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The objective of this book is to provide an introduction to the basic principles in the
analysis and design of communication systems. It is primarily intended for use as a text
for a first course in communications, either at a senior level or at a first-year graduate
level.

BROAD IDPICAL COVERAGE

Although we have placed a very strong emphasis on digital communications, we have
provided a review of important mathematical foundational topics and a solid iJ,J.troduc­
tion to analog communications. The major topics covered are:

• A review of frequency domain analysis of signals and systems, and the charac­
terization of random processes (Chapters 2 and 4)

• An introduction to analog signal transmission and reception (Chapters 3 and 5)

• An introduction to digital communications (Chapters 6-10)

EMPHASIS ON DIGITAL COMMUNICATIONS

Our motivation for emphasizing digital communications is due to the technological
developments that have occurred during the past five decades. Today, digital communi­
cation systems are in common use and generally carry the bulk of our daily information
transmission through a variety of communications media, such as wireline telephone
channels, microwave radio, fiber optic channels, and satellite channels. We are currently
witnessing an explosive growth in the development ofpersonal communication systems

xi
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and ultrahigh speed communication networks, which are based on digital transmission
of the infonnation, whether it is voice, still images, or video. We anticipate that, in the
near future, we will witness a replacement of the current analog AM and FM radio and
television broadcast by digital transmission systems.

The development of sophisticated, high-speed digital communication systems
has been accelerated by concurrent developments in inexpensive high speed integrated
circuits (IC) and programmable digital signal processing chips. The developments in
Microelectronic IC fabrication have made possible the implementation of high-speed,
high precision AJD converters, of powerful error-correcting coders/decoders, and of
complex digital modulation techniques. All of these technological developments point
to a continuation in the trend toward increased use of digital communications as a
means for transmittinginfonnation.

OVERVIEW OF THE lEXT

It is assumed that students using this book have a basic understanding of linear system
theory, both continuous and discrete, inclUding a working knowledge of Fourier series
and Fourier transfonn techniques. Chapter 2 provides a review of basic material on sig­
nals and systems and establishes the necessary notation used in subsequent chapters.
It is also assumed that students have had a first course in probability. Such cOurses are
currently required in many undergraduate electrical engineering and computer engi­
neering programs. Chapter 4 provides a review of probability and random processes to
the extent that is necessary for a first course in communications.

Chapter 3 treats modulation and demodulation of analog signals. This treatment
includes amplitude modulation (AM), frequency modulation (FM), and phase modu­
lation (PM). Radio and television broadcasting and mobile radio cellular systems are
discussed as examples of analog communication systems. Chapter 5 continues the treat­
ment of analog communication systems by analyzing the effect of additive noise in the
demodulation of AM, FM, and PM signals. The phase-locked loop, which is used for
estimating the phase of a sinusoidal carrier in both analog and digital communication
systems is also described in Chapter 5. The chapter concludes with a treatment of the ef­
fect of transmission losses and the characterization of noise sources in communication
systems.

A logical beginning in the introduction ofdigital communiCation systems analysis
and design is the characterization ofinformation sources and sourceencoding. Chapter 6
is devoted to this topic. In this chapter we introduce the reader to the modeling of
infonnation sources, both discrete and continuous (analog), and the basic mathematical
concepts of entropy and mutual infonnation. Our discussion of source encoding for
discrete sources includes the Huffman coding algorithm and the LempeI-Ziv algorithm.
For the case ofanalog sources, we treat both scalar and vectorquantization and describe
the common wavefonn-coding techniques, namely, PCM, DPCM, and DM. We also
describe the LPC-based source modeling method. As practical examples of the source­
coding methods described in this chapter we cite the digital speech transmission systems

in the telephone plant, the digital audio recording systems as embodied in the compact
disc (CD) player and the JPEG image-coding standard.

Digital modulation and demodulation techniques are described in Chapter 7. Bi­
nary and nonbinary modulation methods are described based on a geometric representa­
tion ofsignals, and their error-rate perfonnance is evaluated and compared. This chapter
also describes symbol synchronization methods for digital communication systems.

Chapter 8 treats digital transmission through bandlirnited AWGN channels. In this
chapter we derive the power-spectral density of linearly modulated baseband signals
and consider the problem of signal design for a bandlimited channel. We show that the
effect of channel distortion is to introduce intersymbol interference (ISI), which can
be eliminated or minimized by proper signal design. The use of linear and nonlinear
adaptive eqUalizers for reducing the effect of lSI is also described.

Chapter 9 treats the topic 9f channel coding and decoding. The capacity of a
communication channel is first defined, and the capacity of the Gaussian channel is
determined. Linear block codes and convolutional codes are introduced and appropriate
decoding algorithms are described. The benefits of coding for bandwidth constrained
channels are also described. The final section of this chapter presents three practical
applications of coding..

The last chapter of this book treats topics in wireless communications. First, we
consider the characterization of fading multipath channels and describe the effects of
such channels on wireless digital communication systems. The design of signals that
are effective in mitigating this type of channel distortion is also considered. Second, we
describe the class of continuous-phase modulated signalS, which are especially suitable
for digital communication in wireless channels. Finally, we treat the class of spread­
spectrum signals, which are suitable for multi-user wireless communication systems.

EXAMPLES AND HOMEWORK PROBLEMS

We have included a large number of carefully chosen examples and homework prob­
lems. The text contains over 180 worked-out examples and over 480 problems. Ex­
amples and problems range from simple exercises to more challenging and thought­
provoking problems. A Solutions Manual is available free to all adopting faculty, which
is provided in both typeset form and as a diskette fonnatted in lli1)3X. Solutions are not
available for sale to students. This will enable instructors to print out solutions in any
configuration easily.

COURSE OPTIONS

This book can serve as a text in either a one- or two-semester course in communication
systems. An important consideration in the design of the course is whether or not the
students have had a prior course in probability and random processes. Another important
consideration is whether or not analog modulation and demodulation techniques are to
be covered. Here, we outline three scenarios. Others are certainly possible.
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1. A one-term course in analog and digital communication: Selected review sectionsfrom Chapters 2 and 4, all ofchapters 3, 5, 7, and 8, and selections from chapters 6,9, and 10.
2. A one-term course in digital communication: Selectedreview sections from Chap­ters 2 and 4, and Chapters 6-10.
3: A two-term course sequence on analog and digital communications:

(a) Chapters 2-6 for the first course.
(b) Chapters 7-10 for the second course.
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Introduction

Every day, in our work and in our leisure time, we come in contact with and use a varietyofmodem communication systems and communication media, the most common beingthe telephone, radio, television, and the Internet. Through these media we are able tocommunicate (nearly) instantaneously with people on different continents, transact ourdaily business, and receive information about various developments and events of notethat occur all around the world. Electronic mail and facsimile transmission have madeit possible to rapidly communicate written messages across great distances.Can you imagine a world without telephones, radio, and TV? Yet, when you thinkabout it, most of these modern-day communication systems were invented and devel­oped during the past century. Here, we present a briefhistorical review ofmajor develop­ments within the last two hundred years that have had a major role in the development ofmodem communication systems.

1.1 HISTORICAL REVIEW

Telegraphy and Telephony. One of the earliest inventions of major signifi­cance to communications was the invention of the electric battery by Alessandro Voltain 1799. This invention made it possible for Samuel Morse to develop the electric tele­graph, which he demonstrated in 1837. The first telegraph line linked Washington withBaltimore and became operational in May 1844. Morse devised the variable-length bi­nary code given in Table 1.1, in which letters of the English alphabet were representedby a sequence of dots and dashes (code words). In this code, more frequently occurringletters are represented by short code words, while letters occurring less frequently arerepresented by longer code words.



(c) Punctuation and Special Characters

2 Introduction Chapter 1

TABLE 1.1 MORSE CODE

A N
B 0
C P
D Q 1 "----

E R 2
F S 3
G T 4
H U 5
I V 6
J W 7
K X 8
L y 9 ----,

M Z a -----

(a) Letters (b) Numbers

The Morse code was the precursor to the variable-length source-coding methods
that are described in Chapter 6. It is remarkable that the earliest form of electrical
communications that was developed by Morse, namely telegraphy, was a binary digital
communication system in which the letters of the English alphabet were efficiently
encoded into corresponding variable-Ie~gthcode words having binary elements.

Nearly forty years later, in 1875, Emile Baudot developed a code for telegraphy
in which each letter was encoded into fixed~length binary code words of length 5. In
the Baudot code the binary code elements have equal length and are designated as mark
and space.

An important milestone in telegraphy was the installation of the first transatlantic
cable in 1858 that linked the United States and Europe. This cable failed after about four
weeks of operation. A second cable was laid a few years later and be'came operational
in July 1866.

Telephony came into being with the invention of the telephone in the 1870s.
Alexander Graham Bell patented his invention of the telephone in 1876, and in 1877 es­
tablished the Bell Telephone Company. Earlyversions oftelephone communication sys­
tems were relatively simple and provided service over several hundred miles. Significant
advances in the quality and range ofservice during the first two decades of the twentieth
century resulted from the invention of the carbon microphone and the induction coil.

3Historical ReviewSection 1.1

The invention of the triode amplifier by Lee De Forest in 1906 made it possible to
introduce signal amplification in telephone communication systems and, thus, to allow
for telephone signal transmission over great distances. For example, transcontinental
telephone transmission became operational in 1915.

Two world wars and the Great Depression during the 1930s must have been a
deterrent to the establishment of transatlantic telephone service. It was not until 1953,
when the first transatlantic cable was laid, that telephone service became available
between the United States and Europe.

Automatic switching was another important advance in the development of tele­
phony. The first automatic switch, developed by Strowger in 1897, was an electrome­
chaniCal step-by-step switch. This type of switch was used for several decades. With the
invention of the transistor, electronic (digital) switching became economically feasible.
After several years of development at the Bell Telephone Laboratories, a digital switch
was placed in service in illinois in June 1960.

During the past thirty years there have been numerous significant advances in tele­
phone communications. Fiber optic cables are rapidly replacing copper wire in the tele­
phone plant and electronic switches have replaced the old electromechanical systems.

Wireless Communications. The development of wireless communications
stems from the works ofOersted, Faraday, Gauss, Maxwell, and Hertz. In 1820, Oersted
demonstrated that an electric current produces a magnetic field. On August 29, 1831,
Michael Faraday showed that an induced current is produced by moving a magnet in the
vicinity of a conductor. Thus, he demonstrated that a changing magnetic field produces
an electric field. With this early work as background, James C. Maxwell in 1864
predicted the existence of electromagnetic radiation and formulated the basic theory
that has been in use for over a century. Maxwell's theory was verified experimentally
by Hertz in 1887.

In 1894, a sensitive device that could detect radio signals, called the coherer,
was used by its inventor Oliver Lodge to demonstrate wireless communication over a
distance of 150 yards at Oxford, England. Guglielmo Marconi is credited with the devel­
opmentofwireless telegraphy. Marconi demonstrated the transmission of radio signals
at a distance ofapproximately 2 kilometers in 1895. Two years later, in 1897, he patented

. a radio telegraph system and established the Wireless Telegraph and Signal Company.
On December 12, 1901, Marconi received a radio signal at Signal HilI in Newfoundland,
which was transmitted from Cornwall, England, a distance of about 1700 miles.

The invention of the vacuum tube was especially instrumental in the development
of radio communication systems. The vacuum diode was invented by Fleming in 1904
and the vacuum triode amplifier was invented by De Forest in 1906, as previously indi­
cated. The invention of the triode made radio broadcast possible in the early part of the
twentieth century. Amplitude modulation (AM) broadcast was initiated in 1920 when
radio station KDKA, Pittsburgh, went on the air. From that date, AM radio broadcast­
ing grew rapidly across the country and around the world. The superheterodyne AM
radio.receiver, as we know it today, was invented by Edwin Armstrong during World
War 1. Another significant development in radio communications was the invention

Wait sign (AS)
Double dash (break)
Error sign
Fraction bar (f)
End of message (AR)
End of transmission (SK)

Period (.)
Comma (,)
Interrogation (?)
Quotation Mark (n)
Colon (:)
Semicolon (;)
Parenthesis ()

";-

'~~~'.~'T.
~
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1.2 ELEMENTS OF AN ELECTRICAL COMMUNICATION SYSTEM

5

Channel

Receiver

Transmitter

Output
transducer

Information
source and

input transducer

Elements of an Electrical Communication System

Figure 1.1 Functional block diagram of a communication system.

Output
signal

Section 1.2

mation is that its output is described in probabilistic tenns; i.e., the output of a source
is not deterministic. Otherwise,. there would be no need to transmit the message.

A transducer is usually required to convert the output of a source into an elec­
trical signal that is suitable for transmission. For example, a microphone serves as the
transducer that converts an acoustic speech signal into an electrical signal, and a video
camera converts an image into an electrical signal. At the destination, a similar trans­
ducer is required to convert the electrical signals that are received into a fonn that is
suitable for the user; e.g., acoustic signals, images, etc.

The heart of the communication system consists of three basic parts, namely,
the transmitter, the channel, and the receiver. The functions perfonned by these three
elements are described next.

The Transmitter. The transmitter converts the electrical signal into a fonn that
is suitable for transmission through the physical channel or transmission medium. For
example, in radio and TV broadcast, the Federal Communications Commission (FCC)
specifies the frequency range for each transmitting station. Hence, the transmitter mu~t
translate the infonnation signal to be transmitted into the appropriate frequency range
that matches the frequency allocation assigned to the transmitter. Thus, signals trans­
mitted by multiple radio stations do not interfere with one another. Similar functions
are perfonned in telephone communication systems where the electrical speech signals
from many users are transmitted over the same wire.

In general, the transmitter performs the matching of the message signal to the
channel by a process called modulation. Usually, modulation involves the use of the
infonnation signal to systematically vary either the amplitude, frequency, or phase of
a sinusoidal carrier. For example, in AM radio broadcast, the information signal that is
transmitted is contained in the amplitude variations of the sinusoidal carrier, which is
the center frequency in the frequency band allocated to the radio transmitting station.
This is an example of amplitude modulation. In FM radio broadcast, the infonnation
signal that is transmitted is contained in the frequency variations of the sinusoidal
carrier. This is an example ofjrequency modulation. Phase modulation (PM) is yet a
third method for impressing the infonnation signal on a sinusoidal carrier.
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of Frequency modulation (FM), also by Annstrong. In 1933, Annstrong built and
demonstrated the first FM communication system. However, the use of FM was slow
to develop compared with AM broadcast. It was not until the end of World War IT that
FM broadcast gained in popularity and developed commercially.

The first television system was built in the United States by V. K. Zworykin and
demonstrated in 1929. Commercial television broadcasting began in London in 1936
by the British Broadcasting Corporation (BBC). Five years later the Federal Commu­
nications Commission (FCC) authorized television broadcasting in the United States.

The Past Fifty Years. The growth in communications services over the past
fifty years has been phenomenal. The invention of the transistor in 1947 by Walter
Brattain, John Bardeen, and "William ShOCkley; the integrated circuit in 1958 by Jack
Kilby and Robert Noyce; and the las~r by Townes and Schawlowin 1958, have made
possible the development of small-siz~, low-power, low-weight, and high-speed elec­
tronic circuits which .are used in the construc.tion of satellite c011llJltmication systems,
wideband microwave radio systems, and lightwave communication systems using fiber
optic cables. A satellite named Telstar I wasJauncped in 1962 and used to relay TV
signals between Europe and the United States. Commercial satellite communication
services began in 1965 with the launching of the Early Bird satellite.

Currently, most of the wireline communication systems are being replaced by
fiber optic cables which provide extremely high bandwidth and make possible the
transmission of a wide variety ofinfonnation sources, including voice, data, and video.
Cellular radio has been developed to provide telephone service to people in automobiles,
buses, and trains. High-speed communication networks link computers and a variety
of peripheral devices literally around the world. .

Today we are witnessing; a $igniiicant growth in the introduction and use of per­
sonal communications services, including voice, data, and video transmission. Satellite
and fiber optic networks provide high-speed communic.ation services around the world.
Indeed, this is the dawn of the modem telecommunications era.

There are several historical treatments in the development of radio and telecom­
munications covering the past century. We cite the books by McMahon, entitled The
Making ofa Profession-A Century ofElectrical Engineering in America (IEEE Press,
1984); Ryder and Fink, entitled Engineers and Electronics (IEEE Press, 1984); and
S. Millman, Ed., entitled A History ofEngineering and Science in the Bell System­
Communications Sciences (1925-1980) (AT & T Bell Laboratories, 1984).

Electrical communication systems are designed to send messages or infonnation from a
source that generates the messages to one or more destinations. In general, a communi­
cation system can be represented by the functional block diagram shown in Figure 1.1.
The information generated by the source may be of the form of voice (speech source),
a picture (image source), or plain text in some particular language, such as English,
Japanese, Gennan, French, etc. An essential feature of any source that generates infor-



In general, camer modulation such as AM, FM, and PM is performed at the trans­
mitter, as indicated above, to convert the information signal to a form that matches the
characteristics of the channel. Thus, through the process of modulation, the information
signal is translated in frequency to match the allocation of the channel. The choice of
the type of modulation is based on several factors, such as the amount of bandwidth
allocated, the types of noise and interference that the signal encounters in transmission
over the channel, and the electronic devices that are available for signal amplification
prior to transmission. In any case, the modulation process makes it possible to accom­
modate the transmission of multiple messages from many users over the same physical
channel.

In addition to modulation, other functions that are usually performed at the trans­
mitter are filtering of the information-bearing signal, amplification of the modulated
signal,and in the case of wireless transmission, radiation of the signal by means of a
transmitting antenna.

The Channel. The communications channel is the physical medium that is
used to send the signal from the transmitter to the receiver. In wireless transmission, the
channel is usually the atmosphere (free space). On the other hand, telephone channels
usually employ a variety of physical media, including wirelines, optical fiber cables,
and wireless (microwave radio). Whatever the physical medium for signal transmission,
the essential feature is that the transmitted signal is corrupted in a random manner by a
variety of possible mechanisms. The most common form of signal degradation comes
in the form of additive noise, which is generated at the front end of the receiver, where
signal amplification is performed. This noise is often called thermal noise. In wireless
transmission, additional additive disturbances are man-made noise, and atmospheric
noise picked up by a receiving antenna. Automobile ignition noise is an example of
man-made noise, and electrical lightning discharges from thunderstorms is an example
of atmospheric noise. Interference from other users of the channel is another form of
additive noise that often arises in both wireless and wireline corilIIlUnication systems.

In some radio communication channels, such as the ionospheric channel that is
used for long range, short-wave radio transmission, another form of signal degradation
is multipath propagation. Such signal distortion is characterized as a nonadditive signal
disturbance which manifests itself as time variations in the signal amplitude, usually
called fading. This phenomenon is described in more detail in Section 1.3.

Both additive and nonadditive signal distortions are usually characterized as ran­
dom phenomena and described in statistical terms. The effect ofthese signal distortions
must be taken into account on the design of the communication system.

In the design of a communication system, the system designer works with mathe­
matical models that statistically characterize the signal distortion encountered on phys­
ical channels. Often, the statistical description that is used in a mathematical model is
a result of actual empirical measurements obtained from experiments involving signal
transmission over such channels. In such cases, there is a physical justification for the
mathematical model used in the design of communication systems. On the other hand,
in some communication system designs, the statistical characteristics of the channel
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1.2.1 Digital Communication System

Up to this point we have described an electrical communication system in rather broad
terms based on the implicit assumption that the message signal is a continuous time­
varying waveform. We refer to such continuous-time signal waveforms as analog sig­
nals and to the corresponding information sources that produce such signals as analog
sources. Analog signals can be transmitted directly via carrier modulation over the
communication channel and demodUlated accordingly at the receiver. We call such a
communication system an analog communication system.

Alternatively, an analog source output may be converted into a digital form and the
message can be transmitted via digital modulation and demodulated as a digital signal
at the receiver. There are Some potential advantages to transmitting an analog signal by
means of digital modulation. The most important reason is that signal fidelity is better
controlled through digital transmission than analog transmission. In particular, digital
transmission allows us to regenerate the digital signal in long-distance transmission,
thus eliminating effects ofnoise at each regeneration point. In contrast, the noise added
in analog transmission is amplified along with the signal when amplifiers are used
periodically to boost the signal level in long-distance transmission. Another reason
for choosing digital transmission over analog is that the analog message signal may
be highly redundant. With digital processing, redundancy may be removed prior to
modulation, thus conserving channel bandwidth. Yet a third reason may be that digital
communication systems are often cheaper to implement.

In some applications, the infOrmation to be transmitted is inherently digital; e.g.,
in the form of English text, computer data, etc. In such cases, the information source
that generates the-data is called a discrete (digital) source.

In a digital communication system, the functional operations performed at the
transmitter and receiver must be expanded to include message signal discretization at

The Receiver. The function of the receiver is to recover the message signal
contained in the received signal. If the message signal is transmitted by camer modu­
lation, the receiver performs carrier demodulation in order to extract the message from
the sinusoidal camero Since the signal demodulation is performed in the presence of
additive noise and possibly other signal distortion, the demodulated message signal is
generally degraded to some extent by the presence of these distortions in the received
signal. As we shall see, the fidelity of the received message signal is a function of the
type ofmodulation, the strength of the additive noise, the type and strength of any other
additive interference, and the type of any nonadditive interference.

Besides performing the primary function of signal demodulation, the receiver
also performs a number of peripheral functions, including signal filtering and noise
suppression.

may vary significantly with time. In such cases, the system designer may design a
communication system that is robust to the variety of signal distortions. This can be ac­
complished by having the system adapt some ofits parameters to the channel distortion
encountered.
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the transmitter and message signal synthesis or interpolation at the receiver. Additionalfunctions include redundancy removal, and channel coding and decoding.Figure 1.2 illustrates the functional diagram and the basic elements of a digitalcommunication system. The source output may be either an analog signal, such as audioor video signal, or a digital signal, such as the output of a computer which is discrete intime and has a finite number of output characters. In a digital communication system,the messages produced by the source are usually converted into a sequence of binarydigits. Ideally, we would like to represent the source output (message) by as few binarydigits as possible. In other words, we seek an efficient representation of the sourceoutput that results in little or no redundancy. The process of efficiently converting theoutput of either an analog or a digital source into a sequence of binary digits is calledsource encoding or data compression. We shall describe source-encoding methods inChapter 6.
The sequence of binary digits from the source encoder, which we call the in­formation sequence is passed to the channel encoder. The purpose of the channelencoder is to introduce, in a controlled manner, some redundancy in the binary infor­mation sequence which can be used at the receiver to overcome the effects of noiseand interference encountered in the transmission of the signal thro]1gh the channel.Thus, the added redundancy serves to increase the reliability of the received data andimproves the fidelity of the received signal. In effect, redundancy in the informationsequence aids the receiver in decoding the desired information sequence. For example,a (trivial) form of encoding of the binary information sequence is simply to repeateach binary digit m times, where m is some positive integer. More sophisticated (non­trivial) encoding involves taking k information bits at a time and mapping each k-bitsequence into a unique n-bit sequence, called a code word. The amount of redun­dancy introduced by encoding the data in this manner is measured by the ratio njk.The reciprocal of this ratio, namely, k j n, is called the rate of the code or, simply, thecode rate.

The binary sequence at the output of the channel encoder is passed to the digitalmodulator, which serves as the interface to the communications channel. Since nearlyall of the communication channels encountered in practice are capable of transmittingelectrical signals (waveforms), the primary purpose of the digital modulator is to map

(
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the binary information sequence into signal waveforms. To elaborate on the point, let .."us suppose that the coded information sequence is to be transmitted one bit at a time atsome unifonn rateR bits/so The digitalmodulatorID.aysirnplymap the binary digit 0 ~into a waveform So (t)and the binary digitI into a waveform Sl (t). In this manner, each.?bit from the channel encoder is transmitted separately. We call. this binary modulation.Alternatively, the modulator may transmit b coded infOrmation bits.at a time by usingM =2b distinct waveforms Si(t), i = 0,1, ... , M -1, 0Ile waveform for each of the 2bpossible b-bit sequences. We call this M-ary modulation (M> 2). Note that a new b-bit ""sequence enters the modulator every bj R seconds. Hence, when the channel bit rate Ris fixed, the amount oftime available to transmit one ofthe.M waveforms corresponding ~to a b-bit sequence is b times the time period in a system that uses binary modulation..At the receiving end of a digitalcommunications system, the digital demodulatorprocesses the channel-corrupted transmitted wavefonl1 and reduces each waveform to asingle number that represents an estimate of the transmitted data symbol (binary or M- ~ary). For example, when binary modulation is used, the demodulator may process thereceived waveform and decide on whether the transmitted bit is a°or a 1. In such a case,we say the demodulatorhas made a binarydecision, As one altel11ative, the demodulatormay make a ternary decision; that is, it decides that the transmitted bit is either a °or1 or it makes no decision at all, depending on the apparent quality of the received. signal. When no decision is made on a particular bit, we say that the demodulator hasinserted an erasure in the demodulated data. Using the redundancy in the transmitteddata, the decoder attempts to fill in the positions where erasures occurred. Viewing thedecision process performed by the demodulator as a form of quantization, we observethat binary and ternary decisions are special cases of a demodulator that quantizes to Qlevels, where Q ~. 2. In general, if the digital communications system employs M -arymodulation, where m = 0, 1, ... , M -1 represent the M possible transmitted symbols,each corresponding to b = logz M bits, the demodulator may make a Q-ary decision,where Q 2: M. In the extreme case where no quantization is performed, Q = 00.When there is no redundancy in the transmitted information, the demodulatormust decide which of the M waveforms was transmitted in any given time interval.Consequently Q= M, and since there is no redundancy in the transmitted information,no discrete channel decoder is used following the demodulator. On the otherhand, whenthere is redundancy introduced by a discrete channel encoder at the transmitter, the Q­ary output from the demodulator occurring every b j R seconds is fed to the decoder,which attempts to reconstruct the original information sequence from knowledge of thecode used by the channel encoder and the redundancy contained in the received data.A measure ofhow well the demodulator and decoderperformis the frequency withwhich errors occur in the decoded sequence. More precisely, the average probabilityof a bit-error at the output of the decoder is a measure of the performance of thedemodulator-decoder combination. In general, the probability of error is a function ofthe code characteristics, the types of waveforms used to transmit the information overthe channel, the transmitter power, the characteristics of the channel; i.e., the amount ofnoise, the nature of the interference, etc., and the method ofdemodulation and decoding.These items and their effect on performance will be discussed in detail in Chapters 7-9.
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Figure 1.2 Basic elements of a digital communication system.
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Another significant advance in the development of communications was the work
ofWiener (1942) who considered the problem of estimating a desired signal waveform
set) in the presence of additive noise net), based on observation of the received signal
ret) = set) +n(t). This problem arises in signal demodulation. Wiener determined the
linear filter whose output is the best mean-square approximation to the desired signal
s (t). The resulting filter is called the optimum linear (Wiener) filter.

Hartley's and Nyquist's results on the maximum transmission rate of digital
information were precursors to the work of Shannon (1948a,b) who established the
mathematical foundations for information theory and derived the fundamental limits
for digital communication systems. In his pioneering work, Shannon formulated the
basic problem of reliable transmission of information in statistical terms, using prob­
abilistic models for information sources and communication channels. Based on such
a statistical formulation, he adopted a logarithmic measure for the information content
of a source. He also demonstrated that the effect of a transmitter power constraint, a
bandwidth constraint, and additive noise can be associated with the channel and incor­
porated into a single parameter, called the channel capacity. For example, in the case
of an additive white (spectrally fiat) Gaussian noise interference, an ideal bandlimited
channel of bandwidth W has a capacity C given by

where P is the average transmitted power and No is the power-spectral density of the
additive noise. The significance of the channel capacity is as follows: If the information
rate R from the source is less than C (R < C), then it is theoretically possible to
achieve reliable transmission through the channel by appropriate coding. On the other
hand if R > C, reliable transmission is not possible regardless ofthe amount of signal
processing performed at the transmitter and receiver. Thus, Shannon established basic
limits on communication of information and gave birth to a new field that is now called
information theory.

Initially, the fundamental work of Shannon had a relatively small impact on the
design and development ofnew digital communications systems. In part, this was due to
the small demand for digital information transmission during the decade of the 1950s.
Another reason was the relatively large complexity and, hence, the high cost of digital
hardware required to achieve the high efficiency and the high reliability predicted by
Shannon's theory.

Another important contribution to the field of digital communications is the work
of Kotelnikov (1947) which provided a coherent analysis of the various digital com­
munication systems based on a geometrical approach. Kotelnikov's approach was later
expanded by Wozencraft and Jacobs (1965).

The increase in the demand for data transmission during the last three decades,
coupled with the development of more sophisticated integrated circuits, has led to the
development of very efficient and more reliable digital communications systems. In
the course of these developments, Shannon's original results and the generalization

C = Wlog2 (1+~) bits/s
WNo
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As- a final step, when an analog output is desired, the source decoder accepts
the output sequence from lhe channel decoder and, from knowledge of the source­
encoding method used, attempts to reconstruct the original signal from the source. Due
to channel-decoding errors and possible distortion introduced by the source encoder
and, perhaps, the source decoder, the signal at the output of the source decoder is an
approximation to the original source output. The difference or some function of the
difference between the original signal and the reconstructed signal is a measure of the
distortion introduced by the digital communications system.

1.2.2 Early Work in Digital Communications

Although Morse is responsible for the development of the first electrical digital commu­
nication system (telegraphy), the beginnings of what we now regard as modern digital
communications stem from the work of Nyquist (1924), who investigated the problem
of determining the maximum signaling rate that can be used over a telegraph channel
of a given bandwidth without intersymbol interference. He formulated a model of a
telegraph system in which a transmitted signal has the general form

In light of Nyquist's work, Hartley (1928) considered the issue of the amount
of data that can be transmitted reliably over a bandlimited channel when multiple
amplitude levels are used. Due to the presence of noise and other interference, Hartley
postulated that the receiver can reliably estimate the received signal amplitude to some
accuracy, say Ao. This investigation led Hartley to conclude that there is a maximum
data rate that can be communicated reliably over a bandlimited channel, when the
maximum signal amplitude is limited to Aroax (fixed power constraint) and the amplitude

resolution is Ao.

_" (.!!-) sin2JTW(t - n12W)
s(t)- 0 s 2W 2JTW(t-nI2W)

n

where get) represents a basic pulse shape and {an} is the binary data sequence of
{±1} transmitted at a rate of liT bits/sec. Nyquist set out to determine the optimum
pulse shape that was bandlimited to W Hz and maximized the bit rate liT under
the constraint that the pulse caused no intersymbol interference at the sampling times
kiT, k = 0, ±1, ±2, .... His studies led him to conclude that the maximum pulse
rate liT is 2W pulses/sec. This rate is now called the Nyquist rate. Moreover, this
pulse rate can be achieved by using the pulses get) = (sin2nWt)/2JTWt. This pulse
shape allows the recovery of the data without intersymbol interference at the sampling
instants. Nyquist's result is equivalent to a version of the sampling theorem for band­
limited signals, which was later stated precisely by Shannon (1948). The sampling
theorem states that a signal set) of bandwidth W can be reconstructed from samples
taken at the Nyquist rate of 2W samples/sec using the interpolation formula
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of his results on maximum transmission limits over a channel and on bounds on the
performance achieved, have served as benchmarks relative to which any given commu­
nications system design is compared. The theoretical limits derived by Shannon and
other researchers that contributed to the development of information theory serve as
an ultimate goal in the continuing efforts to design and develop more efficient digital
communications systems.

Following Shannon's publications came the classic work of Hamming (1950) on
error detecting and error-correcting codes to combat the detrimental effects of channel
noise. Hamming's work stimulated many researchers in the years that followed and a
variety of new and powerful codes were discovered, many of which are used today in
the implementation of modem communication systems.
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lines. and coaxial cable ~e basically guided electromagnetic channels which provide
relatIvely modest bandWIdths. Telephone wire generally used to connect a customer to
a central office has a bandwidth of several hundred kilohertz (KHz). On the other hand
coaxial cable has a usable bandwidth of several megahertz (MHz). Figure 1.3 illustrate~
the frequency range of guided electromagnetic channels which includes waveguides
and optical fibers.

Signals transmitted through such channels are distorted in both amplitude and
phase and further corrupted by additive noise. Twisted-pair wireline channels are also
prone to crosstalk interference from physically adjacent channels. Because wireline
channels carry a large percentage of our daily communications around the country and
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1.3 COMMUNICATION CHANNELS AND THEIR CHARACTERISTICS

As indicated in our preceding discussion, the communication channel provides the
connection between the transmitter and the receiver. The physical channel may be a
pair ofwires that carry the electrical signal, or an optical fiber ~atc~es the ~nforma~on
on a modulated light beam, or an underwater ocean channel ill which the illformatIon
is transmitted acoustically, or free space over which the information-bearing signal is
radiated by use of an antenna. Other media that can be characteriz~da~ communica~on

channels are data storage media, such as magnetic tape, magnetIc disks, and optIcal
disks.

One common problem in signal transmission through any channel is additive
noise. In general, additive noise is generated internally by components such as resistors
and solid-state devices used to implement the communication system. This is sometimes
called thermal noise. Other sources of noise and interference may arise externally to
the system, such as interference from other users of the ch:mnel: "Whe~ such noise
and interference occupy the same frequency band as the desrred SIgnal, Its effect can
be minimized by proper design of the transmitted signal and its de~odulator ~t ~e

receiver. Other types of signal degradations that may be encountered ill transrm~slOn

over the channel are signal attenuation, amplitude and phase distortion, and multIpath
distortion.

The effects ofnoise may be minimized by increasing the power in the transmitted
signal. However, equipment and other practical constraints limit the power l~vel in
the transmitted signal. Another basic limitation is the available channel bandWIdth. A
bandwidth constraint is usually due to the physical limitations of the medium and the
electronic components used to implement the transmitter and the receiv~r. Thes~ two
limitations result in constraining the amount of data that can be transrmtted reliably
over any communications channe1. Shannon's basic results relate thechannel capacity
to the available transmitted power and channel bandwidth.

Next, we describe some ofthe important characteristics ofseveral communication
channels.

Wireline Channels. The telephone network makes extensive use of wire lines
for voice signal transmission, as well as data and video transmission. Twisted-pair wire-
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these channels is relatively slow speed and, generally, confined to digital transmission.
A dominant type of noise at these frequencies is generated from thunderstorm activity
around the globe, especially in tropical regions. Interference results from the many
users of these frequency bands.

Ground-wave propagation, illustrated in Figure 1.5, is the dominant mode of
propagation for frequencies in the MF band (0.3-3 MHz). This is the frequency band
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Wireless Electromagnetic Channels. In radio communication systems,
electromagnetic energy is coupled to the propagation medium by an antenna which
serves as the radiator. The physical size and the configuration of the antenna depend
primarily on the frequency of operation. To obtain efficient radiation of electromag­
netic energy, the antenna must be longer than 1/10 of the wavelength. Consequently, a
radio station transmitting in the AM frequency band, say at 1 MHz (corresponding to
a wavelength of)" = c/ ie = 300 m) requires an antenna of at least 30 meters.

Figure 1.4 illustrates the various frequency bands ofthe electromagnetic spectrum.
The mode of propagation ofelectromagnetic waves in the atmosphere and in free space
may be subdivided into three categories, namely, ground-wave propagation, sky-wave
propagation, and line-of-sight (LOS) propagation. In the VLF and ELFfrequency bands,
where the wavelengths exceed 10 kIn, the earth and the ionosphere act as a waveguide for
electromagnetic wave propagation. In these frequency ranges, communication signals
practically propagate around the globe. For this reason, these frequency bands are
primarily used to provide navigational aids from shore to ships around the world. The
channel bandwidths available in these frequency bands are relatively small (usually from
1-10% of the center frequency), and hence, the information that is transmitted through

the world, much research has been performed on the, characterization of their trans­
mission properties and on methods for mitigating the amplitude and phase distortion
encountered in signal transmission. In Chapter 8, we describe methods for designing
optimum transmitted signals and their demodulation, including the design of channel
equalizers that compensate for amplitude and phase distortion.

Fiber Optic Channels. Optical fibers offer the communications system de­
signer a channel bandwidth that is several orders of magnitude larger than coaxial
cable channels. During the past decade optical fiber cables have been developed which
have a relatively low signal attenuation and highly reliable photonic devices have been
developed for signal generation and signal detection. These technological advances
have resulted in a rapid deployment of optical fiber channels both in domestic telecom­
munication systems as well as for transatlantic and transpacific communications. With
the large bandwidth available on fiber optic channels it is possible for the telephone
companies to offer subscribers a wide array of telecommunication services, including
voice, data, facsimile, and video.

The transmitter or modulator in a fiber optic communication system is a light
source, either a light-emitting diode (LED) or a laser. Information is transmitted by
varying (modulating) the intensity of the light source with the message signal. The light
propagates through the fiber as a light wave and is amplified periodically (in the case of
digital transmission, it is detected and regenerated by repeaters) along the transmission
path to compensate for signal attenuation. At the receiver, the light intensity is detected
by a photodiode, whose output is an electric~ signal that varies in direct proportion to
the power of the light impinging on the photodiode.

It is envisioned that optical fiber channels will replace nearly all wireline channels
in the telephone network in the next few years.
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used for AM broadcasting and maritime radio broadcasting. In AM broadcast, the range
with ground-wave propagation of even the more powerful radio stations is limited to
about 100 miles. Atmospheric noise, man-made noise, and thennalnoise from electroniccomponents at the receiver are dominant disturbances for signal transmission of NIP.

