO

system model of (8). A more comprehensive investigation of

the complex-valued versus real-valued MIMO detectors was

presented in [286].

Finally, we emphasize that if the complex-valued random

signals considered are improper or noncircular, the more ad-

vanced complex-valued signal processing techniques of [287]–

[289] that rely on additional statistics and tools for fully

characterizing the complex-valued random signals have to be

used. More specifically, for a complex-valued random vector

x, in addition to the conventional covariance matrix of

Cxx = E [(x− µx)(x− µx)
H ], (9)

another second-order statistic, namely the pseudo-covariance

matrix defined as

C̄xx = E [(x− µx)(x− µx)
T ], (10)

has to be introduced for fully describing the complex-valued

random vector. For a proper complex-valued random vector,

the pseudo-covariance matrix vanishes, which is formulated

as C̄xx = 0. This results in the fact that for a proper

complex-valued random scalar, the real and imaginary parts

must have the same variance and be uncorrelated. Additionally,

a circularly (symmetric) complex-valued random variable has

a probability distribution that is invariant under rotation in

the complex plane, namely the distribution of x must be the

same as the distribution of ejθx, where we have θ ∈ [0, 2π).
The conventional signal processing techniques often assume,

usually implicitly, that the complex-valued random signals are

proper or circularly symmetric7. However, these assumptions

may not be justified in some applications, hence the complex-

valued signal processing techniques may in certain circum-

stances achieve a better performance [120], [130]–[133]. For

more details on the complex-valued signal processing, please

refer to [287]–[289].

VIII. HISTORY AND STATE-OF-THE-ART OF MIMO

DETECTION

The research of MIMO detection is a broad and vibrant area.

Its embryonic concept dates back to the 1960s. The earliest

contribution on MIMO detection was sparked off in 1967

[213], when Shnidman considered the equalization problem

of a bandwidth-limited pulse modulation system. This system

was modelled with the aid of M waveforms, each of which

is amplitude-scaled and simultaneously transmitted over a

single physical channel, which has M outputs corresponding

to each signal waveform. In order to eliminate both the ISI

between the pulse train and the interference between different

waveforms (also known as crosstalk), Shnidman formulated

a generalized Nyquist criterion and proposed an optimum

linear receiver. This landmark contribution was essentially

inspired by the classic Nyquist’s problem [290], which aims

for the joint optimization of the transmitter and receiver

7For complex-valued Gaussian random vector Z, circular symmetry implies
that Z is zero mean and proper.

1960 −− 1970sCombating crosstalk in FDM/TDM systems 

Multiuser detection in CDMA systems 1980 −− 1990s

late 2000s −− present
multi−antenna systems

multi−antenna systems
mid−1990s −− early 2000s

Symbol detection in large−scale

Symbol detection in small−/medium−scale

Fig. 14. The four historical periods in the development of MIMO detection.

for the sake of combating the ISI when communicating

over a conventional single-input single-output channel. Since

then, the MIMO detection problem has been studied in the

context of diverse applications and under possibly different

names. This half-century history can be roughly divided

into four periods, as seen in Fig. 14, namely the period of

combating crosstalk in the context of the early single-user

FDM/TDM systems (1960s – 1970s) [213]–[216], [219], the

period of multiuser detection (MUD) during the prevalence

of CDM/CDMA systems (1980s – 1990s) [46], [50], [51],

[217], [218], [220]–[248], the period of joint symbol detection

in the small-/medium-scale multiple-antenna systems (mid-

1990s – mid-2000s) [53], [54], [57]–[64], [68]–[72], [80],

[82], [104]–[126], [128], [129], [134]–[146], [166]–[168],

[248], [291]–[310], and the period of symbol detection

in the large-scale multiple-antenna systems [118], [128],

[311]–[328]. Diverse MIMO detectors have been proposed

for meeting the requirements imposed by a multiplicity

of applications. These MIMO detectors can be categorised

from various perspectives, such as optimum/suboptimum,

linear/nonlinear, sequential/one-shot, adaptive/non-adaptive,

hard-decision/soft-decision, blind/non-blind, iterative/non-

iterative, synchronous/asynchronous, coded/uncoded etc. The

representative MIMO detectors considered in this paper are

summarized in Fig. 15.

Owing to the similarities between the classic equalization

problem encountered in channels imposing ISI and the generic

MIMO detection problem defined by (1) and (3), it is not

surprising that the techniques, which were found to be effective

in combating ISI were also often extended to the context of

MIMO detection problems [329]. Some of the equalization

algorithms which have been adapted for MIMO detection in-

clude, but not limited to, the ML sequence estimation (Viterbi

algorithm) [330]–[334] based equalization, linear ZF equaliza-

tion [161], linear MMSE equalization [161], ZF/MMSE aided

decision-feedback equalization [161], adaptive equalization

[335], [336], blind equalization [337], [338] etc, as detailed

below.
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Fig. 15. Overview of representative MIMO detectors considered in this paper. All the acronyms used have been defined in our Glossary. Note that the tree-
search based detector is in general suboptimum, but it has the flexibility to strike different tradeoffs between the achievable performance and the computational
complexity. Even the optimum ML performance may be achieved by tree-search based detectors in certain scenarios.

A. Optimum MIMO Detector

The earliest work on optimum MIMO detectors dates back

to 1976, when van Etten [216] derived an ML sequence esti-

mation based receiver for combating both ISI and interchannel

interference (ICI) in multiple-channel transmission systems.

Explicitly, he demonstrated that under certain conditions, the

performance of the ML receiver asymptotically approaches

that of the optimum receiver of the idealized system which is

free from both ISI and ICI. The significance of this work was

not fully recognized until the research interests in commercial

CDMA systems and multiple-antenna systems intensified.8

1) Matched Filter (MF) versus Optimum MIMO Detector:

Although it is widely recognized at the time of writing

that MIMO detection provides significant performance gains

compared to conventional single-stream detection, there was a

widespread misconception until the early 1980s that the MUI

can be accurately modelled as a white Gaussian random pro-

cess, and thus the conventional single-user MF (SUMF) based

detector, as illustrated in Fig. 16, was believed to be essentially

optimum. In 1983, this conventional wisdom was explicitly

proven wrong by Verdú [222], [223] with the introduction of

the optimal MUD in the context of asynchronous/synchronous

Gaussian multiple-access channels shared by K users. The full

analysis and derivation of the optimum MUD was reported

later in [224], [340], demonstrating that there is, in general, a

substantial gap between the performance of the conventional

SUMF and the optimal MUD performance. Additionally, upon

identifying the non-Gaussian nature of the MUI, Poor and

Verdú [341] also designed nonlinear single-user detectors for

CDMA systems operating in diverse scenarios such as weak

interferers, high spreading gains and high signal-to-noise ratio

8In fact, van Etten’s pioneering companion papers on the optimum MIMO
detector [216] and on the optimum linear MIMO detector [215] were included
in the book The best of the best: Fifty years of communications and networking

research [339], which was compiled by the IEEE Communications Society in
2007, and he is the only researcher who has two sole-author papers included
in this selection.
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Fig. 16. An implementation example of the MF detector for synchronous
CDMA systems employing BPSK modulation.

(SNR).

There does exist some situations where a bona fide appli-

cation of the central limit theorem is feasible and hence the

MUI can be rigorously proven to be asymptotically Gaussian.9

However, even if the MUI may be accurately modelled as a

Gaussian variable, the SUMF is still not the optimal receiver.

This is because the output of the MF for the desired user

does not constitute a sufficient statistic in the presence of MUI

[342]. In other words, the SUMF is optimal only in the context

of the single-user channel contaminated by additive white

Gaussian noise (AWGN). By contrast, in multiple-access sys-

tems, unless the multiplexed signals (after passing through the

channel) are orthogonal, the outputs of the MFs corresponding

to the interfering users contain valuable information which

may be exploited for the detection of the symbol of interest,

and hence more intelligent joint detection strategies capable of

exploiting all MFs’ outputs are required for achieving better

9A specific example of such a situation is that an infinite-population
multiuser signal model with the individual amplitudes going to zero at the
appropriate speed – in other words, when the overall interference power is
fixed and the number of equal-power interferers tends to infinity [342].
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detection performance.

2) Optimum Decision Criteria: When designing optimal

detectors/receivers for communication systems, it is usually

necessary to clarify in what sense the word “optimum” is

referred to. This is because the specific choice of an optimal

detector/receiver is strongly dependent on the specific assump-

tions and criteria of “goodness”. An optimal detector/receiver

is the one that best satisfies the given criterion of goodness

under a given set of assumptions. If either the criterion or

the assumptions change, typically the choice of the optimal

detector/receiver also changes. If the assumptions used in the

theoretical analysis are inconsistent with the conditions of

the realistic environment considered, then it is possible that

the theoretically optimal detector/receiver obtained fails to

provide valid insights and results for the practically achievable

performance and designs. Special attention has to be paid to

the definition of “optimum”, since the theoretically optimal

results obtained are mainly invoked as a benchmark or bound,

against which any other results can be compared. There

are many criteria of goodness. As far as the performance

of the detectors/receivers used in communication systems

is concerned, the minimum error probability criterion is of

primary interest, and hypothesis testing as well as likelihood

ratios are of great importance. In Bayesian inference, the

optimum decision criterion which minimizes the error proba-

bility based only on the observed signals and a given set of

hypotheses is the maximum a posteriori (MAP) criterion. The

error probability in communication systems can be measured

in multiple scales, such as bit-error rate (BER), symbol-

error rate (SER), and packet-/frame-/block-/vector-error rate

(PER/FER/BLER/VER). When considering the MIMO system

model of (1), the MAP criterion based MIMO detector which

is optimal in the sense of minimum VER is formulated as

DMAP : ŝ = arg max
s∈ANI

Pr(s|y). (11)

Using Bayes’ rule, the a posteriori probability (APP) in (11)

may be expressed as

Pr(s|y) =
p(y|s) Pr(s)

p(y)
=

p(y|s) Pr(s)
∑

s′∈ANI

p(y|s′) Pr(s′)
, (12)

where Pr(s) is the a priori probability of s, and p(y|s) is the

conditional probability density function (PDF) of the observed

signal vector y given s. The MAP criterion can be simplified

when each vector in A
NI has an identical a priori probability,

i.e. we have Pr(s) = 1/|A|NI for all realizations of s, where

|A| represents the number of elements, i.e. the cardinality of

the constellation alphabet A. Furthermore, considering the fact

that p(y) is independent of which particular signal vector is

transmitted, then the MAP detector of (11) becomes equivalent

to the ML detector of

DML : ŝ = arg max
s∈ANI

p(y|s). (13)

Therefore, the MAP criterion is usually used in the iterative

detection and decoding (IDD) aided receiver of forward-error-

correction (FEC)-coded systems, where the a priori proba-

bilities of the transmitted symbols, Pr(s), may be obtained

with the aid of a backward-and-forward oriented iterative

information exchange between the signal detector and the

channel decoder. By contrast, the ML criterion is usually

used in FEC-uncoded systems, where the a priori probabilities

of the transmitted symbols cannot be made available by the

channel decoder. If n is AWGN, then we have

p(y|s) ∝ exp(−‖y −Hs‖
2

2
), (14)

where the symbol ∝ represents the relationship “is propor-

tional to”. Consequently, we have

max
s∈ANI

p(y|s) ⇔ min
s∈ANI

‖y −Hs‖
2

2
, (15)

where the symbol ⇔ represents the relationship “is equivalent

to”. Therefore, the ML detection problem for the system model

of (1) can be reformulated as the finite-set constrained least-

squares (LS) optimization problem of

ŝML = arg min
s∈ANI

‖y −Hs‖
2

2
, (16)

which can also be interpreted as the minimum Euclidean

distance (MED) criterion.

Note, however, that the above-mentioned MAP, ML and

MED criterion based MIMO detectors all aim for minimizing

the VER, but do not guarantee achieving the minimum BER

and minimum SER, which are two metrics of particular im-

portance in many applications, such as in FEC-coded systems.

There are other frequently used criteria in MIMO detector

design. The linear MF criterion is optimal for maximizing the

received SNR in the presence of additive stochastic noise.

The linear ZF criterion is optimal for maximizing the re-

ceived signal-to-interference ratio (SIR). By contrast, the linear

MMSE criterion based detector is optimal amongst all linear

detectors10 in terms of achieving the MMSE, and in essence

it is also optimal for maximizing the received SINR amongst

linear detectors [343], [344]. Additionally, the linear minimum

bit-error rate (MBER) criterion based detector achieves the

lowest BER amongst all linear detectors, as detailed in Section

VIII-B4.

3) Computational Complexity: The optimization problem

of (16) can be solved by “brute-force” search over ANI , result-

ing in an exponentially increasing computational complexity

of |A|NI . To elaborate a little further, let us consider the

example shown in Fig. 17, where binary phase-shift keying

(BPSK) modulation (M = 2) and NI = 2 are employed.

Hence, there are a total of MNI = 4 possible realizations

for the transmitted symbol vector s, and they are denoted as

s1 = [1, 1]T , s2 = [1,−1]T , s3 = [−1,−1]T , s4 = [−1, 1]T .

To gain deeper understanding of the computational com-

plexity of the optimum MIMO detector formulated in (13), let

us examine its implementations in practical CDMA systems.