Sky-wave propagation, as illustrated in Figure 1.6, results from transmitted sig­
nals being reflected (bent or refracted) from the ionosphere, which consists of several
layers of charged particles ranging in altitude from 30-250 miles above the surface of
the earth. During the daytime hours, the heating of the lower atmosphere by the sun
causes the formation of the lower layers at altitudes below 75 miles. These lower layers,
especially the D-layer serve to absorb frequencies below 2 MHz, thus, severely limiting
sky-wave propagation ofAM radio broadcast. However, during the night-time hours the
electron density in the lower layers of the ionosphere drops sharply and the frequencyabsorption that occurs during the day time is significantly reduced. As a consequence, .
powerful AM radio broadcast stations can propagate over large distances via sky-wave
over the F-layer of the ionosphere, which ranges from 90-250 miles above the surface
of the earth.

A frequently occurring problem with electromagnetic wave propagation via sky-
wave in the HF frequency range is signal multipath. Signal multipath occurs when
the transmitted signal arrives at the receiver via multiple propagation paths at differ­
ent delays. Signal multipath generally results in intersymbol interference in a digital
communication system. Moreover, the signal components arriving via different prop­
agation paths may add destructively, resulting in a phenomenon called signal fading,
which most people have experienced when listening to a distant radio station at night,
when sky-wave is the dominant propagation mode. Additive noise at HF is a combina­
tion of atmospheric noise and thermal noise.

Sky-wave ionospheric propagation ceases to exist at frequencies above approx­
imately 30 MHz, which is the end of the HF band. However, it is possible to have
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Underwater Acoustic Channels. Over the past few decades, ocean explo­
ration activity has been steadily increasing. Coupled with this increase in ocean ex­
ploration is the need to transmit data, collected by sensors placed underwater, to the
surface of the ocean. From there it is possible to relay the data via a satellite to a data
collection center.

. Electromagnetic waves do not propagate over long distances underwater, except at
extremely low frequencies. However, the transmission ofsignals at such low frequencies
is prohibitively expensive because of the large and powerful transmitters required. The
attenuation of electromagnetic waves in water can be expressed in terms of the skin

ionospheric scatter propagation at frequencies in the range of 30-60 MHz, resulting
from signal scattering from the lower ionosphere. It is also possible to communicate
?ver distances ofseveral hundred miles by use of tropospheric scattering at frequencies
ill the range of40-300 MHz. Troposcatter results from signal scattering due to particles
in the atmosphere at altitudes of 10 miles or less. Generally, ionospheric scatter and
tropospheric scatter involvelarge signal propagation losses and require a large amount
oftransmitter power and relatively large antennas.

Frequencies above 30 .MHz propagate through the ionosphere with relatively
little loss and make satellite and extraterrestrial. communications possible. Hence, atfrequencies in the VHF band and higher, the dominant mode of electromagnetic propa­
gation is line-of-sight (LOS) propagation. For terrestrial communication systems, this
means that the transmitter and receiver antennas must be in direct LOS with relativelylittle or no obstruction. For this reason television stations transmitting in the VHF and

. UHF frequency bands mount their antennas 011 high towers in order to achieve a broad
coverage area.

In general, the coverage area for LOS propagation is limited by the curvature of
the earth. If the transmitting antenna is mounted at a height h feet above the surface
of the earth, the distance to the radio horizon, assuming no physical obstructions such
a mountains, is approximately d = $ miles. For example, a TV antenna mounted
on a tower of 1000 ft in height provides a coverage of approximately 50 miles. As

.another example, microwave radio relay systems used extensively for telephone and
video transmission at frequencies above 1 GHz have antennas mounted on tall towers
or on the top of tall buildings.

The dominant noise limiting the performance of communication systems in the
VHF and UHF frequency ranges is thermal noise generated in the receiver front end and
cosmic noise picked up by the antenna. At frequencies in the SHF band above 10 GHz,
atmospheric conditions playa major role in signal propagation. Figure 1.7 illustrates
the signal attenuation in dB/mile due to precipitation for frequencies in the range of10-100 GHz. We observe that heavy rain introduces extremely high propagation losses
that can result in service outages (total breakdown in the communication system).

At frequencies above the EHF band, we have the illfrared and visible light regions
of the electromagnetic spectrum which can be used to provide LOS optical commu­
nication in free space. To date, these frequency bands have been used in experimental
communication systems, such as satellite-to-satellite links.

Chapter 1Introduction

Figure 1.6 illustration of sky-wave
propagation.

Figure 1.5 illustration of ground-wave
propagation.
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depth, which is the distance a signal is attenuated by 1/e. For sea water, the skin depth
o= 250/.fl, where f is expressed in Hz and 0 is in meters. For example, at 10kHz,
the skin depth is 2.5 m. In contrast, acoustic signals propagate over distances of tens
and even hundreds of kilometers.

A shallow water acoustic channel is characterized as a multipath channel due
to signal reflections from the surface and the bottom of the sea. Due to wave mo­
tion, the signal multipath components undergo time-varying propagation delays which
result in signal fading. In addition, there is frequency-dependent attenuation, which is
approximately proportional to the square of the signal frequency.

Ambient ocean acoustic noise is caused by shrimp, fish, and various mammals.
Near harbors, there is also man-made acoustic noise in addition to the ambient noise.

Introduction 19Mathematical Models for Communication ChannelsSection 1.4

In spite of this hostile environment, it is possible to design and implement efficient and
highly reliable underwater acoustic communication systems for transmitting digital
signals over large distances.

Storage Channels. Information storage and retrieval systems constitute a
very significant part of our data-handling activities on a daily basis. Magnetic tape,
including digital audio tape and video tape, magnetic disks used for storing large
amounts of computer data, and optical disks used for computer data storage, music
(compact disks), and video are examples of data storage systems that can be charac­
terized as communication channels. The process of storing data on a magnetic tape or
a magnetic or optical disk is equivalent to transmitting a signal over a telephone or
a radio channel. The readback process and the signal processing involved in storage
systems to recover the stored information is equivalent to the functions performed by
a receiver in a telephone or radio communication system to recover the transmitted
information.

Additive noise generated by the electronic components and interference from
adjacent tracks is generally present in the readback signal of a storage system, just as
is the case in a telephone or a radio communication system.

The amount of data that can be stored is generally limited by the size of the disk
or tape and the density (number of bits stored per square inch) that can be achieved
by the write/read electronic systems and heads. For example, a packing density of
109 bits/sq. in. has been recently demonstrated in an experimental magnetic disk storage
system. (Current commercial magnetic storage products achieve a much lower density.)
The speed at which data can be written on a disk or tape and the speed at which it can
be read back is also limited by the associated mechanical and electrical subsystems that
constitute an information storage system.

Channel coding and modulation are essential components of a well-designed
digital magnetic or optical storage system. In the readback process, the signal is de­
modulated and the added redundancy introduced by the channel encoder is used to
correct errors in the readback signal.

The Additive Noise Channel. The simplest mathematical model for a com­
munication channel is the additive noise channel, illustrated in Figure 1.8. In this
model the transmitted signal set) is corrupted by an additive random noise process

In the design of communication systems for transmitting information through physical
channels, we find it convenient to construct mathematical models that reflect the most
important characteristics of the transmission medium. Then, the mathematical model
for the channel is used in the design of the channel encoder and modulator at the
transmitter and the demodulator and channel decoder at the receiver. Next, we provide
a brief description of the channel models that are frequently used to characterize many
of the physical channels that we encounter in practice.

1.4 MATHEMATICAL MODELS FOR COMMUNICATION CHANNELS

Chapter 1
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Figure 1.7 Signal attenuation due to precipitation. (From Ziemer and Tranter
(1990); © Houghton Mifflin Reprinted with permission of the publisher.)
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Figure 1.8 The additive noise channel.
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channel output is the signal

Figure 1.9 The linear filter channel with additive noise.

(1.4.2)

(1.4.5)

(1.4.3)

L

ret) = L ak(t)s(t - rk) + net)
k=l

ret) = set) * h(t) + nCt)

1
+00

= -00 h(,)sCt - ,) d, + net)

L

he,; t) = Lak(t)o(, - rk) (1.4.4)
k=l

where the {ak(t)} represent the possibly time-variant attenuation factors for the L
multipath propagation paths. If Equation (1.4.4) is substituted into Equation (1.4.3),
the received signal has the form

Hence, the received signal consists of L multipath components, where each component
is attenuated by {ak} and delayed by {rd.

A good model for multipath signal propagation through physical channels, such as
the ionosphere (at frequencies below 30 :MHz) and mobile cellular radio channels, is a
special case ofEquation (1.4.3) in which the time-variant impulse response has the form

where h(t) is the impulse response of the linear filter and * denotes convolution.

The Linear Time-Variant Filter Channel. Physical channels such as under­
water acoustic channels and ionospheric radio channels which result in time-variant
multipath propagation of the transInitted signal may be characterized mathematically as
time-variant linear filters. Such linear filters are characterized by time-variant channel
impulse response h(,; t) where h (r; t) is the response of the channel at time t, due to
an impulse applied at time t - ,. Thus, , represents the "age" (elapsed time) variable.
The linear time-variant filter channel with additive noise is illustrated Figure 1.10. For
an input signal set), the channel output signal is

r(t)= set) * he,; t) + net)

= 1:00

her; t)s(t - ,)d, +n(t)

(1.4.1)

r(t) = set) * h(t) + net)

rCt) = as(tj + net)

Channel

I
I
I

n(t) \

IL ~

,--------------------1
I I
I I

s(t) : Linear \
filter
h(t)

where a represents the attenuation factor.

The Linear Filter Channel. In some physical channels such as wireline tele­
phone channels, filters are used.to ensure that ~e transIni:ted signals do not exceed
specified bandwidth limitations and, thus, do not mterfere WIth one another. ~uch c~Gll1­

nels are generally characterized mathematically as linear ~lter c~annel~ WIth addItIve
noise, as illustrated in Figure 1.9. Hence, if the channel mput IS the sIgnal set), the

net). Physically, the additive noise process may arise from electronic components and
amplifiers at the, receiver of the communicati?n system, o~ t::0m interference encoun­
tered in transmission, as in the case of radio sIgnal transIDlsslOn.

Ifthe noise is introduced primarily by electronic components and amplifiers at the
receiver, it may be characterized as thermal noise. This type .of noise is ch~acterized

statistically as a Gaussian noise process. Hence, the resultIng mathematIcal mod~l
for the channel is usually called the additive Gaussian noise channel. Because this
channel model applies to a broad class ofphysical communication channels andb~cause
of its mathematical tractability, this is the predominant channel model used m our
communication system analysis and design. Channel attenuation is easily incorporated
into the model. When the signal undergoes attenuation in transInission through the
channel, the received signal is



1.5 ORGANIZATION OF THE BOOI<

The three mathematical models described above adequately characterize a large
majority of physical channels encountered in practice. These three channel models are
used in this text for the analysis and design of communication systems.

Before we embark on the analysis and design of communication systems, we provide
a brief review of basic frequency-domain characteristics of signals and linear systems
in Chapter 2. Emphasis is placed on the Fourier series and the Fourier transform repre­
sentation of signals and the use of transforms in linear systems analysis. The process
of sampling a bandlimited analog signal is also considered.

In Chapter 3, we treat the modulation and demodulation of analog signals. This
chapter provides detailed description of amplitude modulation (AM), frequency mod­
ulation (FM), and phase modulation (PM). As examples of analog signal transmission
and reception, we consider radio and television broadcasting, and mobile radio cellular
communication systems.

In Chapter 4, we present a review of the basic definitions and concepts in prob­
ability and random processes. These topics are particularly important in our study of
electrical communications, because information sources produce random signals at
their output and communication channels generally corrupt the transmitted signals in
a random manner, through the addition of noise and other channel distortion. Spe­
cial emphasis is placed on Gaussian random processes, which provide mathematically
tractable models for additive noise disturbances. Both time domain and frequency do­
main representations of random signals are presented.

Chapters 5 provides a treatment ofthe effects ofadditive noise in the demodulation
of amplitude modulated (AM) and angle modulated (PM, PM) analog signals and a
comparison of these analog signal modulations in terms of their signal-to-noise ratio
performance. Also discussed in this chapter is the problem of estimating the carrier
phase using a phase-locked loop (PLL). Finally, we describe the characterization of
thermal noise and the effect of transmission losses in analog communication systems.

The remainder of the book is focused on digital communication systems.
Chapter 6 is devoted to the modeling and characterization of information sources and
source coding. In this chapter, we introduce a measure for the infonnation content of a
discrete source and describe two algorithms, the Huffman algorithm and the Lempel­
Ziv algorithm, for efficient encoding of the source output. The major part of the chapter
is devoted to the problem of encoding the outputs of analog sources. Several waveform­
encoding methods are described, including pulse-code modulation (PCM), differential
PCM, and delta modulation (DM). We also describe a model-based approach to ana­
log source encoding, based on linear prediction. As practical examples of the theory
presented in this chapter, we consider digital audio recording systems, digital audio
transmission in telephone systems, and the JPEG image-coding standard.

Chapter 7 treats modulation methods for digital signal transmission through
an additive white Gaussian noise channel. Various types of binary and nonbinary

23Further ReadingSection 1.6

modulation methods are described based on a geometric representation of signals and
their performance is evaluated in terms of the probability of error. A link budget anal­
ysis for radio communication systems is also described. The final topic of this chapter
is focused on signal synchronization methods for digital communication systems.

In Chapter 8, we consider the problem of digital communication throughbandlim­
ited, additive white Gaussian noise channels. In particular, we describe the design of
bandlimited signal waveforms for such channels and the spectral characteristics of dig­
itally modulated signals. Digitally modulated signals with memory, their modulation,
and their spectral characteristics are also described. The effect of channel distortion on
the transmitted signals is characterized in terms of intersymbol interference (lSI), and
the design of adaptive equalizers for suppressing lSI is described.

Channel coding and decoding is the topic of Chapter 9. In this chapter, we describe
the concept of channel capacity, and derive the capacity of an additive white Gaussian
noise channel. Linear block codes and convolutional codes are consideredfor enhancing
the performance of a digital communication system in the presence of additive noise.
Decoding algorithms for both block codes and convolutional codes are also described.
The final topic of this chapter provides a treatment of trellis-coded modulation, which
is widely used in the implementation of high speed modems.

The last chapter of the book, Chapter 10, focuses on topics dealing with wireless
communications. We begin by characterizing channel fading and multipath effects in
wireless communication systems and describe the design of signals that are effective in
mitigating these channel distortions. Then, we describe the class of continuous-phase
modulated signals, which are especially suitable for digital communications in wireless
channels due to their constant amplitude and narrow bandwidth characteristics. Finally,
we treat the class of spread-spectrum signals, which are suitable for multi-user wireless
communication systems. As examples of practical wireless communication systems,
we briefly describe two digital cellular communication systems, the pan European GSM
system and the North-American IS-95 CDMA system.

In an introductory book of this level, we have not attempted to provide a large
number of references to the technical literature. However, we have included in each
chapter several supplementary references for further reading, including textbooks and
basic or tutorial treatments of important topics. References are cited by giving the
author's narr:-e, with the year of publication in parentheses; e.g., Nyquist (1924).

We have already cited several historical treatments of radio and telecommunications
during the past century. These include the book by McMahon (1984), Ryder and Fink
(1984), and Millman (1984). The classical works of Nyquist (1924), Hartley (1928),
Kotelnikov (1947), Shannon (1948), and Hamming (1950) are particularly important
because they lay the groundwork of modern communication systems engineering.

1.6 FURTHER READING

Chapter 1Introduction22
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Jo Ix(t)1 dt < 00,
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(2.1.1)

(2.1.2)

(2.1.3)
if x(t) is continuous at t

if x(t) is discontinuous at t

+00
x±(t) = E xnej 27>:fal

n=-co

1 l"'+TO '27>: " IXn = - x(t)e-J 10 dt
To '"

Fourier Series

Some observations concerning this theorem are in order.

• The coefficients X n are called the Fourier series coefficients of the signal x(t).
These are, in general, complex numbers.

• The parameter a in the limits of the integral is arbitrary. It can be chosen to
simplify computation of the integral. Usually a = 0 or ex = - To/2 are good
choices.

• For all practical purposes, x±(t) equals x(t). From now on, we will use x(t)
instead of x±Ct) but will keep in mind that the Fourier series expansion, at points
of discontinuity of x(t), gives the midpoint between right and left limits of the
signal.

• The Dirichlet conditions are only sufficient conditions for the existence of the
Fourier series expansion. For some signals that do not satisfy these conditions,
we can still find the Fourier series expansion.

• The quantity fo = #0 is called the fundamental frequency of the signal x (t). We
observe that the frequencies of the complex exponential signals are multiples of
this fundamental frequency. The nth multiple of the fundamental frequency (for
positive n's) is called the nth hannonic.

Section 2.1

Theorem 2.1.1. [Fourier Series] Let the signal x (t) be a periodic signal with
period To· If the following conditions (known as the Dirichlet conditions) are satisfied

1. xCt) is absolutely integrable over its period; i.e.,

2. The number of maxima and minima of x (t) in each period is finite,
3. The number of discontinuities of x(t) in each period is finite,

then x (t) can be expanded in terms of the complex exponential signals {e j2rr fa I};;-~oo as

where

for some arbitrary ex and

Frequency Domain Analysis
of Signals and Systems

2

The analysis ofsignals and linear systems in the frequency domain is based on represen­
tation of signals in terms of the frequency variable and this is donethrough employing
Fourier series and Fourier transforms. Fourier series is applied to periodic signals
whereas the Fourier transform can be applied to periodic and nonperiodic signals.

In this chapter, we review the basics of signals and linear systems in the frequency
domain. The motivation for studying these fundamental concepts stems from the basic
role they play in modeling various types ofcommunication systems. In particular signals
are used to transmit the information over a communication channel. Such signals are
usually called infonnation-bearing signals.

In the transmission of an information-bearing signal over.a communication chan­
nel, the shape of the signal is changed, or distorted, by the channel. In other words,
the output of the communication channel, which is called the received signal, is not an
exact replica of the channel input due to the channel distortion. The communication
channel is an example of a system; i.e., an entity that produces an output signal when
excited by an input signal. A large number of communication channels can be mod­
eled closely by a subclass of systems called linear systems. Linear systems are a large
subclass of systems which arise naturally in many practical applications and are rather
easy to analyze. We have devoted this entire chapter to the study of the basics of signals
and linear systems in the frequency domain.

2.1 FOURIER SERIES

24
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(2.1.6)

(2.1.7)

Figure 2.2 Periodic signal X(I).
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Fourier Series

where

is a rectangular pUlse. Detennine the Fourier series expansion for this signal.

Solution We first observe that the period of the signal is To and

Section 2.1

Example 2.1.1
Let X(I) denote the periodic signal depicted in Figure 2.2 and described analytically by
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(2.1.4)

(2.1.5)
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+00
x(t) = z= xneintuol

n=-oo

Frequency Domain Analysis of Signals and Systems

and

• Conceptually this is a very important result. It states that the periodic signal
xCt) can be described by the period To (or fundamental frequency fa) and the
sequence of complex numbers {xn}; i.e., to describe x(t) it is sufficient to specify
a countable set of (in general complex) numbers. This is a considerable reduction
in complexity for describing x(t), since to define x(t) for all t, we have to specify
its values on an uncountable set of points,

The Fourier series expansion can be expressed in terms of the angular frequency
CUo = 2n:!o, by

• In general, Xn = IXn lei Lx•. IXn I gives the magnitude of the nth harmonic and
LXn gives its phase. Figure 2.1 shows a graph of the magnitude and phase of
various harmonics in x(t). This type of graph is called the discrete spectrum of
the periodic signal x Ct).

26

where we have used the definition of the sinc function sinc(t) = sin(rrt)j(rrt). Therefore,

+00 ()r nr "n2m
x(t) = z= - sine - e) To

To Ton=-oo

A graph of the Fourier series coefficients for is shown in Figure 2.3.

(2.1.8)
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(2.1.13)

(2.1.12)

Figure 2.4 Signal x(t).

Fourier SeriesSection 2.1

From these values of x" we have the following Fourier series expansion for x(t)

2. , t 2 '3 '3 2 '5 '5x(t) = _(ePrt + e-Pc ) _ ~(el rr' + e-I rr') + -(el rr' + e- j rr') _ '"
rr 3rr 5rr
4 4 4

= - cos(rrt) - - cos(3rrt) + - cos(5rrt) - ...
rr 3rr 5rr

4 00 (-1/
= - L -k- cos(2k + 1)rrt (2.1.10)

rr k=O 2 + 1

1 l a
+To

'2rr" tX-n = - x(t)eJ To dt
To a

[
1 l a

+To
'2rr" t ] *= To a x(t)e-J To dt

2.1.1 Fourier Series for Real Signals: the Trigonometric
Fourier Series

(2.1.11)

If the signal x (t) is a real signal satisfying the conditions of the Fourier series theorem,
then there exist alternative ways to expand the signal. For real x(t), we have

This means that for a real, periodic x(t), the positive and negative coefficients are
,conjugates. Hence, IXn I has even symmetry and LXn has odd symmetry with respect
to the n = 0 axis. An example of the discrete spectrum for a real signal is shown in
Figure 2.5.

From x -x*itfollowsthatifwedenotex - a"-jb,, thenx = a,,+jb. and-n - n n - 2' -n 2
therefore, for n ~ 1,

~
1

-2· -1 I 3 5
1 I 2" I 2 I 2"

5 3 I 1 2 t-2 -2 -2

1

(2.1.9)
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Figure 2.3 The discrete spectrum of the
rectangular pulse train.
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Frequency Domain Analysis of Signals and Systems

I \

Solution Here To = 2 and it is convenient to choose (X = - ~. Then,

Example 2.1.2
Detennine the Fourier series expansion for the signal xU) shown in Figure 2.4 and
described by

28
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Since Xo is real and given as Xo = T' we conclude that

There exists still a third way to represent the Fourier series expansion of a real signal.
Noting that

In summary, for a real periodic signal x(t), we have three alternative ways to
represent the Fourier series expansion

(2.1.17)

(2.1.18)

(2.1.19)

(2.1.20)

(2.1.21)

x(t) = Xo + 2f IXnIcos (21T ;, t + L.Xn)
n=1 0

= ~ +~ [an cos (21T ;0 t) + bn sin (21T ;0 t) ]

=Xo + 2f IXnIcos (21T ;, t + L.Xn)
n=1 0

+00
x(t) = 2: xnej2rr fat

n=-oo

we have

where the corresponding coefficients are obtained from

n

n

Figure 2.5 Discrete spectrum of a
real-valued signal.
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do

(2.1.14)

This relation, which only holds for a real periodic signal x (t), is called the trigonometric
Fourier series expansion. To obtain an and bn, we have

an - jbn 1 l,,+TO () -j2rrtt dt
Xn = = - X teo ,

2 To "

and, therefore,

'b I l,,+TO (n ) j l,,+TO (' n)an - J n = _ x(t) cos 21T-t dt - - x(t) sin 21T-t dt
2 To" To To" To

I l,,+TO - '2rr'!!"t an bn
Xn = - x(t)e } TO dt = - - j-

~ " 2 2

21"+TO (n )an = - x(t) cos 21T-t dt
To " To

21"+TO (n )btr = - x(t) sin 21T-t dt
To " To

Ix I = ~Ja2 + b2
n 2 n n

L.xn = -arctan G:)
2.2 FOURIER TRANSFORMS

(2.1.22)

(2.1.23)

(2.1.24)

(2.1.25)

(2.1.26)

From this we obtain

21,,+TO (n )an = - x(t)cos 21Tr;t dt
To " 0

21,,+TO ' (n )bn=- ,x(t)sin 21T-t dt
To " To

(2.1.15)

(2.1.16)

The Fourier transform is the extension of the Fourier series to the general class of
signals (periodic and nonperiodic). Here, as in Fourier series, the signals are expressed
in terms of complex exponentials of various frequencies, but these frequencies are not
discrete. Hence, in this case, the signal has a continuous spectrum as opposed to a
discrete spectrum.

We can formally state the Fourier transform theorem as follows.
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(2.2.3)

(2.2.4)

(2.2.5)

(2.2.6)

(2.2.7)

1 . ! . != ---[e-jlr - e}1r ]
- j2nf

sinrrf

nf

= sine(f)

1
+00

Set - r) = -00 e j2Trj(t-<) dj

1
+00

~[IT(t)] = -00 IT (t)e-/2rr!t dt

x(t) =1~ [1~ x(r)e-/
2rrj

<dr] e/2rrjt df

=1~ [1:= e/
2Trj

(t-<)dj ] x(-c)dr

1
+00

x(t) = -00 S(t - r)x(r) dr

Fourier Transforms

and

On the other hand,

where Set) is the unit impulse, which is defined as a signal that is zero ev­
erywhere except at t = 0 and has unit area. Comparing Equation (2.2.3) with
Equation (2.2.4), we obtain

or, in general,

1 1+00

x(t) = _. X (w)e jwt dw
2n -00

• The Fourier transform and the inverse Fourier transform relations can be written as

Section 2.2

Set) = 1:00

e/2J<jt df

Hence, the spectrum of Set) is equal to unity over all frequencies.

Example 2.2.1

Detennine the Fourier transform of the signal IT (t).

Solution We have

Iil

(2.2.1)

(2.2.2) .
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1
+00

x±(t) = -00 X (f)e/
2rrjt

df
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X(f) = ~[x(t)]

To denote that x (t) is the inverse Fourier transform of X (f), the following nota­
tion is used

Theorem 2.2.1. [Fourier Transform] If the signal x(t) satisfies certain con­
ditions known as the Dirichlet conditions, namely,

1. x (t) is absolutely integrable on the real line; i.e.,1:00

Ix(t)! dt < 00,

2. The number of maxima and minima of x (t) in any finite interval on the real line
is finite,

3. The number of discontinuities of x(t) in any finite interval on the real line is finite,

then, the Fourier transform (or Fourier integral) of x(t), defined by

X(f) = 1:00

x (t)e-j2rrjt dt

ISometimes X (j) is referred to as voltage spectrum, as opposed to power spectrum to be defined

1
+00

X(w) = -00 x(t)e-/wt dt

x(t) = ~-l[X(f)]

Sometimes the following notation is used as a shorthand for both relations

x(t) {} X(f)

• If the variable in the Fourier transform is chosen to be w rather than f, then we
have

exists and the original signal can be obtained from its Fourier transform by

where x±(t) is defined as in Theorem 2.1.1.

We make the following observations concerning the Fourier transform.

X (f) is in general a complex function; Its magnitude! X (f)! and phase LX(f)
represent the amplitude and phase of various frequency components in x (t). The
function X (f) is sometimes referred to as the spectrumt of the signal x(t).

• To denote that X (f) is the Fourier transform of x(t), the following notation is
frequently employed



where we have used the sifting property of 0(t).t This shows that all frequencies are
present in the spectrum of o(t) with unity magnitude and zero phase. The graphs of xU)
and its Fourier transform are given in Figure 2.7. Similarly from the relation
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Figure 2.7 Impulse signal and its
spectrum.

•
f

""!
Fourier TransformsSection 2.2

and

2.2.1 Fourier Transform of Real, Even, and Odd Signals

The Fourier transform relation can be written in general as

:9'[x(t)] =1:00

x (t)e-j2rrjt dt

= 1:00

x(t) cos (2n:ft) dt - j 1:00

xCt) sin(2n:ft) dt

For real x (t), both integrals

1
+00

-00 xCt) cos(2n:ft) dt

1
+00

-00 x(t) sin(2n:ft) dt

are :ea~ and therefore ~enote th~ re~l and imaginary parts of X (j), respectively. Since
cosme IS an e,:,en functIOn an~ sme IS an odd function, we see that for real x (t) the real
part of X (f) IS an even functIon of f and the imaginary part is an odd function of f.
Therefore, m general, for real x(t), the transform X (f) is a Hennitian function

X(- f) = X*(j)

This is equivalent to the following relations:

Re[X(- f)] = Re[X(f)]

Im[X(- f)] = -Im[X(j)]

IX(- f)1 = IX(j)1

LX(- f) = -LX(j)

Typical plots of IX (j) I and LX(f) for a real x(t) are given in Figure 2.8.

(2.2.8)

Chapter 2

f Figure 2.6' IT (t) and its Fourier
transform.

1
+00

:9'[o(t)) = -00 o(t)e- j2rr!t dt

=1
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1
2

IT(t)

Sinc(f)

1

:9'[11(t)J = sinc(!)

+00 .
100 o(f)ei2rr!1 dt = 1

:9'[IJ = o(f)

I ---.

1 1/2 It------------,
.1 I

I

Therefore,

Figure 2.6 illustrates the Fourier transform relationship for this signal.

we conclude that

tThe sifting property of oCt) states that f:' x(t)o(t - to) dt = xCto)·
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Example 2.2.2
Find the Fourier transform of an impulse signal x(t) = o(t).

Solution The Fourier transform can be obtained by

~

I

or

1
1
1

"1

"I

T

1

T

1

r.
li



.~..

36 Frequency Domain Analysis of Signals and Systems Chapter 2 Section 2.2 Fourier Transforms 37

!XU)I and

x(-1) = ~[X(t)]

Modulation Property. The Fourier transform ofx(t)e j2rr!ot is X(f - 10), and
the Fourier transform of

(2.2.10)~[x(t) * y(t)] = ~[x(t)]· ~[y(t)] = X (f) . Y(f)

Time Shift Property. A shift of to in the time origin causes a phase shift of
-2n:fto in the frequency domain. In other words,

~[x(t - to)] = e-j21r!to~[x(t)]

Scaling Property. For any real a i= 0, we have

~[x(at)] = ~X (L) (2.2.9)
lal a

If the signals x(t) and yet) both possess Fourier trans-Convolution Property.
forms, then

f

f

LX(f)

Figure 2.8 Magnimde and phase of the
spectrum of a real signal.

x(t) cos(2n:fot)

is

.1

\

I
'.i
"·f.

If in addition to being real, x(t) is an even signal, then the integral

l:co x(t) sin'(2n:ft) dt

vanishes because the integrand is the product of an even and odd signal and, therefore,
odd. Hence, the Fourier transform X (f) will be real and even. Similarly if x (t) is real
and odd, the real part of its Fourier transform vanishes and X (f) will be imaginary
and odd.

2.2.2 Basic Properties of the Fourier Transform

In this section, we summarize the basic properties of the Fourier transform.

Linearity Property. The Fourier transform operation is linear. That is, if XI (t)
and X2 (t) are signals possessing Fourier transforms Xl (f) and X2 (f), respectively, the
Fourier transform of axI (t) + f3x2(t) is aX! (f) + f3X2(f), where a and f3 are two
arbitrary (real or complex) scalars.

Duality Property. If

X(f) = ~[x(t)]

then

x(f) = ~[X(-t)]

c:

~X(f - fo) + ~X(f + fo)

Parseval's Property. If the Fourier transforms of the signals x(t) and yet) are
denoted by X (f) and Y (f), respectively, then

l:X(t)y*(t)dt = I: X(f)Y*(f)df (2.2.11)

Rayleigh's Property. If X (f) is the Fourier transform of x(t), then

1: Ix(t)1
2

dt =1: IX(f)1
2
df

Autocorrelation Property. The (time) autocorrelation function of the signal
x(t) is denoted by Rx(r:) and is deiined by

RAT) = I: x(t)x*(t - r:) dt (2.2.12)

The autocorrelation property states that

~[Rx(T)] = IX(f)12 (2.2.13)

Differentiation Property. The Fourier transform of the derivative of a signal
can be obtained from the relation

~ [:t X(t)] = j2n:fX(f) (2.2.14)

(
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(2.2.17)

(2.2.18)

(2.2.19)

(2.2.20)

00

x(t) = L XTo(t - nTo)
n=-oo

n=-oo

00

x(t) = XToCt) * L oCt - nTo)

{

X(t) _Th < t < Th
XTo (t) = 2. - 2

0, otherwIse

Fourier Transforms

n=-co

we obtain

Section 2.2

By taking the Fourier transfonn of both sides and using the fact that

2.2.3 Fourier Transform for Periodic Signals

In this section, we extend the results already obtained to develop methods for find­
ing the Fourier transfonn of periodic signals. We have already included the Fourier
transfonn for some periodic signals (see Table 2.1). These include ej2rr/ol, cos(2nfot),
sin(2nfot), and ~~~~: o(t - nTo). The common property of the Fourier transform of
all these periodic signals is that the Fourier transfonn consists of impulse functions in
the frequency domain. We will show in this section that this property holds for all peri­
odic signals and in fact there exists a close relationship between the Fourier transfonn
of a periodic signal and the Fourier series representation of the signal.

Let x(t) be a periodic signal with period To, satisfying the Diricblet conditions.
Let {xn } denote the Fourier series coefficients corresponding to this signal. Then

we see that

Fromthis relation we observe that the Fourier transfonn ofaperiodic signal x (t) consists
of a sequence of impulses in frequency'at multiples of the fundamental frequency of the
periodic signal. The weights ofthe impulses are just the Fourier series coefficients ofthe
periodic signal. This relation gives a shortcut for computing Fourier series coefficients
of a signal using the properties of the Fourier transfonn. If we define the truncated
signal XTo (t) as

Noting that XTo (t - nTo) = XTo (t) * 8(t - nTo), we have

(2.2.16)

(2.2.15)

Chapter 2

1f(jrrf)

nu)

sinc(f)

~o(f) + j2~f
j2rrf

(j2rrf)"
- jrrsgn(f)

.1. ""=+00 a(f _ !!..)
Tu L...J1I=-OO Tu

Frequency Domain (X(f))

1
a(f)

e-j21l!to

a(f - fo)
to(f - fo) + io(f + fo)

·-ho(f + fo) + ho(f - fo)

~'[11 X(r)dr] = ~(j) +!X(0)8(j)
-00 J2nf 2

Frequency Domain Analysis of Signals and Systems

Time Domain (X (I))

0(1)
1

0(1-10)
ej21rjot

cos(2rrfol)

sin(2rrfol)

{

I, It I < ~

n(l) = i, t = ±i
0, otherwise

sinc(t)

{

1+1, -1<1<0
A(I) = -I + 1, 0:5~ < 1

0, otherwise
sinc2(I)

e-a'u_l(l), C{ > 0

le-~'u-l(t), C{ > 0

e-a1tl

e';"n:1 2

{

I, I> 0
sgn(l) = -1, 1 < 0

0, t = 0
U-l (I)

0' (t)
O(n)(t)

1
t

~;::~:a(t -nTo)

TABLE 2.1 TABLE OF FOURIER TRANSFORMS

Integration Property. The Fourier transfonn of the integral of a signal can be
detennined from the relation

38

Moments Property. If~[x(t)] =X(j), then J~oo tnxCt) dt, the nth moment of
x(t), can be obtained from the relation

100 ( .)n d
n Itnx(t)dt = ..L --X(f)

-00 2n dr /=0

Table 2.1 gives a collection of frequently used Fourier transfonn pairs.



and its Fourier transfo= is
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(2.3.2)

ex = 1: [X(I)!2 dt

= Rx(O)

Power and EnergySection 2.3

Now using the autocorrelation theorem of the Fourier transform (see Section 2.2.2) we
find the Fourier transform of Rx(r) to be!X (f)1 2• Using this result, or equivalently, by
employing Rayleigh's theorem, we have

ex = 1: Ix(t)1
2

dt

= 1: [X(f)1 2 dl (2.3.3)

This relation gives two methods for finding the energy in a signal. One method uses
x(t), the time domain representation of the signal, and the other method uses X (f), the

.1 ohm resistor. The energy content of a signal x (t), denoted by ex, is defined as

ex = 1: !x(t)!2 dt

and the power content of a signal is

. 11+~
Px = lim. - !x(I)!2dt

T-+oo T _I
2

A signal is energy-type if Ex < 00 and is power-type if 0 < Px < 00. A signal cannot
be both power- and energy-type because for energy-type signals Px = 0 and for power­
type signals ex = 00. A signal can be neither energy-type nor power-type. An example
of such a signal is given in Problem 2.30. However, most of the signals of interest are
either energy-type or power-type. All periodic signals (with the exception of X(I) == 0)
are power-type and have power .

1 l"'+TOPx = - Ix(t)12 dt
To '"

where To is the period and a is any arbitrary real number.

2.3.1 Energy-Type Signals

For an energy-type signal x(t), we define the autocorrelation function Rx(r) as

Rx(r) = x(r) *x*(-r)

= 1:X(I)x*(t - r) dt

= 1:x(t + r)x*(I)dl (2.3.1)

By setting r= 0 in the definition of the autocorrelation function of X(I), we obtain the
energy content of it; i.e.,

(2.2.25)

(2.2.21)

(2.2.22)

(2.2.23)

Chapter 2

r. (nr)X n = -SInC -
To To
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Therefore,

which simplifies to

40

Comparing this result with

we conclude that

Therefore, using the convolution theorem and Table 2.1, we obtain

X(f) = XTo(f) [;0 nI;co 8 (I -;JJ

The energy and power of a signal are representatives of the energy or power delivered
by the signal when the signal is interpreted as a voltage or current source feeding a

X n = ~XTo (!!...) (2.2.24)
To . To

This equation gives an alternative way to find the Fourier series coefficients. Given the
periodic signal x(I), we carry out the following steps to find X n :

1. First, we find the truncated signal XTo(I).

2. Then, we determine the Fourier transform of the truncated signal using Table 2.1
and the Fourier transform theorems and properties.

3. Finally, we evaluate the Fourier transform of the truncated signal at 1 = fa, to

obtain the nth harmonic and multiply by *-
Example 2.2.3

Detennine the Fourier series coefficients of the signal x (I) shown in Figure 2.2 on page 27.