More explicitly, the optimum MUD proposed in [224] for

asynchronous CDMA systems consists of a bank of MFs

10In general, the MMSE detector and the linear MMSE detector are not
necessarily the same. The former only aims at minimizing mean-square error
(MSE) and does not impose any constraint on the form of the MMSE
estimator. The latter assumes that the MMSE estimator is a linear function
of the observed signal vector y. If y and the transmitted signal vector s are
jointly Gaussian, then the MMSE estimator is linear. In this case, for finding
the MMSE estimator, it is sufficient to find the linear MMSE estimator.
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Fig. 17. Example of the optimal ML based MIMO detector in the context
of NI = 2 and BPSK modulation.

followed by a dynamic programming algorithm of the forward

(Viterbi) type [330]–[334] (for ML criterion based detection)

or of the backward-forward type [345]–[349] (for minimum

error probability criterion based detection). As mentioned in

Section VI, asynchronous CDMA systems can be modelled

relying on the MIMO system model given in Section VI for

transmission over linear dispersive channels exhibiting mem-

ory. Therefore, the optimum MUD conceived for asynchronous

CDMA constitutes a sequence detector, while the optimum

MUD of synchronous CDMA is a one-shot detector, and

as such it is a special case of the asynchronous optimum

MUD. The optimum MUD relying on brute-force search [224]

requires that the transmitted energies of each user were known

to the receiver. More critically, the computational complexity

of the optimum decision algorithms suggested in [224], [348],

[349] increases exponentially with the number of active users,

i.e. it is on the order of O(2K) per bit for asynchronous trans-

mission and O(2K/K) per bit for synchronous transmission,

where K is the number of active users. This is because the

optimum MUD of both the synchronous and asynchronous

CDMA scenarios was proven by Verdú11 to be an NP-hard and

a non-deterministic polynomial-time complete (NP-complete)

problem [46], [340]. Thus, all known algorithms designed

for solving this problem optimally exhibit an exponentially

increasing computational complexity in the number of decision

variables. Therefore, the optimum MUD becomes computa-

tionally intractable for a large number of active users.

It should be noted that the optimal MIMO detection problem

would only have a polynomially increasing complexity if

and only if a polynomial-time solution could be found for

any NP-complete problem, such as the famous travelling

salesman problem and the integer linear programming problem

which have been so far widely believed insolvable within

polynomial time. However, the question of whether there exists

a polynomial-time solution for NP-complete problems has

not been answered by a rigorous proof to date. It is widely

11In fact, the optimum MIMO detection problem of (16) constitutes an
instance of the general closest lattice-point search (CLPS) problem, whose
complexity had been analyzed earlier by Boas [45] in 1981, showing that this
problem is NP-hard. Additionally, Micciancio [47] provided a simpler proof
for the hardness of the CLPS problem in 2001.
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P = NP = NP-complete

if P = NPif P 6= NP

Fig. 18. Euler diagram for P, NP, NP-complete, NP-hard set of problems
under both P6=NP and P=NP assumptions [350], [351].

recognized that in computational complexity theory, the com-

plexity class of “P” represents one of the most fundamental

complexity classes, and it contains all decision problems that

can be solved by a deterministic Turing machine using a

polynomially increasing amount of computation time (this is

conventionally abbreviated to the parlance of “polynomial-

time” for convenience). In fact, the most important open

question in computational complexity theory [350], [351] has

been the formal proof of “Is P = NP?”, which explicitly poses

the dilemma whether polynomial-time algorithms actually do

exist for NP-complete problems, and by corollary, for all NP

problems. Fig. 18 concisely depicts the Euler diagram char-

acterizing the relationships amongst the P, NP, NP-complete,

and NP-hard set of problems under both the P6=NP and P=NP

assumptions.

Additionally, it is worth mentioning that for some algo-

rithms, such as the tree-search based MIMO detectors to be

detailed in Section VIII-D, the computational complexity may

vary in different scenarios. As such, the average computational

complexity, the worst-case computational complexity and the

distribution of computational complexity become important

metrics to examine. Finally, in practical algorithm implementa-

tions, it is also important to consider the hardware complexity,

which, in simplest form, can be measured by the silicon

area and the number of NAND2 gates required in the IC

implementation.

4) Milestone Contributions: For the sake of clarity, the

main contributions to the development of the optimum MIMO

detector are summarized in Table I. The substantial per-

formance and complexity differences between the optimum

MIMO detector and the conventional SUMF detector stim-

ulated a lot of interests in the development of suboptimum

MIMO detection algorithms that are capable of achieving good

performance at a low computational cost. Some representative

classes of suboptimum MIMO detectors include the linear

detectors, the interference cancellation aided detectors, the

tree-search based detectors, the PDA based detectors, the
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TABLE I
MILESTONES IN THE DEVELOPMENT OF THE OPTIMAL MIMO DETECTOR

Year Authors Contributions

1976 van Etten [216] Derived an ML sequence estimation based receiver for combating both the ISI and ICI in
multiple-channel transmission systems and demonstrated that under certain conditions, the
performance of the ML receiver is asymptotically as good as if both the ISI and ICI were
absent.

1981 Boas [45] Analyzed the complexity of the generic problem of “closest point search in an NI -dimensional
lattice”, which is identical to the optimum MIMO detection problem, as a function of the
dimension NI of the decision-variable vector, and proved that this problem is NP-hard. Thus, all
known algorithms conceived for solving the generic MIMO detection problem optimally have
an exponentially increasing computational complexity.

1983 - 1986 Verdú [222]–[224],
[340]

First presented a full derivation and analysis of the ML based multiuser detector for asyn-
chronous/synchronous CDMA systems; showed that there is, in general, a huge gap between the
performance of the conventional SUMF and the optimal attainable performance; showed that
the infamous near-far problem was not an inherent flaw of CDMA but a consequence of the
inability of the SUMF to exploit the structure of the MUI; introduced the performance measure
of multiuser asymptotic efficiency, which was later widely used in the asymptotic analysis of
multiuser detectors at the high-SNR region.

1984 - 1989 Verdú [46], [340] Independently proved that the optimum MUD problem in CDMA systems is NP-hard and NP-
complete.

2001 Micciancio [47] Presented a simpler proof of the NP-hardness of the problem of closest point search in an
NI -dimensional lattice.

2003 Garrett et al. [352] Proposed the first VLSI implementation of a soft-output ML detector having a 19.2 Mbps
uncoded data rate supporting up to 4× 4 QPSK MIMO.

2003 Burg et al. [353] Presented an efficient VLSI implementation of hard-decision optimum ML detector for QPSK
MIMO. The proposed method does not compromise optimality of the ML detector. Instead it
uses the special properties of QPSK modulation, together with algebraic transformations and
architectural optimizations, to achieve low hardware complexity and high speed up to 50 Mbps.

filter matrix

demodulator

ŝ

T ?

y

Fig. 19. Conceptual illustration of linear MIMO detectors.

SDPR based detectors and the LR based detectors etc., as

seen in Fig. 15 and detailed below.

B. Linear MIMO Detectors

The linear MIMO detectors of Fig. 15 are based on a linear

transformation of the output signal vector y. In general, they

are known for their appealingly low complexity, but suffer

from a considerable performance loss in comparison to the

ML detector. More explicitly, the decision statistics of linear

MIMO detectors may be expressed as

d = Ty, (17)

where T is the linear transformation (or filtering) matrix to

be designed using various criteria. A conceptual illustration

of the linear MIMO detectors is given in Fig. 19.

1) MF Detector: For the sake of illuminating the phi-

losophy of linear MIMO detectors, let us rely on (4) and

continue by considering the MF detector, which has the lowest

computational complexity among all MIMO detectors and its

linear transformation matrix is given by

TMF = HH . (18)

Upon using the MF detector of (18), we obtain

d = HHHs+HHn. (19)

The MF detector is well known as the optimal linear filter

designed for maximizing the output SNR in the presence of ad-

ditive stochastic noise. In Section VIII-A1, we have provided

some discussions regarding the MF detector in order to justify

the motivations of developing joint detection based MIMO

detectors. To elaborate a little further, the MF detector had

been widely used before the concept of MIMO detection was

born, and it is essentially based on the single-user detection

philosophy. Hence, strictly speaking, it does not belong to the

joint detection based MIMO detection family, and typically it

exhibits a poor performance in CCI-limited MIMO systems.

However, in certain LS-MIMO contexts [25], [354], the MF

detector is capable of approaching the performance of the

optimal ML detector, as it will be further discussed in Section

IX.

2) Linear ZF Detector: Assuming that the noise vector is

zero, (4) becomes a system of linear equations, and the MIMO

detection problem becomes equivalent to “finding the solution

for Nt unknown variables subject to Nr linear equations”.

Therefore, if H is a square matrix (i.e. Nr = Nt) and of full
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rank, the solution of this system of linear equations is given

by s = H−1y. To generalize this problem a little further, if

the matrix H satisfies Nr > Nt and has a full column rank of

Nt, we have s = H†y, where H† = (HHH)−1HH is the left-

multiplying Moore-Penrose pseudoinverse of H. This example

actually conveys the essential idea of the ZF criterion based

MIMO detector, for which the linear transformation matrix is

given by

TZF = H†, (20)

and if H is invertible, the left-multiplying pseudoinverse H†

and the inverse coincides, i.e. we have H† = H−1. Upon

using the ZF detector, we have d = s+H†n, which indicates

that the interference amongst the multiple inputs is completely

eliminated, albeit the noise power is augmented.

Similar to the case of the optimum ML-based MIMO

detector, the ZF criterion based linear MIMO detector of Fig.

15 was also first proposed by van Etten [215] in 1975 for a

multiple-channel multiplexing transmission system subjected

to both ISI and ICI. As far as CDMA systems are concerned,

this solution was first proposed by Schneider [218] in 1979

for synchronous CDMA systems transmitting equal-energy

multiuser signals, where he sought to minimize the probability

of bit error, but erroneously arrived at the ZF detector. From

1986 to 1990, Lupas and Verdú systematically investigated this

detector in the context of both synchronous [226], [355] and

asynchronous [227], [356] CDMA systems. They referred to

it as the linear decorrelating multiuser detector. It was shown

that if the transmitted energies of each user are unknown to

the receiver, then both the ML amplitude estimates and the

ML decisions on the transmitted bits are obtained by the ZF

detector, regardless of the values of the received energies of

each user. As a beneficial result, the ZF detector achieves the

same degree of resistance to the infamous near-far problem

as the optimum ML detector, despite its significantly reduced

computational complexity. The insight that the near-far prob-

lem was not an inherent flaw of CDMA but a consequence

of the SUMF’s inability to exploit the non-Gaussian structure

of the MUI [224], and the fact that the joint detection based

MUDs, including its linear versions, achieve a significantly

better near-far resistance [226], [227], [355], [356] became

another major incentive for the subsequent research activities

dedicated to MUD in CDMA. Additionally, with the advent

of the multiple-antenna technologies conceived during the

mid-1990s, the ZF detector was first studied in the SDM-

based VBLAST systems by Foschini, Wolniansky, Golden and

Valenzuela [166]–[168].

3) Linear MMSE Detector: As seen in Fig. 15, the linear

transformation matrix T of (17) can also be designed accord-

ing to the MMSE criterion, which minimizes the mean-square

error between the actual transmitted data and the channel’s

output data after using the linear transformation matrix T. To

be more specific, T is obtained by solving the optimization

problem of

TMMSE = argmin
T

E
(

‖s−Ty‖
2

2

)

. (21)

Using the orthogonality principle [357], we have

E [(s−Ty)yH ] = 0, (22)

then TMMSE may be derived as

TMMSE = (HHH+ 2σ2I)−1HH , (23)

where σ2 is the noise power per real dimension, and E(s) = 1
is assumed. Compared to the linear ZF detector, the linear

MMSE detector achieves a better balance between the MUI

elimination and noise enhancement by jointly minimizing the

total error imposed by both the MUI and the noise. Hence, the

linear MMSE detector achieves a better performance at low

SNRs than the ZF detector.

The MMSE criterion based linear MIMO detector was

first proposed by Shnidman [213] in 1967, and hence it

is the oldest MIMO detector found in the literature. The

generalized Nyquist criterion formulated by Shnidman first

indicates that the ISI and crosstalk12 between multiplexed

signals essentially represent identical phenomena. Then, re-

lying on this insight, he proposed a linear receiver that is

optimal in the sense of the MMSE criterion for combating both

the ISI and crosstalk in single-channel multiple-waveform-

multiplexed pulse-amplitude modulation (PAM) systems. In

1970, Kaye and George [214] explicitly extended the MMSE

receiver of [213] to the family of general multiple-channel

systems transmitting multiplexed PAM signals and/or provid-

ing diversity. The MMSE criterion based linear detector for

CDMA systems was proposed by Xie, Rushforth and Short

in 1989 [240], [358]. A decade later, it was also revisited by

Foschini, Wolniansky, Golden and Valenzuela in the context

of SDM-based multi-antenna systems [166]–[168]. The prob-

ability of error experienced at the output of the linear MMSE

detector was analyzed by Poor and Verdú [359] in 1997.

4) Other Linear Detectors: As observed in the family-tree

of Fig. 15, there are a range of other criteria for designing the

linear transformation matrix T.

• For example, in [226], [355], Lupas and Verdú also

proposed a maximum asymptotic-multiuser-efficiency

(MAME) based linear detector, which is capable of

minimizing the probability of bit errors in the limit as

the noise approaches zero. The asymptotic-multiuser-

efficiency (AME) is a metric which characterizes the

performance of the MUD in the high-SNR region. It

implies the performance loss of the desired user in the

high-SNR region due to the interference imposed by other

active users. To be more specific, it is defined as the limit

of the ratio between the effective SNR (that is required

by a single-user system to achieve the same asymptotic

error probability) and the actual SNR of the desired user,

when the noise power tends to zero. Furthermore, the

linear MAME detector was designed by exploiting the

assumption that the individual transmitted energies of all

the users are fixed and known to the receiver. By contrast,

the ZF detector does not require the knowledge of the

12Crosstalk may be interpreted as a special case of ICI. For example, as
mentioned before, in [213], crosstalk means the interference between the
multiplexed different waveforms.
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TABLE II
MILESTONES IN THE DEVELOPMENT OF LINEAR MIMO DETECTORS

Year Authors Contributions

1967 Shnidman [213] First formulated a generalized Nyquist criterion, which pointed out that the ISI and crosstalk
between multiplexed signals are essentially identical phenomena; he then proposed a linear
MMSE receiver for combating both ISI and crosstalk in single-channel multiple-waveform-
multiplexed PAM systems.