Solution We follow the preceding steps. The truncated signal is

XTO(t)=n(~)

XTo(f) = rsinc(rf)

2.3 POWER AND ENERGY



frequency representation of the signal. 9x(f) = 3J'[Rx (r)] = IX (f)12 is called energy
spectral density of the signal x(t), and represents the amount of energy per hertz of
bandwidth present in the signal at various frequencies.

2.3.2 Power-Type Signals

For the class of power-type signals a similar development is possible. In this case we
define the time-average autocorrelation function of the power-type signal x (t) as

Now, obviously, the power content of the signal can be obtained from

43

(2.3.8)

1 ~+u
x lim -j [x(w)x*(u + w - r - v) dw] du dv

T-+oo T _l.-u
2 ..

~1:1: RxCr + v - u)h(u)h*(v) du dv

b 100

= -00 [RAr + v) * her + v)] h*(v) dv

~ RxCr) * her) * h*(-r)

Power and Energy

Ry(r) =1:1: h(u)h*(v)

Section 2.3

where in (a) we have used the definition of Rx and in (b) and (c) we have used the
definition of the convolution integral. Taking ilie Fourier transform of both sides of this
equation, we obtain

By making a change of variables w = t - u and changing the order of integration we
obtain

(2.3.4)

(2.3.5)

Chapter 2

1 ~
Px = lim -j Ix(t)fdt

T->oo T _l.
2

=Rx(O)

1 f
RAr) = lim - j x(t)x*(t - r) dt

T->oo T -f
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and the time-average autocorrelation function for ilie output signal is

Substituting for yCt), we obtain

We define SA!), the power-spectral density or ilie power spectrum ofilie signal x(t)
to be the Fourier transform of ilie time-average autocorrelation function.

(2.3.9)

(2.3.10)

(2.3.11)

Sy(f) = SAl) H (f) H* (f)

= SxCf)/H(f)/2

2il. 00 +00

1 j 2 '\' "\:"' j2rr1!!., j2rr=,Rx(r) = - L..t D xnx* e TO e TO dt
. To _!} n=-oom=-oo m

We have already seen that periodic signals are power-type signals. For periodic
signals, the time-average autocorrelation function and the power spectral density sim­
plify considerably. Let us assume iliat ilie signal x(t) is a periodic signal with period
To having the Fourier series coefficients {xn }. To find the time-average autocorrelation
function we have

1 f
Rx(r) = lim -j x(t)x*(t - r) dt

T-+oo T _l.
2

1 k~O

= lim -j x(t)x*(t - r) dt
k-+oo kTo _~

k !}
= lim kTi j xCt)x*Ct - r) dt

k->oo o-!}

1 1!}= - x (t)x*(t - r) dt
To -!}

This relation gives the time-average autocorrelation function for a periodic signal. If
we substitute the Fourier series expansion of the periodic signal in this relation, we
obtain

(2.3.6)

(2.3.7)

SAf) = 3J'[Rx (r)]

yet) = I: x(r)h(t - r) dr

1 ~
Ry(r) = lim - j y(t)y*(t - r) dt

T->oo T _~

1 f[ 00 ] [jOO ]Ry(r) = lim -j j h(u)xCt - u) du h*(v)x*(t - r - v) dv dt
T-+oo T -f -00 -00

Subsequently, we win justify this definition. Now we can express the power content of
the signal x(t) in terms of Sx(f) by noting that Rx(O) = J~oo Sx(f) df; i.e.,

Px = Rx(O)

= I: SAI)df

If a power-type signal x(t) is passed through a filter with impulse response h Ct),
the output is

tt:~ .
A-~~3~'
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Now using the fact that, 2.4 SAMPLING OF BANDLIMITED SIGNALS

To find the power content of a periodic signal, we have to integrate this relation over
the whole frequency spectrum. When we do this, we obtain ~

I I I
I I I

Th~ samplin~ theorem is on.e o~ the ~ost important results in the analysis of signals,
which has WIdespread applications In communications and signal processing. This
theorem and the numerous applications that it provides clearly show how much can
be gained by en:pl~ying the fre.quency domain methods and the insight provided by
frequency domam SIgnal analySIS. Many modern signal processing techniques and the
whole family ofdigital communication methods are based on the validity ofthis theorem
and the insight provided by it. In fact, this theorem, together with results from silffial
quan~zation techniques, provide a bridge that connects the analog world to di;ital
techniques. .

The idea leading to the sampling theorem is very simple and quite intuitive. Let us
~sume.that -:ehave two signalSXI (t) andx2 (t) as shown in Figure 2.9. XI (t) is a smooth
SIgnal; It vanes very slowly, and its main frequency content is at low frequencies. In
contrast, X2 (t) is a signal With. rapid chang~s due to the presence of the high frequency
components. We ~e to approXlmate these signals with samples taken at regular intervals
Tj and Tz, respectively. To obtain an approximation of the original signal we can use,

(2.3.13)

(2.3.12)

!2.
1 12 j2Jr"=!E.t- e TO dt = 811 " m,n
o -!f-

00

RxCr) = L IXnIZej2Jrfo'
n=-OO

From this relation we see that the time-average autocorrelation function of a periodic
signal is itself periodic with the same period as the original signal, and its Fourier series
coefficients are magnitude squares of the Fourier series coefficients of the original

signal.
To determine the power-spectral density of a periodic signal, it is enough to find

the Fourier transform of Rx(r). Sinc.e we are dealing with a periodic function, the
Fourier transform consists of impulses in the frequency domain. This is what we expect
because a periodic signal consists of a sum of sinusoidal (or exponential) signals, and
therefore the power is concentrated at discrete frequencies (the harmonics). Therefore,
the power spectral density of a periodic signal is given by

we obtain

(2.3.14) a

Figure 2.9 Sarnpling of signals.

<a)

(b)

(2.3.15)

n=-oo

This relation is known as Rayleigh's relation for periodic signals (also see Problem 2.6)..
If this periodic signal passes through an LTI system with frequency response H (f), the
output will be periodic, and the power spectral density of the output can be obtained by
employing the relation between the power spectral densities of the input and the output

of a filter. Thus,

and the power content of the output signal is
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(2.4.4)

f

}1\,"------+-
-~w f

Figure 2.10 Frequency domain representation of the sampled signal.

Now if we find the Fourier transform of both sides of the above relation and apply the
dual of the convolution theorem to the right-hand side, we obtain

X8(f) = X(f) * ~ [ntoo o(t - nTs)]

for example, linear interpolation of the sampled values. It is obvious that the sampling
interval for the signal Xl (t) can be much larger than the sampling interval necessary
to reconstruct signal X2 (t) with comparable distortion. This is a direct consequence of
the smoothness of the signal Xl (t) compared to X2(t). Therefore, the sampling interval
for the signals of smaller bandwidth can be made larger, or the sampling frequency can
be made smaller. The sampling theorem is, in fact, a precise statement of this intuitive
reasoning. It basically states that

1. If the signal x(t) is bandlimited to W; i.e., if X (f) == 0 for If I::: w, then it is
sufficient to sample at intervals Ts = 2~ .

2. If we are allowed to empioy more sophisticated interpolating signals compared
to linear interpolation, we are able to obtain the exact original signal back from
the samples as long as the previous condition is satisfied.

As seen here, the importance of the sampling theorem lies in the fact that it
provides both a method of reconstruction of the original signal from the sampled values
and also gives a precise upper bound on the sampling interval (or equivalently, a lower
bound on the sampling frequency) required for distortionless reconstruction.

Theorem 2.4.1. [Sampling] Let the signal x(t) be bandlirnited with bandwidth
W; i.e., let X(f) == 0 for III 2: W. Let x(t) be sampled at multiples of some basic
sampling interval Ts, where Ts :::: 2~' to yield the sequence {x(nTs)}t~oo' Then it is
possible to reconstruct the original signal x(t) from the sampled values by the recon­
struction formula

x(t) = ntoo x (nTs)sinc (:s -n) = n~ooxC~ )sinc[2W(t - 2~)]
Proof Let X8(t) denote the result of sampling the original signal by impulses at

nTs time instants. Then

(2.4.6)

(2.4.5)

Now using Table 2.1 to find the Fourier transform of Z:-oo o(t - nTs ), we obtain

~ ltoo oCt - nTs )] = ;s ntoo 0 (I - ;.)
By substituting Equation (2.4.5) into Equation (2.4.4), we obtain

X8(f) = X (f) * ;s nf;oo 0 (I - ;.)
1 00 ( n)=~I:X 1--
s n=-oo Ts

tThe convolution property of the impulse signal states that x (t) * S(t - to) = x (t - to).

where in the last step we have employed the convolution property ofthe impulse signal.t
This relation shows that X8(f), the Fourier transform of the impulse-sampled signal
is a replication of the Fourier transform of the original signal at a t rate. Figure 2.10
shows this situation. '

Now if Ts > 2~' then the replicated spectrum ofx (t) overlaps, and reconstruction
of the original signal is not possible. This type of distortion that results from under­
sampling is known as aliasing error or aliasing distortion. However, if Ts :::: 2~' no

(2.4.1)

(2.4.2)

(2.4.3)
n=-co

00

X8(t) = x(t) L oCt - nTs)

00

X8(t) = L x(nTs)o(t - nTs)
n=-OO

00

xCt) = L 2WI Tsx(nTs)sinc[2W' (t - nTs)]
n=-co

We can write X8 (t) as

where W' is any arbitrary number that satisfies

I 1W<W<---W- - T
s

In the special case where Ts = 2~, the reconstruction relation simplifies to



48 Frequency Domain Analysis of Signals and Systems Chapter 2 Section 2.5 Bandpass Signals 49

overlap occurs, and by employing an appropriate filter we can reconstruct the original
signal back. To obtain the original signal back, it is sufficient to filter the sampled signal
by a lowpass filter with frequency response characteristic

1. H(f) = Ts for IfI < W.

2. H(f) = afor Ifl ::: t - W

Fo~ W s If I < t - W, the filter can have any characteristics that makes its implemen­
tatIOn easy. Of course, one obvious (though not practical) choice is an ideallowpass
filter with bandwidth WI where WI satisfies W S WI < t - W; i.e.,

H(f) =TsIT (L)
2W'

(2.4.7)

Fourier series). In the Fourier transform for periodic signals, we started with a (time)
periodic signal and showed that its Fourier transform consists of a sequence of im­
pulses. Therefore, to define the signal, it was enough to give the weights of these
impulses (Fourier series coefficients). In the sampling theorem, we started with an
impulse-sampled signal, or a sequence of impulses in the time domain, and showed
that the Fourier transform is a periodic function in the frequency domain. Here again,
the values of the samples are enough to define the signal completely. This similarity
is a consequence of the duality between the time and frequency domains and the fact
that both the Fourier series expansion and reconstruction from samples are orthogonal
expansions, one in terms of the exponential signals and the other in terms of the sine
functions. This fact will be further explored in the problems.

iii

In practical systems, sampling is done at a rate higher than the Nyquist rate. This
allows for the reconstruction filter to be realizable and easier to build. In such cases
the distance between two adjacent replicated spectra in the frequency domain; i.e.,
(t - W) - W = fs - 2W, is known as the guard band. .

Note that there exists a strong similarity between our development ofthe sampling
theorem and our previous development of the Fourier transform for periodic signals (or

In this section, we examine time domain and frequency domain characteristics of a
class of signals frequently encountered in communication system analysis. This class
of signals is the class of bandpass or narrowband signals. The concept of bandpass
signals is a generalization of the concept of monochromatic signals, and our analysis of
the properties of these signals follows that used in analyzing monochromatic signals.

Definition 2.5.1. A bandpass or narrowband signal is a signal x(t) whose fre­
quency domain representation X (f) is nonzero for frequencies in a usually small neigh­
borhood of some high frequency fa; i.e., X (f) == afor If - fol ::: W, where W < fa.
A bandpass system is a system which passes signals with frequency components in
the neighborhood of some high frequency fa; i.e., H(f) = 1 for If - fa/ S Wand
highly attenuates frequency components outside of this frequency band. Alternatively,
we may say that a bandpass system is one whose impulse response is a bandpass signal.

Note that in the above definition, fa need not be the center ofthe signal bandwidth,
or be located in the signal bandwidth at all. In fact, all the spectra shown in Figure 2.11
satisfy the definition of a bandpass signal.

With the above precautions, the frequency fa is usually referred to as the central
frequency of the bandpass signal. A monochromatic signal is a bandpass signal for
which W = O. A large class of signals used for information transmission, the modulated
signals, are examples of bandpass signals or at least closely represented by bandpass·
signals. Throughout this section,we assume that the bandpass signal x (t) is real valued:

To begin our development of bandpass signals, let us start with the tools used in
the analysis of systems or circuits driven by monochromatic (or sinusoidal) signals. Let
xCt) = A cos(2Jrfat + B) denote a monochromatic signal. To analyze a circuit driven
by this signal we first introduce the phasor corresponding to this signal as X = AeJ8 ,

which contains the information about the amplitude and phase of the signal but does not
have any information concerning the frequency of it. To find the output of a linear time
invariant circuit driven by this sinusoidal signal, it is enough to multiply the phasor of
the excitation signal by the value of the frequency response of the system computed at

2.5 BANDPASS SIGNALS

(2.4.8)

(2.4.9)

co
= 2: 2W' Tsx(nTs) siRe(2WI (t - nTs»

with this choice we have

n=-oo

x (f) = Xg (f) Ts IT (L)
2W'

Taking inverse Fourier transform of both sides, we obtain

x(t) = Xg(t) * 2WI Tssine(2WIt)

(j;;co x(nTs)8(t - nTs») *2WITs sinc(2W't)

This relation shows that if we use sine functions for interpolation of the sampled
values, we can reconstruct the original signal perfectly. The sampling rate Is = .l is
the minimum sampling rate at which no aliasing occurs. This sampling rate is kno~~ as
the Nyquist sampling rate. Ifsampling is done at the Nyquist rate, then the only choice
for the reconstruction filter is an ideallowpass filter and W' = W = zh. Then,

x(t) =nf;co X (2~)sinc(2Wt - n)

= f x(nTs) sine (!..... - n) (2.4.10)
n=-co Ts
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---,-f\--J~_X_~ 1__--'1\'-·'---__>_

fo- W fo fo+W f

rotating the vector corresponding to z(t) at an angular frequency equal to 2rrfo in the
opposite direction, which is equivalent to multiplying by e- j2rr!ol, or

X = z(t)e- j2rr!a l

In the frequency domain, this is equivalent to shifting Z(f) to the left by fo.
Also note that the frequency domain representation of Z (f) is obtained by deleting the
negative frequencies from X (f) and multiplying the positive frequencies by 2.

To obtain a parallel development for narrowband signals, we start with a signal
corresponding to z(t). We define z(t) for narrowband signals in the same way that z(t)
was defined for monochromatic signals; i.e., by multiplying the positive frequencies in

. X (f) by 2 and deleting the negative frequencies. By doing this we have
-fo fo f

Z(f) = 2U-l(f)X(f) (2.5.1)

The signal z(t) de:fined by the above relation is called the analytic signal corresponding
to x(t), or pre-envelope of x(t). To obtain the time domain representation of z(t), we
first start with finding a signal whose Fourier transform is U_l (f). From Table 2.1 we
know that

(2.5.2)

(2.5.3)

(2.5.4)

(2.5.5)

1 . 1
?J'[U_l (t)J = -8 (f) + -.-

2 J2rrf

Applying the duality theorem, we obtain

<ji [~8(t) + L] = U-l (f)
2 2rrt

Now, using the convolution theorem, we have

z(t) = (O(t) + /rJ *X(t)

1
=x(t)+j-*X(t)

rrt

= x(t) + jx(t)

where

A 1
x(t) = - *X(t)

rrt
Companng this result with the corresponding monochromatic result

zU) = A cos (2rrfot + (J) + j A sin(2rrfot + (J)
~ '-----v-----'

x(l) i(l)

we see that x(t) plays the same role as A sin(2rrfot + (J). x(t) is called the Hilbert
transform of x(t). The name "transform" is somewhat misleading because there is no
change of domain involved, (as is tI1e case for Fourier, Laplace, and Z transforms, for
example). In fact, Hilbert transform is a simple filter (seen from the fact that it can be
expressed in terms of a convolution integral). To see what the Hilbert transform does

Figure 2.11 Examples of narrowband signals.

Figure 2.12· Phasor of a monochromatic
Re signal.

Im

the input frequency to obtain the phasor corresponding to the output. From the output
phasor, we can find the output signal by noting that the input and output frequencies
are the same. To obtain the phasor corresponding to the input, we first introduce the
signal z(t) as

zU) = Ae j (21r fo l +8)

= A cos(2rrfot + (J) + j A sin(2rrfot + (J)

=xU) + jXq (t)

where xq(t) = A sin(2rrfot + (J) is a 90° phase shift version of the original signal and
the subscript stands for quadrature. Note thatz(t) represents a vector rotating at an
angular frequency equal to 2rrfo as shown in Figure 2.12, and X, the phasor is obtained
from z(t) by deleting the rotation at the angular frequency of 2rrfo, or equivalently by



52 Frequency Domain Analysis of Signals and Systems Chapter 2 Section 2.5 Bandpass Signals 53

and
f

1

1

Z(n

2A

2A

10

X/(fJ

(2.5.7)

(2.5.6)

{

e-j'j

= 0
ejj

= e-j~sgn(f}

in the frequency domain we note that

This means that the Hilbert transform is equivalent to a -~ phase shift for positive
frequencies and +~ phase shift for negative frequencies and can be represented by a
filter with transfer function H(f) = - jsgn(f). This filter is called a quadrature filter,
emphasizing its role in providing a 900 phase shift. In the problems, we will investigate
some of the most important properties of the Hilbert transform.

To obtain the equivalent of a "phasor" for the bandpass signal we have to shift
the spectrum of z(t); i.e., Z(f), to the left by fa to obtain a signal denoted by x/(t),
which is the lowpass representation ofthe bandpass signal x(t). Hence,

.-

t"

(2.5.14)

(2.5.12)

xs(t)
eu) = arctan-­

xe(t)

x(t) = xe(t) sin(2:rrfot) + Xs (t) cos(2:rrfot)

Figure 2.13 Z(n and X/(fJ corresponding to X(I).

x/ (t) = V (t)ejEJ(t) (2.5.15)

which looks more like the familiar phasor relation X = Aej8
_The only difference is

that in this case the envelope (V(t» and phase (e(t» are both (slowly) time-varying
functions. Therefore, in contrast to the monochromatic phasor which has constant

we can write

and

These relations give x(t) and x(t) in terms of two lowpass quadrature component
signals Xc (t) and Xs(t) and are known as bandpass to lowpass transformation relations.

If we define V (t), the envelope of x(t) as

Vet) = vxt(t) +xJ(t) (2.5.13)

and e (t), the phase of x(t), as

(2.5.11)

(2.5.10)

Equating the real and imaginary parts, we have

x(t) = xe(t) cos(2:rrfot) - xs(t) sin(2rrfot)

x/(t) = z(t)e-j2Jr!ot (2.5.8)

Figure 2.13 shows Z(n and X/(f) corresponding to a bandpass signal x(t).
As seen x/(t) is a lowpass signal, meaning that its frequency components are

located around the zero frequency, or X/(f) == a for If! :::: W where W < fo- x/(t)
plays the role of the phasor for bandpass signals. In general, x/(t) is a complex signal
having xc(t) and xsCt) as its real and imaginary parts respectively; i.e.,

x/(t) = xe(t) + jxs(t) (2.5.9)

xe(t) and Xs(t) are lowpass signals, called in-phase and quadrature components of the
bandpass signal x(t). Substituting for x/(t) and rewriting z(t), we obtain

z(t) = x(t) + jx(t)

= Xl (t)e j21r!ot

= (xe(t) + jxs(t))e j21r!ot

= (xe(t) cos(2rrfot)- xsCt) sin(2rrfot»

+ j (xc(t) sin(2nIot) + xs(t) cos(2:rrfot»)
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(2.5.19)

(2.5.20)

Yt(f) = 2U-l(f + fo)Y(f + fo)

=2u-l(f + fo)X(f + fo)H(f+ fo)

Bandpass Signals

By writing H (f) and X (f) in terms of their lowpass equivalents, we obtain

X1(f) = 2u-l(f + fo)X(f + fo)

X_(f) = X~(- f)

To get X (f) from Z (I), we have to multiply the positive frequencies by a factor of ~ andreconstruct the negative frequencies. Since x(t) is assumed to be real valued, its Fouriertransform has Hermitian symmetry (see Section 2.2.1). Therefore, if we write

where X+ (f) denotes the positive frequency part of X (I) and X _ (f) denotes the negativefrequency part, we have

we obtain

Since

Solution To obtain X (f) from X/(f), we do exactly the inverse of what we did to get
XI (f) from X (f). First we shift X/ (f) to the right by fa to get Z (f). We have

X(f) = ~[xtU - 10) + Xi(- f - fo)J

Transmission of Bandpass Signals through Bandpass Systems. In the
same way that phasors make analysis of systems driven by monochromatic signals
easier, lowpass equivalents of bandpass signals can be employed to find the outputs of
bandpass systems driven by bandpass signals. Letx(t) be a bandpass signal with center
frequency fa, and let h(t) be theimpulse response of an LTI system. Let us assume that
h(t) is narrowband with the same center frequency as x(t). To find yet), the output of
the system when driven by x(t), we use frequency domain analysis. In the frequency
domain, we have Y(f) = X (f)H(f). The signal yet) is obviously a bandpass signal,
and therefore it has a lowpass equivalent YI(t). To obtain Y1(f) we have

The relation between the various signals discussed in this section are summarized
in Table 2.2.

X(f) = HXI(f - fa) + Xi(-f - fo)J

Example 2.5.1
Show that X (f) can be written in terms of XI (f) as

Section 2.5

(2.5.17)

Chapter 2

Figure 2.15 The envelope and phase of
Re a bandpass signal.

Figure 2.14 The phasor of a bandpass
Re signal.

xCI)

I
\
\ -..
",,

\
\

\ xli)
I
I
I
I

x(t) = Vet) cos(2n:fot + 8 (t»

Frequency Domain Analysis of Signals and Systems

1m

1m

and

x(t) = Vet) sin(2n:fot + 8(t» (2.5.18)
These relations show why V (t) and 8 (t) are called the envelope and phase of the signal
x(t). Figure 2.15 shows the relation between x(t), V (t), and 8(t).

from which we have

amplitude and phase, the envelope and phase of a bandpass signal v~ry slowly with
time, and therefore the vector representation of it moves on a curve m the complex
plane (see Figure 2.14).· . .

Substituting XI(t) = V(t)e j8CI) in z(t) in Equation (2.5.10), we obtam

z(t) = x(t) + jx(t)

= XI (t)e j2rr:!ol

= V (t)e j8C1) ej2rr:!ol

= V (t) cos{271fot + 8 (t» + j Vet) sin(271fot + 8(t» (2.5.16)

54
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PROBLEMS

This relation shows that to obtain the output yet), we can carry out the convolution
at low frequencies to obtain y/ (t), and then transform to higher frequencies using the
relation

57

(2.5.23)

(2.5.22)

1 ~ i, j ~ N

yet) =Re[y/Ct)e j2rr!o']

roo ¢i(t)¢j(t)dt = {I, ~ =I=!i-oo 0, 1 = )

2.1 Let {¢i(t)}~l be an orthogonal set of N signals; i.e.,

Problems

and let x(t) be an arbitrary signal. Let x(t) = I:~1 ai¢t(t) be a linear approx­
imation of x(t) in terms of {¢i(t)}~l' We are interested in finding ai'S such
that

or, in time domain, we have

-There exist numerous references covering analysis of LTI systems in the time and
frequency domain. Oppenheim, Willsky, and Young (1983) contains wide coverage of
time and frequency domain analysis of both discrete-time and continuous-time systems.
Papoulis (1962) and Bracewell (1965) provide in-depth analysis of the Fourier series
and transform techniques. A more advanced treatment oflinear systems based on linear
operator theory can be found in Franks (1969).

2.6 FURTHER READING

Chapter 2

TABLE 2.2 SUMMARY OF BANDPASS TO
LOWPASS TRANSLATION RELATIONS

{
X(t) = xc(t) cos (2rrfot) "':'x,(t)sin(2n"!ot)
xCt) = Xc (t) sin(2rrfot) +x,(t) cos(2rrfot)

{
xCt) = Re[x/(t)ej2"/,,]

x(t) = Im[x/(t)eJ2J<fot]

{
x(t) = Re[z(t)]
x(t) = Im[z(t)]

{
x(t) = vet) cos(2rrfot +19)
x(t) = Vet) sin(2rrfot + e)

{
xc(t) = x(t) cos(2rrfot) +x(t) sin(2rrfot )
x, (t) = xCt) cos(2rrfot) - x(t) sin(2rrfot)

{
xc(t) = Re[x/(t)]
x,(t) = Im[x/(t)]

{
xc(t) = Re[z(t)e-j2"fot]

x,(t) = Im(zCt)e- j 2J<fot]

{
xc(t) = Vet) cos e(t)
x, (t) = v (t) sin e(t)

{

x/(t) =. (x(t) + j.t(t)e- j 2J</,'

x/(t) = xc(t) + jx,(t)
x/(t) = z(t)e-j2rr/,1

x/ttl = V(t)e j6 (1)

{

z(t) = x(t) + jx(t)
· z(t) = (xc(t) + jx,(t))e j 2J</o1

z(t) = x/(t) e j 2J</"

z(t) = V(t)e j (2J</ot+S(f))

{

Vet) = J x 2 (t) + x 2 (t)

S(t) = arctan ¥cit - 2rrfot

{

. Vet) = Jxt(t)+x;(t)

x,(t)
S(t) = arctan­

xc(t)

{
Vet) = Ix{(t)1
eCt) = Lx/(t)

{
Vet) = Iz(t)1 .
S(t) = Lz(t) - 2rrfot

Frequency Domain Analysis of Signals and Systems56

and

is minimized.

1. Show that the minimizing at'S satisfy

Hl(f) = 2u-I(f+ fo)H(f + fa)

By multiplying these two relations and noting that (U-I (f))2 = U-I (f), we have

Xl (f) HI (f) = 4U-I(f + fo)X(f + fo)H(f + fa)

Finally, by substituting in the relation for YI (f), we obtain

2. Show that with the above choice of ai'S we have

at = I: x(t)¢7(t) dt

(2.5.21)Y/(f) = ~X/(f)H/(f)
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This relation is known as Parseval's relation for Fourier series. Show that
Rayleigh's relation for periodic signals [see Equation (2.3.14)] is a special case
of this relation.

2.7 Show that for all periodic physical signals that have :finite power, the coefficients
of the Fourier series expansion X n tend to zero as n --* 00.

2.8 Use Parseval's relation in Problem 2.6 to prove the following identity.

'.,

2.2 Determine the Fourier series expansion of the following signals.

1. Xl (t) = L:::-oo ACt - 2n)

2. X2(t) = L:::-oo ACt - n)

3. X3(t) = et
-

n for n ::: t < n + 1

4. X4(t) = cos t + cos 2.St

5. xs(t) = L:::_ooA(t - n)u-l(t - n)

6. X6(t) = L:::_oo(-l)n S(t - nT)

- 7. X7(t) = L:::-oo 3' Ct - nT)

8. Xg(t) = Icos 2:nIotl (Full-wave rectifier output)

9. X9(t) = cos 2n:fot + Icos 2n:fotl (Half-wave rectifier output)

2.3 Show that for real X Ct), we have

xeCt) = ao + fan cos (2n:!!-t)
2 n=I To

xo(t) = fan sin (2n:;' t)
n=l 0

where xeCt) and xoCt) denote the even and odd parts of x(t), defined as

xe(t) = x(t) + x(-t)
2

x(t) - x(-t)
xo(t) = 2

2.4 Determine the Fourier series expansion of each of the periodic signals shown in
Figure P-2.4. For each signal, also determine the trigonometric Fourier series.

2.5 Let Xn and Yn represent the Fourier Series coefficients of x(t) and yet), respec­
tively. Assuming the period of x(t) is To, express Yn in terms of Xn in each of the
following cases

1. yet) = x(t - to)

2. yet) = x(t)ej21t!ot

3. yet) = x(at), a =f 0

4. yet) = frx(t)

2.6 Let x (t) and y (t) be two periodic signals with period To, and let Xn and Yn denote
the Fourier series coefficients of these two signals. Show that

1 l"'+TO 00

To '" x(t)y*(t) dt = n~oo xnY;

r
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2

Cf)

(b)

(d)

xCt)

X(t)

-2 -1

Figure P·2.12

2

Cc)

X (I)

X(I)

(e)

Ca)

X(I)

2-------

and

-2

Problems

2.12 Determine the Fourier transfonn of the signals shown in Figure P-2.12:

2.13 Prove the scaling property of the Fourier transfonn.
2.14 Prove the convolution property of the Fourier transfonn.
2.15 Prove the time shift property of the Fourier transfonn.
2.16 Prove the Parseval's theorem and conclude Rayleigh's theorem from it.

Chapter 2Frequency Domain Analysis of Signals and Systems

What are the conditions for equality?
2. Let {x;}i'=l and {Ydi=l be complex numbers. Show that

2.9 In this problem, we present the proof of the Cauchy-Schwartz inequality.
1. Show that for nonnegative {adi=l and {,Bdi=l'

What are the conditions for equality?
4. Generalize the above results to integrals and prove the Cauchy-Schwartz

inequality

I III:x(t)y*(t) dtl ~ [1: Ix(t)1
2
dt] 2 [1: !y(t)1

2
dt] 2

What are the conditions for equality?

2.10 Determine the Fourier transfonn of each of the following signals (a is positive).
1. x(t) = IL,
2. IT(t - 3) + IT(t + 3)
3. A(2t + 3) + A(3t - 2)
4. sinc3 t

5. t sinc t

6. t cos 2nlot
7. e-alll cos(,Bt)
8. te-al cos(fJt)

2.11 Show that the Fourier transfonn oqa (t + ~) + ~a (t - ~) is cos(nf). Prove the
following transfonn pairs

~[cos(nt)] = ~a (I +D+ ~a (I -D

It XiY;! ~ ~ /xiy;I = ~ /xiIlY;/

What are the conditions for equality?
3. From (1) and (2), conclude that

60
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(a > 0)

(a, f3 > 0)

From this, conclude the following relation known as Poisson's sum formula.

00 100 ()n~oox (nI;,) = Ts n~oo X ;s

2.24 Using Poisson's sum formula in PrOblem 2.23, show that

1 '\'00 _Z_ct_ - '\'00 -ctlnl "all 0• '--'n=-oo ct2+4rr2n2 - '--'n=-oo e lor a >
2. :L~-oo sinc(-~·) = K for all K E {I, 2, }
3. :L~_oosincz(x)=K forallKE{I,2, }

2.25 The response of an LTI system to e-atu_I(t), (a > 0), is 8(t). Using fre­
quency domain analysis techniques find the response of the system to x(t) =
e-ctt cos (fJt) £I_I (t).

2.26 Find the output of an LTI system with impulse response h(t) when driven by the
input X (t) in each of the following cases.

1. h(t) =8(t) +8'(t) x(t) = e-altl ,
2. h(t) = e-cttu_I(t) x(t) = e-/3tu-I(t),

(Treat the special case ct = fJ separately.)
3. h(t) = e-at cos(fJt)U_I(t) x(t) = e-/3tu_ l (t), (a, fJ > 0)

(Treat the special case a = fJ separately.)
4. h(t) = e-ct1tJu_I(t) x(t) = e-/3tu_I (t), (a, fJ > 0)

(Treat the special case a = f3 separately.)
5. h(t) = sinc(t) x(t) = sincz(t)

2.27 Can the response of an LTI system to x(t) = sinc(t) be yet) = sinc2 (t)? Justify
your answer.

2.28 Let the response of anLTI system to n (t) be A(t).

1. Can you find the response ofthis system to X(t) = cos 2:rrt from the infor­
mation provided?

2. Show that hI (t) = net) and h2 (t) = net) + cos 2:rrt can both be impulse
responses of this system, and therefore having the response of a system ton (t) does not uniquely detennine the system.

3. Does the response of an LTI system to £I-I (t) uniquely determine the sys­
tem? How about the response to e-o: t £I-I (t) for some a > O? In general,
what conditions must the inputx (t) satisfy so that the system can be uniquely
determined by knowing its corresponding output?

2.29 Classify the following signals into energy-type, power-type, and neither energy­
type nor power-type signals. For energy-type and power-type signals, find the
energy or the power content of the signal.

1. XI (t) = e-t cos tu_1 (t)

2. xz(t) = e-t cost

co 1 00 . 21ft2: 8(t - nTs ) = T 2: eJnr;-
n:::::-oo S n=-OO

Using this result, prove that for any signal X (t) and any I;" the following identity
holds

2.19 Let x(t) be an arbitrary signal and define XI (t) = :L~-oo x(t - nTo).
1. Show that XI (t) is a periodic signal.
2. How can you write XI (t) in terms of x(t) and :L~-oo 8(t - nTo)?'
3. Find the Fourier transform ofXI (t) in terms of the Fourier transform ofx(t).

2.20 Using the properties of the Fourier transform, evaluate the following integrals
(a is positive)

1. I~oo sinc5(t) dt

2. Iooo
e-ctt sinc(t) dt

3. Iooo e-cttsincz(t) dt

4. Iooo
e-ctt cos(fJt) dt

2.21 A linear time-invariant system with impulse response h (t) = e-Cit £I_I (t) is. driven
by the input x(t) = e-/3t £1-1 (t). It is assumed that ct, fJ > O. Using frequency
domain analysis, find the output ofthe system. Is the output power-type or energy­
type? Find its power or energy.

2.22 Let x(t) be periodic with period To, and let 0:5 a < To. Define

{
X(t), IJ! :5 t < IJ! + To

xct(t) = .0, otherwIse

and let Xct (f) denote the Fourier transform of Xct (t). Prove that Xct (fa) is inde­
pendent of the choice of ct .

2.23 By computing the Fourier series coefficients for the periodic signal :L~-oo 8(t ­
nTs ), show that

~[X(t)y(t)J= X (f) *Y(f)

2.18 Prove that convolution in the frequency domain is equivalent to multiplication in
the time domain; that is,

sinc(t) * sinc(t) = sinc(t)

2.17 Use the convolution theorem to show that

.,..
I

1

T

t~r
, I

1

T



3. X3(t) = sgnU)

4. X4(t) = A cos2rcilt + B cos2nht

2.30 Using the definition of power-type and energy-type signals,

1. Show that x(t) = Aej (21rfo t +B) is a power-type signal and its power content
is A2

.

2. Show that the unit step signal U-l (t) (the unit step function) is a power-type
signal and find its power content.

3. Show that the signal

65Problems

is generated, where pet) is an arbitrary shaped pulse (not necessarily time-limited
to the interval [0, TsD. .

1. Find the Fourier transform of xp(t).

2. Find the conditions for perfect reconstruction ofx(t) from xp(t).

3. Determine the required reconstruction filter.

2.38 The lowpass signal x(t) with a bandwidth of W is sampled at the Nyquist rate
and the signal

00

Xl(t) = L (-l)nx (nTs)8(t - nTs)
n=-oo

00

xp(t) = L x(nTs)p(t - nTs)
n=-oo

is generated.

1. Find the Fourier transform of Xl (t).

2. Can x(t) be reconstructed from Xl (t) by using an LTI system? Why?

3. Canx(t) be reconstructed from Xl (t) by using a linear time-varying system?
How?

2.39 A lowpass signal x(t) with bandwidth W is sampled with a sampling interval Ts

and the sampled values are denoted by x(nTs ). A new signal Xl (t) is generated
by linear interpolation of the sampled values; i.e.,

t -nTs
Xl (t) = x(nTs) +-- (x«n + l)Ts) - x (nTs» nTs :s t < (n + l)Tso /

give an example of an LTI system with an energy-type signal as its input such
that the corresponding output signal is not energy-type?

2.35 For a lowpass signal with a bandwidth of 6000 Hz, what is the minimum sampling
frequency for perfect reconstruction of the signal? What is the minimum required
sampling frequency if a guard band of2000 Hz is required? What is the minimum
required sampling frequency and the value of K for perfect reconstruction if the
reconstruction filter has the following frequency response

{

K' If I < 7000
H(f) = K - K IfI3~6goo, 7000 < If I < 10000

0, otherwise

2.36 Let the signal x(t) = Asinc(1000t) be sampled with a sampling frequency of
2000 samples per second. Determine the most general class of reconstruction
filters for perfect reconstruction of this signal.

2.37 The 10wpass signal x(t) with a bandwidth of W is sampled with a sampling
interval of Ts and the signal

.t
::;-,

Chapter 2Frequency Domain Analysis of Signals and Systems

{

X(t) _1:. < t < 1:.
XT(t) = 2. - 2

0, otherwIse

and if Sxr(f) denotes the energy spectral density of xT(f), then S,;(f), the
power-spectral density of x(t), can be expressed as

Sx (f) = lim SXT (f)
T->oo T

2.34 Show that if the input to an LTI system is energy-type and the impulse response
of the system is also energy-type, then the output is also energy-type. Can you

x(t) = {OK,t-i t > 0
t:sO

is neither an energy- nor a power-type signal.

2.31 Determine whether these signals are energy-type or power-type. In each case,
find the energy or power-spectral density and also the energy or power content of
the signal.

1. xU) = e-Clt cos(f3t)U_l (t) a, f3 > 0

2. x (t) = sinc(t)

3. xU) = I::'-oo A(t - 2n)

4. x(t) = U_I (t)

5. x(t) = +
2.32 Find the energy spectral density and the energy content, or power-spectral density

and the power content of the output of the following LTI systems when driven by
the signals of the previous problem.