1970 Kaye et al. [214] Extended the MMSE receiver of [213] to the general multiple-channel systems transmitting
multiplexed PAM signals and/or providing diversity.

1975 van Etten [215] Developed linear receivers based on both the ZF criterion and the minimum error probability
criterion for a multiple-channel transmission system similar to that of [214]; these two
detectors heralded the linear ZF and the linear MBER multiuser detectors of CDMA systems.

1975 Horwood et al. [217] Proposed two linear signal-correlation based detectors for synchronous digital multiple-access
systems; one of them assumes that each user only knows its own signature, while the other
assumes that each user knows all users’ signatures; this is the first attempt in multiple-access
systems to exploit the structure of the signals simultaneously sent, which is the key idea of
MUD in CDMA systems.

1979 Schneider [218] First made an attempt to conceive MUD for CDMA systems; he proposed the linear
decorrelating detector, namely the linear ZF detector, which represents one of the mainstream
MUD approaches conceived for CDMA systems; this detector was also extended to the
scenario of combating crosstalk in M -ary multiplexed transmission systems in 1980 [219].

1986-1990 Lupas et al. [226],
[227], [355], [356]

Systematically investigated the linear ZF MUD in the context of both synchronous [226], [355]
and asynchronous [227], [356] CDMA systems; they showed that the ZF detector achieves
exactly the same degree of resistance to the infamous near-far problem as the optimum ML
detector, despite its much lower computational and implementation complexity; they also first
proposed a linear MAME MUD, which is capable of equivalently minimizing the probability
of bit error in the limit as the noise approaches zero.

1989 - 1990 Xie et al. [240], [358] First proposed the MMSE criterion based linear MUD, the modified linear equalizer based
MUD, and the WLS linear MUD for CDMA systems. In contrast to the linear ZF detector,
to the linear MMSE detector, and to the modified linear equalizer based detector, the linear
WLS detector is capable of providing an unbiased estimate of the transmitted symbols.

1993 - 1997 Mandayam et al.

[360]–[363]
First proposed the MBER criterion based linear MIMO detectors for CDMA systems; the
linear MBER detector is capable of outperforming the linear MMSE detector when either the
signature cross-correlation is high or the background noise is non-Gaussian.

1996 - 1999 Foschini et al. [166]–
[168]

First discussed the application of linear ZF/MMSE detectors in multiple-antenna aided SDM-
MIMO systems.

2006 Chen et al. [294] Proposed the MBER criterion based linear detector for multi-antenna aided MIMO systems.

2006 Burg et al. [364] Presented an algorithm and a corresponding VLSI architecture for the implementation of linear
MMSE detection in packet-based MIMO-OFDM communication systems. The algorithm also
supports the extraction of soft information for channel decoding.

2009 Yoshizawa et al.

[365]
Reported a VLSI implementation for a 4 × 4 MIMO-OFDM transceiver relying on linear
MMSE, which achieves a target data rate of 1 Gbps.

2014 Yin et al. [328] Presented the first application-specific integrated circuit (ASIC) implementation for the soft-
output linear MMSE detector based large-scale MIMO system which uses 128 BS antennas
to support 8 users, and a sum-rate of 3.8 Gbps was achieved.

transmitted energies of the users.

• Additionally, since a common disadvantage of the lin-

ear ZF and MMSE detectors is that their estimates of

the transmitted symbols are biased, Xie, Rushforth and

Short [240], [358] proposed the so-called weighted least-

squares (WLS) linear detector, which is capable of pro-

viding an unbiased estimate of the transmitted symbols.

It is worth pointing out that except for the linear MF and

ZF detectors, other linear MIMO detectors – including

the linear MMSE detector, the linear MAME detector and

the linear WLS detector – were typically derived under

the assumption that the system parameters such as the

signal’s phase, power and delay are known. As a result,

in practice these parameters must be estimated and the

receiver’s structure has to be regularly modified to reflect

the updated estimates.

• Another important class of linear MIMO detectors are

based on the MBER criterion. The linear MBER detector

is capable of outperforming the linear MMSE detector

when either the signature cross-correlation is high or

the background noise is non-Gaussian [366]. Again, the

MBER based MIMO detector was first considered by van

Etten [215] in 1975 in the context of a multiple-channel

multiplexing transmission system subjected to both ISI

and ICI. This MBER criterion was later studied in the

context of CDMA systems [360]–[363], [366]–[371] and
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Fig. 20. The basic principle of the SIC/DFD based MIMO detectors.

multi-antenna systems [294], [295].

• Finally, we would like to mention that the linear MIMO

detector can also be designed from the perspective of

a linear equalizer [240], [358], since the mathematical

models of the MIMO detection problem and of the equal-

ization problem are similar [329]. To elaborate a little

further, in MIMO systems each symbol’s interference is

imposed by other simultaneous transmissions, while in

the band-limited ISI channels requiring equalization, the

interference of a particular symbol is due to other symbols

that are transmitted sequentially in the time domain.

The main contributions to the development of linear MIMO

detectors are summarized in Table II.

C. Interference Cancellation Aided MIMO Detectors

Another important class of suboptimum MIMO detectors

portrayed in Fig. 15 are constituted by the interference cancel-

lation based MIMO detectors, which are nonlinear and gener-

ally achieve a better performance than linear MIMO detectors.

The concept of interference cancellation was first studied in

1974 by Bergmans and Cover [372], [373], as well as by

Carleial [184] in 1975, in their information-theoretic studies

of broadcast channels and of interference channels, respec-

tively. In the context of CDMA and multi-antenna systems,

this class of MIMO detectors have numerous variants due

to the associated design flexibility, including the successive

interference cancellation (SIC) detector [166]–[168], [238],

[374], the parallel interference cancellation (PIC) detector

[228], [235], [304], the multistage interference cancellation

(MIC) detector [221], [231], [232], [375], and the decision-

feedback detector (DFD) [240], [242], [243], [245] etc. The

interference cancellation based MIMO detectors are typically

capable of providing a significantly better performance than

their linear counterparts at the expense of a higher complexity,

especially in the absence of channel coding [247], albeit this

is not necessarily always the case. In practice, a common

drawback of the interference cancellation based MIMO de-

tectors is that they often suffer from error propagation. Hence

their performance only approaches that of the optimum ML

based MUD when the interfering users have a much stronger

signal strength than the desired user. From this perspective,

the weakest user benefits most from the employment of the

interference cancellation detector.

• SIC: In the most popular SIC based MIMO detector, a

single symbol si is detected at a time. Then the inter-
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Fig. 21. The basic principle of the PIC/MIC based MIMO detectors.

ference imposed by this particular symbol on the other

symbols {sk}k 6=i yet to be detected is subtracted after

recreating the interference upon generating the modulated

signal corresponding to this symbol. In this scheme, it

is most important to cancel the effect of the strongest

interfering signal before detecting the weaker signals.

Therefore, the specific symbol detection ordering, which

can be designed according to various criteria, is quite

critical for the SIC detector’s performance. Some of the

typical ordering criteria for ordered SIC (OSIC) include

the decreasing signal-to-noise ratio (DSNR) criterion

[296], [297], the greatest signal-to-noise ratio (GSNR)

criterion [298], the increasing mean-square error (IMSE)

criterion [297], and the least mean-square error (LMSE)

criterion [299]–[301]. The SIC method performs well

when there is a substantial difference in the received

signal strength of the multiple simultaneously transmitted

symbols. However, this condition is not always satisfied

in practical applications, which renders the SIC detector

potentially sensitive to decision error propagation. There-

fore, the SIC detector is well-suited for multiple-access

systems suffering from the near-far problem, such as the

family of CDMA or SDMA systems. In the SIC detector,

there is a need for detection reordering at each iteration of

the SIC detector, and the number of detection iterations

increases linearly with the number of symbols in s.

Therefore, for a system which has a high-dimensional

transmitted symbol vector s, the SIC technique imposes

a substantial complexity, which ultimately increases the

processing delay. The SIC detector designed for CDMA

systems was first proposed by Viterbi [238]. Later it was

studied extensively in [244], [246], [374], [376]–[381]. In

the context of multi-antenna based SDM systems, the SIC

scheme was first studied by Foschini, Wolniansky, Golden

and Valenzuela in [166]–[168], and it was later studied

more comprehensively by numerous other researchers in

[291]–[293]. Among these schemes, Viterbi [238] pro-

posed an SIC scheme for a convolutionally coded direct-

sequence CDMA (DS-CDMA) system and revealed that

with the aid of the SIC based receiver, the aggregate

data rate of all simultaneous users may approach the

Shannon capacity of the Gaussian channel. It should be

emphasized that although theoretically the SIC method

achieves the Shannon capacity in the multiple-access

channel by assuming perfectly error-free detection (hence

avoiding decision error propagation), this is not necessar-

ily true in practice, because the SIC method is sensitive

to decision error propagation, and hence MIMO detectors

that are more robust to decision error propagation might
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outperform the SIC detector in practice. Another fact

worth mentioning is that the performance degradation

imposed by error propagation in the SIC detector can

be mitigated by accurate power control [382].

• PIC: Alternatively, in the PIC based MIMO detector, all

symbols are detected simultaneously. For each symbol,

the coarse initial estimate of the interfering symbols can

be used for regenerating the interference and then for

deducting it from each of the composite received signals.

Then this PIC detection process may be repeated for

several iterations. Therefore, sometimes the PIC detection

is also regarded as a MIC technique, or vice versa.

Compared to the SIC detector, the PIC detector has lower

processing delay, and is more robust to inter-stream error

propagation. However, its near-far resistance is inferior

to that of the SIC detector, because some users might

have much weaker received signal strength than others.

Hence, the PIC is suitable for similar-power signals, while

the SIC performs better for different-power streams. In

the context of CDMA systems, the earliest contribution

to PIC may be attributed to Kohno et al. [228]–[230].

Later significant contributions to PIC were also attributed

to Yoon [234], [383], Divsalar [235], Buehrer [384] and

Guo [385] et al.. In the context of multi-antenna MIMO

systems, the PIC detector was studied mainly in [302]–

[304].

• MIC: In the MIC based MIMO detector, the first stage can

be the conventional SUMF detector, the linear ZF/MMSE

detector, the SIC detector or any other suboptimum

detector. The decisions made for all symbols s by the

(n−1)th stage are employed as the input of the nth stage

for the sake of cancelling the MUI. Note that historically,

the MIC detector was developed independently of the

PIC, although they share similar concepts. The MIC de-

tector was first proposed by Timor for frequency-hopped

CDMA (FH-CDMA) systems [220], [221]. Then, it was

extensively studied in the context of both asynchronous

DS-CDMA systems [231], [386] and synchronous DS-

CDMA systems [232], [375], [387]. An analytical frame-

work was proposed for adaptive MIC in [236].

• DFD: The concept of DFD is based on the same premise

as that of the family of decision-feedback equalizers

[391], [392]. Although DFD also relies on the SIC idea,

its emphasis is on the receiver filter’s optimization, which

consists of a feedforward filter and a feedback filter

optimization. The first DFD scheme was proposed by Xie

et al. [240], [358] for asynchronous DS-CDMA systems.

Other major contributors of the subject of DFD include

Duel-Hallen [242], [243], [388], [389], who comprehen-

sively investigated decision-feedback MUDs designed for

both synchronous [242], [388] and asynchronous [243],

[389] CDMA systems. Furthermore, Varanasi [245] ana-

lyzed the performance of a general class of DFDs using

a new performance metric constituted by the probability

that at least one user is detected erroneously, and also

proposed algorithms for determining the most beneficial

detection ordering.

  

ML decoding Sphere decoding

R

Fig. 22. The basic principle of the SD based MIMO detectors. In short, it
solves the problem of finding the “closest” lattice point to a given vector y

in the skewed and rotated (caused by the MIMO channel) lattice Hs.

The basic principles of the SIC/DFD detectors and the

PIC/MIC detectors are illustrated in Fig. 20 and Fig. 21,

respectively. The main contributions to the development of

the interference cancellation based MIMO detectors are sum-

marized in Table III. A more comprehensive exposition of the

above-mentioned MIMO detectors developed in the context of

CDMA systems can be found in [48]–[51], [248], [393].

D. Tree-Search Based MIMO Detectors

The tree-search based MIMO detectors are arguably the

most popular detectors investigated in the era of multi-antenna

MIMO systems. This is because 1) the introduction of the

powerful SD algorithm happened to coincide with the devel-

opment of multi-antenna MIMO techniques; 2) some profound

research results on the CLPS problem showed that the tree-

search MIMO detectors enjoy significant design flexibility in

terms of striking an attractive tradeoff between approaching

the optimum ML performance and reducing the computational

complexity.

Indeed, some tree-search based MUDs had been reported

earlier in the context of CDMA systems [239], [241], [394]–

[396]. For example, the so-called (depth-first) stack sequen-

tial detection was proposed by Xie in [239], [394], while

the (breadth-first) K-best tree-search detection was proposed,

again, by Xie in [241], [395], which was then further studied

by Wei et al. in [396]. Looking back to the earlier history,

because of the convertibility between the trellis structure and

the tree structure, the tree-search detection methods proposed

for CDMA systems, including the classic M -algorithm [397],

[398] and T -algorithm [399]–[402], were actually extensions

of their counterparts used in trellis decoding [397]–[410].

However, these tree-search based detectors did not attract as

much attention as the linear detectors and the interference

cancellation aided detectors in the era of CDMA systems.

The research interests related to tree-search based MIMO

detectors were largely stimulated by the seminal work of

Viterbo et al. [53], [305], who first applied the depth-first

SD algorithm to the ML detection of multidimensional con-

stellations transmitted over single-antenna fading channels.

The basic principle of the SD algorithm is illustrated in Fig.

22. Compared to the optimal brute-force search based ML

decoding, the SD algorithm aims for reducing the computa-

tional complexity by only searching over the noiseless received
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TABLE III
MILESTONES IN THE DEVELOPMENT OF INTERFERENCE CANCELLATION MIMO DETECTORS

Year Authors Contributions

1974 - 1975 Bergmans and Cover [372],
[373]

First demonstrated the effectiveness of the SIC concept from an information-theoretic
perspective for broadcast channels.

1975 Carleial [184] First characterized the effectiveness of the SIC principle from an information-theoretic
perspective for interference channels.

1980-1981 Timor [220], [221] First proposed a two-stage [220] MUD and a multistage [221] MUD for FH-CDMA
systems employing multiple frequency-shift keying (MFSK) modulation; showed that
the mutual interference between the users of a FH-CDMA system may be significantly
reduced by making use of the well-defined algebraic structure of the users’ signature
waveforms, and that introducing an extra stage of interference cancellation may further
improve the detector’s performance.

1990 Viterbi [238] First conceived an SIC scheme for a convolutionally coded DS-CDMA system, and
revealed that with the aid of the SIC based receiver the aggregate data rate of all
simultaneous users can approach the Shannon capacity of the Gaussian channel.

1983 - 1990 Kohno et al. [228]–[230] First proposed a PIC based MUD for CDMA systems.

1988 - 1991 Varanasi et al. [231], [232],
[386], [387]

Designed and systematically characterized the MIC MUDs for both asynchronous and
synchronous CDMA systems.

1989 - 1990 Xie et al. [240], [358] First proposed a DFD based MUD for asynchronous DS-CDMA systems.

1991 - 1995 Duel-Hallen et al. [242],
[243], [388], [389]

Systematically investigated DFD MUDs conceived for both synchronous [242], [388] and
asynchronous [243], [389] CDMA systems from a receiver filter optimization perspective.

1996 - 1999 Foschini et al. [166]–[168] First discussed the ZF based SIC detector conceived for multiple-antenna aided SDM-
MIMO systems.

2002 Chin et al. [302] Extended the PIC detector to the multiple-antenna aided SDM-MIMO systems.

2003 Wübben et al. [296] Proposed a QR-decomposition (QRD) based MMSE-SIC detector for multiple-antenna
aided SDM-MIMO systems.

2003 Guo et al. [390] Presented a VLSI implementation of the V-BLAST detector for a 4× 4 MIMO system
employing QPSK, and a detecting throughput of 128 Mbps was achieved.

2011 Studer et al. [304] Reported an ASIC implementation of a soft-input soft-output MMSE based PIC detector
for multiple-antenna aided SDM-MIMO systems.

signals that lie within a hypersphere of radius R around the

received signal. Note that before it was applied in digital

communications, the SD algorithm, also known as the Fincke-

Pohst algorithm, had been reported in [411], [412]. Later,

Agrell et al. [54] proposed to employ the Schnorr-Euchner

(SE) refinement [413] of the Fincke-Pohst algorithm [411],

[412] for solving the CLPS problem, and they concluded that

the SE enumeration is more efficient than the Viterbo-Boutros

(VB) implementation [53] of the SD algorithm. More recently,

Damen et al. [57] proposed two improved SD algorithms

for finding the closest lattice point, both of which were

shown to offer a significant complexity reduction compared to

the VB-SD [53] and to the SE-SD [54], respectively. There

exist a number of other variants of the tree-search based

MIMO detectors, which mainly fall into three categories: the

depth-first tree-search detector [53], [54], [57]–[61], [305], the

breadth-first tree-search detector [62]–[64], [80], [82], [306]

and the best-first tree-search detector [68]–[72], [307], [308],

[414].

The major momentum which propels the enormous research

activities on tree-search based MIMO detectors is that they

were shown to be capable of achieving near-ML performance,

or even exact ML performance at the expense of significantly

reduced complexity [58], [59], [415]–[417]. However, we

would like to emphasize that this claim is shown not true

in general [60], [418]. More specifically, Hassibi and Vikalo

[58], [59], [415]–[417] first studied the expected complexity,

averaged over the noise and over the lattice, of the Fincke-

Pohst SD based MIMO detectors. It was claimed that although

the worst-case complexity of the SD algorithm is exponential,

the expected complexity of the SD algorithm is polynomial,

in fact, often roughly cubic, for a wide range of SNRs and

number of antennas. Contrary to this claim, Jaldén and Ot-

tersten [60], [418] demonstrated that the expected complexity

of SD based MIMO detectors is given by O(MβNt), where

β ∈ (0, 1] is a small factor depending on the value of

SNR. In other words, the expected complexity of the SD

algorithm is still exponential for fixed SNR values. Therefore,

in general the tree-search based MIMO detectors are not

efficient for MIMO systems which operate under low-SNR

condition and/or have a large number of inputs. Notably, in

order to avoid the varying-complexity characteristic of tree-

search based MIMO detectors, recently a K-best algorithm

based suboptimal fixed-complexity SD (FCSD) was proposed

for MIMO systems [80]. It was shown that the FCSD achieves

a near-ML performance with a complexity of O(M
√
Nt) [82]

regardless of the specific SNR encountered, which represents

an attractive solution of facilitating an efficient hardware
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implementation compared to the conventional exponential-

complexity SD. The main contributions in the development

of the depth-first tree-search MIMO detectors, the breadth-

first tree-search MIMO detectors and the best-first tree-search

MIMO detectors are summarized in Table IV, Table V and

Table VI, respectively.

E. Lattice-Reduction Aided Detectors

Lattice-reduction (LR) aided detectors constitute another

important class of MIMO detectors, which rely on the alge-

braic concept of “lattice” originating from classic geometry

and group theory13. A lattice in R
n is a discrete subgroup

of R
n, which spans the real-valued vector space R

n. Each

lattice in R
n can be generated from a basis of the vector space

by forming all linear combinations with integer coefficients.

In the MIMO transmission model of (1), the received signal

vector y is the noisy observation of the vector Hs, which is

in the lattice spanned by the column vectors H, since both

the real and imaginary parts of all the elements of s may be

transformed to integers by shifting and scaling.

A lattice typically has multiple sets of basis vectors. Some

bases spanning the same lattice as H might be “closer” to

orthogonality than H itself. The process of finding a basis

closer to orthogonality is referred to as LR. Theoretically,

finding the optimal (closest to orthogonality) set of basis

vectors is computationally expensive. Therefore, in practice

LR algorithms typically aim for finding a “better” channel

matrix H = HL, where the real and imaginary parts of

all the entries of the unimodular matrix L are integers and

the determinant of L is ±1 or ±j. As a result, the LR

preprocessing technique is capable of improving the “quality”

of the MIMO channel matrices.

There is a variety of LR algorithms developed by mathe-

maticians [428]. Some of them, such as Gaussian reduction

[429], Minkowski reduction and Korkine-Zolotareff (KZ) re-

duction [430], are capable of finding the optimal basis for a

lattice, but they are computationally prohibitive for communi-

cations systems [430]–[433]. Other well-known LR algorithms

include the Lenstra-Lenstra-Lovász (LLL) algorithm [434],

Seysen’s algorithm [90], [91], [435] and Brun’s algorithm [92],

[436], [437], which are all suboptimal. The most popular LR

algorithm is the LLL algorithm, which does not guarantee to

find the optimal basis, but it guarantees to find a basis within

a factor to the optimal one in polynomial time [88], [89],

[431], [438]. For example, it was formally proved in [88] that

an upper bound on the average computational complexity of

LLL is O(N3
t logNt), where Nt is the size of s. Furthermore,

a tighter upper bound of O(N2
t log Nt

Nr−Nt+1
) was found in

[89], where Nr is the size of y. Note that the worst-case

computational complexity of the LLL algorithm can be infinite

[89], [431]. However, in practice the probability of the scenario

which leads to this worst-case complexity is zero. There are

13Recall that the lattice perspective – many detection problems can be
interpreted as the problem of finding the closest lattice point [54], [57], [427]
– is also the foundation for the tree-search based MIMO detectors described
in Section VIII-D.

mainly two variants for the LLL algorithm, namely the real-

valued LLL [84], [85] and the complex-valued LLL [95]–

[98]. The real-valued LLL is applied to the real-valued MIMO

system model of Section VII, while the complex-valued LLL

is designed for directly using it in the complex-valued MIMO

system model. Additionally, the authors of [439] proposed an

LLL algorithm which is not only applicable to the complex-

valued model, but also applicable to the Euclidean ring in

general.

In principle, LR can be combined with virtually all the

other MIMO detectors to further improve their performance.

For example, the LR technique was used in conjunction with

traditional linear ZF and nonlinear ZF-SIC detectors in [83], as

well as with linear MMSE and nonlinear MMSE-SIC detectors

in [85], [440], both achieving a substantial performance gain

with little additional computational complexity. As a further

advance over [83], a real-valued LLL-based LR algorithm was

used in [84], which enables the application of the algorithm

in MIMO systems with arbitrary numbers of dimensions.

In addition, it was shown in [84], [86] that LR can also

be favorably applied in MIMO systems that use precoding.

The LLL based LR algorithm was shown to be capable of

achieving the maximum attainable/full receive diversity in

MIMO decoding [87]. The VLSI implementation of the LR

technique aided precoder and of the K-best MIMO detector

was reported in [92] and [93], respectively. LR-aided soft-

decision MIMO detectors are studied in [99]–[102]. Recently,

element-based LR algorithms, which reduce the diagonal

elements of the noise covariance matrix of linear detectors and

thus enhance the asymptotic performance of linear detectors,

were proposed for large-scale MIMO systems [103]. The main

contributions in the development of LR-aided MIMO detection

are summarized in Table VII.

F. Probabilistic Data Association Based Detectors

The PDA filter technique is a statistical approach originally

invented by Bar-Shalom [441] in 1975 for the problem of

target tracking and surveillance in a cluttered environment,

where measurements are unlabelled and may be spurious. To

elaborate a little further, it was developed for solving the

problem of plot-to-track association in a radar tracker. In this

context, all of the potential candidates for association to a

specific track are combined into a single statistically most

likely update, taking account of the statistical distributions of

both the tracking errors and the clutter, while assuming that

only one of the candidates is the desired target with the rest of

them representing false alarms. A major extension of the PDA

filter is the joint probabilistic data association (JPDA) filter

[442], [443], which takes account of the situation that multiple

targets are present out of all the potential candidates, and

hence seeks to compute the joint decision probabilities for the

multiple targets. In addition to their wide applications in radar,

sonar, electro-optical sensor networks and navigation systems

[441]–[455], the PDA techniques have also been applied in the

field of computer vision for solving the visual target tracking

problem [456]–[459].

The PDA approach may also be applied for solving chal-

lenging problems in digital communications. For example, it
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TABLE IV
MILESTONES IN THE DEVELOPMENT OF THE TREE-SEARCH MIMO DETECTORS: DEPTH-FIRST TYPE

Year Authors Contributions

1981 - 1985 Pohst and Fincke [411],
[412]

First proposed the SD algorithm, which is hence known as the Fincke-Pohst algorithm,
for calculating vectors of short length in a lattice at a reduced complexity; this work
laid the mathematical foundation of applying the SD algorithm to the MIMO detection
problem.

1988 - 1990 Xie et al. [239], [394] First proposed a stack sequential decoding based MUD for asynchronous CDMA
systems; this detector is essentially a depth-first tree-search MIMO detector.

1993 - 1999 Viterbo et al. [53], [305] Applied the depth-first SD algorithm to the ML detection of multidimensional constel-
lations transmitted over single-antenna fading channels, which largely stimulated the
research interests of tree-search based MIMO detectors.

1994 Schnorr and Euchner [413] Proposed a more efficient variation, known as SE refinement, of the Fincke-Pohst SD
algorithm; the SE-SD algorithm was based on the lattice basis reduction philosophy and
represents a popular solution to the MIMO detection problem.

2001 - 2003 Hochwald et al. [74], [419] Proposed a complex-valued SD and the list-SD (LSD) for a FEC-coded MIMO using
IDD receiver, showing that a near-capacity performance can be achieved with the aid
of a soft-SD based IDD receiver.

2002 Agrell et al. [54] First proposed to use the SE refinement [413] of the Fincke-Pohst SD algorithm [411],
[412] to the CLPS problem, and concluded that the SE enumeration technique is more
efficient than the VB implementation [53] of the SD algorithm designed for MIMO
detection.

2003 Damen et al. [57] Proposed a pair of improved SD algorithms for finding the closest lattice point, both of
which were shown to offer a significant complexity reduction compared to the VB-SD
of [53] and to the SE-SD of [54].

2001 - 2005 Hassibi and Vikalo [58],
[59], [415]–[417]

Analyzed the expected complexity of the SD algorithm, and concluded that the expected
complexity of SD algorithm is dependent on both the problem size and the SNR; showed
that when the SNR is high, the expected complexity of SD can be approximated by a
polynomial function for a small problem size.

2004 - 2005 Jaldén and Ottersten [60],
[418]

Further analyzed the expected complexity of the SD algorithm, and demonstrated that
the expected complexity of the SD algorithm increases exponentially for a fixed SNR
with a search-space, which contradicts previous claims; therefore, strictly speaking, the
SD algorithm has an exponential lower bound in terms of both the expected complexity
as well as the worst-case complexity, although it can be efficient at high SNRs and for
problems of moderate size.

2004 Garrett et al. [420] First reported the VLSI implementation of a soft-output depth-first SD based detector
for a 4× 4 16QAM MIMO system, achieving 38.8 Mbps over a 5-MHz channel.