1. h(t) = e-ytu-l(t)

2. h(t) = sinc(6t)

3. h(t) = -ki
2.33 Show that if XT(t) denotes the truncated signal corresponding to the power-type

signal x(t); that is,
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LPF
[-W,W]

f

XCi)

(a)

(b)

Figure p.2.45

sin (27ffot)

sin (27ffot)

Problems

'Je represent Hilbert transform blocks and it is assumed that W « fo. Determine
the signals Xi(t) for 1 :s i :s 7, and plot Xi (f) for 1 :s i :s 7.

2.46 Show that the Hilbert transform of an even signal is odd and the Hilbert transform
of an odd signal is even.

2.47 Show that the energy content of a signal is equal to the energy content of its
Hilbert transform.

2.48 Show that the signal x(t) and its Hilbert transform are orthogonal; i.e.,i: x(t)x(t)dt = 0

2.49 Let x(t) represent a bandpass signal and m (t) denote a lowpass signal with non­
overlapping spectra. Show that the Hilbert transform of c(t) = m(t)x(t) is equal
to m(t)x(t).

2.50 Show that if X(f)lf=O = 0, thenx(t) = -x(t).

2.51 Let xU) denote a lowpass signal. Determine the Hilbert transform of x(t)
cos(2nfot), where fo is much larger than the bandwidth of x(t).

2.52 Show that the Hilbert transform of A sin(2nfot + e) is -A cos(2nfot + e).

2.53 Show that the Hilbert transform of the signal ej2rr!ot is equal to - j sgn(fo)e j2rr!ot.

Chapter 2Frequency Domain Analysis of Signals and Systems

is an orthogonal expansion relation.

3. From above, show that for all n .I: x(t) sinc(2Wt - n) dt = Kx(nTs )

1. Find x(.OOS).

2. Is this signal power-type or energy-type? Find its power or energy content.

2.41 Let W be arbitrary and x(t) be a lowpass signal with bandwidth W.

1. Show that the set of signals {<Pn (t)}~_oo where <Pn = sinc(2Wt - n) rep- .
resent an orthogonal signal set. How should these signals be weighted to
generate an orthonormal set?

2. Conclude that the reconstruction from the samples relation

1. Find the power spectrum of Xl (t).

2. Under what conditions cau [he original signal be reconstructed from the
sampled signal and what is the required reconstruction filter?

2.40 A lowpass signal x(t) with bandwidth of SO Hz is sampled at the Nyquist rate
and the resulting sampled vahle': are

{

-I -4 < n < 0
x(nTs ) = 1,' 0 < -;; :s 4

0, otherwise

00

x(t) = L x(nTs) sinc(2Wt - n)

00

x(O) = L x (to + kTs) sinc(2W(to + kTs))

k=-oo

n=-co

xc(t) = x(t) cos(2nfot) + x(t) sin(2nfot)

xs(t) = x(t) cos(2nfot) - x(t) sin(2nfot)
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and find K.

2.42 In the development of the sampling theorem, we have assumed that samples are
taken at multiples ofTs• What happens if we sample regularly with T.r as sampling
interval but the first sample is taken at some 0 < to < Ts? Using this result show
that

2.43 Prove that

2.44 Show that

Xc(f) = HX/(f) + Xi (f)]

2.45 A lowpass signal x(t) has a Fourier transform shown in Figure P-2.4S(a). This
signal is applied to the system shown in Figure P-2.45(b). The blocks marked by

~ .



A(f) ~ A(fo)

B(f) ~ B(fo) + (f - fo)B'(f)/I=/o

1. Show that Yt(f), the Fourier transform of the lowpass equivalent of the
output, can be written as

Yt(f) ~ Xt(f)A(fo)e jC8(fo)+!e'CfJ/f=fo)

~[:/(t)] = 2Jr/fl~[x(t)]
2.55 Show that the Hilbert transform of the derivative of a signal is equal to the

derivative of its Hilbert transform.
2.56 The bandpass signal x(t) = sinct cos 2Jrfot is passed through a bandpass filter

with impulse response h(t) = sinc2(t) sin 2Jrfot. Using the lowpass equivalents
of both the input and the impulse response, find the lowpass equivalent of the
output and from it find the output yet).

2.57 The real narrowband signal x(t), whose frequency components are in the neigh­
borhood of some fo (and - fo), is passed through a filter with transfer function
H(f) and the output is denoted by Yet). The magnitude of the transfer function is
denoted by A (f) and its phase is denoted by B(f). It is assumed that the transfer'
function of the filter is smooth enough such that in the bandwidth of the input
signal the magnitude of the transfer function is essentially constant and its phase
can be approximated by its first order Taylor series expansion; i.e.,

We can generalize this concept to a new transform that introduces a phase shift
of B in the frequency components of a signal, by introducing

He(f) = {:7:~' j ~ ~
and denote the result of this transforIn by xe (t); i.e., Xe(f) = X (f) He (f), where
Xe(f) denotes the Fourier transform of xeCt). Throughout this problem assume
that the signal x (t) does not contain any DC components.

1. Find he(t), the impulse response of the filter representing the transform
described above.

2. Show that xe(t) is a linear combination of x(t) and its Hilbert transform.
3. Show that if xCt) is an energy-type signal, xe(t) will also be an energy-type

signal and its energy content will be equal to the energy content of x(t).
2.59 Let met) =sinc2 (t) and let x(t) =m(t) cos2Jrfot - met) sin2Jrfot represent a

bandpass signal.

1. Find the pre-envelope, z(t), and the lowpass equivalent signal to x(t).
2. Determine and plot the Fourier transform of the signal x(t). What is the

bandwidth of x(t)?

3. Repeat for x(t) = met) cos 2Jrfot +met) sin2Jrfot.
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2.54 Show that

68!

2. Conclude that

!, I
:

yet) ~ A(fo) + VxCt - tg) cos(2Jrfot - tp )

where Vx (t) is the envelope of the input x (t) and

1 de(f)
tg = - 2Jr ~If=fo

1 e(f)
tp = - 2Jr j'I=/o

3. The quantities tg and tp are called envelope delay (or group delay) andphase
delay, respectively. Can you interpret their role and justify this nomencla­
ture?

2.58 We have seen that the Hilbert transform introduces a 90° phase shift in the com­
ponents of a signal and the transfer function of a quadrature filter can be written
as

H(f)={e~~~, f=O
eJ2 , f<O



3.2 AMPLITUDE MODULATION (AM)

The message signal m(t) is transmitted through the communication channel by
impressing it on a carrier signal of the fonn

3.2.1 Double-Sideband Suppressed Carrier AM

A double-sideband, suppressed carrier (DSB-SC) AM signal is obtained by multiplying
the message signal met) with the carrier signal e(t). Thus, we have the amplitude

71

(3.1.1)e(t) == Ac cos(2nfct + <Pc)

1 jT/2
Pm == lim - !m(t)!2dt

T-+oo T -T/2

Amplitude Modulation (AM)

where

Section 3.2

In amplitude modulation, the message signal met) is impressed on the amplitude of
the carrier signal e(t). There are several different ways of amplitude modulating the
carrier signal by met), each of which results in different spectral characteristics for
the transmitted signal. Next, we describe these methods, which are called (1) double­
sideband, suppressed carrier AM, (2) conventional double-sideband AM, (3) single­
sideband AM, and (4) vestigial-sideband AM.

where Ac is the carrier amplitude, fc is the carrier frequency, and ¢c is the carrier phase.
We say that the message signal m(t) modulates the carrier signal eCt) in either amplitude,
frequency, or phase, if after modulation, the amplitude, frequency, or phase of the signal
become functions of the message signal. In effect, modulation converts the message
signal m (t) from lowpass to bandpass, in the neighborhood of the center frequency fc.

Modulation of the carrier e(t) by the message signal m (t) is perfonned in order to
achieve one or more of the following objectives: (1) The lowpass signal is translated in
frequency to the passband of the channel so that the spectrum of the transmitted band­
pass signal will match the passband characteristics of the channel; (2) to accommodate
for simultaneous transmission of signals from several message sources, by means of
frequency-division multiplexing (see Section 3.2.6); and (3) to expand the bandwidth
of the transmitted signal in order to increase its noise immunity in transmission over a
noisy channel; as we will see in our discussion of angle-modulation noise perfonnance
in Chapter 5. We will see that objectives (1) and (2) are met by all of the modulation
methods described next. Objective (3) is met by employing angle modulation to spread
the signal met) over a larger bandwidth.

In the following sections of this chapter we consider the transmission and recep­
.tion of analog signals by carrier-amplitude modulation (AM), carrier-frequency mod­
ulation (PM) and carrier-phase modulation (PM). Comparisons will be made among
these modulation methods on the basis of their bandwidth requirements and their imple­
mentation complexity. Their performance in the presence of additive noise disturbances
and their power efficiency, will be treated in Chapter 5.

3

Analog Signal Transmission
anrj Reception

A large number of infonnation sources are analog sources. Analog sources can be
modulated and transmitted directly or can be converted to digital data and transmitted
using digital modulation techniques. The notion of analog to digital conversion will be
examined in detail in Chapter 6.

Speech, image, and video are examples of analog sources of information. Each
of these sources is characterized by its bandwidth, dynamic range, and the nature of
the signal. For instance, in case of audio, and black and white video, the signal has
just one component measuring the pressure or intensity, but in case of color video, the
signal has four components measuring red, green, and blue color components, and the
intensity.

In spite of the general trend toward digital transmission of analog signals, there
is still today a significant amount of analog signal transmission, especially in audio
and video broadcast. In this chapter, we treat the transmission of analog signals by
carrier modulation. The treatment of the performance of these systems in the presence
of noise is being deferred to Chapter 5. We consider the transmission of an analog signal
by impressing it on either the amplitude, the phase, or the frequency of a sinusoidal
carrier. Methods for demodulation of the carrier-modulated signal to recover the analog'
information signal are also described.

The analog signal to be transmitted is denoted by m (t), which is assumed to be a lowpass
signal ofbandw1.dth W, in other words, M(f) == 0, for If I > w. We also assume that
the signal is a power-type signal (see Section 2.3) whose power is denoted by Pm,

3.1 INTRODUCTION TO MODULATION
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fm <t femet) = a cos2nfmt

Amplitude Modulation (AM)Section 3.2

U(f) = A;a [eh\5(f - fc + fm) + e-irp'o(f + fe - fm)]

+ A;a [eirf>'o(f - fe - fmH e-irf>'o(f + fe + fm)]

Determine the DSB-SC AM signal and its upper and lower sidebands.

Solution The DSB-SC AM is expressed in the time domain as

This spectrum is shown in Figure 3.2(a).

In the frequency domain, the modulated signal has the form

u(t) = m(t)c(t) = Aea cos 2nfmt cos(2nfe t +<Pc)

A~ A~
= - cos[2JT(fc - fm)t + if>cl + -2 cos[2n(fc + fm)t + if>cl

2 .

We observe that the magnitude of the spectrum of the message signal m (t) has
been translated or shifted in frequency by an amount Ie. The phase of the message signal
has been translated in frequency and offset by the carrier phase <Pc. Furthermore, the
bandwidth occupancy ofthe amplitude-modulated signal is 2W, whereas the bandwidth
of the message signal m (t) is W. Therefore, the channel bandwidth required to transmit
the modulated signal u(t) is Be = 2W.

The frequency content of the modulated signal u (t) in the frequency band II I> Ie
is called the upper Sideband of U(f), and the frequency content in the. frequency band
II I < Ie is called the lowersidebandofU(f). It is important to note that either one ofthe
sidebands of U (f) contains .allthefrequencies that are in M (f)_That is, the frequency
content of U(f) for I > Ie corresponds to the frequency content of M(f) for f > 0,
and the frequency content of U(n for I < - Ie corresponds to the frequency content
of M(f) for I < O. Hence, the upper sideband of U(f) contains all the frequencies in
M (f). A similar statement applies to the lower sideband of U(f). Therefore, the lower
sideband of U(f) contains all the frequency content of the message signal M (f). Since
U (f) contains both the upper and. the lower sidebands, it is called a double-sideband
(DSB) AM signal.

The other characteristic of the modulated signal u(t) is that it does not contain
a carrier component. That is, all the transmitted power is contained in the modulating
(message) signal m(t). This is evident from observing the spectrum of U(f). We note
that, as long as met) does not have any DC component, thereis no impulse in U(f) at
I = Ie' which would be the case ifa carrier component was contained in the modulated
signal u(t). For this reason, u(t) is called a suppressed-carrier signal. Therefore, u(t)
is a DSB-SC AM signal.

Example 3.2.1
Suppose tha.t the modulating signal met) is a sinusoid of the form

f

f

Chapter 3

o

4U(f)

IUU)I

8(f)

f

Analog Signal Transmission and Reception

u(t) =m(t)c(t)

= Acm(t) cos(2;rlct + ¢c)

------------ A, A
2

Figure 3.1 Magnitude and phase spectra of the message signal m(t) and the DSB
AM modulated signal U(I).

Bandwidth Requirements. The spectrum of the modulated signal can be
obtained by taking the Fourier transform of u(t).

72

modulated signal

U(f) = ~ [met)] *~ [Accos (2;rlct + <Pc)]

= M(f) * A
c

[ejql'8(f - Ie) + e-irp'8(f + Ic)]
2

= A
e

[M(f - Ic)e irp, + M(f + Ic)e-N ,]
2

Figure 3.1 illustrates the magnitude and phase spectra for M (f) and U (f).

!
f
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(3.2.2)

Section 3.2 Amplitude Modulation (AM)

where in (a) we have used Parseval's relation [see Equation (2.2.11)] and in (b) we
have used the fact that M (f) is limited to the frequency band [-W, W] and W « fe,
hence, there is no frequency overlap between M(f) and M(f ± 2fe).

By taking the Fourier transform of both sides of Equation (3.2.1), we can obtain
the power-spectral density of the modulated signal as

Su(f) = 9F [~~ Rm(r) COS(2:rrfer)]

A2

= -: [Sm(f - fJ + Sm(f + fe)]

1:m(t)m(t - r) cos (4:rrfct - 2:rrfe r ) dt

(a) l co

= -co 9F[m(t - r)]{9F[mCt) cos(4:rrfet - 2:rrfer )]}* df

l
co "2f [M(f-2+)e-j21rfcr M(f+2+)ej2TCf,r]*= e- j 1f r M(f) Je + Jc df

-co 2 2

~O

This is because

of the signal. The time-average autocorrelation function of the signal u(t) is given by

1 l TI2
Ru(r) = lim - u(t)u(t - r) dt

T->oo T -T12

11TI2

= lim -T A~m(t)m(t - r) cos(2:rrfct) cos (2:rrfc (t - r)) dt
T->co -T12

A
2

1 lTI2

= -2c lim -T m(t)m(t - r)[cos(4:rrfct - 2:rrfcr) + cos (2:rrfcr)] dt
T->co -T12

A2 .
= -tRm(r) cos(2:rrfc r ) (3.2.1)

where we have used the fact that

I
TI2

lim m(t)m(t - r) cos(4:rrfet - 2:rrfcr) dt = 0
T->co -T12

This shows that the power-spectral density of the DSB-SC signal is the power-spectral
density of the message shifted upward and downward by fe and scaled by A~/4. To
obtain the total power in the modulated signal, we can either substitute r = 0 in the
time-average autocorrelation function as given in Equation (3.2.1), or we can integrate
the power-spectral density of the modulated signal given in Equation (3.2.2) over all

Chapter 3

t, +1,,,

Ie +1m

I

a
(a)

a
(b)

a
(e)

IU(f)!

Analog Signal Transmission and Reception

I

The lower sideband of It (t) is the signal

Figure 3.2 (a) The (magnitude) speelnJmof a DSB-SC A,'vl signal for a sinusoidal
message signal and (b) its lower and (e) upper sidebands.

-Ie - 1,,,

Aca .
£I" (t) = 2 cos[2rr(fe + Im)t + <Pc]

and its spectrum is illustrated in Figure 3.2(c).

and its spectrum is illustrated in Figure 3.2(b). Finally, the upper sideband of u(t) is the
signal

IU.tCf)/1_-.1...-1---1.--._1_(A~a):....--
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Power Content of DSB-SC Signals. In order to compute the power content
of the DSB-SC signal, without loss of generality we can assume that the phase of the
signal is set to zero. This is because the power in a signal is independent of the phase



a2 a2

S",(f) = 4 0(1 - f",H 4 0(1 + fm) (3.2.4)

Substituting in Equation (3.2.2) we obtain the power-spectral density ofthe modulated sig­
nal as

77

(3.2.6)

Figure 3.3 Addition of a pilot tone to a
DSB AM signal.

Ye(t) = !Acm(t) cos(¢c - ¢)

Transmitted modulated
}----~ signal

Amplitude Modulation (AM)

Ac cos27Tj,t

- Oscillator

Section 3.2

multiplication of ret) with cos(2rrjct + ¢) yields

ret) cos(2:rrjct + ¢) = Acm(t) cos(2:rrjct + ¢c) cos(2rrfet + ¢)

= !Acm(t) cos(¢c - ¢) + !Acm(t) cos (4rrfct + ¢ + ¢e)

The lowpass filter rejects the double frequency components and passes only the lowpass
components. Hence, its output is

Note that met) is mUltiplied by cos(¢c - ¢). Thus, the desired signal is scaled
in amplitude by a factor that depends on the phase difference between the phase ¢c
of the carrier in the received signal and the phase ¢ of the locally generated sinusoid.
When ¢c =f ¢, the amplitude of the desired signal is reduced by the factor cos(¢c - ¢ ).
If ¢c - ¢ = 45°, the amplitude of the desired signal is reduced by .,fi and the signal
power is reduced by a factor of two. If ¢c - ¢ = 90°, the desired signal component
vanishes.

The above discussion demonstrates the need for a phase-coherent or synchronous
demodulator for recovering the message signal met) from the received signal. That is,
the phase ¢ of the locally generated sinusoid should ideally be equal to the phase ¢e of
the received carrier signal.

A sinusoid that is phase-locked to the phase ofthe received carrier can be generated
at the receiver in one of two ways. One method is to add a carrier component into the
transmitted signal as illustrated in Figure 3.3.

We call such a carrier component "a pilot tone." Its amplitude Ap and, hence, its
power A~/2 is selected to be significantly smaller than that of the modulated signal
u(t). Thus the transmitted signal is double-sideband, but it is no longer a suppressed
carrier signal. At the receiver, a narrowband filter tuned to frequency fe is used to filter
out the pilot signal component and its output is used to multiply the received signal as
shown in Figure 3.4.

The reader may show that the presence ofthe pilot signal results in adc component
in the demodulated signal, which must be subtracted out in order to recover met).

The addition of a pilot tone to the transmitted signal has the disadvantage of
requiring that a certain portion of the transmitted signal power must be allocated to the
transmission of the pilot. As an alternative, we may generate a phase-locked sinusoidal

(3.2.3)

Chapter 3Analog Signal Transmission and Reception

frequencies. Using the first approach from Equation (3.2.1), we have

A2

Pu = iRm(r) cos (2Jrfc r) 1,=0

A2
= 2

c
Rm(O)

A2

= -'£Pm
2

where Pm = Rm(0) is the power in the message signal.

Example 3.2.2
In Example 3.2.1, determine the power-spectral density of the modulated signal, the power
in the modulated signal, and the power in each of the sidebands.

Solution The message signal is m(t) = a cos 2:rrfmt, its power-spectral density is. given
by

A2a2

P"s =Pis =--t-:
It can also be observed from the power-spectral density ofthe DSB-SC signal [see

Equation (3.2.2)] that the bandwidth ofthe modulated signal is 2W, twice the bandwidth
of the message signal, and that there exists no impulse at the carrier frequency ±fc in
the power-spectral density. Therefore, the modulated signal is suppressed carrier (SC)..

Demodulation of DSB-SC AM Signals. In the absence ofnoise, and with the
assumption of an ideal channel, the received signal is equal to the modulated signal; Le.,

ret) = u(t)

= Acm(t) cos(2:rrfct + ¢c) (3.2.5)

Suppose we demodulate the received signal by firstmultiplying ret) by a locally
generated sinusoid cos(2rrfct + ¢), where ¢ is the phase of the sinusoid, and then
passing the product signal through an ideallowpass filter having a bandwidth W. The

The total power in the modulated signal is ilie integral of S" (f) and is given by

1= A2a2
Pu = Su(f) df = _c__= 4

Because of symmetry of sidebands the powers the upper and lower sidebands, Pus and
Pis, are equal and given by .
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example, by defining

u(t) = Ac [1 + amn(t)] cos 2rrfct (3.2.8)

Let us consider the spectral characteristics of the transmitted signal u(t).

Bandwidth of Conventional AM Signal. If met) is a deterministic signal
with Fourier transform (spectrum) M(f), the spectrum of the amplitude-modulated
signal u (t) is

U(f) = 'iF [amnCt)] * 'iF [Aecos (2rrfet + <Pc)] + 'iF [Aecos(2rrlet + <Pc)]

=aMn(f) * Ac [eH>co(f - Ie) + e-i4>'o(f + Ie)]
2

+ ~c [eN>'o(f - Ie) +e-jt/>'o(f + fc)]

U(f) = Ac [ejt/>caMn(f - Ie> + eH>co(f - Ie)
2

+e-j¢'aMn(f + fc) + e-j¢'o(f + Ie)]

Obviously, the spectrum of a conventional AM signal occupies a bandwidth twice the
bandwidth of the message signal.

Example 3:2.3
Suppose that the modulating signal mil (t) is a sinusoid of the form

mll(t) = cos 2:rcfmt fm« fe

Detennine the DSB AM signal, its upper and lower sidebands, and its spectrum, assuming
a modulation index of a.

Solution From Equation (3.2.7), the DSB AM signal is expressed as

u(t) = Ae[l + a cos 2:rcfm t] cos(2:rcfct + <Pc)
Aca .

= Accos(2nfet +<Pc) + 2 cos[2:rc(fc - fm)t + <Pc]

Aca+ 2 cos[2rr(fe + fm)t + <Pc]

The lower sideband component is

Aea
ue(t) = - cos[2:rc(fc - fm)t + <Pc]

2
while the upper sideband component is

Aea
ull(t) = 2 cos[2:rc(fc + fm)t + .pc]

met)
mn(t) = ---­

maxlm(t)1

The scale factor a is called the modulation index. Then the modulated signal can be
expressed as

(3.2.7)

Figure 3.4 Use of a pilot tone to
demodulate a DSB AM signal.

Figure 3.5 A conventionai AM signai in
the time domain.

\
\

Envelope
- '/ A(t)

u(t) = Ac[l + m(t)] cos(2rrfe t +¢J

u(t)

where the message waveform is constrained to satisfy the condition that Im(t)l:5 L
We observe that Acm(t) cos (2rrfet + ¢c) is a double-sideband AM signal and
Aecos(2rrfet +¢e) is the carrier component. Figure 3.5 illustrates an AM signal in the
time domain.

As long as jm(t)1 :5 1, the amplitude Ae[l +m(t)] is always positive. This is the
desired condition for conventional DSB AM that makes it easy to demodulate, as
described next. On the other hand, if met) < -1 for some t, the AM signal is said to
be overmodulated and its demodulation is rendered more complex. In practice, m(t) is
scaled so that its magnitude is always less than unity.

It is sometimes convenient to express met) as

met) = amn(t)

where mn (t) is normalized such that its minimum value is -1. This can be done, for

3.2.2 Conventional Amplitude Modulation

A conventional AM signal consists of a large carrier compo'nent in addition to the
double-sideband AM modulated signal. The transmitted signal is expressed mathemat-
icallyas .

carrier from the received signal r(t) without the need of a pilot signal. This can be
accomplished by use of a phase-locked loop (PU) as described in Section 5.2.

ret)

Received
signal



and, hence,
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(3.2.9)

-- Envelope
z(t)

d(t) = gl + g2m(t)

Amplitude Moduiation (AM)

Ideally, the output of the envelope detector is of the form

Section 3.2

Figure 3.7 Envelope detection of conventional AM signal.

where gl represents ade component and g2 is a gain factor due to the signal demodulator.
The de component can be eliminated by passing d(t) through a transformer, whose
Dutput is g2m(t).

The simplicity of the demodulator has made conventional DSB AM a practical
choice for AM radio broadcasting. Since there are literally billions of radio receivers,
an inexpensive implementation of the demodulator is extremely important. The power
inefficiency of conventional AM is justified by the fact that there are few broadcast
transmitters relative to the number of receivers. Consequently, it is cost effective to
construct powerful transmitters and sacrifice power efficiency in order to simplify the
signal demodulation at the receivers.

3.2.3 Single-Sideband AM

In Section 3.2.1 we showed that a DSB-SC AM signal required a channel bandwidth
of Be = 2 W Hz for transmission, where W is the bandwidth of the baseband signal.
However, the two sidebands are redundant. Next, we demonstrate that the transmission
of either sideband is sufficient to reconstruct the message signal met) at the receiver.
Thus, we reduce the bandwidth of the transmitted to that of the baseband signal.

the fi,rst component (1m" (t) I < 1, and for signals with large dynamic range, Pm, « 1).
This shows that the conventional AM systems are far less power efficient compared with
DSB-SC systems. The advantage of conventional AM is that it is easily demodulated.

Demodulation of Conventional DSIB AM Signals. The major advantage of
conventional AM signal transmission is the ease with which the signal can be demodu-

. lated. There is no need for a synchronous demodulator. Since the message signal met)
satisfies the condition Im(t)1 < 1, the envelope (amplitude) 1+met) > O.lfwerectify
the received signal, we eliminate the negative values without affecting the message sig­
nal as shown in Figure 3.7. The rectified signal is equal to u(t) when u(t) > 0 and zero
when u(t) < O. The message signal is recovered by passing the rectified signal through
a lowpass filter whose bandwidth matches that of the message signal. The combination
of the rectifier and the lowpass filter is c<illed an envelope detector.
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Figure 3.6 Spectrum of a DSB AM signal in Example 3.2.3.

The spectrum of the DSB AM signal u(t) is

U(f) = ~e [eh\'8(f - feH e-i</>'8(j + Ie)]

+ Aea [eN>'8(j - fe + fm) +e- j 4>'8(j + fe - fm)]
4 .

+ A;a [eN>'8(j - fe - fm) + e-j4>'8(j + fe +fm)]

The spectrum IU (j) I is shown in Figure 3.6. It is interesting to note that the power
of the carrier component, which is A~/2, exceeds the total power (A~a2/2) of the two
sidebands.

A2 A2

P = --.£ + --.£a 2Pu 22m,

The first component in the the preceding relation is due to the existence ofthe carrier and
this component does not carry any information. The second component is the informa­
tion carrying component. Note that the second component is usually much smaller than

Power for Conventional AM Signal. Conventional AM signal is similar to
DSB whenm(t) is substituted with 1+ amn(t). As we have already seen in the DSB-SC
case, the power in the modulated signal is [see Equation (3.2.3)]

A2

Pu = 2
e

Pm

where Pm denotes the power in the message signal. For the conventional AM

1 jT/2
Pm = lim - (l + amll (t))2dt

T-l-CO T -T/2

= lim ~ jT/2 (1 + a2m~(t)) dt
T-l-CO T -T/2 .

where we have assumed that the average ofmn (t) is zero. This is a reasonable assump~

tion for many signals including audio signals. Therefore, for conventional AM .

Pm = 1+a2 pm,
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(3.2.12)

(3.2.14)

(3.2.16)

IfI > fc
otherwise

H(f)={l,
0,

'!:F [~8(t) + -L] = U_I (f)
2 2m

m::[l j]~ -o(t) - - = U_I(- f)
2 2nt

Amplitude Modulation (AM)Section 3.2

Obviously H (f) can be written as

and substituting Equation (3.2.14) in Equation (3.2.13), we obtain

uu(t) = Acm(t) * [~o(t) +-L] e j2"j,t + Acm(t) * [~8(t) - -L] e-j2"j,t
2 2nt 2 277:t

Ac '2 J. t Ac '2 /.= "T[In(t) + jm(t)]e) ", + "T[In(t) - jm(t)]e-) " ,t (3.2.15)

where we have used the identities

Taking inverse Fourier transform of both sides of Equation (3.2.12) and using the
modulation property of the Fourier transform, we obtain

Uu(t) = Acm (t) * '!:F -I [Ll (f)] ej2rrM + Acm (t) * '!:F -1 [U-l (- f)] e-j2rrj,t (3.2.13)

By noting that

amplitude-modulated signal. Suppose we eliminate the lower sideband of the DSB AM
signal, UnSB (t) = 2Acm(t) cos 2nfct, by passing it through a highpass filter whose
transfer function is given by

where U-l (-) represents the unit step function. Therefore the spectrum of the USSB
AM signal is given by

H(f) = L1(f - fc) + U-1(- f - Ie)

or equivalently

m(t) *8(t) = met)

met) *...!.... = met)
nt

Using Euler's relations in Equation (3.2.15), we obtain

Uu (t) = Acm(t) cos 2nfct - Acm(t) sin 2nfct

Chapter 3

Figure 3.8 Generation of a
single-sideband AM signaL

Figure 3.9 Generation of a
single-sideband AM signal by filtering one
of the sidebands of a DSB-SC AM signal..
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+
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met)

u(t) = Acm(t) cos 2nfct ::r- Acm(t) sin 2nfct (3.2.10)

where met) is the Hilbelt transform of met) that was introduced in Section 2.5, and the
plus-or-minus sign determines· which sideband we obtain. We recall that the Hilbert
transform may be viewed as a linear filter with impulse response h(t) = 11m and
frequency response

First, we demonstrate that a single-sideband (SSB) AM signal is represented
mathematically as

H(f) = {i/' ~: ~ (3.2.11):
0, f=O

Therefore, the SSB AM signal u (t) may be generated by using the system configuration
shown in Figure 3.8. .

The method shown in Figure 3.8 for generating a SSB AM signal is one that
employs a Hilbert transform filter. Another method, illustrated in Figure 3.9, generates ,
a DSB-SC AM signal and then employs a filter which selects either the upper sideband
or the lower sideband of the double-sideband AM signal. .

Spectral Characteristics of the Single Sideband Signal. Let met) be a .
signal with Fourier transform (spectrum) M (f). An upper single-sideband amplitude- •
modulated signal (USSB AM) is obtained by eliminating the lower sideband of a DSB

1
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I



84 Analog Signal Transmission and Reception Chapter 3 Section 3.2 Amplitude Modulation (AM) 85

which is the time-domain representation of an USSB AM signal. The expression
the LSSB AM signal can be derived by noting that

uu(t) + Ut(t) = UDSB(t)

By passing the product signal in Equation (3.2.21) through an ideal lowpass filter, the
double-frequency components are eliminated, leaving us with

(3.2.22)

'.

/

(3.2.23)

Figure 3.10 Generation of VSB AM
signal.

VSB AM signal
«(I)Sideband

filter
H(f)

3.2.4 Vestigial-Sideband AM

The stringent frequency-response requirements on the sideband filter in a SSB AM
system can be relaxed by allowing a part, called a vestige, of the unwanted sideband
to appear at the output of the modulator. Thus, we simplify the design of the sideband
filter at the cost of a modest increase in the channel bandwidth required to transmit the
signal. The resulting signal is called vestigial-sideband (VSB) AM.

To generate a VSB AM signal we begin by generating a DSB-SC AM signal
and passing it through a sideband filter with frequency response HU) as shown in
Figure 3.10. In the time domain the VSB signal may be expressed as

Note that the effect of the phase offset is not only to reduce the amplitude of the
desired signal m (t) by cos ¢, but it also results in an undesirable sideband signal due to
the presence ofmet) in YeCt). The latter component was not present in aDSB-SC signal
and, hence, it was not a factor. However, it is an important element that contributes to
the distortion of the demodulated SSB signal.

The transmission ofa pilot tone at the carrier frequency is a very effective method
for providing a phase-coherent reference signal for performing synchronous demodu­
lation at the receiver. Thus, the undesirable sideband signal component is eliminated.
However, this means that a portion of the transmitted power must be allocated to the
transmission of the carrier.

The spectral efficiency of SSB AM makes this modulation method very attractive
for use in voice communications over telephone channels (wire lines and cables). In
this application, a pilot tone is transmitted for synchronous demodulation and shared
among several channels.

The filter method shown in Figure 3:9 for selecting one ofthe two signal sidebands
for transmission is particularly difficult to implement when the message signal m (t) has
a large power concentrated in the vicinity of f = O. In such a case, the sideband filter
must have an extremely sharp cutoff in the vicinity of the carrier in order to reject the
second sideband. Such filter characteristics are very difficult to implement in practice.

(3.2.19)

u(t) = Ac cos 2rr f,,,t cos2JrIct =F Ac sin 2rrim t sin2JrJct (3.2.20)

If we take the upper (-) sign we obtain the upper sideband signal

uu(t) = Accos27f(fc + f,,,)t

On the other hand, ifwe take the lower (+) sign in Equation (3.2.20) we obtain the
sideband signal

Hence,

Acm(t) cos.2nfct - Acm(t) sin2n"fct +Ut(t) = 2Acm(t) cos 2nfct

USSB(t) = Acm(t) cos2nfct =f Acm(t) sin2nfct (3.2.18)

where the minus sign corresponds to the USSB AM signal and the plus signcorresponds

to the LSSB AM signal.

Example 3.2.4
Suppose that the modulating signal is a sinusoid of the form

met) = cos2JrIm t , Im« Ic

Determine the two possible SSB AM signals

Solution The Hilbert transform of m(t) is

met) = sin 2JrImt

ue(t) = Ac cos 2rr(fc - Im)t

The spectra of Uu (t) and ue(t) were previously given in Figure 3.2.

Demodulation of SSB AM Signals. To recover the message signal met)
the received SSB AM signal, we require a phase coherent or synchr~nous .
tor, as was the case for DSB-SC AM signals. Thus, for the USSB sIgnal as gIVen

Equation (3.2.18), we have

ret) cos 27ffct = u(t) cos(2nfct + ¢)

= 1A cm (t) cos ¢ +1Acm(t) sin¢ +double frequency termS (3.2.21)

Ut(t) = Acm(t) cos 2nfct + Acm(t) sin 2nfct (3.2.17)

Thus, the time domain representation of a SSB AM signal can in general be expressed

as

and, therefore,

or
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Figure 3.12 VSB filter characteristics.
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Figure 3.13 .Frequency response of VSB filter for selecting the lower sideband of
the message SIgnals.

met) = 10+4cos2m + 8cos4Jrl + 10 cos 20Jrl

Specify the frequency-response characteristic ofaVSB filter that passes the upper sideband
and the first frequency component of the lower sideband.

Section 3.2 Amplitude Modulation (AM)

some s~al1 fraction of W; i.e., la « w. Thus, we obtain an undistorted version of the
transIll1tted signal.. Figure 3.13 illustrates the frequency response of a VSB filter that
selects the lo:,er SIdeband and a vestige of the upper sideband.II: pr~ctlce: the VSB filter is designed to have some specified phase characteristic
11

1

.0 aVOlhd dlst0rt10~ of the message signal, the VSB filter should be designed to hav~
mear p ase over ItS passband Ie - la :::: III :::: Ie + W.

Example 3.2.5
Suppose that the message signal is given as

(3.2.28)

(3.2.27)

(3.2.26)

(3.2.25)

(3.2.24)
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Figure 3.11 Demodulation of VSB
signal.
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V(f) = HU(f - Ie) + U(f + fc)]

Vi(f) := ~eM(f)[H(f -:- Ie) + H(f + Ie)]

U(f) = ~e [M(f - Ie) + M(f + fc)]H(f)

H(f - Ie) + H(f + Ie) := constant, III:::: W

Ifwe substitutefor U(f) from Equation (3.2.24) into Equation (3.2.25), we obtain

V (f) = ~e [M(f - 21e) + M(f)]H(f - Ie)

A
+ 4e [M(f) + M(f +2Ie)]H(f + Ie)

u(t)

This condition is satisfied by a filter that has the frequency-response characteristic
shown in Figure 3.12. We note that H(f) selectsthe upper sideband and a vestige of
the lower sideband. Ithas odd symmetry about the carrier frequency Ie' in the frequency
range Ie - la < I < Ic+ la' where la is a conveniently selected frequency that is

We require that the message signal at the output ofthe lowpass filter be undistorted.
Hence, the VSB filter characteristic must satisfy the condition

vet) = Lt(t) cos2rrlet

The lowpass filter rejects the double-frequency terms and passes only the components
in the frequency range II I :::: W. Hence, the signal spectrum at the output of the ideal
lowpass filter is

or, equivalently,

To determine the frequency-response characteristics of the filter, let us consider
the demodulation of the VSB signal u(t). We multiply u(t) by the carrier component
cos 2rrlet and pass the result through an ideallowpass filter, as shown in Figure 3.1 I.
Thus, the product signal is

where h(t) is the impulse response of the VSB filter. In the frequency domain, the
corresponding expression is .
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Figure 3.16 Block diagram ofpower-law AM modulator.

Amplitude Modulation (AM)

met)
---+{ +)---.j

Section 3.2

The output of the bandpass filter with bandwidth 2W centered at I = Ie yields

. [ 2az ]u(t) = Aeaj 1+ -;;;m(t) cos2:rriet (3.2.32)

where 2azlm(t)/jaj < 1 by design. Thus, the signal generated by this method is a
conventional DSB AM signal.

Switching Modulator. Another method for generating an AM modulated sig­
nal is by means of a switching modulator. Such a modulator can be implemented by
the system illustrated in Figure 3.17(a). The sum of the message signal and the carrier;
Le., Vi(t) given by Equation (3.2.30), are applied to a diode that has the input-output
voltage characteristic shown in Figure 3.17(b), where Ac » met). The output across
the load resistor is simply

where Vi (t)is the input signal, va(t) is the output signal, and the parameters (aj, az)
are constants. Then, if the input to the nonlinear device is

vi(t)=m(t)+Aecos2:rrlct, (3.2.30)

its output is

vo(t) = aI[m(t) + Ae cos 2:rrlet] +az[m(t) + A e cos cos 2:rrlct]z

z . [2az]= ajm(t) + a2m2(t) + azA; cos 2:rrlet + Aeaj 1 + ~m(t) cos 2:rrlet

(3.2.31)

() _ {viet), e(t) > 0 (3233)
Vo t - 0, e(t) < 0 ..

This switching operation may be viewed mathematically as a multiplication of
the input Vi(t) with the switching function s(t); i.e.,

vo(t) = [met) + Ae cos 2:rrlct]s(t) (3.2.34)

where set) is shown in Figure 3.17(c).
Since set) is a periodic function, it is represented in the Fourier series as

1 2 00 (_l)n-j .
set) = - + - L -- cos[2:rrlet(2n - 1)] (3.2.35)

2 :rr n=I 2n-1

f

Figure 3.15 Voltage-current
v characteristic of P-N diode.o

Solution The spectrum of the DSB-SC AM signal u(t) = met) cos 2rriet is

U(f) = 5[S(f - Ie) + S(f + Ie») + 2[S(f - Ie - 1) + o(f + Ie + 1)]

+4[a(f - ie - 2) + a(f + Ie + 2)] + 5[a(f - Ie - 10) + a(f + Ie + 10)]

The VSB filter can be designed to have unity gain in the range 2::s II - lei ::s 10, a gain
ofl/2ati = Ic,againof1/2+a ati = le+ 1, andagainoflj2-a ati = Ie -1, .
where ex is some conveniently selected parameter that satisfies the condition 0 < ex <
Figure 3.14 illustrates the frequency-response characteristic of the VSB filter.

Analog Signal Transmission and Reception

Figure 3.14 Frequency response characteristics ofVSB filter in Example 3.2.5.

H(f)

3.2.5 Implementation of AM Modulators and Demodulators

There are several different methods for generating AM modulated signals. We shall
describe the methods most commonly used in practice. Since the process of modula­
tion involves the generation of new frequ.ency components, modulators are generally
characterized as nonlinear and, or, time-variant systems.

Power-Law Modulation. Let us consider the use of a nonlinear device such
as a P-N diode which has a voltage-current characteristic as shown in Figure ~.15.

Suppose that the voltage input to su~h a devic.e is. the sum of the me~sage. sIgn.al.
met) and the carrier A e cos 2:rrlet, as illustrated III FI~re 3.16. Th~ ~onlIlleanty will
generate a product of the message met) with the c~er, plus additIOnal terms.. The
desired modulated signal can be filtered out by passmg the output of the nonlinear
device through a bandpass filter.

To elaborate on this method, suppose that the nonlinear device has an input-output
(square-law) characteristic of the form

va(t) = ajVi(t) +azv;Ct) (3.2.29)
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Figure 3.18 Block diagram of a
balanced modulator.

Amplitude Modulation (AM)

Ae [1 - m(t)l cos 27rfct

+

Ae [1 + m(t)l cos 27rfet

Section 3.2

Ring Modulator. Another type of modulator for generating a DSB-SC AM
signal is the ring modulator illustrated in Figure 3.19. The switching of the diodes is
controlled by a square wave of frequency fe, denoted as c(t), which is applied to the
center taps of the two transfonners. When cCt) > 0, the top and bottom diodes conduct,
while the two diodes in the crossarms are off. In this case, the message signal met) is
multiplied by +1. When c(t) < 0, the diodes in the crossarms of the ring conduct, while
the other two are switched off. In this case, the message signal m (t) is multiplied by -1.
Consequently, the operation of the ring modulator may be described mathematically as

Square-wave carrier
atf= f e

Figure 3.19 Ring modulator for generating DSB-SC AM signaL

Balanced Modulator. A relatively sinlple method to generate a DSB-SC AM
signal is to use two conventional AM modulators arranged in the configuration il­
lustrated in Figure 3.18. For example, we may use two square-law AM modulators
as described above. Care must be taken to select modulators with approxinlate1y
identical characteristics so that the carrier component cancels out at the sunrrning
junction.

(3.2.36)

Chapter 3
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u(t) = Ae [1 + --±-m(t)] cos2rrfe t
2 rrAe

Figure 3.1'7 Switching modulator and periodic switching signal.

vo(t) = [met) + Aecos 2rrfet ]sCt)

= Ae [1 + ~m(t)] cos2rrfet + other tenns
2 rrAe

The desrred AM modulated signal is obtained by p~ssing vo(t) through a bandpass ~lte~ .
with center frequency f = fe and bandwidth 2W. At its output, we have the desrre .

conventional DSB AM signal .

Hence,
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as shown in Figure 3.19. '
Since e(t) is a periodic function, it is represented by the Fourier series
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Figure 3.21 Demodulator for DSB-SC AM signal.
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Figure' 3.22 Demodulation of SSB AM signal with a carrier component.

Demodulation of SSB Signals. The demodulation of SSB AM signals also
requires the use of a phase coherent reference. In the case of signals such as speech,
that have relatively little or no power content at dc, it is straightforward to generate the
SSB signal, as shown in Figure 3.9, and then to insert a small carrier component that is
transmitted along with the message. In such a case we may use the configuration shownin Figure 3.22 to demodulate the SSB signal. We observe that a balanced modulator

The time constantRCmustbe selected so as to follow the variations in the envelope
of the carrier-modulated signal. In effect,

1 I-« RC«­
Ie W

In such a case, the capacitor discharges slowly through the resistor and, thus, the output
of the envelope detector closely follows the message signal.

Demodulation of DSB-SC AM Signals. As previously indicated, the de­
modulation of a DSB-SC AM signal requires a synchronous demodulator. That is, the
demodulator must use a coherent phase reference, which is usually generated by means
of a phase-locked loop (PLL) (see Section 5.2), to demodulate the received signal.

the general configuration is shown in Figure 3.21. A PLL is used to generate
a phase-coherent carrier signal that is mixed with the received signal in a balanced
modulator. The output of the balanced modulator is passed through a lowpass filter of
bandwidth W that passes the desired signal and rejects all signal and noise components
above W Hz. The characteristics and operation of the PLL are described in Section 5.2.

Chapter 3

Figure 3.20 An envelope detector.
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cr(t)

4 co (_l)n-l
e(t) = - L -- cOs[2rrIe(2n - l)t] (3.2.39)

rr n=l 2n - 1

Hence, the desired DSB-SC AM signal u(t) is obtained by passing vo(t) through a
bandpass filter with center frequency Ie and bandwidth 2W. .From the discussion above, we observe that the balanced modulator and the nng
modulator systems, in effect, multiply the message signal met) with the .carrier to
produce a DSB-SC AM signal. The multiplication of m(t) with Ae cos wet IS called a
mixing operation. Hence, a mixer is basically a balanced modulator. . .

The method shown in Figure 3.8 for generating a SSB signal requITes two illlxers;
i.e., two balanced modulators, in addition to the Hilbert transfo~er. On the. other ~and,
the filter method illustrated in Figure 3.9 for generating a SSB sIgnal requITes a smgle
balanced modulator and a sideband filter.

Let us now consider the demodulation ofAM signals. We begin with a description
of the envelope detector.

Envelope Detector. As previousiy indicated, conventional DSB AM signals
are easily demodulated by means of an envelope detector. A. circuit diagram f.or ~n
envelope detector is shown in Figure 3.20. It consists of a diode and an RC CITCUlt,
which is basically a simple lowpass filter. . ., .During the positive half-cycle of the input signal, the dIOde IS conductmg and
the capacitor charges up to the peak value of the input signal. ~en the input. falls
below the voltage on the capacitor, the diode becomes reverse-bIased. and ~e mput
becomes disconnected from the output. During this period, the capacltor dlscharges
slowly through the load resistor R. On the next cycle of the carrier, ~e diode cond~ctsagain when the input signal exceeds the voltage across the capaCItor. Th~ capaCItor
charges up again to the peak value of the input signal and the process IS repeated
again.

vo(t) = m(t)e(t)

a multiplier of met) by the square-wave carrier e(t); Le.,
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is used for the purpose of frequency conversion of the bandpass signal to lowpass or
baseband.

Demodulation of VSB Signals. In VSB a carrier component is generally
transmitted along with the message sidebands. The existence of the carrier component
makes it possible to extract a phase-coherent reference for demodulation in a balanced
modulator, as shown in Figure 3.22.

In some applications such as TV broadcast, a large carrier component is transmit­
ted along with the message in the VSB signal. In such a case, it is possible to recover
the message by passing the received VSB signal through an envelope detector.

95Amplitude Modulation (AM)

Figure 3.23 Frequency-division multiplexing of multiple signals.
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transmission. In the first level of multiplexing, 12 signals are stacked in frequency,
with a frequency separation of 4 kHz between adjacent carriers. Thus, a composite
48-kHz channel, called a group channel, is used to transmit the 12 voice-band signals
simultaneously. In the next level ofFDM, a number of group channels (typically five or
six) are stacked together in frequency to form a supergroup channel, and the composite
signal is transmitted over the channel. Higher-order multiplexing is obtained by com­
bining several supergroup channels. Thus, an FDM hierarchy is employed in telephone
communication systems.

Quadrature-Carrier Multiplexing. A totally different type of multiplexing
allows us to transmit two message signals on the same carrier frequency, using two
quadrature carriers Ae cos 2Jrfet and Ae sin 2Jrfet. To elaborate, suppose that m I (t)
and m2(t) are two separate message signals to be transmitted over the channel. The
signal ml(t) amplitude modulates the carrier Aecos2Jrfet and the signal m2(t) am­
plitude modulates the quadrature carrier A c sin 2Jrfet. The two signals are added and
transmitted over the channel. Hence, the transmitted signal is

u(t) = Aeml (t) cos 2Jrfet + Acm2(t) sin2Jrfct (3.2.40)

Therefore, each message signal is transmitted by DSB-SC AM. This type of signal
multiplexing is called quadrature-carrier multiplexing.

Figure 3.24 illustrates the modulation and demodulation of the quadrature-carrier
multiplexed signals. As shown, a synchronous demodulator is required at the receiver
to separate and recover the quadrature-carrier modulated signals.

Quadrature-carrier multiplexing results in a bandwidth-efficient communication
system that is comparable in bandwidth efficiency to SSB AM.

Chapter 3Analog Signal Transmission and Reception94

3.2.6 Signal Multiplexing

We have seen that amplitude modulation of a sinusoidal carrier by a message signal
m(t) translates the message signal in frequency by an amount equal to the carrier fre­
quency fe. If we have two or more message signals to transmit simultaneously over the
communications channel, it is possible to have each message signal modulate a carrier
of a different frequency, where the minimum separationbetween two adjacent carriers is
either 2W (for DSB AM) or W (for SSB AM), where W is the bandwidth of each of the
message signals. Thus, the various message signals occupy separate frequency bands
of the channel and do not interfere with one another in transmission over the channeL

The process of combining a number of separate message signals into a com­
posite signal for transmission over a common channel is called multiplexing. There
are two commonly used methods for signal"multiplexing: (1) time-division multiplex­
ing and (2) frequency-division multiplexing. Time-division multiplexing is usually
used in the transmission of digital information and will be described in Chapter 6.
Frequency-division multiplexing (FDM) may be used with either analog or digital
signal transmission.

In FDM, the message signals are separated in frequency as described above. A
typical configuration of an FDM system is shown in Figure 3.23. This figure illustrates
the frequency-division multiplexing of K message signals at the transmitter and their
demodulation at the receiver. The lowpass filters at the transmitter are used to ensure
that the bandwidth of the message signals is limited to W Hz. Each signal modulates a
separate carrier; hence, K modulators are required. Then, the signals from the K mod­
ulators are summed and transmitted over the channel. For SSB and VSB modulation,
the modulator outputs are filtered prior to summing the modulated signals. .

At the receiver of an FDM system, the signals are usually separated by passing
through a parallel band of bandpass filters, where each filter is tuned to one of the
carrier frequencies and has a bandwidth that is sufficiently wide to pass the desired
signal. The output of each bandpass filter is demodulated and each demodulated signal
is fed to a lowpass filter that passes the baseband message signal and eliminates the
double frequency ·components.

FDM is widely used in radio and telephone communications. For example, in tele­
phone communications, each voice-message signal occupies a nominal bandwidth of
3 kHz. The message signal is single-sideband modulated for bandwidth efficient
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(3.3.2)

'7

(3.3.3) .."

.."

(3.3.4)

(3.3.5)

(3.3.6)

1 d
f;(t) - Ie = kfm(t) = --¢J(t)

2Jr dt

Angle ModulationSection 3.3

3.3.1 Representation of FM and PM Signals

An angle-modulated signal in general can be written as

and in an PM system we have

{
kpmCt), PM

¢J(t) = t

2Jrkf Loo mer) dr, PM

Equation. (3.3.6) shows the close and interesting relation between PM and PM sys­

tems. This close relationship makes it possible to analyze these systems in parallel

and only emphasize their main differences. The first interesting result observed from

~~uatio~ (3.3.6) is that ifwe phase modulate the carrier with the integral of a message,

It IS eqillvalent ~o frequ~ncy modulation of the carrier with the original message. On

the other hand, III EquatIOn (3.3.6) the relation can be expressed as

!!:.. t _ {kpftm(t), PM
. dt¢() - ~~(t), FM (3.3.7)

which shows that if we frequency modulfJ the carrier with the derivative of a mes­

s~ge, the result is equivalent to phase modulation of the carrier with the message itself.

FIgure 3.25 shows the above relation between FM and PM. Figure 3.26 illustrates a

square-wave signal and its integral, a sawtooth signal, and their corresponding FM and

PM signals. .

wherekp andkf are phase and frequency deviation constants. From the above relation­

ships we have

rjJ (t) = kpm(t)

and, therefore,

u(t) = Ae cos(e(t))

e(t) is the phase of the signal, and its instantaneous frequency f; (t) is given by

I d
Ji(t) = 2n d/(t) (3.3.1)

Since u(t) is a bandpass signal, it can be represented as

1 dnet) = Ie + --rjJ(t)
2n dt

If mCt) is the message signal, then in a PM system we have

u(t) = Ae cos(2nj~t + rjJ(t))

Chapter 3

Figure 3.24 Quadrature-carrier multiplexing.
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tStrictly speaking, the bandwidth of the modulated signal, as it will be shown later, is infinite. That .-

is why we talk about the effective bandwidth. .

3.3 ANGLE MODULATION

In the previous section we considered amplitude modulation of the carrier as a means

for transmitting the message signal. Amplitude-modulation methods are also called

linear-modulation methods, although conventional AM is not linear in the strict sense.

Another class of modulation methods are frequency and phase modulation which

are described in this section. In frequency-modulation (FM) systems, the frequency of

the carrier Ie is changed by the message signal and in phase-modulation (PM) sy~tems

the phase of the carrier is changed according to the variations in the message SIgnal.

Frequency and phase modulation are obviously quite nonlinear, ar:-d .very often t~ey

are jointly referred to as angle-modulation methods. As our analysIs m the followmg

sections will show, angle modulation, due to its inherent nonlinearity, is more complex

to implement, and much more difficult to analyze. Inm~y ?a~es only ~n approxi~ate

analysis can be done. Another property of angle modulatIOn IS ItS bandwidth-expan~Ion

property. Frequency and phase-modulation systems generally expand the b~dwldth

such that the effective bandwidth of the modulated signal is usually manytrmesthe

bandwidth of the message signal.t With a higher implementation complexity and a

higherbandwidth occupancy, one would naturally raise a question as to the usefulness of

these systems. As our analysis in Chapter 5 will show, the major benefit of these ~ystems

is their high degree of noise immunity. In fact these systems trade-off bandWIdth for.

high noise immunity. That is the reason that FM systems are widely used in high-fid~lity

music broadcasting and point-to-point communication systems where the transIDltter

power is quite limited.

j

rI
!,'
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(3.3.8)

(3.3.9)

(3.3.10)

(3.3.11)

(3.3.12)

(3.3.13)

(3.3.14)

(3.3.15)

(3.3.16)

(3.3.17)

fip =kp max[lm(t)1]

fij = kj max[lm(t)1]
W

Angle Modulation

cP(t) = 2n:kf11

mer) dr = kfa sin(2n:fmt)
-00 fm

Therefore, the modulated signals will be

{

Ae cos (2rrfet + kpa cos(2rrfmt)), PM.
u(t) = ( k a

Ac cos 2n:fct + 1;;.sin(2n:fmt)), FIvI

fip = kpa

fif = kfa
1111

By defining

we have

{
Ae cos(2n:fet + fip cos(2n:fmt)), PM,

u(t) =
Ae cos(2n:fet + fJf sin(2n:fmt)), FM

The parameters f3p and f3f are called the modulation indices of the PM and FM systems
respectively.

.and in PM we have

mCt) = a cos(2n:fmt)

is used to either frequency modulate or phase modulate the carrier Ae cos (2n: fet). Find
the modulated signal in each case.

Solution In PM we have

The demodulation of an FM signal involves finding the instantaneous frequency
of the modulated signal and then subtracting the carrier frequency from it. In tbe
demodulation ofPM, the demodulation process is done by finding the phase ofthe signal
and then recovering met). The maximum phase deviation in a PM system is given by

Section 3.3

Llrf>max =kp max[lm(t)IJ

and the maximum frequency-deviation in an FM system is given by

Llfmax =kjmax[lmCt)[J

Example 3.3.1
The message signal

We can extend the definition of the modulation index for a general nonsinusoidal signal
mCt) as

Figure 3.25 A comparison of PM and
PM modulators.

III

Analog Signal Transmission and Reception

PM Modulator

~L_P_M__~~ Modulator I

FM 0 0
signal

-1 .e -1
0 2

4' 0ql"Qt

f

PM 0 0
signal

-1
0

-1
2 3 42 3 4 0

Figure 3.26 PM and PM of square and sawtooth waves.
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(3.3.23)

(3.3.24)

(3.3.25)L Acln(13) cos (2rc(fc + nfm)t)
n=-oo

n=-co

00

00

ejf3 sin 2rrj,,, t = L In (13) ej2rrnfm t

Angle ModulationSection 3.3

u(t) = Re(Acej2JIIcteh9sin2rrfmt) (3.3.22)

Since sin.2rcf.m t is periodic with period Tm = t, the same is true for the complex
exponential SIgnal '"

3.3.2 Spectral Characteristics of Angle-Modulated Signals

Du~ to the ~erent nonlinearity of angle-modulation systems the precise characteri­
~auon of therr spectral properties, even for simple message signals, is mathematically
mtra~table.Therefore, the deriv~tionof the spectral characteristics of these signals usu­
ally Involves the study of v~ry srrnple modulating signals and certain approximations.
Then the results ~e .generalIzed to the more complicated messages. We will study the
sp~ctral. char~cten~ucs ~f an angle-modulated signal in tlrree cases: when the modu­
l~hng sIgnal IS a smusOldal s~gn~, wh~n the modulating signal is a general periodic
SIgnal, and when the modulahng sIgnal IS a general nonperiodic signal.

Angle ~odu.lati~n by a Sinusoidal Signal. Let us begin with the case where
the message SIgnal IS a smusoidal signal. As we have seen, in this case for both FM and
PM, we have

u(t) = Ac cos(2rcfct + 13 sin2rcfmt) (3.3.21)

,:here 13 is the ~odulation index that can be either 13p or 13f. Therefore, the modulated
SIgnal can be wntten as

ejf3 sin2rrf",t

Theref?re, it can be expanded in a Fourier series representation. The Fourier series
coeffiCIents are obtained from the integral

I

Cn = fm if,; ejf3sin2rrj,,,te-jn2rrf,,,t dt

u=2rrf",t 1 12rr
'(/3' )= - eJ smu-nu du

2rc 0

J?lls latter integral i.s a well-known integral known as the Bessel function of the first
kmd oforder n an? IS denoted by In (13). Therefore, we have the Fourier series for the
complex exponenual as

By substituting Equation (3.3.24) in Equation (3.3.22), we obtain

u(t) = Re ( Acnf;oo In (!3)e j2rrnj,,,t e j2rrf,t)

Chapter

Figure 3:1.7 Phasor diagram for the
conventional AM (a) and narrowband
angle modulation (b).{b)

(a)
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-sinl, ~--_iv...u(t)
- ») ~

I...., A--"c .jAcam(t) ,I cos

100

tAlso known as low-index angle modulation.

where W denotes the bandwidth of the message signal m (t). In terms of the maxirrLUm
phase and frequency deviation 1:l.¢max and 1:l.fmax, we have

f3p = 1:l.¢r=

f3f = 1:l.fmax
W

Narrowband Angle Modulation,t If in an angle-modulation system the
deviation constants kp and k f and the message signal m(t) are such that for all t
we have ¢(t) « 1, then we can use a simple approximation to expand u(t) as

u(t) = A c cos 2rcfct cos ¢(t) - Ac sin2rcfct sin ¢ (t)

~ A c cos 2rcfct - Ac¢(t) sin 2rcfct

This last equation shows that in this case the modulated signal is very similar to a con-,
ventional AM signal. The only difference is that the message signal m (t) is modulated'
on a sine carrier rather than a cosine carrier. The bandwidth of this signal is similar t9
the bandwidth of a conventional AM signal, which is twice the bandwidth of the mes- '
sage signal. Of course this bandwidth is only an approximation to the real bandwidth
of the FM signal. A phasor diagram for this signal and the comparable conventi0D.al
AM signal are given in Figure 3.27. Note that compared to conventional AM, the nar­
rowband angle-modulation scheme has far less amplitude variations. Of course, tb.t:
angle-modulation system has constant amplitude and, hence. there should be no amplj-<
tude variations in the phasor-diagram representation of the system. The slight variati0il.s '
here are due to the first-order approximation that .we have used for the expansions Of
sin(¢(t)) and cos(¢ (t)). As we will see in ChapterS, the narrowband angle-modulation
method does not provide any better noise immunity compared to a conventional AM',
system. Therefore, narrowband angle modulation is seldom used in practice for com­
munication purposes. However, these systems can be used as an intermediate stage for·,
generation of wideband angle-modulated signals as we will discuss in Section 3.3.3.

i j

:i
: !
~ j
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(3.3.29)

(3.3.30)

(3.3.31)

A~ 100
Pc= - = - =50

2 2

u(t) = lOcos (2JTfct+2:rrkf 1~ COS(20Jrr)d,)

= 10 cos (2:rr f ct + ~~ Sin(20m))

= 10 cos (2:rrfct + 5sin(20:rrt))

Angle Modulation

The modulated signal is represented by

The modulation index is given by

Section 3.3

TABLE 3.1 TABLE OF BESSEL FUNCTION VALUES

n f3 =0.1 f3 = 0.2 f3 = 0.5 f3=1 f3=2 f3 =5 f3=8 f3 - 10

0 0.997 0.990 0.938 0.765 0.224 -0.178 0.172 -0.246
1 0.050 0.100 0.242 0.440 0.577 -0.328 0.235 0.043
2 0.001 0.005 0.031 0.115 0.353 0.047 -0.113 0.255
3 0.020 0.129 0.365 -0.291 0.058
4 0.002 0.034 0.391 -0.105 -0.220
5 0.007 0.261 0.186 -0.234
6 0.001 0.131 0.338 -0.014
7 0.053 0.321 0.217
8 0.018 0.223 0.318
9 0.006 0.126 0.292

10 0.001 0.061 0.207
11 0.026 0.123
12

0.010 0.063
13 0.003 0.029
14

0.001 0.012
15

0.004
16

0.001

(From Ziemer and Tranter; © 1990 Houghton Mifflin, reprinted by pemrission.)

Example 3.3.2

Let the carrier be given by cCt) == 10 cos (2JTfct) and let the message signal be cos (20m).
F~er assume ~at the message is used to frequency modulate the carrier with k f = 50.
Fmd the expreSSIOn for the modulated signal and determine how many harmonics should
be selected to contain 99 % of the modulated signal power.

Solution The power content of the carrier signal is given by

(3.3.27)

(3.3.26)

Chapter 3

n even
n odd

J (f3) ~ f3n
n ~ 2---;;-j"n.

Analog Signal Transmission and Reception

{
In(f3),

L n(f3) == -In(f3),

102

Figure 3.28 Bessel functions for various values of n.
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Equation (3.3.25) shows that even in this very simple case, where the modulating signal
is a sinusoid offrequency fm, the angle-modulated signal contains all frequencies of the
formfc+nfm forn = 0, ±l, ±2, .... Therefore, the actual bandwidth ofthe modulated
signal is infinite. However, the amplitude of the sinusoidal components of frequencies
fe ± nfm for large n is very small. Hence, we can define a finite effective bandwidth
for the modulated signal. A series expansion for the Bessel function is given by

The above expansion shows that for small f3, we can use the approximation

Thus for a small modulation index f3, only the first sideband corresponding to n = I
is of importance. Also, using the above expansion, it is easy to verify the following
symmetry properties of the Bessel function.

Plots of I n (f3) for various values ofn are given in Figure 3.28, and a table of the values
of the Bessel function is given in Table 3.1.
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Angle Modulation by a Periodic Message Signal. To generalize the pre­
ceding results, we now consider angle modulation by an arbitrary periodic message
signal met). Let us consider a PM-modulated signal where

where 13 is the modulation index and 1m is the frequency of the sinusoidal message
signal. His instructive to study the effect ofthe amplitude and frequency ofthe sinusoidal
message signal on the bandwidth and the number of harmonics in the modulated signal.
Let the message signal be given by

.-

105

(3.3.36)

(3.3.37)

(3.3.40)u(t) = A e cos(2rrlet + f3m(t))

Angle Modulation

tFrom now on, by bandwidth we mean effective bandwidth unless otherwise stated.

Section 3.3

met) = a cos(2rrlmt)

The bandwidtht of the modulated signal is given by

{

2(kpa + l)fm, PM
Be =2(f3+1)fm= (ka) FM

2 ~ +1 1m,
or

Be = {2(kpa + l)lm, PM
2(kf a + 1m), FM (3.3.38)

Equation (3.3.38) shows that increasing a, the amplitude of the modulating signal, in
PM and PM has almost the same effect on increasing the bandwidth Be. On the other
hand, increasing 1m, the frequency of the message signal, has a more profound effect
in increasing the bandwidth of a PM signal as compared to an PM signal. In both PM
and PM the bandwidth Be increases by increasing 1m, but in PM this increase is a
proportional increase and in PM this is only an additive increase, which in most cases
of interest, (for large (3) is not substantial. Now if we look at the number of harmonics
in the bandwidth (including the carrier) and denote it with Me, we have

{

2 lkpaJ+3, PM
Me = 2Lf3J +3 = lktaJ (3.3.39)

2 J,; +3, PM

Increasing the amplitude a increases the number of harmonics in the bandwidth of the
modulated signal in both cases. However, increasing 1m, has no effect on the number of
harmonics in the bandwidth of the PM signal and decreases the number of harmonics in
the PM signal almost linearly. This explains the relative insensitivity of the bandwidth
ofthe PM signal to the message frequency. On the one hand, increasing 1m decreases the
number of harmonics in the bandwidth and, at the same time, it increases the spacing
between the harmonics. The net effect is a slight increase in the bandwidth. In PM,
however, the number of harmonics remains constant and only the spacing between
them increases. Therefore, the net effect is a linear increase in bandwidth. Figure 3.30
shows the effect of increasing the frequency of the message in both PM and PM.

3,=120 Hz

Be = 2(13 + l)lm

Figure 3.29 The harmonics present inside the effective bandwidth of
Example 3.3.2.

It is seen that the frequency content of the modulated signal is concentrated at freqillencies
of the form Ie + IOn for various n. To make sure that at least 99% of the total power
within the effective bandwidth, we have to choose k large enough such that

n=-oo

= L 10Jn (5) cos(2n:(fe +10n)t)

This is a nonlinear equation and its solution (for k) can be found by trial and error
using tables of the Bessel functions. Of course, in finding the solution to this equation
have to employ the symmetry properties of the Bessel function given in Equation
Using these properties we have

~ 100J;(5) > 0.99.x 50
L.J 2 -
n=-k

co

co

u(t) = L AeJn(13) cos (2n: (fe +nf,n)t)
11=-00

and, therefore, the PM-modulated signal is

50 [J5(5H 2t J;(5)] 2: 49.5

Starting with small values of k and increasing it, we see that the smallest value of k for
which the left-hand side exceeds the right-!J.and side is k = 6. Therefore, taking frequencies
Ie ± 10k for 0 :5 k ::5 6 guarantees that 99% of the power of the modulated signal
been included and only one per cent has been left out. This means that, if the modullited
signal is passed through an ideal bandpass filter centered at Ie with a bandwidth
120 Hz, only 1% of the signal power will be eliminated. This gives us a practical way
define the effective bandwidth of the angle-modulated signal· as being 120 Hz. Figure
shows the frequencies present in the effective bandwidth of the modulated signal.

104 Analog Signal Transmission and Reception

In general the effective bandwidth of an angle-modulated signal, which contains
98% of the signal power, is given by the relation

I
I

1
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(3.3.45)

(3.3.46)

(3.3.47)

PM

PM

C(t) = Co +kom(t)

Be = 2(fJ + 1) W

{

kp max[lm (t) IJ,
fJ = kJ max[lm(t)1J

W '

Angle Modulation

where fJ is the modulation index defined as

Section 3.3

3.3.3 Implementation of Angle Modulators
and Demodulators

The detailed treatment ofthe spectral characteristics of an angle-modulated signal
for a general nonperiodic detenninistic message signal m (t) is quite involved due to the
nonlinear nature of the modulation process. However, there exists an approximate rela­
tion for the effective bandwidth ofthe modulated signal, known as the Carson's rule, and
given by

and W is the bandwidth of the message signal met). Since in wideband FM the value
of fJ is usually around 5 or more, it is seen that the bandwidth of an angle-modulated
signal is much greater than the bandwidth of various amplitude-modulation schemes,
which is either W (in SSB) or 2W (in DSB or conventional AM).

Any modulation and demodulation process involves the generation of new frequencies
that were not present in the input signal. This is true for both amplitude and angle­
modulation systems. This means that, if we interpret the modulator as a system with
the message signal m (t) as the input and with the modulated signal u (t) as the output,
this system: has frequencies in its output that were not present in the input. Therefore,
a modulator (and demodulator) can not be modeled as a linear time-invariant system
because a linear time-invariant system can not produce any frequency components in
the output that are not present in the input signal.

Angle modulators are, in general, time-varying and nonlinear systems. One
method for generating an PM signal directly is to design an oscillator whose frequency
changes with the input voltage. When the input voltage is zero, the oscillator gener­
ates a sinusoid with frequency fe, and when the input voltage changes, this frequency
changes accordingly. There are two approaches to designing such an oscillator, usually
called a veo or voltage-controlled oscillator. One approach is to use a varactor diode.
A varactor diode is a capacitor whose capacitance changes with the applied voltage.
Therefore, if this capacitor is used in the tuned circuit of the oscillator and the message
signal is applied to it, the frequency of the tuned circuit, and the oscillator, will change
in accordance with the message signal. Let us assume that the inductance of the inductor
in the tuned circuit of Figure 3.31 is La and the capacitance of the varactor diode is
given by

f

(3.3.43)

(3.3.42)

Chapter 3

FM

n=-OO

00

ej,Bm(t) = 2: cnej2Jl"nfmt

n=-oo

00

Analog Signal Transmission and Reception

1 loT,·_ ej,Bm(t) e-j2Jl"nj,,,t dt
Tm 0

u=2Jrj,,,t 1 102
Jl" j[jlm(,.-",)-nu] du== - e _rrJIlI

2rr: 0

Cn

PM

Figure 3.30 The effect of increasing bandwidth of the message in PM and PM.

It is seen again that the modulated signal contains all frequencies of the form fe +nfm'

and

where

u(t) = AeRe[e j2Jl"f,t ej,Bm(t)]

We are assuming that met) is periodic with period Tm = }" .Th~refor~, ej,Bm(t) v:ill be
a periodic signal with the same period, and we can find its 'poun~r senes expansIOn as

We can write this as

106
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4>(1)

FM

Figure 3.32 Gen~ration of narrowband angle-modulated signal.

Angle Modulation

'-
.....l PM

m(t)

Section 3.3

Figure 3.33 Indirect generation of angle-modulated signals.

angle-modulated signals is straightforward. In fact any modulator for conventional AMgeneration can be easily modified to generate a narrowband angle-modulated signal.. Figure 3.32 shows the block diagram ofa narrowband angle modulator. The next step isto use the narrowband angle-modulated signal to generate a wideband angle-modulatedsignal. Figure 3.33 shows the block diagram of a system that generates wideband ang1e­modulated signals from narrowband angle-modulated signals. The first stage of sucha system is, of course, a narrowband angle-modulator such as the one shown in Fig­ure 3.32. The narrowband angle-modulated signal enters a frequency multiplier thatmultiplies the instantaneous frequency of the input by some constant n. This is usuallydone by applying the input signal to a nonlinear element and then passing its outputthrough a bandpass filter tuned to the desired central frequency. If the narrowband­modulated signal is represented by

Un (t) = Ae cos(2n fet + ¢ (t)) (3.3.52)the output of the frequency multiplier (output of the bandpass filter) is given by
yet) = Ae cos (2rcnfet +n¢(t) (3.3.53)In general, this is, of course, a wideband angle-modulated signal. However, there isno guarantee that the carrier frequency of this signal, nfe' win be the desired carrierfrequency. The last stage of the modulator performs an up or down conversion to shift

(3.3.51)

(3.3.50)

(3.3.49)

(3.3.48)

Chapter 3

1
-- ~ 1-£,
1+.:

ko
£::= -m(t)« 1

Co

Figure 3.31 Varaetor diode
implementation of an angle modulator.

Analog Signal Transmission and Reception

L To oscillator circuit

1
J;(t):= 2Jr-JL o(Co+kom(t))

1 1
:= 2rc-JLoCo )1 + ~m(t)

1
= fe--;:;=~=

Jl + ~m(t)

Co

fi(t) ~ fe (1 - ;~.Qm(t))
which is the relation for a frequency-modulated signal.A second approach for generating an FM signal is by use of a reactance tube~In the reactance-tube implementation, an inductor whose inductance varies with theapplied voltage is employed and the analysis is very similar to .the analysis present<:;dfor the varactor diode. It should be noted that although we descnbed these methods forgeneration ofFM signals, due to the close relation betweenPM and PM signals, basicallythe same methods can be applied for generation of PM signals (see Figure 3.25).Another approach for generating an angle-modulated signal is to first gener­ate a narrowband angle-modulated signal, and then change it to a wideband signal.This method is usually known as the indirect method for generation of FM and PMsignals. Due to the similarity of conventional AM signals, generation of narrowband

we obtain

and using the approximations

Assuming that

Whenm(t) := 0, the frequency of the tuned circuit is given by fe = 2Jra' In general,for nonzero met), we have
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the modulated signal to the desired center frequency. This stage consists of a mixer and
a bandpass filter. If the frequency of the local oscillator of the mixer is fLo and we are
using a down converter, the final wideband angle-modulated signal is given by

(3.3.59)

(3.3.61)

(3.3.62)

(3.3.64)

111

Figure 3.35 A tuned circuit used in an
FM demodulator.f

fv(t) = fe + kvv(t)

u(t) = A e cos[2rcfet + ¢ (t)]

e(t) = ~AvAe sin[¢(t) - ¢v(t)]

Angle Modulation

Ie

-----------I\-~
------------ I

I
I
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where, for PM,

A totally different approach to FM signal demodulation is to use feedback in the
FM demodulator to narrow the bandwidth of the FM detector and, as will be seen in
Chapter 5, to reduce the noise power at the output of the demodulator. Figure 3.37
illustrates a system in which the FM discrimination is placed in the feedback branch
of a feedback system that employs a voltage-controlled oscillator (YCO) path. The
bandwidth of the discriminator and the subsequent lowpass filter is designed tomatch
the bandwidth of the message signal met). The output of the lowpass filter is the
desired message signal. This type ofFM demodulator is called an FM demodulator with
feedback (FMFB). An alternative to FMFB demodulator is the use of a phase-locked
loop (PLL), as shown in Figure 3.38. The input to the PLL is the angle-modulated
signal (we neglect the presence of noise in this discussion)

cP(t) = 2rrkf 1~ mer) dr (3.3.60)

The VCO generates a sinusoid of a fixed frequency, in this case the carrier frequency
fe, in the absence of an input control voltage.

Now, suppose that the control voltage to the VCO is the output of the loop filter,
denoted as vet). Then, the instantaneous frequency of the VCO is

where kv is a deviation constant with units of Hz/volt. Consequently, the VCO output
may be expressed as

where

cPu(t) = 2nkv l vCr) dr (3.3.63)

The phase comparator is basically a multiplier and filter that rejects the signal
component centered at 2fe. Hence, its output may be expressed as

IH(fll

(3.3.54)

(3.3.58)

Chapter 3

Figure 3.34 A general FM demodulator.

jH(f)1 = 2rcf
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u(t) = A e cos(2n(nfe - fLO)t + n¢ (t))
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Another candidate is the rising half of the frequency characteristics of a tuned
circuit as shown in Figure 3.35. Such a circuit can be easily implemented, but usually
the linear region of the frequency characteristic may not be wide enough. To obtain
a linear characteristic over a wider range of frequencies, usually two circuits tuned
at two frequencies, !J and /2, are connected in a configuration which is known as a
balanced discriminator. A balanced discriminator with the corresponding frequency
characteristics is shown in Figure 3.36.