2005 Burg et al. [61] Proposed two ASIC implementations of depth-first MIMO SD. The first ASIC attains
the ML performance with an average throughput of 73 Mb/s at an SNR of 20 dB; the
second ASIC achieves a throughput of 170 Mb/s at the same SNR with only a negligible
BER degradation. The proposed implementations rely on four key contributing factors
to achieve high throughput and low complexity: depth-first tree traversal with radius
reduction, implemented in a one-node-per-cycle architecture, the use of the l∞-instead
of l2 -norm, and an efficient implementation of the enumeration approach.

2008 Studer et al. [65] Presented the VLSI implementation of a soft-output depth-first SD based MIMO
detector, which demonstrated that single tree-search, sorted QR-decomposition, channel
matrix regularization, log-likelihood ratio clipping, and imposing runtime constraints
are the key ingredients for realizing soft-output MIMO detectors with near max-log
performance.

may be developed as a reduced-complexity design alternative

to the optimal soft-decision aided MAP detectors/equalizers

of MIMO channels [104]–[133], and it is also applicable to

channel estimation of MIMO systems [460], [461]. Since we

mainly focus on MIMO detection in this paper, a more detailed

discussion of the PDA-based MIMO channel estimation will

not be included in the sequel. As far as the PDA-based

MIMO detection is concerned, it is Luo et al. [104] who first

applied the PDA approach to the MUD problem of BPSK-

modulated synchronous CDMA systems in 2001, showing

a near-optimum performance at a significantly lower com-

putational complexity than the ML detector. Thereafter, the

PDA-based detector was naturally extended to the scenario of

BPSK-modulated asynchronous CDMA systems [106], [107].

Recently, it was also extended to the symbol detection of

QAM-aided SDM-MIMO systems [111]–[113], [116], [120],

[130], striking an attractive tradeoff between the attainable

performance and the complexity imposed. More specifically,

in [111] a real-valued PDA (RPDA) was formulated for M -

QAM constellations, which is based on the equivalent real-
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TABLE V
MILESTONES IN THE DEVELOPMENT OF THE TREE-SEARCH MIMO DETECTORS: BREADTH-FIRST TYPE

Year Authors Contributions

1990 - 1993 Xie et al. [241], [395], [396] First conceived a breadth-first K-best tree search MUD for asynchronous CDMA
systems; proposed a joint signal detection and parameter estimation scheme based on
their breadth-first tree search MUD.

1997 Wei et al. [396] Studied both the M -algorithm and the T -algorithm based breath-first tree-search MUD
in the context of CDMA systems operating in fading channels.

2002 Wong et al. [62] Proposed and implemented a breadth-first K-best tree-search MIMO detector using a
VLSI architecture, which is capable of achieving a decoding throughput of 10 Mb/s at
100 MHz clock frequency in a 16-QAM aided (4× 4)-element SDM-MIMO system.

2004 - 2006 Guo et al. [63], [421] Proposed and implemented both hard and soft SE-strategy based K-best tree-search
MIMO detectors, which are capable of supporting up to 53.3 Mb/s throughput at 100
MHz clock frequency for a 16-QAM aided (4× 4)-element SDM-MIMO system.

2006 Wenk et al. [422] Presented a new VLSI architecture for the implementation of the K-best algorithm,
which relies on a more parallel approach and the ASIC design achieves up to 424
Mbps throughput.

2007 Chen et al. [64] Reported a VLSI implementation of a soft-output breadth-first tree search aided MIMO
detector for a (4×4)-element MIMO system employing 64-QAM, which is capable of
achieving a throughput of above 100 Mb/s.

2006 - 2008 Barbero et al. [80], [423] Proposed a noise-level independent fixed-complexity K-best tree-search MIMO detec-
tor, which overcomes the two main limitations of the SD from an implementation point
of view: its variable complexity and its sequential nature.

2009 Jaldén et al. [82] Presented analytical study of the error probability of the fixed-complexity SD in MIMO
systems having an arbitrary number of antennas, proving that it achieves the same
diversity order as the ML detector, regardless of the constellation size used.

2010 Patel et al. [424] Presented a VLSI architecture of a novel soft-output K-Best MIMO detector. This
implementation attains a peak throughput of 655 Mbps for a 4 × 4 64-QAM MIMO
system with 0.13um CMOS. Synthesis results in 65nm CMOS show the potential to
support a sustained throughput up to 2 Gbps, which may meet the requirements of for
mobile WiMAX and LTE-A standards.

TABLE VI
MILESTONES IN THE DEVELOPMENT OF THE TREE-SEARCH MIMO DETECTORS: BEST-FIRST TYPE

Year Authors Contributions

2004 Fukatani et al. [307] Applied Dijkstra’s algorithm [425] for reducing the complexity of the SD based MIMO detector at
the expense of an increased storage size.

2004 Xu et al. [426] Applied the stack algorithm [406] to the best-first tree search based MIMO detector.

2006 Murugan et al. [66] Proposed a unified framework for tree search decoding, which encompasses all existing SDs as
special cases, hence unifying the depth-first search, the breadth-first search and the best-first search
based on the proposed framework.

2012 Chang et al. [72] A generalization of Dijkstra’s algorithm was developed as a unified tree-search detection framework;
the proposed framework incorporates a parameter triplet that allows the configuration of the memory
usage, detection complexity and the sorting dynamic associated with the tree-search algorithm; by
tuning the different parameters, beneficial performance-complexity tradeoffs are attained and a fixed-
complexity version can be conceived.

2012 Chang et al. [71] First applied the A* algorithm to the best-first tree-search based MIMO detection problem.

2012 Shen et al. [414] Proposed the algorithms and VLSI architectures for both the best-first soft- and hard-decision tree-
search based MIMO decoders in the context of a 4 × 4 64-QAM system using 65-nm CMOS
technology at 333 MHz clock frequency.
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TABLE VII
MILESTONES IN THE DEVELOPMENT OF THE LR-BASED MIMO DETECTORS

Year Authors Contributions

1982 Lenstra et al. [434] First proposed the LLL algorithm for LR, which becomes the most popular LR algorithm used in
practice.

2002 Yao et al. [83] First applied the LR technique in conjunction with the traditional linear ZF and nonlinear ZF-SIC
detector, showing a substantial performance gain at a modest additional computational complexity.

2003-2004 Windpassinger and
Wübben et al. [84], [85]

Presented LR-aided MIMO detectors relying on real-valued LLL algorithms.

2003-2004 Windpassingeret al.

[84], [86]
Proposed a real-valued LLL-based LR algorithm, which enables the application of the algorithm in
MIMO systems having arbitrary numbers of dimensions. It was also shown that LR can be favorably
applied in MIMO systems that use precoding.

2004 Wübben et al. [85],
[440]

Extended the LR-aided linear ZF and nonlinear ZF-SIC MIMO detectors to their MMSE based
counterparts.

2007 Taherzadeh et al. [87] Demonstrated that the LLL based LR algorithm is capable of achieving full receive diversity of
MIMO decoding.

2007-2008 Ling and Jaldén et al.

[88], [89]
Provided upper bounds for the average computational complexity of the LLL algorithm, namely

O(N3
t logNt) and O(N2

t log Nt

Nr−Nt+1
), respectively.

2007-2008 Seethaler and Zhang et

al. [90], [91]
Studied the performance of the Seysen’s algorithm based LR techniques in MIMO detection problems.

2007 Burg et al. [92] The first VLSI implementation of the LR technique relying on Brun’s algorithm was reported.

2008 Shabany et al. [93] Presented a VLSI implementation of the LR-aided K-best MIMO detector.

2008 Gestner et al. [94] The first VLSI implementation of the LR technique relying on the complex-valued LLL algorithm
was reported.

2005-2009 Gan and Ma et al. [95]–
[98]

Proposed a number of complex-valued LLL algorithms which can be directly used in the complex-
valued MIMO system model.

2006 - 2010 Silvola, Qi,
Ponnampalam and
Zhang et al. [99]–[102]

Studied a range of LR-aided soft-output MIMO detectors, including LR aided K-best [100], LR-
aided MAP [99], LR-aided fixed radius algorithm, fixed candidates algorithm, fixed memory-usage
algorithm etc. [102].

2013 Zhou et al. [103] Proposed a class of element-based LR algorithms, which reduce the diagonal elements of the noise
covariance matrix of linear detectors and thus enhance the asymptotic performance of linear detectors,
in large-scale MIMO systems having hundreds of BS antennas.

valued MIMO signal model previously discussed in Section

VII. Additionally, in [112] an approximate complex-valued

PDA (A-CPDA) detector was proposed, in which the complex-

valued Gaussian distribution is approximately characterized

by a matched mean and a matched covariance only. Fur-

thermore, the pseudo-covariance, as defined by Neeser and

Massey in [287], was employed in [120] to fully characterize

the complex-valued Gaussian distribution, and the resultant

formulation of complex-valued PDA (CPDA) [120] was shown

to outperform both the RPDA [111] and the A-CPDA [112].

In these PDA-based MIMO detectors/equalizers, the prob-

abilities of the potential candidate symbols serve as the soft

input/output information and are typically estimated relying

on a self-iterative process. The key operation in this process is

the iterative approximation of the interference-plus-noise term

obeying a multimodal Gaussian mixture distribution by an

ever-updated multivariate Gaussian distribution [104], [111]–

[113], [129]. Therefore, the performance of the PDA based

MIMO detectors is largely determined by the accuracy of

the iterative Gaussian approximation, whose impact on the

performance of the PDA based detectors was investigated

in [116]. In order to further improve the accuracy of the

Gaussian approximation, the authors of [127] proposed a PDA

detector for correlated source bits using the joint detection of

multiple consecutive symbol vectors. Additionally, in [130],

[462] a unified direct bit-based PDA approach was proposed

for detecting linear mapping based high-order rectangular

QAM symbols, which achieves a better performance at a

lower computational complexity than the CPDA detector of

[120]. Furthermore, the PDA based iterative receiver design of

FEC-coded MIMO systems was investigated in [132], [133],

[463], [464], where it was revealed that the outputs of the

conventional PDA detectors in [104], [111], [112], [120],

[127], [130] are indeed the normalized symbol likelihoods,

rather than the true APPs. Based on this insight, a pair of

PDA based MIMO iterative receivers, namely the approximate

and the exact Bayesian theorem based iterative PDA receivers

were proposed in [132], [463] and [133], [464], respectively.

Additionally, a distributed soft combining based PDA receiver

was conceived in [131], [205] for BS cooperation aided multi-

cell multiuser MIMO systems.

The advantages of the PDA based detectors are summarized

as follows.

• First, it may achieve a near-optimal detection perfor-
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Fig. 23. The basic principle of the PDA based MIMO detectors: An example process of approximating a single-variate four-modal Gaussian
mixture distribution by a single Gaussian distribution.

mance in certain circumstances, for example in the con-

text of FEC-uncoded CDMA systems [104]–[107].

• Second, it has a low complexity that increases no faster

than O
(

NI
3
)

per symbol vector, where NI represents

either the number of users in CDMA [104]–[107], or

the number of transmit antennas in multi-antenna aided

MIMO systems [111], [112], [120].

• Third, it is inherently an soft-input soft-output algorithm,

which is eminently applicable in combination with FEC

codes such as convolutional codes, turbo codes [465],

[466] or low-density parity-check (LDPC) codes [467],

[468].

• Furthermore, the higher the number of transmit antennas

or users, the better its performance, provided that the

channel is not overloaded (NI > NO) or rank-deficient

[116]. However, due to its nature of approximation and

iteration, the PDA based MIMO detector has not been

well-understood compared to other mature MIMO detec-

tors.

For the sake of more explicitly clarifying the fundamental

principle of the PDA based MIMO detector, its Gaussian

approximation process is conceptually illustrated in Fig. 23,

which is based on the assumption that the interference-plus-

noise term to be processed by the PDA detector obeys a single-

variate multimodal (four-modal) Gaussian mixture distribution

of pM(x) = p1×f1(x)+p2×f2(x)+p3×f3(x)+p4×f4(x).
Here, the “single variate” assumption indicates that only a

single interfering symbol, say si, exists for the other symbol

to be detected. In other words, a (2 × 2)-element VBLAST

system is assumed. More specifically, the four-modal distri-

bution observed in Fig. 23 stands for the case of a 4PAM-

like scenario, which is a simplified real-valued example for

M -QAM. More specifically, pM(x) is constructed by a mix-

ture of four constituent Gaussian distributions f1(x), f2(x),
f3(x), f4(x) having the same variance, but different means

of m1 = −3, m2 = −1, m3 = +1, m4 = +3 and different

constituent probabilities of p1, p2, p3, p4. The four constituent

probabilities correspond to the different probabilities that an

interfering symbol has the value si = −3, si = −1, si = +1
and si = +3, respectively.

The main contributions to the development of the PDA

based MIMO detectors are summarized in Table VIII.

G. Semidefinite Programming Relaxation Based Detectors

In contrast to other MIMO detectors, the SDPR approach

relies on a relaxation of the optimum MIMO detection problem

to the mathematical model of semidefinite programming (SDP)

[309], [310], [469], which is a subfield of convex optimization

theory [470].

Convex optimization constitutes a subfield of the generic

mathematical optimization problem. It studies the minimiza-

tion of a convex objective function over convex sets. Fig.

24 illustrates the basic framework of solving mathemati-

cal optimization problems using convex optimization. If a
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TABLE VIII
MILESTONES IN THE DEVELOPMENT OF THE PDA-BASED MIMO DETECTORS

Year Authors Contributions

2001 Luo et al. [104] First applied the PDA filter technique to the MUD problem of synchronous CDMA
systems, showing a near-optimum performance at a significantly reduced complexity.

2002 Pham et al. [106] Proposed a PDA-Kalman MUD approach for asynchronous CDMA systems.

2003 Luo et al. [107] Conceived a sliding-window PDA based MUD approach for asynchronous CDMA
systems.

2003 Tan et al. [108] Designed a PDA-based IDD receiver for a coded CDMA system using BPSK modulation.

2004 Pham et al. [111] Extended the PDA detector to SDM-MIMO systems based on a real-valued signal model.

2004 Liu et al. [112] Proposed a PDA-based soft equalization scheme for frequency-selective MIMO channels.

2005 Liu et al. [113] Extended the PDA-Kalman MUD approach of [106] to the soft equalization of frequency-
selective MIMO channels.

2005 Latsoudas et al.
[114]

Proposed a hybrid MIMO detector that combined the SD and the PDA detectors.

2005 Fricke et al. [116] Studied the impact of Gaussian approximation on the performance of the PDA based
MIMO detector.

2006 Jia et al. [120] Proposed a complex-valued PDA (CPDA) detector which takes the pseudo-covariance
into account during the derivation of the complex-valued PDA detector.

2008 Kim et al. [126] Applied the PDA method as a component of an iterative receiver designed for non-
coherent MIMO systems.

2008 Yang et al. [127] Proposed a PDA detector for correlated source bits using joint detection of multiple
consecutive symbol vectors.

2009 Mohammed et al.
[128]

Applied the PDA algorithm to the problem of decoding large non-orthogonal space-time
block codes (STBCs).

2011 Yang et al. [130] Proposed a unified direct bit-based PDA approach for detecting linear mapping based
high-order rectangular QAM symbols, achieving a better performance at a lower
computational complexity than the CPDA detector of [120].

2011 Yang et al. [131] Proposed a distributed soft combining based PDA receiver for BS cooperation aided
multi-cell multiuser MIMO systems.

2013 Yang et al. [132],
[133]

Investigated the PDA based iterative receiver design for FEC-coded MIMO systems:
revealed that the outputs of the conventional PDA detectors are indeed the normalized
symbol likelihoods rather than the true APPs; proposed a pair of PDA based MIMO
iterative receivers, namely the approximate and the exact Bayesian theorem based iterative
PDA receivers.

mathematical optimization problem is identified as a convex

optimization problem, it is mathematically regarded as an

easy problem, because powerful numerical algorithms, such

as the interior-point methods [471], exist for efficiently find-

ing the optimal solution of convex problems. Therefore, in

mathematical optimization theory, the dividing line between

the family of easy and difficult problems is convex versus

nonconvex, rather than linear versus nonlinear. In other words,

convex optimization problems are efficiently solvable, whereas

nonconvex optimization problems are generally difficult to

solve. Convex optimization has a range of other important

properties. For example, in convex optimization problems,

every locally optimal solution constitutes the globally optimal

solution, hence there is no risk of being trapped in a local

optimum. Additionally, a rigorous optimality condition and

a duality theory exist for verifying the optimal nature of a

solution in convex optimization problems. For more details of

convex optimization, please refer to [310], [470].

The SDPR based MIMO detectors have recently received

substantial research attention [134]–[146]. The most attractive

characteristic of the SDPR-aided detectors is that they guar-

antee a so-called polynomial-time14 worst-case computational

complexity, while achieving a high performance in certain

circumstances. Most of the existing SDPR detectors are depen-

dent on the specific modulation constellation. To elaborate a

little further, SDPR was first proposed for a BPSK-modulated

CDMA system [134], [135], [472]–[475], and then it was

extended to quadrature phase-shift keying (QPSK) [136].

Simulation results showed that the SDPR detector is capable

14The computational complexity increases as a polynomial function of NI .
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TABLE IX
MILESTONES IN THE DEVELOPMENT OF THE SDPR-BASED MIMO DETECTORS

Year Authors Contributions

2001 -2003 Tan et al. [134], [472],
Ma et al. [135], [473],
and Wang et al. [474],
[475]

These authors independently proposed a SDPR based MUD for BPSK-
modulated synchronous CDMA systems; the eigen-decomposition based
method of [134], [472], [474], [475] and the randomization method of [135],
[473] were proposed for converting the continuous-valued solution of the SDP
problem into the binary decision output. Additionally, a cutting plane method
was introduced for further improving the performance of the SDPR detector
for systems supporting a large number of users [134], [472]; it was shown that
the classic MUDs, such as the linear ZF/MMSE detector, can be interpreted
as degenerate forms of the SDPR based MUD [135], [473].

2003 Steingrimsson et al.
[476]

Proposed a soft SDPR detector for an IDD receiver of QPSK-aided MIMO
systems employing LDPC codes.

2004 Ma et al. [136] Conceived a SDPR based MUD for BPSK/QPSK aided asynchronous CDMA
systems with multiple receive antennas in frequency-selective fading environ-
ments; based on a flexible block alternating likelihood maximization (BALM)
principle, the large-scale ML detection problem was decomposed into smaller
subproblems, and each subproblem was solved by the SDPR detector.

2003 -2004 Luo et al. [139] and Ma
et al. [140]

Proposed SDPR detectors for general M -PSK aided synchronous CDMA
systems.

2005 Kisialiou et al. [137] Provided the first analytical study of the SDPR detector for BPSK-aided
MIMO systems; it was shown that the SDPR detector is capable of achieving
the same BER performance as that of the ML detector in high-SNR scenarios,
while at the low SNR region, the SDPR detector serves as a constant factor
approximation to the ML detector in large systems.

2005 Wiesel et al. [141] Designed a PI-SDPR detector for 16-QAM aided MIMO systems, which can
be extended to high-order M -QAM scenarios.

2006 Sidiropoulos et al. [143] Advocated a BC-SDPR detector for employment in high-order M -QAM aided
MIMO systems.

2007 Mao et al. [145] Proposed a VA-SDPR detector for M -QAM aided multicarrier CDMA(MC-
CDMA) systems; the method can directly operate at the bit-level in the context
of linear mapping based M -QAM.

2007 Mobasher et al. [144] Studied several variants of the SDPR detectors, and showed that it is possible
to further improve the SDPR detector’s performance by increasing their
complexity.

2008 Jaldén et al. [138] Analytically demonstrated that the SDPR based detector is capable of achiev-
ing full receive diversity order in BPSK-aided real-valued MIMO channels.

2009 Ma et al. [146] Demonstrated that the PI-SDPR of [141], the BC-SDPR of [143], and the
VA-SDPR of [145] are actually equivalent in the sense that they obtain the
same symbol decisions, and hence exhibit an identical SER performance.

2013 Yang et al. [147] Proposed a bit-based SDPR detector capable of directly detecting the nonlinear
Gray mapping aided rectangular high-order QAM symbols, where the unequal
error protection property (UEP) of QAM bits was exploited and the resultant
SDPR detector outperforms that of [145].

of achieving a near-ML BER performance, when using BPSK

[134] and QPSK [136]. The numerical and analytical results

of [137], [138] confirmed that the SDPR detector achieves

the maximum possible diversity order, when using BPSK for

transmission over a real-valued fading MIMO channel. The

SDPR approach was also further developed for high-order

modulation schemes, such as for M -ary PSK scenario in

[139], [140], and for high-order rectangular QAM in [141]–

[145]. As for the high-order QAM scenario, it was recently

shown in [146] that the so-called polynomial-inspired SDPR

(PI-SDPR) [141], the bound-constrained SDPR (BC-SDPR)

[143] and the virtually antipodal SDPR (VA-SDPR) [145]

are actually equivalent in the sense that they arrive at the

same symbol decisions, and hence they exhibit an identical
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SER performance.15 Furthermore, a bit-based SDPR detector

capable of directly detecting the nonlinear Gray mapping aided

rectangular high-order QAM symbols was proposed in [147],

where the unequal error protection property (UEP) of QAM

bits was exploited and the resultant SDPR detector was shown

to outperform that of [145]. It should be noted, however, that

for high-order modulation scenarios, the performance of the

SDPR detectors is not as promising as that of the BPSK/QPSK

scenario. Therefore, there is a need to further improve the

performance of the SDPR based MIMO detector designed

for high-order QAM constellations, while maintaining its

appealingly low computational complexity. The basic principle

of SDPR based detectors is illustrated in Fig. 25, where the

blue boxes represent the technical challenges. Furthermore,

the main contributions to the development of the SDPR based

MIMO detectors are summarized in Table IX.

H. Detection in Rank-Deficient and Overloaded MIMO Sys-

tems

For MIMO detection, typically it is preferable to have a

full-rank channel matrix, namely rank(H) = NI or NO,

In CDMA systems, this requirement may be satisfied by

using well-designed spreading codes. In multi-antenna SDM

systems, when an ideal rich scattering multipath environment

is assumed, typically independently fading communications

channels are encountered between each transmit/receive an-

tenna pair. Then, the full-rank requirement may also be sat-

isfied. However, in some propagation scenarios, the channel

matrix H may not be of full-rank. For example, if the spatial

15More specifically, the solution equivalence of the PI-SDPR and BC-
SDPR schemes holds for 16-QAM and 64-QAM, while that between the
BC-SDPR and VA-SDPR techniques holds for any 4q-QAM scheme, where
q is a positive integer. The SDPR QAM detector of [144] exhibits a
better performance than that of [141], [143], [145], but has a much higher
complexity.

separation between the antenna elements of the transmitter

and/or the receiver is not large enough and hence the angular

spread is small, the strong correlation between the antenna

elements results in a rank-deficient channel matrix, i.e. we

have rank(H) < min(Nt, Nr). Hence, the spatial degrees

of freedom available are reduced, which translates into a

decreased MIMO capacity [477]–[482]. Furthermore, even if

the spatial separation between antenna elements is sufficiently

large, it is still possible that H is rank-deficient. This is due

to the so-called “keyhole/pinhole effects” [482]–[487], which

may be simply understood as a diffraction phenomenon, where

a large obstacle with a small keyhole punched through it is

placed between the MIMO transmitter and receiver, hence the

only channel the radio wave can propagate through to the

receiver is the keyhole. Due to this effect, the channel matrix

H is degenerate and has only a single degree of freedom,

i.e. we have rank(H) = 1, even though the entries of H are

uncorrelated.

Another preferable condition for the detection in CDMA

and SDM-MIMO systems is that the system is not overloaded.

Then, the channel matrix is “fat” and does not have full

column-rank (but it may still have full row-rank.). In the

multi-antenna scenario, this means that Nt ≤ Nr, while in

CDMA systems, it means that the number of users is higher

than the dimension of the signal space/the processing gain

of the system. As far as MIMO detection is considered, both

the rank-deficient scenario discussed above and the overloaded

scenario face the common challenge that the standard versions

of most of the representative MIMO detectors, such as the

linear ZF/MMSE detector, the ZF/MMSE-SIC detector and the

original linear-decorrelation based PDA detector [104], [111]

that invoke the inverse of H, and the standard SD detector that

invokes standard QRD or Cholesky’s factorization [53], usu-

ally provide an unacceptably poor performance, because they

are invoked for finding the solution of an under-determined

linear system subject to random noise.

Several strategies have been proposed to circumvent this

predicament, such as the “pseudo-inverse” based linear de-

tection [167], [226], the group detection [488]–[493], the

generalized SD detector [56], [57], [494]–[501], the modified

non-decorrelated PDA detection [112], [116], [121], [130], the

modified SDPR detection [147], [500], [502], the metaheuris-

tics based detection [503]–[524] etc. It is possible to design

various scenario-dependent MIMO detectors for the rank-

deficient and overloaded MIMO systems. However, it seems

that the group detection strategy [488]–[493] and the search-

based detection, regardless of the ML detector, the generalized

SD detector [56], [57], [494]–[501] and the metaheuristics

based detector [503]–[524], are particularly suitable for rank-

deficient and overloaded MIMO scenarios.

I. Impact of Soft-Decision and Transmit Preprocessing on

MIMO Detection

In previous sections we aim for understanding the funda-

mental properties of MIMO detection algorithms. However,

if we look at the entire process of communication, the

assumption that only the receiver is responsible for signal
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recovery represents a passive and incomplete strategy. In fact,

almost all practical systems invoke some form of encoding or

transmit preprocessing, such as FEC, space-time coding and

precoding/beamforming, to actively improve the performance

of signal recovery or to reduce the detector’s computational

complexity from the transmitter side.

To elaborate a little further, when FEC is used, tremen-

dous efforts have been devoted to designing soft-input soft-

output MIMO detectors that can fit into the powerful “turbo

processing principle” [465], [466], [525]–[527] based IDD

receiver architecture conceived for achieving near-optimum

performance. All the MIMO detectors reviewed in Section

VIII have their soft-decision versions to fit into IDD receivers.

The representative contributions to iterative MIMO detection

and decoding include: the optimal MAP detector based itera-

tive receiver [528]–[532], the expectation-maximization (EM)

algorithm based soft-decision MUD [533], the soft-decision

MMSE detector assisted iterative receiver [534]–[536], the

soft-decision SD based MIMO iterative receiver [65], [73],

[74], [81], [499], [537], the PDA detector based iterative

receiver [108], [125], [132], [133], the soft-decision SDPR

detector aided MIMO iterative receiver [476], [538], the soft-

decision multiple symbol differential SD (MSDSD) detector

based non-coherent iterative receiver [539], and the soft-

decision iterative receiver for LS-MIMO systems [326], [414]

discussed in Section IX. Yet another important contribution to

IDD design is the extrinsic information transfer (EXIT) chart

invented by ten Brink [540], [541], which is a powerful tool

conceived not only for analyzing the convergence behavior of

iterative receivers, but also for assisting near-capacity wireless

system design [74], [77], [542]–[551]. For more details on

designing iterative MIMO receivers, please refer to [74], [529],

[531], [534], [552]–[555].