The FM demodulation methods described here that transform the FM signal into
an AM signal have a bandwidth equal to the channel bandwidth Be occupied by the
signal, Consequently, the noise that is passed by the demodulator is the noise contained
within Be.

Since we can freely choose n and fLO, we can generate any modulation index at any
desired carrier frequency by this method.

FM demodulators are implemented by generating an AM signal whose amplitude
is proportional to the instantaneous frequency of the FM signal, and then using an AM
demodulator to recover the message signal. To implement the first step; i.e., transform­
ing the FM signal into an AM signal, it is enough to pass the FM signal through an
LTI system whose frequency response is approximately a straight line in the frequency
'band of the FM signal. If the frequency response of such a system is given by

Be
IH(f)1 = Vo + k(f - fe) for If - fel < 2 (3.3.55)

and if the input to the system is

u(t) = A e cos (2nfct + 2rrkf [co mer) dr) , (3.3.56)

then, the output will be the signal

vo(t) = Ae(Vo + kkfm(t)) cos (2nfet +2nkf [co mer) dr) (3.3.57)

The next step is to demodulate this signal to obtain Ac(Vo + kkfm(t)), from which the
message met) can be recovered. Figure 3.34 shows a block diagram ofthese two steps.

There exist many circuits that can be used to implement the first stage of an FM de­
modulator; i.e., FM to AM conversion. One such candidate is a simple differentiatorwith
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(3.3.65)

(3.3.66)

(3.3.67)

v(t)

Output
signal

Output
signal

Figure 3.38 Block diagram of PLL-FM
demodulator.

d d
-tPe(t) + 2rrkvv(t) = -¢(t)
dt dt

Figure 3.39 Linearized PLL.

tPe(t) = tP(t) - 2rrkvl vCr) dr

1>,(1)

Figure 3.37 Block diagram ofFMFB demodulator.

sin[¢J(t) - ¢Jv(t)] """ ¢J(t) - ¢v(t) = ¢e(t)

Angle Modulation

where the difference, ¢JCt) - tPvCt) == ¢Je(t), constitutes the phase error. The signal e(t)
is the input to the loop filter.

Let us assume that the PLL is in lock, so that the phase error is small. Then,

Under this condition, we may deal with the linearized model of the PLL, shown in
Figure 3.39. We may express the phase error as

or, equivalently, either as

. Section 3.3Chapter 3

Figure 3.36 A balanced discriminator
. and the corresponding frequency

responae.

Analog Signal Transmission and Reception

(d)

'----y----'
Linear region

(c)

J3_a:;cp~s~ !!lE.e::s__~:!.e..!.o'p:''!.e!.e.:t£r~I
I R .:1 D I

112

~I ~
fil'i__I_H2_(f_)IL:"'-~:"'-·~· _-+---.:>._-::>oIH_l_(/---:;)1

h 11 f
(b)

i1---------c.D-I~,<J)I
'--y----' It f

Linear region
(a)



115Radio and Television BroadcastingSection 3.4

Figure 3.40 Superheterodyne AM receiver.
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3.4.1 AM Radio Broadcasting

Commercial AM radio broadcasting utilizes the frequency band 535-1605 kHz for
transmission of voice and music. The carrier frequency allocations range from 540­
1600 kHz with lO-kHz spacing.

Radio stations employ conventional AM for signal transmission. The baseband
message signal met) is limited to a bandwidth of approximately 5 kHz. Since there are
billions of receivers and relatively few radio transmitters, the use of conventional AM
for broadcast is justified from an economic standpoint. The major objective is to reduce
the cost of implementing the receiver.

The receiver most commonly used in AM radio broadcast is the so called super­
heterodyne receiver shown in Figure 3.40. It consists of a radio frequency (RF) tuned
amplifier, a mixer, a local oscillator, an intennediate frequency (IF) amplifier, an enve­
lope detector, an audio frequency amplifier, and a loudspeaker. Tuning for the desired
radio frequency is provided by a variable capacitor, which simultaneously tunes the RF
amplifier and the frequency of the local oscillator.

In the superheterodyne receiver, every AM radio signal is converted to a common
IF frequency of hF = 455 kHz. This conversion allows the use of a single tuned
IF amplifier for signals from any radio station in the frequency band. The IF ampli­
fier is designed to have a bandwidth of 10 kHz, which matches the bandwidth of the
transmitted signal.

Radio and television broadcasting is the most familiar fonn of communic-ation via
analog signal transmission. Next, we describe three types of broadcasting, namely, AM
radio, FM radio, and television.

The major benefit of using feedback in FM signal demodulation is to reduce the
threshold effect that occurs when the input signal-to-noise-ratio to the FM demodulator
drops below a critical value. The threshold effect is treated in Chapter 5.

3.4 RADIO AND TELEVISION BROADCASTING

(3.3.74)

(3.3.72)

(3.3.73)

(3.3.71)

(3.3.69)

(3.3.70)

(3.3.68)
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'2 f
V(f) = ~<'P(f)

2rrkv

v (f) = <'Pe (f)G (f)

G(j) <'P(f)
1 + (~)G(f)]f .
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<'Pe(f) = 1 + (-Ji) G(f) <'P(f)

(j 2rrf) <'Pe(f) +2rrkv<'Pe(f) G(f) = (j2rrf) <'P (f)

Now, suppose that we design G(f) such that

or, equivalently,

1 d
vet) = --¢Ct)

2rrkv dt

= kf met)
k v

Since the control voltage of the VCO is proportional to the message signal, vCt) is the
demodulatedsignaL'. .

We observe that the output of the loop filter with frequency response G(f) IS

the desired message signal. Hence, the bandwidth of G(f) should be the same as the
bandwidth W of the message signal. Consequently, the noise at the output of the loo?
filter is also limited to the bandwidth W. On"the other hand, the output from the VCO IS

a wideband FM signal with an instantaneous frequency that follows the instantaneous
frequency of the received FM signal.

I

k G(f) I» 1
v jf

in the frequency band Ifl < W of the message signal. Then from Equation (3.3.71),
we have

The corresponding equation for the control voltage to the VCO is

and, hence,

or as

d 100

d-¢e(t) + 2rrkv ¢e(r)g(t - r) dr = -d¢ (t)
dt 0 t

The Fourier transfonn of the integro-differential equation in Equation (3.3.68) is
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Figure 3.41 Frequency response
characteristics of IF and RF amplifiers.
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as described in Chapter 5, to improve the demodulator performance in the presence of
noise in the received signal.

The receiver most commonly used in FM radio broadcast is a superheterodyne
type. The block diagram of such a receiver is shown in Figure 3.42. As in AM radio
reception, common tuning between the RF amplifier and the local oscillator allows the
mixer to bring all FM radio signals to a common IF bandwidth of 200 kHz, centered at
!IF = 10.7 MHz. Since the message signal met) is embedded in the frequency of the
carrier, any amplitude variations in the received signal are a result of additive noise and
interference. The amplitude limiter removes any amplitude variations in the received
signal at the output of the IF amplifier by band-limiting the signal. A bandpass filter
centered at !IF = 10.7 MHz with a bandwidth of 200 kHz is included in the limiter to
remove higher order frequency components introduced by the nonlinearity inherent in
the hard limiter.

A balanced frequency discriminator is used for frequency demodulation. The
resulting message signal is then passed to the audio frequency amplifier which performs
the functions of de-emphasis and amplification. The output of the audio amplifier is
further filtered by a lowpass filter to remove out-of-band noise and its output is used to
drive a loudspeaker.

o

o

o(3.4.2)

(3.4.1)

Chapter 3Analog Signal Transmission and Reception

rl (t) = Ae[l + ml (t)] cos 2nfet

r2(t) = AcCl + m2(t)] cos 2nf;t

where fe = fLO -!IF and f; = fLO +!IF, the rnixer output consists of the two signals

Yl (t) = Ae[l + ml (t)] cos 2nfIFt + double frequency term

Y2(t) = Ae[l + m2(t)]cos2n!IFt + double frequency term
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The frequency conversion to IF is performed by the combination of the RF am­
plifier and the mixer. The frequency of the local oscillator is

fLO = fe + !IF

where fe is the carrier frequency of the desired AM radio signal. The tuning range of
the local oscillator is 955-2055 kHz. By tuning the RF amplifier to the frequency fe and
mixing its output with the local oscillator frequency fLO = fe + fiF, we obtain two
signal components, one centered at the difference frequency !IF and the second centered
at the sum frequency 2fe + !IF. Only the first component is passed by the IF amplifier.

At the input to the RF amplifier we have signals picked up by the antenna
from all radio stations. By limiting the bandwidth of the RF amplifier to the range
Be < BRF < 2flF where Be is the bandwidth of the AM radio signal (10kHz), we can
reject the radio signal transmitted at the so-called image frequency, f; = fLo + !IF.
Note that when we mix the local oscillator output, cos 2n fLOt, with the received signals

where ml (t) represents the desired signal and m2(t) is the signal transmitted by thera­
dio station transmitting at the carrier frequency f; = fLO + !IF. In order to prevent the
signal r2(t) from interfering with the demodulation of the desired signal rl (t), the RF
amplifier bandwidth is designed to be sufficiently narrow so that the image frequency
signal is rejected. Hence, B RF < 2hF is the upper limit on the bandwidth oftheRF am­
plifier. In spite of this constraint, the bandwidth of the RF amplifie~is still. co:r:siderably
wider than the bandwidth of the IF amplifier. Thus, the IF amplifier, WIth Its narrow
bandwidth, provides signal rejection from adjacent channels and the RF amp~erpro­
vides signal rejection from image channels. Figure 3.41 illustrates the bandwld~s of
the RF and IF amplifiers and the requirement for rejecting the image frequency slg~al.

The output of the IF amplifier is passed through an envelope detector which
produces the desired audio-band message signal m (t). Finally, the output ofth~ envelope
detector is amplified and the amplified signal drives a loudspeaker. Automatic volume
control (AVC) is provided by a feedback control loop which adjusts the gain of the IF
amplifier based on the power level of the signal at the envelope detector.

3.4.2 FM Radio Broadcasting

Commercial FM radio broadcasting utilizes the frequency band 88-108 NIHz for trans­
mission of voice and music signals. The carrier frequencies are separated by 200 kHz
and the peak-frequency deviation is fixed at 75 kHz. Pre-emphasis is generally used,
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Figure 3.44 FM stereo receiver.

Figure 3.43 FM stereo transmitter and signal spacing.
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and difference of the two composite signals, we recover the two signals mg(t) and
m,(t). These audio signals are amplified by audio-band amplifiers and the two outputs
drive dual loudspeakers. As indicated above, an FM receiver that is not configured to
receive the FM stereo sees only the baseband signal mg(t) + m,(t) in the frequency
range 0-15 kHz. Thus, it produces a monophonic output signal which consists of the
sum of the signals at the two microphones.

Local
oscillator

Analog Signal Transmission and Reception

Figure 3.42 Block diagram of a superheterodyne FM radio receiver.
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FM Stereo Broadcasting. Many PM radio stations transmit music programs
in stereo by using the outputs of two microphones placed in two different parts of the
stage. Figure 3.43 shows a block diagram of an FM stereo transmitter. The signals from
the left and right microphones, mt(t) and m,(t), are added and subtracted as shown.
The sum signal mg (t) +m, (t) is left as is and occupies the frequency band 0-15 kHz.
The difference signal mg(t) - m,(t) is used to AM modulate (DSB-SC) a 38-kHz
carrier that is generated from a 19-kHz oscillator. A pilot tone at the frequency of 19
kHz is added to the signal for the purpose of demodulating the DSB-SC AM signal.
The reason for placing the pilot tone at 19 kHz instead of 38 kHz is that the pilot is
more easily separated from the composite signal at the receiver. The combined signal
is used to frequency modulate a carrier.

By configuring the baseband signal as an FDM signal, a monophonic FM receiver
can recover the sum signal mg(t) +m,(t) by use of a conventional FM demodulator.
Hence, FM stereo broadcasting is compatible with conventional FM. The second·"
requirement is that the resulting FM signal does not exceed the allocated 200-kHz
bandwidth.'

The FM demodulator for FM stereo is basically the same as a conventional FM
demodulator down to the limiter/discriminator. Thus, the received signal is converted
to baseband. Following the discriminator, the baseband message signal is separated .
into the two signals mg(t) +m,(t) and mg(t) - m,(t) and passed through de-emphasis·
filters, as shown in Figure 3.44. The difference signal is obtained from the DSB-SC
signal by means of a synchronous demodulator using the pilot tone. By taking the sum

1

1

-i

1



Figure 3.45 Signal waveforms applied to horizontal (a) and vertical (b) deflection
plates,
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Figure 3.46 Interlaced scanning pattern.
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!n this sc~nin,g method, the image is divided into 525 lines that define a frame, as
Illustrated ill FIgure 3.46. The resulting signal is transmitted in 1130 of a second. The
number of lines determines the picture resolution and, in combination with the rate of
transmissio.n, d~termine the channel bandwidth required for transmission of the image.

The tmle lllterval of 1/30 second to transmit a complete image is generally not
fast enough. to avoid flicker that is annoying to the eyes of the average viewer. To
overco~e ~cker, the sc~g of the image is performed in an interlaced pattern as
shown ill FIgure 3.46. The illterlaced pattern consists of two fields, each consistino- of
262.? lines. Each field is transmitted in 1/ 60 of a second, which exceeds the flicker ;ate
that IS observed by the average eye. The first field begins at point "a" and terminates at
point "c." The second field begins at point "b" and terminates at point "d."

A horizontal line is scanned in 53.5 f.Lsec as indicated by the sawtooth signal
waveform applied to the horizontal deflection plates. The beam has 10 f.Lsec to move to

Chapter 3
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3.4.3 Television Broadcasting

Commercial TV broadcasting began as black-and-white picture transmission in London
in 1936 by the British Broadcasting Corporation (BBC). Color television was demon­
strated a few years later, but the move of commercial TV stations to color TV signal
transmission was slow in developing. To a large extent, this was due to the high cost of
color TV receivers. With the development of the transistor and microelectronics
ponents, the cost of color TV receivers decreased significantly, so that by the
1960s color TV broadcasting was widely used by the industry.

The frequencies allocated for TV broadcasting fall in the VHF and UHF frequency
bands. Table 5.2 lists the TV channel allocations in the United States. We observe that
the channel bandwidth allocated for transmission of TV signals is 6 MHz.

In contrast to radio broadcasting, standards for television signal transmission vary
from country to country. The U.S. standard, which we describe below, was set by
National Television Systems Committee (NTSC).

Black-and-White TV Signals. The first step in TV signal transmission is
convert a visual image into an electrical signal. TIle two-dimensi.onal imalgeorpic:tuI'e is
converted to a one-dimensional electrical signal by sequentially scanning the image
producing an electrical signal that is proportional to the brightness level of the image.
The scanning is performed in a TV camera, which optically focuses the image on
photo cathode tube that consists of a photosensitive surface.

The scanning of the image is performed by an electron beam that produces an
output current or voltage which is proporti-onal to the brightness of the image.
resulting electrical signal is called a video signal.

The scanning of the electron beam is controlled by two voltages applied acru~s UlC

horizontal and vertical deflection plates. These two voltages are shown in Figure
I i

..,
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Figure 3.48 Spectral characteristics of black-and-white television signal.
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transi:nitted along with a portion (1.25 MHz) of the lower sideband. Unlike the con­
ventional VSB spectral shaping described in Section 3.2.4, the lower sideband signal
in the frequency range Ie and Ie - 0.75 MHz is transmitted without attenuation. The
frequencies in the range Ie - 1.25 to Ie - 0.75 MHz are attenuated as shown in Fig­
ure 3.48 and all frequency components below Ie -1.25 MHz are blocked. VSB spectral
shaping is perfonned at the IF amplifier of the receiver.

In addition to the video signal, the audio portion ofthe TV signal is transmitted by
frequency modulating a carrier at Ie +4.5 MHz. The audio-signal bandwidth is limited
to W = 10kHz. The frequency deviation in the FM modulated signal is selected as
25 kHz and the FM signal bandwidth is 70 kHz. Hence, the total channel bandwidth
required to transmit the video and audio signals is 5.785 MHz.

Figure 3.49 shows a block diagram of a black-and-white TV transmitter. The
corresponding receiver is shown in Figure 3.50. It is a heterodyne receiver. We note
that there are two separate tuners, one for the UHF band and one for the VHF band.
The TV signals in the UHF band are brought down to the VHF band by a UHF mixer.
This frequency conversion makes it possible to use a common RF amplifier for the two
frequency bands. Then, the video signal selected by the tuner is translated to a common
IF frequency band of 41-47 MHz. The IF amplifier also provides the VSB shaping
required prior to signal detection. The output of the IF amplifier is envelope detected
to produce the baseband signal.

The audio portion of the signal centered at 4.5 :MHz is filtered out by means of
an IF filter amplifier and passed to theFM demodulator. The demodulated audio band
signal is then amplified by an audio amplifier and its output drives the speaker.

The video component of the baseband signal is passed through a video amplifier
which passes frequency components in the range 0-4.2 MHz. Its outputis passed to the

One horizontal

Horizontal sync
pulse

5 ILsec

41
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the next line. During this interval, a blanking pulse is inserted to avoid the appearance
of retrace lines across the TV receiver. A 5 f-Lsec pulse is added to the blanking pulse
to provide synchronization for the horizontal sweep circnit at the receiver. A typical
video signal is shown in Figure 3.47.

Mter the transmission of one interlac~d field, the vertical sawtooth signal wave­
fonn applied to the vertical deflection plates is reset to zero. The retrace interval of
1.27 msec, corresponding to 20 line scans, allows the beam to move from the bottom
to the top of the picture. A vertical blanking pulse is inserted during the interval to
avoid the appearance of retrace lines at the TV receiver. When we allow for the vertical
retrace (twice per frame), the actual number of horizontal lines in the image is 485.

The bandwidth of the video signal can be estimated by viewing the image as a
rectangular array of 485 rows by (485)(4/3) columns, where 4/3 is the aspect ratio
(the ratio of the width to height ofthe image). Thus, we have 313,633 picture elements
(pixels) per frame, which are transmitted in 1/30 of a second. This is equivalent to a
sampling rate of 10.5 MHz, which is sufficient to represent a signal as large as 5.25 MHz.
However, the light intensity of adjacent pixels in an image is highly correlated. Hence,
thebandwidth ofthe video signal is less than 5.25 MHz. IncommercialTV broadcasting,
the bandwidth of the video signal is limited to W = 4.2 MHz.

Since the allocated channel bandwidth for commercial TV is 6 MHz, it is clear
that DSB transmission is not possible. The large low-frequency content of the video
signal also rules out SSB as a practic4l1 modulatio~ method. Hence, VSB is the only
viable alternative. By transmitting a large carrier component, the received VSB signal···
can be simply demodulated by means of an envelope detector. This type of detection
significantly simplifies the implementation of the receiver.

The range of frequencies occupied by the transmitted video signal is shown in
Figure 3.48. We note that the full upper sideband (4.2 MHz) of the video signal is

Figure 3.47 Typical video signal for one horizontal sweep.
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(3.4.3)
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The transformation matrix

[

0.11 0.59 0.30]
M = -0.32 -0.28 0.60 (3.4.4)

. 0.31 -0.52 0.21

that is used to construct the new transmitted signals mL(t), ml(t), andmQ(t) is nonsin­
gular and is inverted at the receiver to recover the primary-color signals mb(t), mg(t)
and mr(t) from mdt), ml(t) and mQ(t).

The signal mL(t) is called the luminance signal. It is assigned a bandwidth of
4.2 MHz and transmitted via VSB AM as in monochrome TV transmission. When this
signal is received by a monochrome receiver, the result is a conventional black-and­
white version of the color image. Thus,compatibility with monochrome TV broadcast­
ing is achieved by transmitting mL (t). There remains the problem of transmitting the
additional.color information that can be used by a color TV receiver to reconstruct the
color image. It is remarkable that the two composite color signals ml(t) and mQ (t) can
be transmitted in the same bandwidth as rnL (t), without interfering with mL (t).

The signals ml(t) and mQ(t) are called chrominance signals and are related to
hue and saturation of colors. It has been determined experimentally, through subjective
tests, that human vision cannot discriminate changes in ml(t) and mQ(t) over short
time intervals and, hence, over small areas of the image. This implies that the high fre­
quency content in the signals ml(t) and mQ(t) can be eliminated without significantly
compromising the quality of the reconstructed image. The end result is that ml(t) is
limited in bandwidth to 1.6 MHz and mQ (t) is limited to 0.6 MHz prior to transmis­
sion. These two signals are quadrature-carrier multiplexed on a subcarrier frequency

Compatible Color Television. The transmission of color information con­
tained in an image can be accomplished by decomposing the colors of pixels into
primary colors and transmitting the electrical signals corresponding to these colors. In
general, all natural colors are well approximated by appropriate mixing of three primary
colors: blue, green, and red. Consequently, if we employ three cameras, one with a blue
filter, one with a green filter, and one with a red filter, and transmit the electrical signals
mb(t), mg(t), andmr(t), generated by the three color cameras that view the color image,

. the received signals can be combined to produce a replica of the original color image.
Such a transmission scheme has two major disadvantages. First, it requires three

times the channel bandwidth of black-and-white television. Second, the transmitted
color TV signal cannot be received by a black-and-white (monochrome) TV receiver.

The NTSC standard adopted in 1953 in the United States avoids these two prob­
lems by transmitting a mixture of the three primary-color signals. Specifically, the three
signals transmitted in the standard 'color TV system are the following three linearly in­
dependent combinations:

mL(t) = a.lImb(t) + 0.59mg(t) + 0.30mr (t)

ml(t) = -0.32mb(t) - a.28mg(t) + 0.60mr (t)

mQ(t) = 0.3Imb(t) - 0.52mg(t) +0.2Imr (t)

Chapter 3Analog Signal Transmission and Reception

Figure 3.49 Block diagram of a black-and-white TV transmitter.

Figure 3.50 Block diagram of a black-and-white TV receiver.
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DC restorer that clamps the blanking pulses and sets the correct dc level. The dc-restored
video signal is then fed to the picture tube. The synchronizing pulses contained in the
received video signal are separated and applied to the horizontal and vertical
generators.
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Figure 3.53 Interlacing of chrominance signals with luminance signals.
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The front end of the color TV receiver is basically the same as that of a mono­
chromereceiver, down to the envelope detector which converts the 6 MHz VSB signal to
baseband. The remaining demultiplexing operations in the color TV receiver are shown
in Figure 3.55. We note that a lowpass filter with bandwidth 4.2 MHz is used to recover
the luminance signal mL(t). The chrominance signals are stripped off by bandpass
filtering and demodulated by the quadrature-carrier demodulator using the output of
a veo thaj is phase locked to the received color-carrier frequency burst transmitted
in each horizontal sweep. The demodulated chrominance signals are lowpass filtered
and, along with the luminance signal, are passed to the "inverse matrix" converter that

Chapter 3

Figure 3.51 Transmission of primary-color signals and multiplexing of
chrominance and luminance signals.
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fsc = fe + 3.579545 MHz, as illustrated in Figure 3.51. The signal mz(t) is passed
through a VSB filter that removes a part 0{ the upper sideband, above 4.2 MHz. The
signal m Q (t) is transmitted by DSB-Se amplitude modulation. Therefore, the compos­
ite video signal may be expressed as .

met) = mLCt) +mQ (t) sin 2rrfsct +m[(t) cos 2rrfsct +m~(t) sin2rrfsct (3.4.5)

The last two terms in (3.4.5) involving mz(t) and m~ (t), constitute the VSB AM signal
for the chrominance m[(t). The composite signal met) is transmitted by VSB plus
carrier in a 6 MHz bandwidth, as shown in Figure 3.52.

The spectrum ofthe luminance signal mL (t) has periodic gaps between harmonics
ofthe horizontal sweep frequency fh, which in colorTV is 4.5 MHz/286. The subcarrier
frequency fse = 3.579545 for transmission of the chrominance signals was chosen
because it corresponds to one ofthese gaps in the spectrum ofmL (t). Specifically, it falls
between the 227 and 228 harmonics of fh. Thus, the chrominance signals are interlaced
in the frequency domain with the luminance signal as illustrated in Figure 3.53. As a
consequence, the effect of the chrominance signal,on the luminance signal mL(t) is
not perceived by the human eye, due to the persistence of human vision. Therefore, the
chrominance signals do not interfere with the demodulation of the luminance signal in
both a monochrome TV receiver and a color TV receiver.

Horizontal and vertical synchronizationpulses are added to m (t) at the transmitter.
In addition, eight cycles of the color subcarrier Ac cos 2rrfsct, called a "color burst," are
superimposed on the trailing edge of the blanking pulses, as shown in Figure 3.54, for
the purpose of providing a signal for subcarrier phase synchronization at the receiver.
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Figure 3.56 Mobile radio system.

Mobile Radio SystemsSection 3.5

telephone user to the terrestrial telephone network. Today, radio-based systems make
it possible for people to communicate via telephone while traveling in airplanes and
motor vehicles. In this section, we will briefly describe the analog cellular telephone
system that provides telephone service to people with hand-held portable telephones
and automobile telephones. Digital cellular systems are studied in Chapter 10.

A major problem with the establishment of any radio communication system is
the availability of a portion ofthe radio spectrum. In the case of radio telephone service,
the Federal Communications Commission (FCC) in the United States has assigned parts
of the UHF frequency band in the range 806-890 MHz for this use. Similar frequency
assignments in the UHF ban.d have been made in Europe and Japan.

The cellular radio concept was adopted as a method for efficient utilization of
the available frequency spectrum, especially in highly populated metropolitan areas
where the demand for mobile telephone services is the greatest. A geographic area is
subdivided into cells, each ofwhich contains a base station, as illustrated in Figure 3.56.
Each base station is connected via telephone lines to a mobile telephone switching office
(MTSO), which in turn is connected via telephone lines to a telephone central office
(CO) of the terrestrial telephone network.

A mobile user communicates via radio with the base station within the cell. The
base station routes the call through the MTSO to another base station if the called party
is located in another cell or to the central office of the terrestrial telephone network if
the called party is not a mobile. Each mobile telephone is identified by its telephone
number and the telephone serial number assigned by the manufacturer. These numbers
are automatically transmitted to the MTSO dming the initialization of the call for
purposes of authentication and billing.

A mobile user initiates a telephone call in the usual manner by keying in the
desired telephone number and pressing the "send" button. The MTSO checks the au­
thentication of the mobile user and assigns an available frequency channel for radio
transmission of the voice signal from the mobile to the base station. The frequency
assignment is sent to the mobile telephone via a supervisory control channel. A second

(3.4.6)
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Figure 3.55 Demultiplexing and demodulation of luminance and chrominance
signals in a color TV receiver.

Signal
from

envelope
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The demand to provide telephone service for people traveling in automobiles, buses,
trains, and airplanes has been steadily increasing over the past three to fQur decades. To
meet this demand, radio transmission systems have been developed that link the mobile

The resulting color signals control the three electron guns that strike corresponding
blue, green, and red picture elements in a color picture tube. Although color picture
tubes are constructed in many different ways, the color mask tube is commonly used in
practice. The face of the picture tube contains a matrix of dots of phosphor of the three
primary colors with three such dots in each group. Behind each dot color group
is a mask with holes, one hole for each group. The three electron guns are aligned
that each gun can excite one of the three types of color dots. Thus, the three types of
color dots are excited simultaneously in different in,tensities to generate color images.

reconstructs the three color signals mb(t), mg(t) and mr(t); i.e.,

[

mbCt)] [1.00
mgCt) = 1.00
mr(t)· 1.00
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(b)

Figure P-3.3

Ca)

-1

Problems

3.1 The message signal mCt) = 2cos400t + 4 sin (500t + !C.) modulates the carrier
signal e(t) =A cos(8000m), using DSB amplitude m~dulation. Find the time
domain and frequency domain representation of the modulated signal and plot
the spectrum (Fourier transform) of the modulated signal. What is the power
content of the modulated signal?

3.2 In a DSB system the carrier is e(t) =A cos 2rrfet and the message signal is given
by met) = sinc(t) + sinc2 (t). Find the frequency domain representation and the
bandwidth of the modulated signal.

3.3 The two signals (a) and (b) shown in Figure P-3.3 DSB modulate a carrier signal
e(t) = A cos 2rrfot. Precisely plot the resulting modulated signals as a function
of time and discuss their differences and similarities.

1 ----

Analog communication systems are treated in numerous books on basic communica­
tion theory, including Sakrison (1968), Shanmugam (1979), Carlson (1986), Stremler
(1990), Ziemer and Tranter (1990), Couch (1993), Gibson (1993), and Haykin (2000).
Implementation of analog communications systems are dealt with in depth in Clarke
and Hess (1971).

3.4 Suppose the signal x (t) = m (t) + cos2rrfet is applied to a nonlinear system
whose output is y (t) = x (t) + 1X2 (t). Determine and sketch the spectrum of

. y (t) when M (f) is as shown in Figure P-3.4 and W « fe.

3.5 The modulating signal

met) = 2cos 4000rrf + 5 cos 6000nf

3.6 FURTHER READING

PROBLEMS

Chapter 3Analog Signal Transmission and Reception130

frequency is assigned for radio transmission from the base station to the mobile user.
The simultaneous transmission between the two parties is calledfull-duplex operation..
The MTSO interfaces with the central office of the telephone network to complete the
connection to the called party. All telephone communications between the MTSO and
the telephone network are by means of wideband trunk lines that carry speech signals
from many users. Upon completion of the telephone call, when the two parties hang
up, the radio channel becomes available for another user.

During the phone call, the MTSO monitors the signal strength of the radio trans­
mission from the mobile user to the base station and, if the signal strength drops below
a preset threshold, th«MTSO views this as an indication that the mobile user is moving
out of the initial cell into a neighboring cell. By communicating with the base stations
of neighboring cells, the MTS0 finds a neighboring cell that receives a stronger signal
and automatically switches, or hands-off, the mobile user to the base station of the
adjacent cell. The switching is performed in a fraction of a second and is generally
transparent to the two parties. When a mobile user is outside of the assigned service
area, the mobile telephone may be placed in a "roam" mode, which allows the mobile
user to initiate and receive telephone calls.

In analog transmission ofvoice-band audio signals via radio, between the base sta­
tion and the mobile user, the 3-kHz wide audio signal is transmitted via PM using a chan­
nel bandwidth of 30 kHz. This represents a bandwidth expansion of approximately a
factor of 10. Such a large bandwidth expansion is necessary to obtain a sufficiently large
signal-to-noise ratio (SNR) at the output ofthe FMdemodulator. However, the use ofFM
is highly wasteful of the radio frequency speGtruriJ.. The new generation of cellular tele­
phone systems discussed in Chapter lOuse digital transmission ofdigitized compressed
speech (at bit rates ofabout 10,000 bps) based on LPC encoding and vector quantization
of the speech-model parameters as described in Chapter 6. With digital transmission,
the cellular telephone system can accommodate a four-fold to tenth-fold increase in the
number of simultaneous users with the same available channel bandwidth.

The cellular radio telephone system is designed such that the transmitter powers
of the base station and the mobile users are sufficiently small, so that signals do not
propagate beyond immediately adjacent cells. This allows for frequencies to be reused
in other cells outside of the immediately adjacent cells. Consequently, by making the
cells smaller and reducing the radiated power, it is possible to increase frequency reuse
and, thus, to increase the bandwidth efficiency and the number ofmobile users. Current
cellular systems employ cells with a radius in the range of 5-18km. The base station
normally transmits at a power level of 35 W or less and the mobile users transmit at a
power level of 3 W or less, approximately. Digital transmission systems are capable of ..
communicating reliably at lower power levels (see <:;hapter 10).

The cellular radio concept is being extended to different types of personal com- •.
munication services using low-power, hand-held radio transmitter and receiver. These
emerging communication services are made possible by rapid advances in the fabrica­
tion of small and powerful integrated circuits that consume very little power and are
relatively inexpensive. As a consequence, we will continue to experience exciting new
developments in the telecommunications industry, well into the twenty-first century.
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set)

set)

u(t) of the BPF is the desired DSB-SC AM signal

£l(t) = met) sin2rcfct

where fe = l/Tp .

Problems

The AM signal

u(t) = 100[1 + met)] cos 2rcfet

is fed to a 50 r.lload.

1. Determine and sketch the spectrum of the AM signal.

2. Determine the average power in the carrier and in the sidebands.

Figure P-3.9

3.10 Show that in generating a DSB-SC signal as in Problem P-3.9, it is not necessary
that the periodic signal be rectangular. This means that any periodic signal with
period Tp can substitute for the rectangular signal in Figure P-3.9.

3.11 The message signal met) has a Fourier transform shown in Figure P-3.11(a).
This signal is applied to the system shown in Figure P-3.11(b) to generate the
signal yet).

1. Plot Y (f), the Fourier transform of yet).

2. Show that if yet) is transmitted, the receiver can pass it through a replica of
the system shown in Figure P-3.11(b) to obtain met) back. This means that
this system can be used as a simple scrambler to enhance communication
privacy.

3.12 Show that in a DSB-modulated signal, the envelope of the resulting bandpass
signal is proportional to the absolute value of the message signal. This means that
an envelope detector can be employed as a DSB demodulator if we know that the
message signal is always positive. .

3.13 An AM signal is generated by modulating the carrier fe = 800 kHz by the signal

met) = sin2000rct + 5cos4000rctt

Chapter 3

f
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Figure P-3.4

Mef)

c(t) = 100 cos 2n:fet

-w

is multiplied by the carrier

where fe = 50 kHz. Determine and sketch the power-spectral density of the DSB
signal.

3.6 A DSB-modulated signal u(t) = Am(t) cos2rcfct is mixed (multiplied) with a
local carrier xdO = cos(2rcfet +e) and the output is passed through a LPF with
a bandwidth equal to the bandwidth of the message m(t). Denoting the power of
the signal at the output of the lowpass filter by Pout and the power of the modulated
signal by Pu, plot t- as a function of efor 0 ::: e ::: rc. .

3.7 An AM signal has the form

u(t) = [20 + 2 cos 3000rct + 10 cos 6000rct] cos 2rcfet

where fe = 105 Hz.

1. Sketch the (voltage) spectrum of u(t).

2. Determine the power in each of the frequency components.

3. Determine the modulation index.

4. Determine the power in the sidebands, the total power, and the ratio of the
sidebands power to the total power.

3.8 Amessagesignalm(t) = cos 2000rct+2 cos 4000rct modulates the carrier c(t) =
100 cos 2rcfct where fe = 1 MHz to produce the DSB signal m(t)c(t).

1. Determine the expression for the upper sideband (USB) signal.

2. Determine and sketch the spectrum of the USB signal.

3.9 A DSB-SC signal is generated by multiplying the message signal met) with the
periodic rectangular waveform shown in Figure P-3.9 and filtering the product
with a bandpass filter tuned to the reciprocal of the period Tp , with bandwidth
2W, where W is the bandwidth of the message signal. Demonstrate that the output
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SSB
signal

fw

cos (21Tlot)

Figure P-3.18

-w

Figure P-3.17

Problems

3.16 A SSB AM signal is generated by modulating an 800-kHz carrier by the signal
met) = cos200011"t + 2 sin 2000Jrt. The amplitude of the carrieris Ae = 100.

1. Determine the signal met).
2. Determine the (time domain) expression for the lower sideband of the SSB

AM signal.

3. Determine the magnitude spectrum of the lower sideband SSB signal.

3.17 Weaver's SSB modulatoris illustrated in Figure P-3 .17. By taking the input signal
as met) = cos 211"fmt, where 1m < W, demonstrate that by proper choice of fI
and 12 the output is a SSB signal.

3.18 The message signal met) whose spectrum is shown in Figure P-3.18 is passed
through the system shown in the same figure.

Chapter 3

f

(b)

(a)

A cos 21T(fc + W)t

M(f)

Figure P-3.ll
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where fe = I :MHz.

1. Determine and sketch the spectrum of the AM signal.

2. Determine the average power in the frequency components.

u(t) = 100m(t) cos 211"fet

The modulated signal is

3. What is the modulation index?

4. What is the peak power delivered to the load?

3.14 The output signal from an AM modulator is

u(t) = 5 cos 1800m + 20 cos 200011" t + 5 cos 220011" t

1. Determine the modulating signal met) and the carrier c(t).

2. Determine the modulation index.
3. Determine the ratio of the power in the sidebands to the power in the carrier.

3.15 A DSB-SC AM signal is modulated by the signal

met) = 2cos 2000m + cos 600011"t

134
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u(t)

VSB signal

BPF
H(f)

Figure P·3.21

H(f)

A cos (2-rrfctJ

4. If an PM signal with kf =60 kHz is used, what is the bandwidth of the
modulated signal?

A vestigial sideband modulation system is shown in Figure P-3.21. The bandwidth
of the message signal m (t) is W and the transfer function of the bandpass filter
is shown in the figure.

1. Determine hl(t) the lowpass equivalent of h(t), where h(t) represents the
impulse response of the bandpass filter.

2. Derive an expression for the modulated signal u (t).

Problems

3.21

3.22 Find expressions for the in-phase and quadrature components, xe(t) and xs(t),
and envelope and phase, V (t) and e (t), for DSB, SSB, Conventional AM, USSB,
LSSB, PM, and PM.

3.23 The normalized signal mn (t) has a bandwidth of 10,000 Hz and its power content
is 0.5 W. The carrier A cos 2TCfot has a power content of 200 W.

1. If mn(t) modulates the carrier using SSB amplitude modulation, what will
be the bandwidth and the power content of the modulated signal?