Additionally, when space-time coding is employed, as we

discussed in Section IV, the optimal ML decoding can be

implemented with a simple separate symbol-by-symbol de-

coding strategy for orthogonal STBCs and with a linear-

complexity pairwise decoding strategy for quasi-orthogonal

STBCs [261]. As a result, the MIMO detection problem

does not constitute a grave challenge for STBC aided MIMO

systems. Similarly, when precoding/beamforming techniques

[84], [556]–[562] are employed in SDM-MIMO systems, the

interference between the transmit antennas may be signifi-

cantly mitigated or even completely removed (when using ZF-

based linear precoding). As a result, the signal detection task of

a precoded MIMO system becomes less challenging compared

to that of SDM-MIMO systems invoking no preprocessing.

The key insight gained here is that we can design an encoder

or precoder to improve the performance or to reduce the

computational complexity of decoders/detectors.

J. Guidelines on Choosing the Right MIMO Detectors

As we mentioned in Section VIII-A2, the optimality of

MIMO detectors strongly depends both on the criteria of

“goodness” and on the assumptions made for specific appli-

cation scenarios. Each type of MIMO detector has a different

performance-and-complexity profile16, and each of them has

its own pros and cons. Therefore, in general there is no

simple answer as to which algorithm is the best. In what

follows, we aim for providing a qualitative comparison of

the performance and complexity characteristics of the MIMO

detectors reviewed.

• The MAP/ML based MIMO detectors relying on brute-

force search have the optimal VER performance (not

necessarily optimal BER or SER) and a computational

complexity which increases exponentially with the sys-

tem’s dimension (e.g. the number of transmit antennas or

users). Naturally, their computational complexity order

O(MNt) is the highest amongst all the MIMO detec-

tors. Additionally, the MAP/ML algorithms have to be

aware of the amplitudes of the transmitted symbols for

calculating the decision statistics. However, the MAP/ML

detector is insensitive to channel imperfections and rank-

deficiency/overloading, and it has the best possible error

probability performance across the entire SNR region.

When the system’s dimension is not too large, it remains

possible to implement the exact MAP/ML algorithm in

practical systems with the aid of state-of-the-art VLSI

technologies.

• The linear MIMO detectors typically have the lowest

computational complexity between O(N2
t ) and O(N3

t ),
although there exist subtle differences amongst the com-

putational complexities of different linear detectors. Nat-

urally, in general they have the least attractive error prob-

ability performance. However, in some scenarios, such as

the large-scale MIMO systems to be detailed in Section

IX, where the receiver side has a significantly higher

number of antennas than the transmitter side, the linear

MF, ZF, MMSE, MBER etc. based MIMO detectors may

achieve a near-ML error probability. Additionally, the

linear MF and ZF detectors only have to know the channel

matrix H, but the linear MMSE detector additionally has

to estimate the noise variance. Furthermore, as indicated

in Section VIII-A2, the linear ZF detector is preferable in

interference-dominated scenarios, the linear MF detector

is preferable in noise-dominated scenarios, while the lin-

ear MMSE detector provides the highest SINR amongst

all linear detectors, which makes it preferable in scenarios

where the noise and the interference have a comparable

level. Finally, the linear ZF and MMSE detectors exhibit

an inadequate performance in rank-deficient/overloaded

systems, where the number of independent inputs is

higher than the dimension of the received signals, while

the linear MF detector remains applicable.

• The interference cancellation based MIMO detectors have

a computational complexity between O(N3
t ) and O(N4

t ),
and typically they have a much more attractive error

probability performance than the linear detectors. The-

oretically, the SIC/DFD based detectors are capable of

16Generally, “performance” and “complexity” may be interpreted in various
ways. For example, the “performance” can be error probability, robustness
to system imperfections, configuration flexibility, application generality etc.,
while the “complexity” could be computational complexity, hardware/silicon
complexity and so on.
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approaching the Shannon capacity, provided that there is

no error propagation at any of the decision stages. By

contrast, the PIC/MIC based detectors do not have this

property. Compared to PIC/MIC, the SIC/DFD detectors

are more sensitive to error propagation. However, this

makes them preferable in the “near-far” scenario, where

the powers of different users are significantly different,

such as those of the cell-center user and cell-edge user.

Furthermore, the SIC/DFD detectors may have a higher

processing delay than the PIC detectors. Additionally,

similar to the linear ZF and MMSE detectors, the in-

terference cancellation based detectors are not generally

applicable to the rank-deficient/overloaded scenarios.

• The tree-search based MIMO detectors, especially the

K-best detectors, have the flexibility to achieve different

error probability versus computational complexity trade-

offs. They are even capable of attaining the optimum

ML performance at a reduced complexity. In contrast to

other types of MIMO detectors, the tree-search based

detectors typically have a non-deterministic complex-

ity, which is a challenge for hardware implementation,

albeit it is possible to design fixed-complexity tree-

search detectors. Therefore, the average computational

complexity, worst-case computational complexity and

even the computational complexity distribution become

important complexity metrics to consider. Note, however,

that theoretically the tree-search based MIMO detectors

still have an exponentially increasing worst-case/average

computational complexity, in which case the exponent

depends on different system parameters, such as the noise

variance. As a result, the tree-search based detectors may

not be suitable for low-SNR scenarios. Additionally, it

may be possible to design tree-search based detectors

for rank-deficient/overloaded scenarios. Furthermore, the

tree-search based detectors rely on specific enumeration

strategies, which by nature are not suitable for large-scale

MIMO systems that have a high number of inputs.

• The LR algorithms constitute a family of powerful

preprocessing techniques conceived for improving the

“quality” of the effective channel matrix. They can be

used in conjunction with all the other MIMO detectors.

Since practically usable LR algorithms, such as the LLL

algorithm, have a polynomially increasing computational

complexity, the LR-aided MIMO detectors do not have

a significantly increased total computational complexity.

Hence, LR may be particularly useful for designing high-

performance MIMO detectors maintaining a low com-

plexity, which is critical in numerous practical implemen-

tations. However, the LR techniques do not fundamentally

change the pros and cons of their baseline detectors.

• Compared to the other MIMO detectors mentioned above,

the SDPR and PDA based MIMO detectors are not well-

understood at the time of writing and they have not

achieved the same degree of practical success, which is

partially indicated by the lack of VLSI implementations

of these two types of detectors. Although SDPR detec-

tors have a favorable worst-case polynomial complexity,

which is between O(N3.5
t ) and O(N6.5

t ), their achievable

error probability performance becomes less attractive for

high-order modulations (but they may achieve near-ML

performance for BPSK and QPSK constellations). The

Gaussian-mixture approximation based PDA detectors

operate in a way similar to the classic soft interference

cancellation, hence their computational complexity is

similar to that of the soft SIC detectors, i.e. typically

on the order between O(N3
t ) and O(N4

t ). As a result,

the PDA detectors are also sensitive to error propagation,

whilst exhibiting the nice property of preferring a large

number of inputs, provided that the receive dimensions

are no less than that of the inputs. Hence, for cer-

tain large-scale MIMO scenarios, both SDPR and PDA

based detectors may be attractive. Finally, for large-scale

MIMO systems which have a similarly large number

of transmit and receive antennas, it might be valuable

to resort to metaheuristics based algorithms, since all

the other MIMO detectors might either be excessively

complex or fail to provide a high performance. Some of

the metaheuristics based large-scale MIMO detectors are

described in Section IX-D.

IX. DETECTION IN LS-MIMO SYSTEMS

Having reviewed the representative families of MIMO

detection algorithms in Section VIII, let us now shift our

attention to the detection problem encountered in the emerg-

ing massive/LS-MIMO systems [25], [354], [563], where

dozens or even hundreds of antennas may be invoked and

an unprecedented spectral efficiency/diversity order may be

achieved. The major benefits of LS-MIMOs can be deduced

from the following well-known results. For transmission over

a quasi-static channel where a codeword occupies only a single

coherence-time and coherence-bandwidth interval, the outage

probability of a point-to-point MIMO link scales according to

Proutage ∝ SNR−NtNr , (24)

which indicates that potentially a diversity order of (Nt×Nr)
may be achieved. In other words, the MIMO link’s reliability

quantified in terms of its error rate falls exponentially with Nt

and/or Nr when SNR increases. Additionally, on a fast-fading

MIMO channel, the achievable rate scales as

min{Nt, Nr} log2(1 + SNR), (25)

which indicates that the achievable rate of a MIMO system

scales linearly with min{Nt, Nr}, and hence it is possible to

attain a high data rate using a large Nt and Nr. In conclusion,

fundamentally, using more antennas grants us higher degrees

of freedom in the spatial domain without increasing the

bandwidth occupied.

The LS-MIMO systems can be implemented in a variety

of ways. For example, in the operational 3G/4G wireless

communication systems, a point-to-point LS-MIMO system

might be constructed to provide high-throughput wireless

backhaul connectivity between the BSs by using a large

number of antennas at each BS. However, apart from this

particular application, it is typically quite challenging to con-

struct a point-to-point LS-MIMO system where the antenna
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Fig. 26. Typical antenna array configurations and deployment scenarios of
LS-MIMO systems [569].

elements can have a sufficiently high spatial separation to

guarantee a well-conditioned channel matrix. Furthermore,

achieving the attractive multiplexing gains promised by point-

to-point LS-MIMO schemes requires a high SNR. On the

other hand, a multiuser LS-MIMO system [564], [565] can

be envisaged, where the BS may be equipped with hundreds

of antenna elements and serves dozens of MSs each having

only a few antennas. Additionally, the LS-MIMO may be

implemented in the extremely high frequency (EHF) band (i.e.

at millimeter wave (MMW) frequencies ranging from 30 to

300 GHz and having wavelengths spanning from ten to one

millimeter [33]). They may also be considered in the optical

band for frequencies ranging from 300 GHz to 300 PHz and

including the infrared, the visible and the ultraviolet band

[566], [567]. Due to the adverse propagation properties, the

coverage of the LS-MIMO systems operating in these high-

frequency bands might be significantly limited, hence they are

more applicable to indoor environments [566] or small-cell

scenarios [568]. For the sake of more explicit clarity, several

typical antenna configurations and deployment scenarios of

LS-MIMOs are illustrated in Fig. 26 [569]. To elaborate

a little further, the simplest linear array propagates signals

on the two-dimensional plane and it typically occupies a

large physical area. By contrast, the rectangular, cylindrical

and spherical arrays are capable of radiating signals to any

directions in the three-dimensional space. These antenna arrays

are more complex, but also more compact, hence occupying a

smaller physical area. Additionally, a virtual LS-MIMO may

be constructed relying on distributed antenna arrays, which

may be exploited to enhance the indoor coverage or outdoor

cooperation [569].

As pointed out in Section VIII-A, the key motivation of

studying the fundamental MIMO detection problem is that the

computational complexity of the optimum ML/MAP MIMO

detection increases exponentially with the problem size. There-

fore, in principle the MIMO detection problem has intrinsically

embedded the “large-scale” concept. In this regard, people

may argue that the detection in LS-MIMO systems is not

a novel problem, and consequently the detectors conceived

for LS-MIMO systems might have no significant difference

with respect to the existing MIMO detectors, except for the

associated larger problem size. At first glance, this seems to be

true. However, due to the limitations of practical applications,

in the past large-scale MIMO systems have been regarded as

being impractical and most of the research focused on small-

scale MIMO systems. Nonetheless, in addition to their signif-

icant link reliability and throughput benefits, the LS-MIMO

systems have been shown to enjoy some distinct advantages

that are not available in small-scale MIMO systems. These

benefits are mainly attributed to a range of relevant results

in random matrix theory [570], [571], and might be capable

of circumventing signal processing problems in LS-MIMO

systems. As a result, insights drawn from the detection in

small-scale MIMO systems might have to be carefully adapted

for the large-scale MIMO environments. Depending on the

application scenarios considered, the detection problem of

large-scale MIMO systems may be categorized as follows.

A. Detection in Single-Cell/Noncooperative Multi-Cell LS-

MIMO Systems

In a single-cell/noncooperative multi-cell MIMO system

the BS is not concerned about the CCI imposed by the

transmissions of other cells. In this scenario, as pointed out in

Section III, the detection problems encountered in both the

point-to-point MIMOs (see Fig. 8) and the multiple-access

MIMOs (see Fig. 9) can be characterized using the same

received signal model of (1). From the antenna configuration

point of view, there are two types of single-cell/noncooperative

multi-cell LS-MIMO systems. As shown in Fig. 27, in the

Type-I system, a large number of collocated antennas may be

mounted on the receiver, and also a large number of collocated

or distributed antennas are used at the transmitter. Mathemat-

ically, the antenna configuration of the Type-I system may be

characterized by

lim
Nt,Nr→∞

Nt

Nr

= c (26)

with c being a positive constant. (26) indicates that both Nt

and Nr tend to infinity at the same rate. By comparison,

in the Type-II system, only the receiver is equipped with a

large number of collocated antennas, while the total number

of active antennas at the transmit side is significantly smaller.

Hence, the antenna configuration of this system may be

characterized as

lim
Nr→∞

Nt

Nr

= 0. (27)

For the Type-I system, it has been shown that the empirical

distribution of the singular values of the random channel

matrix H converges to a deterministic limiting distribution17

17This limiting distribution is the so-called quarter circle law [44, Chapter
8.2].



THE WORK HAS BEEN SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIALS, 2015. 32

Large−Scale

Wireless Channel Matrix

...
...

...

· · ·· · ·

Fig. 27. An example of Type-I (point-to-point) LS-MIMO systems.

.

.

.

.

.

.

.

.

.

Fig. 28. An example of Type-II (multiuser) LS-MIMO systems.

for almost all realizations of H, which is a result of the

Marčenko and Pastur law [572]. In other words, as H becomes

larger (in terms of both Nt and Nr), its singular values become

less sensitive to the actual distributions of the i.i.d. entries of

H, and the channel becomes more and more deterministic.