2. If the modulation scheme is DSB-SC, what will be the answer to part 1?

3. If the modulation scheme is AM with modulation index of 0.6, what will
be the answer to part I?

4. If modulation is FM with k f = 50,000, what will be the answer to part I?

3.24 The message signal met) = 10 sinc(400t)frequency modulates the carrier e(t) =
100 cos 2rrfet. The modulation index is 6.

f

AM signal

u(t)
Linear
filter

Figure P-3.19

Nonlinear yet)
memoryless

system

Analog Signal Transmission and Reception

c(t)=cos (2-rrfot)

M(f)

Figure P·3.20

1. IfUSSB is employed, what is the bandwidth of the modulated signal?

2. If DSB is employed, what is the bandwidth of the modulated signal?

3. If an AM modulation scheme with a = 0.8 is used, what is the bandwidth .
of the modulated signal?

3.20 The signal met) whose Fourier transform M(f) is shown in Figure P-3.20 is
be transmitted from point A to point B. It is known that the signal is no:nn:ali2:ed,
meaning that -1 ::::; m (t) ::::; 1.

The bandpass filter has a bandwidth of 2W centered at fo and the lowpass filte
has a bandwidth of W. Plot the spectra of the signals x(t), Y1 (t), Y2 (t) , Y3(t), an
Y4(t). What are the bandwidths of these signals? '

3.19 The system shown in Figure P-3.19 is used to generate an AM signal.
modulating signal met) has zero mean and its maximum (absolute) value
Am = max Im(t)I. The nonlinear device has a input-output characteristic

yet) = ax(t) + bx2 (t)

1. Express yet) in terms of the modulating signal met) and the carrier e(t)
cos 2TCfet.

2. What is the modulation index?

3. Specify the filter characteristics that yield an AM signal at its output.
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1. Find a relation between kp and kf such that the maximum phase of the
modulated signals in bOh'! cases are equal.

2. If kp = fa = 1, what is the maximum instantaneous frequency in each
case?

1. Write an expression for the modulated signal u(t)?

2. Wbat is the maximum frequency deviation of the modulated signal?

3. Wbat is the power content of the modulated signal?

4. Find the bandwidth of the modulated signal.

3.25 Signal met) is shown in Figure P-3.25. This signal is used once to frequency
modulate a carrier and once to phase modulate the same carrier.

m(t)

139
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O<t<LL- - 2

'ER<t<T,2 - m

5

-5

Figure P-3.30

-1

A cos 2rrfot

Figure P-3.28 Armstrong-type FM Modulator.

necessary to generate an FM signal at a carrier frequency of fe = 104 MHz
and a frequency deviation of f = 75kHz.

2. If the carrier frequency for the wideband FM signal is to be within ±2 Hz,
determine the maximum allowable drift of the 100 kHz oscillator.

m(t)

Problems

3.29 Determine the amplitude and phase of various frequency components of a PM
signal with kp = 1 and met), a periodic signal given by

{
I,

met) =
-1,

Chapter 3
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Figure P-3.25
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3.26 An angle modulated signal has the form

u(t) = 100 cos [2nfet +4sin2000rrt]

where fe = 10 MHz.

1. Determine the average transmitted power.

2. Detennine the peak-phase deviation.

3. Determine the peak-frequency deviation.

4. Is this an FM or a PM signal? Explain.

3.27 Find the smallest value of the modulation index in an FM system that guarantees
that all the modulated signal power is contained in the sidebands and no power
is transmitted at the carrier frequency.

3.28 Wideband FM can be generated by first generating a narrowband FM signal and
then using frequency multiplication to spread the signal bandwidth. Figure P-3.28
illustrates such a scheme, which is called an Armstrong-type FM modulator. The
narrowband FM signal has a maximum angUlar deviation of 0.10 radians in order
to keep distortion under controL

1. If the message signal has a bandwidth of 15 kHz and the output frequency
from the oscillator is 100 kHz, determine the frequency multiplication that is
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met)
Envelope
detector

Figure P-3.36

L C

~
u(t) lOk.fl

Problems

-2 ----------

2 3 4 5 6
-]

met)

2 -----------

1. Show that when the combinedmessage signal mj (t) + Inz(t) DSB modu­
lates a carrier Ae cos 2nfet, the result is the sum of the two DSB amplitude­
modulated signals Uj (t) + uz(t).

2. Show that if m j (t) + mz (t) frequency modulates a carrier, the modulated
signal is not equal to Uj (t) + uz(t).

3.36 An PM discriminatoris shown in Figure P-3.36. The envelope detector is assumed
to be ideal and has an infi~te input impedance. Select the values for Land C
if the discriminator is to be used to demodulate an FlY! signal with a carrier
fe = 80 MHz and a peak-frequency deviation of 6 MHz.

Figure P-3.38

3.37 An angle-modulated signal is given as

u(t) = 100 cos [2000nt + ¢(t)]

where (a) ¢(t) = 5 sin 20m and (b) ¢(t) = 5 cos 20m. Determine and sketch
the amplitude and phase spectra for (a) and (b), and compare the results.

3.38 The message signal met) into an PM modulator with peak-frequency deviation
!d = 25 HzIV is shown in Figure P-3.38. Plot the frequency deviation in Hz and
the phase deviation in radians.

3.39 A message signal met) has a bandwidth of 10 kHz and a peak magnitude Im(t)1
of 1 V. Estimate the bandwidth of the signal u(t) obtained when met) fre­
quency modulates a carrier with a peak frequency deviation of (a) !d = 10 HzIV,
(b) 100 HzIV, and (c) 1000 HzIV.

Chapter 3Analog Signal Transmission and Reception

3.31 The carrier e(t) =100 cos 2nfet is frequency modulated by the signal met) =
5 cos 20000n t, wher~ fe =108 Hz. The peak frequency deviation is 20 kHz.

1. Determine the amplitude and frequency of all signal components that have
a power level of at least 10% of the power of the unmodulated carrier
component.

2. From Carson's rule, determine the approximate bandwidth ofu'1e FM signal.

3.32 The carrier e(t) = A cos 2n 106t is angle modulated (pM or PM) by the sinusoid
signal met) = 2 cos 2000m. The deviation constants are kp = 1.5 radIV andkf =
3000 HzJv.

1. Determine.8J and ,Bp.
2. Determine the bandwidth in each case using Carson's rule.

3. Plot the spectrum of the modulated signal in each case (plot only those
frequency components that lie within the bandwidth derived in part 2.)

4. If the amplitude of met) is decreased by a factor of two, how would
answers to parts 1-3 change?

5. If the frequency of met) is increased by a factor of two, how would your
answers to parts 1-3 change?

3.33 The carrier c(t)=100cos2nlet is phase modulated by the signal met)=:
5 cos 2000m. The PM signal has a peak-phase deviation of n /2. The carrier
frequency is Ie = 108 Hz.

1. Determine the magnitude spectrum ofthe sinusoidal components anl:1 s~,etc;h

the results.

2. Using Carson's rule, determine the approximate bandwidth of the PM signal
and compare the results with the analytical result in part 1.

3.34 An angle-modulated signal has the form

u(t) = 100 cos [2nfct +4sin2nlm t]

where Ie = 10:MHz and 1m = 1000 Hz.

1. Assuming that this is an PM signal, determine the modulation index
transmitted signal bandwidth.

2. Repeat part 1 if 1m is doubled.

3. Assuming that this is a PM signal determine the modulation index and
transmitted signal bandwidth.

4. Repeat part 3 if 1m is doubled.

3.35 It is easy to demonstrate that amplitude modulation satisfies the sUjJerpm:itieJD
principle, whereas angle modulation does not. To be specific, let m] (t) and
be two message signals, and let Uj (t) and uz(t) be the corresponding mCldulatc:d
versions.
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3.41 The message signal mi (t) is shown inFigure P-3.41.

143

I3000o

. Figure P-3.42

-3000

Problems

3. Ifmz (t) is frequency modulated with k1= 103 HzIV, what is the maximum
instantaneous frequency of the modulated signal? What is the bandwidth of
the modulated signal?

3.42 We wish to transmit 60 voice-band signals by SSB (upper sideband) modulation
and frequency-division multiplexing (FDM). Each ofthe 60 signals has a spectrum
as shown in Figure P-3.42. Note that the voice-band signal is band limited to
3 kHz. If each signal is frequency translated separately, we require a frequency
syntI:esiz~r thatproduces 60 carrier ~equencies to perform the frequency-division
multiplexmg. On the other band, if we subdivide the channels into L groups of K
subchannels each, such that L K = 60, we may reduce the number of frequencies
from the synthesizer to L + K.

1. Illustrate the spectrum of the SSB signals in a group of K subchanne1s.
Assume that a 1 kHz guard band separates the signals in adjacent fre­
quency subchannels and that the carrier frequencies are fel = 10kHz, fe, =
14 kHz, ... , etc. -

2. Sketch Land K such that LK = 60 and L + K is a minimum.

3. Determine the frequencies of the carriers if the 60 FDM signals occupy the
frequency band 300 kHz to 540 kHz, and each group of K signals occupies
the band 10 kHz to (10 + 4K) kHz.

3.43 A superheterodyne PM receiver operates in the frequency range of 88-108 MHz.
The IF~d local oscillator frequencies are chosen such that ffF < !L o. We require
that the Image frequency f~ fall outside of the 88-108 MHz region. Determine
the minimum required ffF and the range of variations in fLO?

Chapter 3
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o

Figure P·3.40

and the message signal Tnz (t) = sinc(2 x 104t ), in volts again.

1. If Tn! (t) is frequency modulated on a carrier with frequency 106 Hz with a
frequency deviation constant (kf) equal to 5 HzN, what is the maximum
instantaneous frequency of the modulated signal?

2. IfTn! (t) is phase modulated with phase-deviation constant kp = 3 radiansIV;
what is the maximum instantaneous frequency of the modulated signal?
What is the minimum instantaneous frequency of the modulated signal?

BPF
FM

~ demodulator u(t) -..J 62Hz f- .~
Ie = ZOOOHz

1 r---,kf = 10
I I

zooo I

3.40 The modulating signal into an PM modulator is

met) = 10 cos 161!t

The output of the FM modulator is

u(t) = 10 cos [4001!t +21!kf [co m (r) dr]

where kf =10. If the output of the FM modulator is passed L.J.rrough an ideal BPF
centered at fe = 2000 with a bandwidth of 62 Hi, determine the power of the fre­
quency components at the output ofthe filter (see Figlire P-3.40). Whatpercentage
of the transmitter power appears at the output of the BPF?
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Conditional Probability. Let us assume that the two events E) and E2 are
defined on the same probability space with corresponding probabilities P (E)) and
P(E2)· Then, if an observer receives the info=ation that the event Ez has in fact

reason, cannot be predicted with certainty. Flipping a coin, throwing a die, and drawing
a card from a deck ofcards are examples ofrandom experiments. What is common in all
these cases is that the result (or outcome) ofthe experiment is uncertain. A random exper­
iment has certain outcomes that are the elementary results of the experiment. In flipping
of a coin, "head" and "tail" are the possible outcomes. In throwing a die 1, 2, 3,4,5,6 are
the possible outcomes. The set of all possible outcomes is called the sample space and
denoted by n. Outcomes are denoted by w's and certainly each w lies in n, Le., WEn.

A sample space is discrete if the number of its elements are finite or countably
infinite, otherwise it is a nondiscrete sample space. All the random experiments given
above have discrete sample spaces. If one chooses randomly a number between 0 and
1, then the sample space corresponding to thj.s random experiment is nondiscrete.

Events are subsets of the sample space for which a probability can be defined
(as will be defined in the next paragraph). For discrete sample spaces, any subset of
the sample space is an event, that is, a probability can be defined for it. For instance,
in throwing a die various events such as "the outcome is even," "the outcome is greater
than 3," and "the outcome divides 3" can be considered. For a nondiscrete sample space,
not every subset of n can be assigned a probability without sacrificing basic intuitive
properties ofprobability. To overcome this difficulty, we define a ()-field \!J3 on the sample
space n as a collection of subsets of n such that the following conditions are satisfied:

1. n E \!J3.

2. If the subset (event) E E \!J3 then E C E \!J3 where E C denotes the complement of E.
3. If Ei E \!J3 for all i, then u~)E i E \!J3.

We define a probability measure P on \!J3 as a set function assigning nonnegative
values to all events E in QI,l such that the following conditions are satisfied:

1. 0:::: pee) :::: lfor all E E QI,l.

2. pen) = 1.

3. For disjoint events E), Ez, E3 , ... (i.e., events for which Ei n E j = 0 for all
i =f:. j, where 0 is the null set), we have P(U~)Ei ) = Z~l P(EJ.

The triple (n, QI,l, P) is called a probability space.
Some basic properties of the probability measure follow easily froJIl the set the­

oretical properties of events together with the basic properties of probability measure.
We list some of the most important properties here.

1. P(EC
) = 1 - peE).

2. P(0) = O.

3. peEl U Ez) = peEl) + P(Ez) - peEl n Ez).

4. If E) C E2 then peEl) :::: P(Ez).
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Random Processes

1bis chapter is devoted to the study of random processes and their properties. Random
processes provide good models for both info=ation sources and noise. When a signal
is transmitted through a communication channel there are two types of imperfections
that cause the received signal to be different from the transmitted signal. One class
of imperfections are deterministic in nature, such as linear and nonlinear distortion,
intersymbol interference, etc. The second class is nondete=inistic (such as addition of
noise, multipath fading, etc.). For a quantitative study of these phenomena we model
them as random processes.

The info=ation that is to be transmitted is also, by its nature, best modeled as a
random process. This is due to the fact that any signal that conveys info=ation must
have some uncertainty in it, otherwise its transmission is of no interest. We will explore
this aspect later in greater detail in Chapter 6. In this chapter, after a brief review of the
basics ofprobability theory and random variables, we intr<Jduce the concept ofa random
process and the basic tools used in the mathematical analysis of random processes.

4.1 PROBABILITY AND RANDOM VARIABLES

In this section we give a brief review of some ba;sics of probability theory that are
needed for our treatment of random processes. It is assumed throughout that the reader
has already been exposed to probability theory elsewhere and, therefore, our treatment
in this section will be brief.

Probability Space. The fundamental concept in any probabilistic model is the
concept of a random experiment, which is any experiment whose outcome, for some

144

Section 4.1 Probability and Random Variables 145

?

7'



A = {The outcome is greater than 3}
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Figure 4.1 Random variable as a
mapping from Q to RR

Probability and Random VariablesSection 4.1

d
fxex) = dx Fxex)

which can be simply written as

Fx(x) = pew E Q : X(w) S x)

Fx(x) = P(X s x)

Random Variables. A (real) random variable is a mapping from the sample
space Q to the set ofreal numbers. A schematic diagram representing a random variable
is given in Figure 4.1.

Random variables are denoted by capital letters X, Y, etc.; individual values of
the random variable X are X (w). A random variable is discrete if the rancre of its values
is either finite or countably infinite. This range is usually denoted by {x~}.

The cumulative distributionfunction (CDF) of a random variable X is defined as

and has the following properties:

1. 0 S Fx(x) s 1.
2. Fx(x) isnondecreasing.

3. limx->_oo Fx(x) = °and limx->+oo Fx(x) = 1.
4. Fx(x) is continuous from the right; i.e., limE!o F(x + E) = F(x).

5. Pea < X s b) = Fx(b) - Fx(a).

6. P(X = a) = Fx(a) - Fx(a-).

For discrete random variables Fx(x) is a stair-case function. A random variable is
called continuous if Fx(x) is a continuous function. A random variable is called mixed
if it is neither discrete nor continuous. Examples of CDFs for discrete, continuous, and
mixed random variables are shown in Figures 4.2, 4.3, and 4.4, respectively.

The probability density function (PDF) of a random variable X is defined as the
derivative of Fx(x); i.e.,

(4.1.3)

(4.1.2)

(4.1.1)

Chapter 4Random Processes

B = {The outcome is even}

PCB) = P(2) + P(4) + P(6) = k

peA) = P(4) + peS) + P(6) = k

P(E;lA) = ,\,n P(E.)P(AIE)
LJ]=I] ]

IS

In this case,

The probability of

is

Bayes rule gives the conditional probabilities P (E; IA) by the following relation

P(E;)P(AIE;)

Ui'=IEi = Q

E; n Ej = 0 for all 1 S i, j S nand i =I j

then, iffor an event A we have the conditional probabilities (P(AIE;)};'=I, peA) can
be obtained by applying the total probability theorem stated as

n

peA) = ~ P(Ei)P(AIE;)
;=1

occurred, the observer's probability about event E1 will not be P(E1) any more. In fact,
the info=ation that the observer received changes the probabilities of various events,
and new probabilities, called conditional probabilities, are defined. The conditional
probability of the event El given the event Ez is defined by

{

p(E,nE,) . P(E)"'! °
P(ElIEz) = P(E,)- , Z J

0, otherwise

If it happens that P(ElIEz) =P(E1) then knowledge of E2 does not change the prob­
ability of occurrence of E 1 • In this case, the events Eland Ez are said to be statistically
independent. For statistically independent events, P(EI n E2) = P(E1)P(E2).

Example 4.1.1
In throwing a fair die, the probability of

p(AnB) P(4) + P(6) 2
P(AIB) = PCB) = k = '3

lithe events {Eili=1 make a partition of the sample space Q; i.e., if the following

two conditions are satisfied
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O~k~n

otherwise

a<x<b

otherwise
fx(x) ={ b~a'

. 0,

{
(n) k(1 )n-k

P(X = k) = k P - P ,
0,

Probability and Random Variables

The Gaussian random variable is the most important and frequently encountered random
variable in communications. The reason is that thermal noise, which is the major source
of noise in communication systems, has a Gaussian distribution. The properties of
Gaussian noise will be investigated in more detail later in Section 4.4.2. Graphs of the
PDFs and PMFs of the above random variables are given in Figures 4.5-4.8.

Bernoulli Random Variable. This is a discrete random variable taking two
values one and zero with probabilities P and I - p. A Bernoulli random variable is
a good model for a binary data generator. Also, when binary data is transmitted over
a communication channel, some bits are received in error. We can model an error by
modulo-2 addition of a1 to the input bit, thus changing a 0 into a 1 and a 1 into
a O. Therefore, a Bernoulli random variable can be employed to model the channel
errors.

Gaussian or Normal Random Variable. This is a continuous random variable
described by the density function

BinomialRandom Variable. This is a discrete random variable giving the num­
ber of l's in a sequence of n independent Bernoulli trials. The PMF is given by

Section 4.1

Uniform Random Variable. This is a continuous random variable taking values
between a and b with equal probabilities over intervals of equal length. The density
function is given by

Important Random Variables. The most commonly used random variables
in communications are:

This random variable models, for example, the total number of bits received in error
when a sequence of n bits is transmitted over a channel with bit-error probability
of p.

This is a model for continuous random variables whose range is known, but nothing else
is known about the likelihood of various values that the random variable can assume.
For example, when the phase of a sinusoid is random it is usually modeled as a uniform
random variable between 0 and 2n.

Chapter 4Random Processes

--------------------

-------+1-------------
r

~---------_.

Fx(x)

In case of discrete or mixed random variables, the PDF involves impulses. The basic
properties of PDF are listed here:

1. fx(x) 2: O.
2. J~co fx(x) dx = 1.

3. J:: fx(x) dx = Pea < X ~ b).

4. In general, P(X E A) = JA fx(x) dx.

J
x+

5. Fx(x) = -co fx(U) duo

For discrete random variables, it is more commonto define thep~obabilitymas~function
(PMF), which is defined as {pd where Pi = P(X = Xi)' ObVIously for all r we have

Pi 2: 0 and L:i Pi = 1.

+1

I

..-J
I

r-J

Fx(x)
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FX(x)

~ Figure 4.4 The CDF for a mixed
===-------L-------------->:;:x random variable.

Figure 4.3 The CDP for a continuous
=--------l--------------->:;:x random variable.



The CDP for the Gaussian random variable with m = 0 and er = 1 is denoted by

¢ (x) and given by

151

(4.1.4)

(4.1.5)

(4.1.6)

(4.1.8)

(4.1.9)for all x 2: 0

for all x 2: 0

Q(-x) = 1 - Q(x)

Q(O) = ~

Q(oo) = 0

m

Probability and Random VariablesSection 4.1

Table 4.1 gives the values of this function for various values of x.
There exist certain bounds on the Q function that are widely used to find bounds

on error probability of various communication systems. These bounds are investigated
in the problems at the end of this chapter. The two mostly used upper bounds are

1 "Q(x) ::::: 2"e-T for all x 2: 0 (4.1.7)

I,'
Q(x) < --e-T

..fii(x .
The frequently used lower bound is

1 ( 1) .,'Q(x) > -- I - - e- T
.j2iix x2

A plot of Q(x) and these bounds is given in Figure 4.9.
A Gaussian variable can be described in terms of its two parameters m and er

by H(m, er2 ). For this random variable a simple change of variable in the integral that
computes P(X > x) results in P(X > x) = Q(x~m). This gives the so-called tail
probability in a Gaussian random variable.

and

A closely related function is Q(x) = 1 - ¢ (x) giving P (X > x). This function is well
tabulated and frequently used in communications. It is easy to see that Q(x) satisfies
the following relations:

1
V27f0"2

ix(x)

Chapter 4

12 x10

Random Processes

8

Figure 4.7 The PDF for the uniform
x random variable.

Figure 4.5 The PMF for the Bernoulli
x random variable.

6

f

j x 1 "
¢(x) = P(X ::::: x) = --e-T dt

-co~

Figure 4.6 The PMF for the binomial random variable.
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(4.1.12)

From the above example, we arrive at the important conclusion that a linear function
ofa Gaussian random variable is itselfa Gaussian random variable.

Statistical Averages. The expected value of the random variable X is de­
fined as

For discrete random variables, these equations become

E(X) = LXiP(X = Xi)

E(X) =I: xfx(x) dx

and is usually denoted by mx. The expected value of a random variable is a measure of
the average of the value that the random variable takes in a large number ofexperiments.

In general, the nth moment of a random variable X is defined as

(n) ~100

nf ( ) dm x - x x x x
-00

The expected value of Y = g(X) is

E(g(X)) = I: g(x)fx(x) dx

x

Figure 4.9 Bounds on Q-function.
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TABLE 4.1 TABLE OF Q(x) VALUES Functions of a Random Variable. A function ofa random variable Y = g(X)

Q(x) Q(x) Q(x)
is itself a random variable. To find its CDF we can use the definition of the CDF to

x x x
obtain

0 5.000000e-O1 2.4 8.197534e-03 4.8 7.933274e-07
Fy(y) = P(w E Q : g(X(w)) :::: x)0.1 4.601722e-01 2.5 6.209665e-03 4.9 4.791830e-07

0.2 4.207403e-01 2.6 4.66118ge-03 5.0 2.866516e-07 In the special case that, for all y, the equation g (x) = y has a countable number of
0.3 3.820886e-01 2.7 3.466973e-03 5.1 1.698268e-07
0.4 3.445783e-01 2.8 2.55513le-03 5.2 9.964437e-06 solutions {xd and, for all these solutions g'(Xi) exists and is nonzero, we can use the

0.5 3.085375e-01 2.9 1.865812e-03 5.3 5.790128e-08 following relation to find the PDF of the random variable Y = g(X).
0.6 2.742531e-01 3.0 1.349898e-03 5.4 3.332043e-08 L fX(Xi)0.7 2.419637e-01 3.1 9.676035e-04 5.5 1.898956e-08

fy(y) = . Ig'(Xi) I (4.1.10)
0.8 2.118554e-O1 3.2 6.871378e-04 5.6 1.071760e-08
0.9 1.840601e-O1 3.3 4.834242e-04 5.7 5.990378e-09

z

1.0 1.586553e-01 3.4 3.369291e-04 5.8 3.315742e-09 Example 4.1.2

1.1 1.356661e-01 3.5 2.326291e-04 5.9 1.817507e-09 Assuming X is a Gaussian random variable with m = 0 and cr = 1, find the probability
1.2 1.150697e-01 3.6 1.591086e-04 6.0 9.865876e-10 density function of the random variable Y given by Y = aX + b.
1.3 9.68004ge-02 3.7 1.077997e-04 6.1 5.303426e-10

Solution In this case g(x) = ax +b, therefore g'(x) = a. The equation ax +b = y has1.4 8.075666e-02 3.8 7.234806e-05 6.2 2.823161e-1O
1.5 6.680720e-02 3.9 4.809633e-05 6.3 1.488226e-10 only one solution given by Xl = Y;b. Using these results, we obtain

1.6 5.47992ge-02 4.0 3.167124e-05 6.4 7.768843e-ll
f ( ) = fx(y:!-)1.7 4.456546e-02 4.1 2.065752e-05 6.5 4.016001e-ll

1.8 3.593032e-02 4.2 1.334576e-05 6.6 2.055790e-11 Y y lal
1.9 2.871656e-02 4.3 8.539898e-06 6.7 1.04209ge-ll 1 _ (,-bl'
2.0 2.275013e-02 4.4 5.412542e-06 6.8 5.230951e-12 = --e 2;2 (4.1.11)
2.1 1.786442e-02 4.5 3.397673e-06 6.9 2.600125e-12 .J2rra2

2.2 l.390345e-02 4.6 \ 2.112456e-06 7.0 1.279813e-12
2.3 1.072411e-02 4.7 l.39080ge-06 It is observed that Y is a Gaussian random variable N(b, a2).

. ,
, .~
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Fx,y(x, y) = P(w E Q : X(w) :s X, Yew) :s y)

Multiple Random Variables. Let X and Y be two random variables defined
on the same sample space Q. For these two random variables, we can define the joint
CDFas .

In the special case where g(X) = (X - E(X»)2, E(Y) is called the variance of
X, which is a measure of spread of the density function of X. The variance is denoted
bya1 and its square root, ax, is called the standard deviation. The relation for the
variance can be written as a1 = E(X2) - (E(X)2. For any constant c, the following
hold:

1. E(cX) = cE(X).

2. E(c) = c.

3. E(X +c) = E(X) +c.

It is also easy to verify the following properties of the variance

1. VAR(cX) = c2VAR(X).

2. VAR(c) = O.
3. VAR(X + c) = VAR(X).
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Fx,y(x, y) = P(X :s x, Y :s y)

Probability and Random Variables

and the joint PDF as

Section 4.1

or simply as

Ix,y(x, y) = Ix(x)fy(y)

The expected value of g(X, Y), where g(X, Y) is any function of X and Y, is obtained
from

a2

Ix,y(x, y) = &x&y Fx,y(x, y)

The following relations summarize the basic properties of the joint and marginal CDFs
andPDFs.

1. h(x) = Fx,y(x, 00).

2. Fy(y) = Fx,y(oo, y).

3. Ix(x) = J~oo Ix,y(x, y) dy.

4. fy(y) = f~oo Ix,y(x, y) dx:

5. f~ooJ~oo Ix,y(x, y) dx dy = 1.

6. P«X, Y) E A) = fJ(x,y)EAlx,y(x, y) dx dy.

7. Fx,y(x, y) = f~oo J!.oo Ix,y(u, v) du dv.

The conditional PDF of the random variable Y, given that the value ofthe random
variable X is equal to x, is denoted by IYlx(Ylx) and defined as

I ( I) {
fXlxi:{), Ix(x) =I 0

YlX Y X =
0, otherwise

If it happens that the density function after knowledge of Xis the same as the density
function before the knowledge ofX, then the random variables are said to be statistically
independent. For statistically independent random variables,

E(g(X, Y) = 1:1: g(x,Y)/X,y(x,y)dxdy

In the special case where g(X, Y) = XY, we obtain E(XY), which is called the cor­
relation of X and Y. In the case where g(X, Y) = (X - mx)(Y - my), we obtain
E(XY) - mXmy, which is called the covariance of X and Y. Note that if X = Y,
then COV(X, Y) = VAR(X). The normalized version of the covariance, called the
correlation coefficient, is denoted by PX,y and is defined as

COV(X, Y)
PX,y =

(5x(5y

Using the Cauchy-Schwarz inequality (see Problem 2.9), it can be shown that Ipx,y I :s 1
and P=± 1 indicates a first order relationship between X and Y; i.e., a relation of the
form Y = aX +b. The case P = 1 corresponds to a positive a and P = -1 corresponds

(4.1.14)

(4.1.15)

Chapter 4Random Processes

)"vm- 1/2a2
= e 2

E(g(X));'" 2:g(Xi)P(X = Xi)

JOO [ 1 _«_",)2 ] .
Wx(v) = ---e-,;r eJvx dx

-00 .)2Jra2

Characteristic Functions. The characteristic function of a random variable
X is denoted by Wx(v) and defined as

def [00 .
Wx(v) = Loo Ix (x)e)VX dx (4.1.13)

As it is observed from Equation (4.1.13), the characteristic function ofa random variable
is closely related to the Fourier transform of its density function. The characteristic
function of a random variable provides a simple way to find its various moments. This
can be easily shown by using the moments property of the Fourier transform. To obtain
the nth moment of the random variable X, we can use the relation

0) 1 d
n Imx = --:;;-nWx(v)

} dv v=o

The characteristic function of a Gaussian random variable with mean m and variance
a2 is given by

and
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is nonzero, then, we have
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(4.1.18)

(4.1.19)

(4.1.20)

(4.1.22)

(4.1.23)

(4.1.24)

(4.1.25)

v ~ 0, a .:::: B < 2rr

jdetJ(x, Y)I = ~
. Vx2 + y2

1

Probability and Random Variables

matrix is given by

v

lex, y) = [:!X~t2 -I;;+Y2]
" .;r2+y2 .x 2+y2

The determinant ofthe Jacobian matrix can be easily determined to be equal to

1

The set of equations

{
-Ix2 +y2=V

. arctan l = B
x

has only one solution given by

To derive the marginal PDFs for the magnitude and the phase, we have to integrate the
joint PDF. To obtain the PDF of the phase, we have

fs(B) =100

iv,s(v, e) dv

11OOv
,2= - -e-;;Y dv

2rr a ".2

1 _~ 00

= 2rr [-e 2.
2 ]0

{

X = vcosB
y = v sinB (4.1.21)

Substituting these results into (4.1.16), we obtain the joint PDF of the magnitude and the
phase as .

fv,s(v, B) = VfX,y(vcosB, v sine)

Hence, the phase is uniformly distributed on [0, 2rr). To obtain the marginal PDF for the
magnitude, we have

fv(v) =127r

fV,s(v,B)de

v "= 2e-i;f, v::: 0
".

For negative v, of course, fv(v) = O. Therefore,

iv(v) = { -;,e-ilr, v ~ a
0, v < a

Section 4.1

(4.1.17)

(4.1.16)
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ix.y(x, y) == ix(x)jy(y)

1 _t 2+y2
= --e- 2(12

2rra2

The magnitude of the point with coordinates (X, Y) in the polar plane is given by V =
..jX2 + y2, and its phase is given by e = arctan ~. We begin by deriving the joint PDF
of V and e. In this case, g(X, Y) = -IX2 + y2 and heX, Y) = arctan ~"The Jacobian

lex, y) = [t
ax

" I(Xi, Yi)
!z.w(z, w) = L...J Id tJ(· .)J

i e X" Y,

where det 1 denotes the determinant of the matrix l.
Example 4.1.3

The two random variables X and Y are independent and identically distributed, each with
a Gaussian density function with mean equal to zero and variance equal to a 2 • If these
two random variables denote the coordinates of a point in the plane, find the probability
density function of the magnitude and the phase of that point in polar coordinates.

Solution First we have to find the jointPDF ofX' and Y. Since X and Y are independent,
their joiut PDF is the product of their marginal PDFs; i.e.,

to a negative a. Also, it is easy to verify that if X and Y are independent, then
COV(X, Y) = PX,Y = O. That is, independence implies lack of correlation (p = 0). It
should be noted that lack of correlation does not in general imply independence. That
is, p might be zero and the random variables may still be statistically dependent.

Some properties of the expected value and variance applied to multiple random
variables are listed below:

1. E(Li CiXi) = Ci L E(Xi).

2. VAR(Li CiXi) = Li c~VAR(Xi)+ Li LNi CiCjCOV(Xi, Xj).

where Ci'S are constants.

Multiple Functions of Multiple Random Variables. Ifwe define two func­
tions of the random variables X and Y by

{
z = g(X, y)

W = heX, Y)

then the joint CDF and PDF of Z and W can be obtained directly by applying the
definition of the CDF. However, if it happens that for all z and w the set of equations

{
g(X, y) = z
h(x,y)=w

has a countable number of solutions {Xi, Yi}, and at these points the determinant of the
Jacobian matrix
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Jointly Gaussian Random Variables. Jointly Gaussian or binonnal random
variables X and Y are defined by the joint density function

1. { 1
fx,Y(x, y) = 2 ~2 exp 2(1 2)

rr:r5]C52V 1 - p- - p

[
CX - mj)2 (y - m2)2 _ 2p(x - mj)(Y - m2)] }

x 2 + 2
O"j 0"2 O"j0"2

Vlhen the two random variables X and Y are distributed according to a binormal distri­
bution, not only X and Yare themselves normal random variables, but the conditional
densities f(xly) and f(ylx) are also Gaussian. This property is the main difference
between jointly Gaussian random variables and two random variables each having a
Gaussian distribution. Also, it is straightforward to show that if X and Yare jointly
Gaussian, X is Gaussian with mean mj and variance at, Y is Gaussian with mean m2
and variance a{ and the correlation coefficient between X and Y is p.

The definition of two jointly Gaussian random variables can be extended to n ran­
dom variables Xj, X2, X 3 , ... , X I1 • If we define the random vector X = (Xl, X2, ... ,
X n), and the vector of the means m = (ml:mz, ... , mn), and the n x n covariance
matrix C such that Ci,j = COV(Xi, X j ), then the random variables {Xd are jointly
Gaussian if

I { 1 -1 t}f(XI, X2, ... , x n ) = . exp --(x - m)C (x - m)
.j(2rr)n det(C) 2

Here are the main properties of jointly Gaussian random variables:

1. Ifn random variables are jointly Gaussian, any subset of them is also distributed
according to a jointly Gaussian distribution of the appropriate size. In particular,
all individual random variables are Gaussian.

2. Jointly Gaussian random variables are completely characterized by their mean
vector m and covariance matrix C. These so-called second-order properties com­
pletely describe the random variables.

3. Any subset of the jointly Gaussian random variables conditioned on any other
subset of the original random variables makes a jointly Gaussian distribution of
the appropriate size.

4. Any set oflinear combinations of (Xl, X2 , ... , Xn ) is itself jointly Gaussian. In
particular, any linear combination of Xi'S is a Gaussian random variable.

5. Two uncorrelated jointly Gaussian random variables are independent. Therefore,
for jointly Gaussian random variables, independence and uncorrelatedness are

This PDF is known as the Rayleigh probability density function and has widespread
applications in the study of the fading in communication channels. It is also interesting to
note that, in Example 4.1.3

and, therefore, the magnitude and the phase are independent random variables.

159Random Processes: Basic ConceptsSection 4.2

equivalent. As we have seen before, this is not true in general for non-Gaussian
random variables.

A random process is a natural extension ofllie concept ofrandom variable when dealing
with signals. In analyzing communication systems we are basically dealing with time­
varying signals. In our development so far, we have assumed that all the signals are
deterministic. In many situations the deterministic assumption on time-varying signals
is not a valid assumption, and it is more appropriate to model signals as random rather
than deterministic functions. One such example is the case ofthermal noise in electronic
circuits. This type of noise is due to the random movement of electrons as a result of
thermal agitation and, therefore, the resulting curreI+t and voltage can only be described
statistically. Another example is the reflection of radio waves from different layers of
the ionosphere that makes long-range broadcasting of short-wave radio possible. Due
to randomness of this reflection, the received signal can again be modeled as a random
signal. These two examples show that random signals are suitable for description of
certain phenomena in signal transmission.

Another situation where modeling by random processes proves useful is in the
characterization ofinformation sources. An information source, such as a speech source,

Sums of Random Variables. Ifwe have a sequence-ofrandom variables (Xl,
X2 , •.• , X I1 ), with basically the same properties, then the behavior of the average

. Y = ~ L7=j Xi is expected to be "less random" than each Xi' The law oflarge numbers
and the central limit theorem are precise statements of this intuitive fact.

The weak law of large numbers (WUN) states that if the random variables
Xl, X 2 , •.. , XI1 are uncorrelated with the same mean mx and variance ai < co,
thenfor any E > 0, limn->oo P(IY -mxl > E) = 0, where Y = ~ L7=1 Xi' This means
that the average converges (in probability) to the expected value.

The central limit theorem not only states the convergence of the average to the
mean but also gives some insight into the distribution ofthe average. This theorem states
that if (Xl, X2, ... , X,,) are independent with means (mj, m2, ... , mn) and variances
(O"t, a{, ... , a;), th~n the CDF of ~e ran~om variable ..In Lf=l Xi;,m i converges to
the CDF ofa GaussIan random vanable WIth mean 0 and vanance 1. In the special
case that the Xi'S are independent and identically distributed (Li.d.) this theorem says
that the CDF of Y = ~ L7=1 Xi converges to the CDF of a H(m, ~). Note that,
although from the central limit theorem we can conclude that the average converges
to the expected value, we cannot say that the law of large numbers follows from the
central limit theorem. This is because the requirements for the central limit theorem
to hold are much stronger. For the centrallirnit theorem to hold, we need the random
variables to be independent, whereas the law of large numbers holds under the less
restrictive condition of uncorrelatedness of the random variables.

This concludes our briefreview of the basics of the probability theory. References
at the end of this chapter provide sources for further study.

4.2 RANDOM PROCESSES: BASIC CONCEPTS

(4.1.26)
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and a bridge that connects the concept ofa random process to the more familiar concept
of a random variable. In other words, at any time instant the value ofa random process
constitutes a random variable.