The Marčenko and Pastur law also shows that as the size of H

increases, the diagonal entries of HHH become increasingly

larger in magnitude than the off-diagonal entries. This is

the so-called “channel-hardening” behavior, which may be

exploited for large-scale MIMO detection. To be more specific,

the matrix inversion invoked by many MIMO detectors such

as the ZF-aided detector, the MMSE-aided detector and the

PDA-aided detector etc., may be conveniently approximated

using the series expansion technique for large-dimensional

random matrices [375]. Additionally, the channel-hardening

phenomenon may allow low-complexity detection algorithms

to achieve a good performance for large-scale MIMO systems

[573].

The Type-II system essentially deals with the MIMO de-

tection problem encountered on an underloaded uplink,18 as

shown in Fig. 28. On the one hand, since the number of BS

antennas may be significantly higher than the total number of

active MS antennas, a very unbalanced antenna configuration

18On the downlink, large-scale MIMO precoding techniques may be em-
ployed, which facilitates the employment of simple receivers at each MS,
because the precoder is capable of eliminating the IAI at the transmitter with
the aid of accurate channel knowledge.

is encountered, which results in a high receive diversity order.

In the extreme case shown by (27), the receive diversity gain

obtained is so high that the impact of both the MUI and the

noise diminishes. Additionally, the channel vectors associated

with distinct MSs may become asymptotically orthogonal.

Furthermore, another beneficial result of the Marčenko and

Pastur law [572] is that very tall (with large Nr) and very

wide (with large Nt) channel matrices H are very well condi-

tioned. Therefore, in the Type-II system, even the simplest MF

detector is capable of achieving a near-optimum performance

[354], [563]. Similarly, when considering the precoding based

downlink of the single-cell/noncooperative multi-cell TDD

system, it was also revealed that increasing the number of

BS antennas is always beneficial, even when the SNR is

low and the channel estimate is poor. Furthermore, when the

number of BS antennas tends to infinity, the effects of both the

small-scale fast fading and uncorrelated noise are mitigated.

In other words, a large number of BS antennas, regardless

of whether the uplink or the downlink is considered, may

be exploited to trade for relevant performance improvements,

such as compensating for the low SNR and/or poor channel

estimates [25], [354], [563], [574].

However, in the noncooperative multi-cell scenario, due

to the so-called “pilot contamination” problem19 [25], [563],

the interference emanating from other cells does exist and

becomes the major limiting factor of the achievable perfor-

mance [25], [563]. Therefore, in order to further enhance

the achievable performance, the BS cooperation based multi-

cell joint processing philosophy has to be adopted [131], as

detailed below.

B. Detection in Cooperative Multi-cell Multiuser LS-MIMO

Systems

As pointed out in Section III, the multi-cell transmission

scenario is characterized by the so-called “MIMO interference

channels” of Fig. 11. Fundamentally, in order to cope with the

interference, it may be desirable to transform the distributed

model (such as the BSs of multiple cells) to a centralized

model. This may be achieved by centralized/distributed BS

cooperation [24], [131], where multiple BSs of adjacent cells

may be connected via high-capacity optic fiber or microwave

links, as shown in Fig. 29. As a result, effectively a phys-

ical/virtual super-BS is constructed to serve the cluster of

collaborative cells, and this physical/virtual centralized model

provides the performance upper bound of the original dis-

tributed system model. As far as detection is concerned, in

principle most of the detection algorithms developed for the

single-cell/noncooperative multi-cell scenarios may be adapted

to the uplink of the cooperative multi-cell LS-MIMO system.

The BS cooperation aided network MIMO detectors may be

designed based on two distinct philosophies, namely using

either interference cancellation [202] or data fusion [131].

However, the employment of BS cooperation might result

in substantially increased backhaul traffic, which represents

19This is essentially the interference caused by reusing pilot sequences in
adjacent cells.
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Fig. 29. Centralized and distributed BS cooperation based multi-cell
multiuser based LS-MIMO systems, which is also known as network-MIMO.

one of the major challenges facing the BS cooperation aided

network MIMO.

C. Applicability of Existing MIMO Detection Algorithms to

LS-MIMO

An inherent characteristic of LS-MIMO systems is their

large dimension. Before investigating the applicability of ex-

isting MIMO detection algorithms in the LS-MIMO context,

we have to identify which specific type of LS-MIMO systems

is considered. On the one hand, in general most of the

existing MIMO detectors would be applicable to a Type-II

LS-MIMO system, where it is possible that low-complexity

linear MIMO detectors might be capable of achieving near-

optimum performance. Hence, the employment of more so-

phisticated MIMO detectors, such as the SD detector, may

become unnecessary. On the other hand, some existing MIMO

detection algorithms that have been specifically tailored for

conventional small-/medium-scale MIMO systems might not

be applicable to the Type-I LS-MIMO systems. To elaborate

a little further, the family of tree-search based MIMO detec-

tors, such as the popular SD detector that has a worst-case

computational complexity increasing exponentially with the

number of transmit antennas (see Section VIII-D for more

details), will become less feasible in the Type-I LS-MIMO

systems. Nonetheless, it might still be invoked in the Type-II

LS-MIMO systems. By contrast, the PDA algorithm [130]–

[133], which invokes the central limit theorem to perform

stochastic interference modelling and imposes a polynomial-

time worst-case computational complexity, will achieve an

attractive performance versus complexity tradeoff in the Type-

I LS-MIMO systems. Similarly, the convex optimization20

based SDPR detectors, which also exhibit a polynomial-time

20Note that it is quite common to solve hundreds of unknown variables in
a convex optimization problem.

worst-case complexity as a function of the number of transmit

antennas, might potentially be applicable to the Type-I LS-

MIMO systems [147].

D. Recent Advances in LS-MIMO Detection

The LS-MIMO systems have become a hot research topic

following Marzetta’s seminal work [563]. However, in terms

of detection, several earlier works had touched upon this

topic from either a large system analysis or an asymptotic

performance analysis perspective. To elaborate a little fur-

ther, in 2006 Tan and Rasmussen [118] derived a class of

asymptotically optimal nonlinear MMSE MUDs based on a

multivariate Gaussian approximation of the MUI for large-

scale CDMA systems. This approach provided an alternative

analytical justification for the structure of the PDA based

detectors. The associated performance analysis showed that

the BER performance of the PDA detectors can be accurately

predicted and is close to the optimal detector’s performance

for large CDMA systems. Also in 2006, Liang et al. [311] pro-

posed a block-iterative generalized decision feedback equalizer

(BI-GDFE) for LS-MIMO systems using PSK constellations.

Their asymptotic performance analysis demonstrated that the

BI-GDFE closely approaches the single-user matched-filter

bound (MFB) for large random MIMO channels, provided

that the received SNR is sufficiently high [312]. Furthermore,

in 2007 Liang et al. derived both the limit and the asymp-

totic distribution of the signal-to-interference-plus-noise ratio

(SINR) for a class of MMSE receivers invoked in large-

scale CDMA systems supporting unequal-power users. Their

solution relied on the random matrix theory. They also proved

that the limiting SINR converges to a deterministic value when

limK,N→∞
K
N

= c, where K is the number of users, N is the

number of degrees of freedom and c is a positive constant.

Recall that this insight is the same as that discussed in the

context of (26). Additionally, they proved that the SINR of

each particular user is asymptotically Gaussian for large N
and derived the closed-form expressions of the variance for the

SINR variable under both real-valued spreading and complex-

valued spreading. As a further advance, in 2008 Liang et al.

[313] investigated the relationship between the MMSE-SIC re-

ceiver and the BI-GDFE receiver. The asymptotic performance

of the two receivers was compared for large random MIMO

channel matrices, and it was shown that the two receivers

have a similar convergence behavior, and that both of them

are capable of achieving a BER performance approaching the

single-user MFB for sufficiently high SNRs.

Chockalingam et al. also made significant contributions to

the LS-MIMO detection problem, mainly using a variety of

metaheuristics based local search algorithms invoked from ma-

chine learning/artificial intelligence [317]. More specifically,

in 2008 they extended the low-complexity likelihood ascent

search (LAS) based MUD [575]–[577] to the Type-I LS-

MIMO system having up to 600 transmit and receive antennas

[314]. This detector relies on the local neighborhood search

and has its roots in the family of Hopfield neural network
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(HNN)21 based MUD algorithms [580]–[585]. It was shown

that the LAS detector22 is capable of achieving near single-

input single-output AWGN performance in a fading LS-MIMO

environment at an average per-bit complexity of O(NtNr)
[314]. Subsequently, they applied another local neighborhood

search based algorithm, namely the reactive tabu search (RTS)

algorithm, to the detection of LS-MIMO systems. The RTS

detector was shown to perform better than the LAS detector,

because it relied on an efficient local minima exit strategy

[128]. Additionally, a class of belief propagation (BP) LS-

MIMO detectors relying on graphical models were proposed in

[318], [319], [324]23. A range of other detectors were studied

by Chockalingam and his team in the context of LS-MIMO

systems, including the randomized Markov chain Monte Carlo

(R-MCMC) detector [320], the randomized search (RS) de-

tector [320], the Monte-Carlo-Sampling based detector which

jointly relies on a mixed Gibbs sampling (MGS) strategy

combined with a multiple restart (MR) strategy [321], and

the LR based24 detector [322]. Additionally, they applied

various detectors, including the MMSE detector, the PDA

detector, the LAS detector and the RTS detector, in high-rate

non-orthogonal STBC aided LS-MIMO systems [128], [315],

[316]. Furthermore, it was shown that non-binary LDPC coded

LS-MIMO systems are capable of achieving a near-capacity

performance with MMSE detection [323]. It should be noted

that in principle a variety of other metaheuristics based MUDs,

such as the genetic algorithm (GA) based MUD [503]–[509],

the ant colony optimization (ACO) based MUD [511]–[515],

the particle swarm optimization (PSO) aided MUD [519]–

[521], and the simulated annealing (SA) assisted MUD [522],

[523], may also be extended to the LS-MIMO context.

Finally, some soft-input soft-output LS-MIMO detectors

having a relatively low complexity were proposed in [325],

[326], which rely on the subspace marginalization aided inter-

ference suppression (SUMIS) technique and an approximate

message passing algorithm, respectively. The first ASIC design

of an LS-MIMO detector invoking the truncated Neumann

series expansion technique was reported in [327], [328], which

achieves a data rate of 3.8 Gb/s for a 3GPP Long Term

Evolution-Advanced (LTE-A) based LS-MIMO system having

128 BS antennas and supporting 8 users.

E. Applications of MIMO Techniques in Other Areas

Apart from its dominant applications in wireless commu-

nications, a range of other research areas also significantly

benefit from MIMO detection techniques. For example, the

idea of MIMO signal processing was extended to radar design,

and the so-called “MIMO radar”, as illustrated in Fig. 30,

has been a hot research topic since the 2000s [587]–[593].

21The HNN algorithms were also proposed for the restoration of large image
[578], [579].

22A multiple-output selection based LAS detector, namely the list LAS
detector, was also proposed in [586] for LS-MIMO systems.

23Very recently, Wu et al. also proposed an approximate message passing
algorithm based iterative detector for FEC-coded large-scale MIMO-OFDM
systems [326].

24The application of LR detectors in LS-MIMO systems was also investi-
gated by Zhou et al. in [103].
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Fig. 30. Conceptual illustration of MIMO radar systems.
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Additionally, MIMO signal processing techniques are also

instrumental in mode-division multiplexing (MDM) based

multimode fiber (MMF) optical communication systems, as

shown in Fig. 31. For more details on MIMO aided high-speed

optical communications, please refer to [594]–[600].

X. SUMMARY AND CONCLUSIONS

The concept of LS-MIMO systems may be regarded as

a paradigm shift in the wireless communication and signal

processing community. In this large dimensional context, the

MIMO detection problem becomes even more challenging

and important. To facilitate a better understanding of MIMO

detection techniques, in this survey, we provided a detailed

clarification of the MIMO detection fundamentals, and recited

the half-a-century history of MIMO detection. We also pro-

vided concise discussions on the distinct detection strategies

for different types of LS-MIMO systems and concluded with

the recent advances in LS-MIMO detection. Relevant insights

and lessons were extracted from the rich heritage of small-

/medium-scale MIMO detection. We note that when consider-

ing the design of LS-MIMO detectors, it is necessary to first

identify which type of LS-MIMO system is considered. Specif-

ically, the employment of several popular MIMO detectors,

such as the SD based MIMO detectors, may become infeasible

in Type-I LS-MIMO systems, while some low-complexity lin-

ear MIMO detectors may achieve near-optimum performance



THE WORK HAS BEEN SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIALS, 2015. 35

in Type-II LS-MIMO systems. Additionally, it was reported

that in the LS-MIMO context, local neighborhood search based

metaheuristics, Bayesian based message passing methods as

well as convex optimization based methods may strike a

promising performance versus complexity tradeoff.
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[222] S. Verdú, “Optimum sequence detection of asynchronous multiple-
access communications,” in Abstr. IEEE International Symposium on

Information Theory (ISIT’83), St. Jovite, Canada, Sep. 1983, p. 80.

[223] ——, “Minimum probability of error for asynchronous multiple access
communication systems,” in Proc. IEEE Military Communications

Conference (MILCOM’83), Washington, DC, Nov. 1983, pp. 213–219.

[224] ——, “Minimum probability of error for asynchronous Gaussian
multiple-access channels,” IEEE Transactions on Information Theory,
vol. IT-32, no. 1, pp. 85–96, Jan. 1986.

[225] ——, “Optimum multiuser asymptotic efficiency,” IEEE Transactions

on Communications, vol. 34, no. 9, pp. 890–897, Sep. 1986.
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