Alternatively, we may view the random signal aU}, t2, ... , orin general, alIt E JR
as a collection of random variables {X(t]), X(t2),.' .}, or in general, (XCt), t E JR}.
From this viewpoint, a random process is represented as a collection ofrandom variables
indexed by some index set (e.g., JR in the latter case). If the index set is the set ofreal
numbers, the random process is called a continuous-time random process, and if it is
the set of all integers, then the random process is a discrete-time random process. A
discrete-time random process is nothing but a sequence of random variables {Xi} t,cx:..oo '

This second view of random processes, although less intuitive, is more appropriate for
precise mathematical development of the theory of random processes.

Example 4.2.1
Let (Q, 03, P) denote the probability space corresponding to the random experiment of
throwing a die. Obviously, in this case Q = [1,2,3,4,5,6). For all Wi, let x(t; cr.>il =
cr.>je-fu_I(t) denote a random process. Then XCI) is a random variable taking values
e-1, 2e- 1, ••• ,6e- 1 each with probability t. Sample functions of this random process
are shown in Figure 4.11. For this example, the first viewpoint of random processes is the
preferred view.

Figure 4.11 Sample functions of Example 4.2.1.

Chapter 4Random Processes

Figure 4.10 Sample functions of a
random process.
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generates time-varying signals whose contents are not known in advance, otherwise
there would be no need to transmit them. Therefore, random processes provide a natural
way to model information sources as well.

A random process, a stochastic process, or a random signal can be viewed in two
different, although closely related, ways. One way is to view a random process as a
collection of time functions, or signals, corresponding to various outcomes of a random
experiment. From this viewpoint, corresponding to each outcome Wi in a probability
space (~, 03, P), there exists a signal x(t; wJ. Tbis description is very similar to the
description of random variables in which a real number is assigned to each outcome
Wi. Figure 4.10 depicts tills characterization of random processes. Thus, for each Wi,

there exists a deterministic time function x(t; Wi), wbich is called a sample function,
or a realization of the random process. The collection of all sample functions is called
an ensemble.

At each time instant to, and for each Wi E S1, we have the number X (to; Wi). For
the different Wi'S at a fixed time to, the numbers x (to; Wi), constitute a random variable
denoted by X (to). After all, a random variable is notillng but an assignment of real
numbers to the outcomes of a random experiment. This is a very important observation



If the complete statistical description of the process is given, for any n the joint density
function of (X(t]), X(tz),·.·, X (tn)) is given by fX(t,),X(t2), ... ,X(t,) (XI , Xz,·.·, xn)·
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Figure 4.12 Samples of the random process given in Example 4.2.3.
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Example 4.2.4
The process X(t) is defined by XU) = X, where X is a random variable uniformly
distributed on [-1, l]. In this case again, an analytic description of the random process is
given. For this random process, each sample is a constant signal. Samples of this process
are shown in Figure 4.13.

This is a complete statistical description of the random process X(I). A sample of this
process is shown in Figure 4.14.

Example 4.2.5
The process X (t), t > 0, is defined by the property that for any n and any (tl, t2, ... ,t,,) E

lE!.+", the joint density function of {X (Ij) li'=1 is a jointly Gaussian vector with mean 0 and
covariance matrix described by

Note that in the last example, although a complete statistical description of the
process is given, little insight can be obtained in the shape of each realization of the
process.

Random Processes162

4.2.1 Description of Random Processes

Based on the adopted viewpoint, there are two types ofdescriptions possible for random
processes. If the random process is viewed as a collection of signals, the analytic
description may be appropriate. In this description, analytic expressions are given for
each sample in terms of one or more random variables; i.e., the random process is
given as X (t) = f(t; 8). where e = (e], ez, ... ,en) is, in general, a random vector
with a given joint PDF. This is a very informative description of a random process
because it completely describes the analytic form of various realizations of the process..
For real-life processes, it is hardly possible to give such a complete description. If an
analytic description is not possible, a statistical description may be appropriate. Such
a description is based on the second viewpoint of random processes, regarding them as
a collection of random variables indexed by some index set.

Definition 4.2.1. A complete statistical description of a random process X(t)
is known if for any integer n and any choice of (tl, tz, ... ,tn) E jRn the joint PDF of
(X (tl), X (t2), ... , X (tn)) is given.

Example 4.2.2
Let Wi denote the outcome of a random experiment consisting of independent drawings
from a Gaussian random variable distributed according to .N(O, 1). Let the discrete-time
random process (Xn}~o be defined by: Xo = °and X n = X"-l + w" for all n :::: 1.
It follows from the basic properties of the Gaussian random variables that for all i ::: I,
j ::: 1, and i < j, (X"l{ is a j - i + 1 dimensional Gaussian vector. For this example the
second view; i.e., interpreting the random process as a collection of random variables, is
more appropriate.

Definition 4.2.2. A process X(t) is described by its Mth order statistics if for
all n :::: M and all (tl, t2, ... ,tn) E Rn the joint PDF of (X(t]), X (t2), ... , X (tn)) is
given.

Example 4.2.3
A random process is defined by X (t) = A cos(2rrfot +B) where B is a random variable
uniformly distributed on [0, 2rr). In this case, we have an analytic description of the ..
random process. Note that by having the analytic description, we can fine! the complete
statistical description. Figure 4.12 shows some samples of this process.

A very important special case, in the study of communication systems, is the case of
M = 2, in which second-order statistics are known. This simply means that, at each
time instant t, we have the density function of X (t), and for all choices of (tl, t2) the
joint density function of (X (tl), X (tz)) is given.
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4.2.2 Statistical Averages

The facts that at any given time the random process defines a random variable and at
any given set of times it defines a random vector, enable us to define various statistical
averages for the process via statistical averages of the corresponding random variables.

165Random Processes: Basic Concepts

Figure 4.15 The mean of a random process.
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E[XCt)] = fa A cos(2nfot +e)~ de = 0
. Jo 2n·

We observe that, in this case mx (t) is independent of t.

Another statistical average that plays a very important role in our study of random
processes is the autocorrelation function. The autocorrelation function is especially
important because it completely describes the power-spectral density and the power­
content of a large class of random processes.

Definition 4.2.4. The autocorrelation function of the random process X (t),
denoted as Rxx(tj, t2), is defined by Rxx(tj, t2) = E[X(tj)X(t2)]'

Hence,

Example 4.2.6
The meao of the raodom process in Example 4.2.3 is obtained by noting that

{
...L 0<e<2n

feCe) = 271" - •
0, otherwIse

Definition 4.2.3. The mean, or expectation of the random process X (t) is a
deterministic function of time mx(t) t.lJ.at at each time instant to equals the mean of the
random variable X (to). That is, mx(t) = E[X(t)] for all t.

Since at any to, the random variable X (to) is well defined with a PDF !X(to) (x), wehave

E[X(to)] = mx(to) =1: x!X(to) (x) dx

Figure 4.15 gives a pictorial description of this definition.

Chapter 4Random Processes

Figure 4.14 Sample of the process
given in Example 4.2.5.

Figure 4.13 Samples of the random
process given in Example 4.2.4.
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4.2.3 Stationary Processes

In a complete statistical description of arandom processes, for any n, and any (tr, t2, ... ,

tn), the joint PDF !X(t,).x(t,) .....X(t,,) (Xl, XZ, ... , x n) is given. This joint PDF in general

depends on the choice of the time origin. In a very important class of random processes,

the joint density function is independent ofthe choice ofthe time origin. These processes

whose statistical properties are time independent are caned stationary process~s.Th~re

are different notions of stationarity. A strictly stationary process is a process III which

for an n and all (tI, tz, ... , tn ), fX(t,).X(t2) .....X(t,,) (Xl, Xz, ... , x n ) depends only on

relative position of CtI, tz, ... , tn ), and not on their values directly. In other words, a

shift in the time origin does not change the statistical properties ofthe process. A fonnal .

definition of a strictly stationary process is the following:

From the above definition it is clear that Rxx (tI, tz) is a deterministic function of two

variables tl and tz, given by

RXX(tI, tz) = 1:1:XIX2!X(tl).X(t2) (Xl. X2) dXI dX2

The autocorrelation function is usually denoted by Rx (tI, tz) for short.

Example 4.2.7
The autocorrelation functio~ of the random process in Example 4.2.3 is

RxCti, t2) = E[A cos (2rrfotj + 8)A cos (2rrfotz + 8)]

= A
2

E [~ cos 2rrfaCtI -' t2) + ~ cos(2rrfoCtI + t2) +28)]

A2

= T cos 2rr fo (tl - t2)

Note that

E[cos(2rrfoCt] + t2) + 28)] = 121C
cos[2rrfoCti + t2) + 28)]2~ dB = 0

Example 4.2.8
For the random process given in Example 4.2.4, we have

j +i x2 1

RX(ti, t2) = E(X2
) = "2 dx = 3"

-j

So far, we have given two methods to describe random processes, an analytic and a

statistical description. A statistical description can be a complete description or an

Mth order description. Sometimes, even having a second-order statistical description

of a random variable is not practical. In these cases, it may be possible to find various

statistical averages by averaging over different realizations; in particular, it may be

possible to find mx(t) and RX(tI, tz). Although this infonnation is much less than a

complete statistical description of the randomprocess, it may be adequate. In some'

cases, as we will see later, the mean and autocorrelation function provide a complete

statistical description for the important class of Gaussian random processes.
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(4.2.1)

(4.2.2)

mxCt + To) = mx(t)

Rx(t + r + To, t + To) = RxCt + r, t)

Random Processes: Basic ConceptsSection 4.2

Strict stationarity is a very strong condition that only a few physical processes

may satisfy. A less restrictive definition of stationarity is often more useful.

Definition4.2.6. A process X Ct) is wide-sense stationary (WSS) if the following

conditions are satisfied:

!X(tI).X(t2) .....X(t,,) (Xl, X2, ... , Xn ) = !X(tl+A).X(t2+A)..... X(t.. +A) (Xl, X2, .... Xn )

A process is called Mth order stationary if the above condition holds for all n ::: M.

It is obvious that for both strictly stationary processes and Mth order stationary pro­

cesses the density function of X (t) is time independent.

Example 4.2.9

LetX (t) denoteaprocess such that for all n and all (ti. t2, ...• tn), the vector (X (ti), X (t2),

... , X (tn») is an n-dimensional Gaussian random variable with mean zero and covari­

ance matrix In (n-dimensional unitary matrix). Then clearly X (t) is a strictly stationary

process.

Definition 4.2.5. A strictly stationary process is a process in which for all n, all

(tI, tz, ... , tn ), and all !:l

1. mx(t) = E[X(t)] is independent of t.

2. Rx (tI, tz) depends only on the time difference r = tl - tz and not on tl and tz
individually.

Hereafter, the tenn stationary with no adjectives means WSS, and for these processes

the mean and autocorrelation are denoted by mx and Rxx(r), or simply Rx(r).

Example 4.2.10

For the random process in Exercise 4.2.3, we have already seen that mx =0 and

(
A'

Rx tj, t2) = 2' cos 2rrfoCti - t2). Therefore, the process is WSS.

A class of processes closely related to stationary processes is the class of cy­

clostationary processes. In cyclostationary processes, the statistical properties are not

time independent, but periodic with time. We will give the fonnal definition of the

cyclostationary processes here, but their importance in communication system analysis

will become more apparent in Chapters 7 and 8.

Definition 4.2.7. A random process X (t) with mean mx (t) and autocorrelation

function Rx(t + r, t) is called cyclostationary, if both the mean and the autocorrelation

are periodic in t with some period To; i.e., if

and

for all t and r.

Chapter 4Random Processes166



Hence,

which means IRx(7:)I:s Rx(O).

and expanding the result, we have

169

. d f Ij+T/2
{g(X»i ~ lim - g(x(t; (J)i»dt

T->co T -T/2

and

from which we conclude Rx(kTa) = Rx(O) for all integers k.

Section 4.2 Random Processes: Basic Concepts

3. The proof is by mathematical induction. Assume that Rx(iTo) =Rx(O), for i =
1,2, ... , k - 1. Expanding

E[X(t) - X(t - kTo)]2

= E[(X(t) - X(t - (k -l)To» + (X(t - (k -l)Ta) - X(t -kTa»f

2Rx(O) - 2Rx(kTo)

= E[X(t) - X(t - (k _l)Ta)]2 + E[X(t - (k -l)Ta) - X(t - kTa)f

+2E[(X(t) - X(t - (k -l)Ta»(X(t - (k -l)Ta) - X(t - kTo)))

Now using the relation Rx (iTo) == Rx (0) for i :s k - 1,

E[X(t) - X(t - (k - l)Ta)f = -2Rx «k - l)Ta) + 2Rx (O) = 0

E[X(t.,-- (k - l)To) - X(t - kTa)f = -2Rx(Ta) + 2Rx(0) = 0

By applying the Cauchy-Schwarz inequality (Problem 2.9), we obtain

IE[(X(t) - XU - (k - l)To»(X(t - (k - l)Ta) - X(t - kTo»]1

:s y'EIX(t) - X(t - (k -l)To)FE[X(t - (k -l)Ta) - X(t - kTa)F

= V4(Rx«k - l)Ta) - Rx(O»(Rx(Ta) - RxCO» = 0

we obtain

. Ergodic Processes. For a strictly stationary process X (t) and for any.function
g(x), we can define two types of averages:

1. By looking at a given time to and different realizations of the process, we have a
random variable X (to) with density function !x(to) (x), which is independent of to
since the process is strictly stationary. For this random variable, we can find the
statistical average (or ensemble average) of any function g(X) as

E[g(X(ta))] = I: g(X)!X(to)(x)dx

This value is, of course, independent of to.

Z. By looking at an individual realization, we have a deterministic function of time
x(t; Wi)' Based on this function, we can find the time average for a function g(x),
defined as

(4.2.3)

Random Processes Chapter 4

myCt) = E [X(t) cos(2rrfot)] =mx cos(2rrfot)

Ry(t + r, t) = E [X(t + r) cos(2rrfoU + r»X(t) cos(2rrfot)]

= Rx(r) [~cos(277:for)+ ~ cos(4rr!ot + 2rr!or)] (4.2.4)

and

It is seen that both my (t) and Ry (t + r, t) are periodic with period To = 1;;. Therefore
the process is cyc1ostationary.

Theorem 4.2.1. Rx (r), the autocorrelation function of the stationary process

X (t), has the following properties:

1. Rx(r) is an even function; Le., Rx (-7:) = RX(7:)·
2. The maximum absolute value of Rx(r) is achieved at r = 0; i.e., IRx(r)1 :s

Rx(O).
3. If for some To we have Rx(To) = Rx(O), then for all integers k, Rx(kTo) ==

Rx(O).

Proof

1. By definition

RxC'r) = E[X(t)X(t -7:)] == E[X(t -7:)X(t)] == Rx(--c)

±Rx (7:) :s Rx(O)

This proves the first part of the theorem.

2. By noting that

E[X(t) ± X(t '- 7:)]2 ~ 0

E[x2(t)] + E[X2(t - 7:)] ± 2E[X(t)X(t - 7:)] ~ 0

The following theorem gives the basic properties of the autocorrelation function

of a stationary process.

Example 4.2.11 .
Let yet) = XU) cos (2rrfot) where X(t) is a stationary random process with mean m and
autocorrelation Rx (r). Then

168



Example 4.2.12
For the process given in Example 4.2.3, for any value of0::: B< 2rr (i.e., for any realization

of the process) we have

fOur notion of ergodicity and the definitIon that follows are not precise. A pr~c~se definitio~ ?f
ergodicity requires knowledge ofmeasure theory and is not treated here. In fact: our ~efimtion of ergo~,C'?
is one of the properties satisfied by stationarity and ergodic.proc~sse~and some!lmes IS refer:ed to as ~lgod!c
property. For most engineering applications, however, this notion 15 adequate. For. a preCIse defirntion of
ergodicity and some related misconceptions, the reader is referred to Gray and DaVisson (1986).
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E[X (I)]
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where To = 7o' On the other hand,

(" g(A cos (2rrfot +8».2.. dB
)0 2rr

2rrfotH=u I 12rr/o
t+2rr

= - g(A cos(u» du
2rr 2rr/or

1 12rr

- g(Acosu)du
2rr 0

and, therefore, the process is ergodic.

Section 4.2

iNote that here we are using sClipt letters to denote random variables.

Example 4.2.13
In the process given in Example 4.2.4, each sample has a different constant value and,
therefore, the time average for each Wi depends on i. This means that the process is not
ergodic.

Example 4.2.14
We have already seen that a sequence ofrandom variables defines a discrete-time random
process. Let us assume that the sequence {Xi);:;-00 is a sequence ofindependent identically
distributed random variables. Then, for any realization, by the law of large numbers, we
have limN--,>oo 2k- ~:-N Xi = E[X]. This means that i.i.d. processes are ergodic.

Ergodicity is a very strong property. Unfortunately, in general, there exists no simple
test for ergodicity. For the important class of Gaussian processes, however, there exists
a simple test that we will discuss in Section 4.4.1.

Power and Energy. In our discussion of power and energy for detenninistic
signals we defined two types of signals~nergy-typeand power-type.

We can extend these notions to random processes. Let X(t) be a random process
with sample functions x(t; Wi). Then, the energy and power of each sample function
are defined as

and

1 jT/2
Pi = lim - x 2 (t; Wi) dt

T->co T -Tj2

This shows that for each Wi E Q we have real numbers Ci and Pi denoting energy
and power respectively and therefore it is clear that both energy and power are random
variables which we denote! by '&X and I!Px . It makes sense to define the expected values
of I!Px and '&X as a measure of the power and energy content of the process. These
parameters are defined as follows:

Chapter 4Random Processes

1 j+T/2
lim - g (A cos(2rrfot + B» dt

T--'>oo T -T/2

1 JNTO
lim -- g(A cos (2rrfot + B» dt

N--'>oo 2NTo -NTo

I lTD- g(A cos(2rrfot + B» dt
To 0

1 12Jr
+

B
. du2rr/ot+B=u (A )= - g cosu--

To B 2rrfo

I 12rr

- g(Acosu)du
2rr .o .

(g(X(t; B»)

(g (x» i is, ofcourse, a real number independent of t but, in general, it is dependent
on the particular realization chosen (Wi or i). Therefore, for each Wi we have a
corresponding real number (g(x»i' Hence, (g(X»i is the value assumed by a
random variable. We denote this random variable by (g(X». .

If it happens that for all functions g(x), (g(X»i is independent of i and equals

E[g(X (to))], then the process is called ergodic.!

Definition 4.2.8. A stationary process X(t) is ergodic iffor all functions g(x)

and all Wi E Q

Ij+T/2
lim - g(x(t; Wi» dt = E[g(X(t»]

T->oo T -T/2

In other words, if all time averages are equal to the corresponding statistical averages,

then the stationary process is ergodic.

A natural consequence of ergodicity is that in measuring various statistical aver­
ages (mean and autocorrelation, for example), it is sufficient to look at ~ne ~ealization
of the process and find the corresponding time average, rather than consldenng a large

number of realizations and averaging over them.
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for all t > O.
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liTPx = lim - cr2tdt = 00
T-+oo T 0

Hence,

liTPx= lim - Rx(t,t)dt
T-+oo T 0

Section 4.2

Pi = Px = Rx(O)

Px = Rx(O) = A
2

cos(2JT/or)I = A
2

2 ,=0 2

This is, in fact, the power content of each sample function in this process since each
realization is a sinusoidal waveform.

If, in addition to being stationary, the process is also ergodic, then £l'x is not
random anymore, and for each sample function of the process, we have

But

Example 4.2.16
For the process in Example 4.2.4, which is stationary but not ergodic, we have Px =
Rx (0) =. ~. In this case, for each sample, which is a constant waveform x where -1 :::s
x:::s 1, the power is x 2 and the power content of the process is simply E[X2].

Multiple Random Processes. Multiple random processes arise naturally
when dealing with statistical properties of two or more random processes defined
on the same probability space. For example, take the case where we are dealing with
a random process X(t) and we pass it through a linear time-invariant system. For
each sample function input x(t; Wi), we have a sample function output defined by
yet; Wi) ,; x(t; Wi) * h(t), where h(t) denotes the impulse response of the system. It
is seen that for each Wi E n, we have two signals x(t; wJ and yet; Wi)' Therefore, we
are dealing with two random processes X (t) and Y (t) defined on the same probability
space. Although we can define many random processes on the same probability space,
we hardly need anything beyond the case of two random processes in communication
systems and, therefore, we will only treat this case. When dealing with two random
processes, a natural question is the dependence between the random processes under
consideration. To this end, we define independence of two random processes.

Example 4.2.17
For the process of Example 4.2.5, which is neither stationary nor ergodic, we have

Example 4.2.15
For the process given in Example 4.2.3, which is both stationary and ergodic, we have

(4.2.5)

Chapter 4Random Processes

Ex = E [L: X
2

(t) dt]

=1: E[X
2
(t)J dt

=1: Rx(t,t)dt

Ex = L: Rx(O) dt

It is seen that for stationary processes, if Ex < 00; i.e., if the process is "energy­
type," then we have Rx(O) = E[X2 (t)J = O. This means that for all t, X (t) is zero with
probability one. This shows that for the case of stationary processes, only powerctype
processes are of theoretical and practical interest.

Ex = Erc&xJ

and

1 jTI2
£l'x = lim - X 2(t) dt

T-+oo T -T12

Px = E[£l'xJ

Px = E[ lim ~ (/
2
X2(t) dt]

T-+oo T l-T12

1 jTI2
= lim - E[X2 (t)] dt

T-+oo T -T12

1 jTI2= lim - Rx(t, t) dt (4.2.6)
T-+oo T -T12

If the process is stationary, then Rx(t, t) = Rx (0) is independent of t, and we have

Px = Rx(O)

and

From this definition,

and

where

and

Definition 4.2.9. The power content Px and the energy content Ex of the ran­
dom process X (t) are defined as
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Rz(t + r, t) = E[Z(t + r)Z(t)]

= E[(X(t + r) + yet + r»(X(t) + yet»~]

= Rx(r) + Ry(r) + Rxy(r) + Rxy(-r)

Example 4.2.18 .
Assuming that the two random processes X(t) and yet) are jointly stationary; detennine
the autocorrelation function of the process Z (t) = X (t) + Y(t).

Solution By definition

The concept of stationarity can also be generalized to joint stationarity for the
case of two random processes as follows.

Definition 4.2.12. Two random processes X (t) and Y(t) are jointly wide-sense
stationary, or simply jointly stationary, ifboth X (t) and Y (t) are individually stationary
and the cross correlation function Rxy(t], t2) depends only on r = t] - t2·

175Random Processes: Basic ConceptsSection 4.2

Rxy(t], tz) E[X(t])Y(t2)]

E [x(t]) I: X(s)h(tz -S)dS]

1: E[X (t])X (s)]h(tz - s) ds

1: RxCt] - s)h(tz - s) ds

u=~t21°O RxCt] - t2 - u)h(-u) du
-co1:Rx(r-u)h(-u)du

Rx(r) *h(-T)

The following questions are of interest: Under what conditions will the output
process be stationary? Under what conditions will the input and output processes be
jointly stationary? How can we obtain the mean and autocorrelation of the output process
and the crosscorrelation between the input and output processes. The following theorem
answers these questions.

Theorem 4.2.2. Ifa stationary process X (t) with mean m X and autocorrelation
function Rx(r) is passed through a linear time-invariant system with impulse response
h(t), the input and output processes X (t) and Y(t) will be jointly stationary with

my = mx1:h(t) dt (4.2.8)

RXy(T) = RX(T)*h(-T) (4.2.9)

Ry(r) = Rx(r)*h(r)*h(-r) (4.2.10)

Proof By noting that Y(t) = J~CXl X(r)h(t - r) dr, we see that

my(t) = E [1: X(r)hCt - T) dr]

1: E[X(r)]h(t - r) dr

= 1:mxh(t - T) dr

u=,b,-r mx JOO h(u) du
-00

This proves that my is independent of t and concludes the first part of the theorem.
For the second part, we have

(4.2.7)

Chapter 4Random Processes

Figure 4.16 A random process passing
through a linear time-invariant system.

X(t)~Y(t)

4.2.4 Random Processes and Linear Systems

In the section on multiple random processes, we sawthat when a random process passes
through a linear time-invariant system the output is also a random process defined on
the original probability space. In this section, we will study the pro~erties of the ?utput
process based on the knowledge of the input process. We are .ass:urung that a statlOnary
process XCt) is the input to a linear time-invariant system W]th Impulse response h(t),
and the output process is denoted by Y(t) as shown in Figure 4.16.

Definition 4.2.10. Two random processes X (t) and Y(t) are independent if for
all t], tz, the random variables XCt]) and YCtz) are independent. Similarly, X(t) and
Y (t) are uncorrelated if X (t]) and Y (tz) are uncorrelated for all t], tz·

From the properties of random variables we know that independence of random pro­
cesses results in their being uncorrelated, whereas, in general, uncorrelatedness does
not imply independence, except for the important class of Gaussian processes for which
the two properties are equivalent. We define the correlation function for the case of two
random processes as follows.

Definition 4.2.11. The cross-correlation function between two random pro­
cesses X (t) and Y (t) is defined as

Rxy(t], tz) = E[XCt])Y(tz)]

It is seen from the above definition that, in general,

Rxy(t], tz) = RyxCtz, i1)
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and

and

Rxy = Rx(r) d'(-r) = -Rx(r) * 8'(r) = - :r Rx(r)
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1 _
Rxy(r) = Rx(r) * -- = -RxCr)

-rrr

1 ~
Ry(r) = Rxy(r) * - = -Rx(-O = Rx(r)

rrr

Random Processes in the Frequency Domain

and

because ~ is an odd function. Also, we have

Section 4.3

4.3.1 Power Spectrum of Stochastic Processes

The power spectrum of a stochastic process is a natural extension of the definition of
the power spectrum for deterministic signals when the statistical nature of the process
is also taken into account.

Let X(t) denote a random process and let x(t; Wi) denote a sample function of
this process. To define the power-spectral density for this sample function, we truncate

where we have used the fact that let) = -x(t), and assumed that the RxCr) has no dc
component (see Problem 2.50).

In the last part of theprevious section, we dealt with the passage of random processes
through linear systems. We saw thatifa stationary process passes through an LTI system,
the input and output will be jointly stationary. We also found a relation between the
input and output autocorrelation functions and the crosscorrelation function between
the input and the output. In Chapter 2, we have seen that using frequency domain
techniques greatly simplifies the input-output relation of linear systems. A natural
question now is: How can frequency-domain analysis techniques be applied to the case
ofLTI systems with random inputs? Our main objective in this section is to develop the
necessary techniques that can be used in the frequency-domain analysis ofLTI systems
when driven by random inputs.

A first attempt would be to define Fourier transforms for each sample function of
the random process x(t; Wi), and thus, to define a new process with variable f on the
original probability space. The problem with this approach is that there is no guarantee
that all the samples of the random process possess Fourier transforms. In fact, for many
processes we can not define a Fourier transform for individual sample functions.

Another approach would be to look at the input-output power spectra. This ap­
proach is inspired by the convolution integral relation that exists between input and
output autocorrelation functions when a system is driven by a random input signal,
and also by the close relationship between the power spectrum of deterministic signals
and their time-average autocorrelation functions as seen in Section 2.3. But prior to
a formal definition, we have to see what we mean by the power-spectral density of a
stochastic process.

4.3 RANDOM PROCESSES IN THE FREQUENCY DOMAIN

Chapter 4Random Processes

Example 4.2.20
Repeat the previous example for the case where the LTI system is a quadrature.filter
defined by h(t) = ~ and, therefore, H(f) = - j sgn(f). The output of the filter IS the
Hilbert transform of the input in this case (see Section 2.5).

Solution We have

Example 4.2.19
Assume a stationary process passes through a differentiator. What are the mean and
autocorrelation function of the output and what is the cross correlation between the input
and output?
Solution In a differentiator h(t) = 8' (t). Since 8' (t) is odd, it follows that

my=mx1: 8'(t)dt=0

Ry(tl' tz) E[Y(t1)Y(tZ)]

E [(i: XCS)h(tl - s) dS) Y(tz)]

i: Rxy(s - tZ)h(tl - s) ds

u=s-t? 100
) d= - -00 Rxy(u)h(tl - tz - u U

Rxy("t) *h(r)

Rx("t) *h(-"t) *her)

where in the last step we have used the result of the preceding step. This shows that Ry ,

the autocorrelation function of the output depends only on r and, hence, the output pro­
cess is stationary. Therefore, the input and output processes are jointly stationary. IliI

d d2

Ry(r) = --Rx(r) d'(r) = --2Rx(r)
dr dr

1"" 1
my =mx -dt =0

-00 rrt

The last relation shows that Rxy (t1, tz) depends only on "t. Therefore, if we prove the
third part of the theorem, we have also proved that the input and the output are jointly

stationary.
To prove the third part (and hence, finish the proof of the second part) ·of the

theorem, we use the result we obtained above. We observe that
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and

Hence,

179

- T /2 < t + r < T12
otherwise

Random Processes in the Frequency Domain

I
T

/
2

{Rx(s, t)8(T - S + t) ds = RxCt + T, t),

-T/2 0,

Section 4.3

Sx(f) = lim ~EIXT(f)12
T-+oo T

where

1J.'iJ. Rx(t + T, t) dtl < 00 (4.3.2)

then the power-spectral density ofX (t) is the Fourier transform of (Rx (t + T, t)) where

clef 1 jT/2 "
(Rx(t + r, t») = lim - RxCt + r, t) dt (433)

T-+co T -T/2 " ..

Proof We begin with the definition of the power-spectral density of a random

process

Theorem 4.3.1 [Wiener-Khinchin]. If for all finite T and any interval .'iJ. of

leng~.ITI, the autocorrelation function of the random process X(t) satisfies the

condItion

I
T /2

XT(f) = X(t)e- j2Jr!t dt
-T/2

Substituting for XT (f), we have

. 1 "[IT/2 " T/2
Sx(f) = hm -E X(s)e-;2rr!s ds r X (t)e+ j2rr!t dt]

T-+co T -T/2 L T/2

11T
/
21T

/
2

= lim - Rx(s, t)e-j2rr!Cs-tl dt ds
T-+co T -T/2 -T/2

Now we proceed by finding the inverse Fourier transform of the above and showing

that it equals (RxCt + T, t)). We start with

",,-I . 1100 I T
/
21T

/
2

':!I' [Sx(f)] = lim - e+/2rr/< Rx(s,t)e-j2rr!Cs-tJdtdsdf
T-+co T -co -T/2 -T/2

1 IT
/
2 1T

/
2

00= lim - Rx(s, t) dt ds1 ej2Jr![r-Cs-tl] df
T-+co T -T/2 -T/2 -co

Using the fact that ~-I[ 1] = o(t), we have

1: ej2rr![r-Cs-tl] df = O(T - S + t)

Substituting this result in the inverse Fourier transform, we obtain

",,-I . 1 I T
/
2 I T

/
2

':!I' [Sx(f)] = lim -T dt· RX(S,t)O(T-S+t)ds
T-+co -T/2 -T/2

But,

(4.3.1)

Chapter 4Random Processes

It I < TI2
otherwise

Sx(f) ~ E[ lim IXT(f)1
2

] = lim E[IXT(f)1
2
]

T-+oo T T-+oo T
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it by defining

XT(J) = XT sIDc(Tf)

Sx(f) = lim E(X2 )Tsinc2 (Tf)
T-+oo

Noting that E(X2) = 1/3, we have to findlimT-+oo Tsinc2 (Tf). But T sinc2(Tf) is the

Fourier transform of A(t), and as T goes to infinity, this function goes to 1. Therefore,

lim T sinc2 (Tf) = o(f)
T-+oo

By truncating the signal, we make sure that the result is an energy-type signal, and there­

fore, possesses a Fourier transform, which we denote by XT; (f). From the definition of

the energy-spectral density for energy-type signals, we know that the energy-spectral

density for this signal is simply IXTi (f)12 . Having the energy-spectral density we can

define the power-spectral density as the average energy-spectral density per urnt oftime;

i.e., IXT;yJ!2. Now, by letting T become arbitrarily large, we define the power-spectral

density for the sample function being considered, and we can denote it by SXi (f).

It is obvious that, in general, various sample functions give rise to various SXi (f)'s;

i.e., for each f we have a random variable denoting the amount of power at that

frequency in each sample function. It makes sense to define the power spectrum as the

ensemble average of these values; i.e.,

Equation (4.3.1) of the power-spectral density is a straightforward generaliza­

tion of the corresponding relation for the case of deterministic signals. Although this

definition is quite intuitive, using it to find the power-spectral density is not always easy.

Example 4.3.1
Find the power-spectral density for the process defined in Example 4.2.4.

Solution Let X denote a random variable uniformly distributed on [-1, 1]. Then, the

truncated random signal is simply

XT(t) = xn(f)

and Sx(f) = ~o(f).

There exists a very important theorem known as the Wiener-Khinchin theorem that gives

the power-spectral density of a random process in terms of its autocorrelation fnnctions.



This concludes the proofofthe Wiener-Khinchin theorem.

The following corollaries are immediate results of the Wiener-Khinchin theorem.

Corollary 4.3.2. If X(t) is a stationary process in which r Rx(r) remains finite
for all finite r, then

or

117;;-1 _ {limT->oo t[tf~2RxCt-l-r,t)dt- fJ!LrRxCt-l-r,t)dt], r>O
'::!' (SxU)] -. 1 T/2 -T/2-r

limT->oo T[J-T/2RxCt -I- r, t) dt - LT/2 RxCt -I- r, t) dtJ, r<O

Since lId Rx(t -I- r, t) dtl < 00 for all d oflength r, as T -+ 00 the second tenns in
the above brackets make no contribution. Therefore, by taking the Fourier transfonn of
both sides, we have .
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(4.3.8)

(4.3.9)

(4.3.10)
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Ry(t -I- 7:, t) = RX (7:) [~cos(Zrrf07:) -I- ~ cos(4rrfot -I- 2rrfo')J

Sy(j) = ~[Ry(r)]

= HSxCf -I- fo)+ SxU - fo)]

Using the above corollary, we have

1 I TO
/
2

Ry(r) = - Ry(t -I- r, t) dt
. To -To/2

RX(7:)
= -Z- cos(Zrrf07:)

Therefore,

and

Based on the Wiener-Khinchin theorem the following observations are in order:

• To find the total power in the process it is enough to integrate the power-spectral
density

Px =1:Sx(f)df

= {RxCt + r, t))lr=O

IjT
I
2 I= lim - E[XCt -I- r)X(t)] dt

T ....oo T -T/2 r=o
T/2 .

= E [lim 2.j X2 (t) dt]
T.... oo T -T12

which is exactly the power content of a random process as defined in Section 2.3.

• For stationary and ergodic processes, each sample function x(t; (Vi) is a deter­
ministic function for which we can define the power-spectral density as given
in Section 2.3. To this end we define the power-spectral density as the Fourier
transfonn of the (time-average) autocorrelation function of x(t; (Vi) defined by

IjT/2
R.r(t:OJi)(r) = lim - x(t; (V;)x(t - r; (Vi)dt

T....oo T -T/2

Section 4.3

Proof The proof is immediate by noting that for a cyclostationary process

1 jTI2 1 I To/2
lim - Rx(t -I- r, t) dt = - RxCt -I- r, t) dt

T->oo T -T/2 To -To/2

Example 4.3.2
. . It was shown inEx~ple4.2.lL that if XU) is stationary, then yet) = XU) cos (2JT:fot)

is a cyclostationary process with

(4.3.7)

(4.3.5)

(4.3.4)

r>O

r<O

- TI2 < t -I- r < T12 }
dt

otherwise

Random Processes

SxU) = ~[Rx(r)]

[
1 jT/2 ]SxU) =~ lim - RxCt-l-r,t)dt

T....oo T -T12

- def 1 j TO/2
Rx(r) = - RxCt -I- r, t) dt

To -To/2

and To is the period of the cyclostationary process.

where

Proof In this case the condition of the preceding theorem is satisfied and,

1 jT/2
{RxCt -I- r' t)) = lim - Rx(r) dr = Rx(r)

T->oo T -T12

Applying the Wiener-Khinchin theorem gives the desired result.

Corollary 4.3.3. In a cyclostationary process, if

liTO Rx(t +r, t) dtl < 00

then the condition of the Wiener-Khinchin theorem is satisfied (why?) and the power­
spectral density is obtained from by

SxU) = ~[Rx(r)]
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Hence,

~-I(SxU)] = lim 2.
j

T/2 {RXCt -I- r, t),
T->oo T -T/2 0,

This can be written as

{lim
1 jT/2-r ( d

0;;;-1 T->oo T -T/2 Rx t -I- r, t) t,
'::!' (SxU)] =. 1 T/2

limT->oo T LT/2-r RxCt -I- r, t) dt,

I
I

i
. I

:I
I

I

I
f

:.f
L



Hence,
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Figure 4.17 Power-spectral density of
the random process of Example 4.2.3.ffo

Random Processes in the Frequency Domain

Sx<f)

Section 4.3

SxU) = 9F m= toe!)

Therefore,

Hence,

Rx(r) = E[X(t + r)X(t)] = E[X2
] = t

RxCt + T, t) = Hcos(2rrfo(2t + T)) + cos(2rrfoT)]

from which we obtain

- 1 jT
O/2 1

RX(T) = If Rx(t + r, t) dt = - cos(2TrfoT)
a -~n 6

Example 4.3.4
The process of Example 4.2.4 is stationary but not ergodic. In this case,

as was shown before without using the Wiener-Khinchin theorem. It is obvious that, in
this case, for each realization of the process, we have a different power spectrum.

Example 4.3.5

The process given in Example 4.2.11 with x (t) as in Example 4.2.4, is cyclostationary
with

SxU) = M0C! - fa) + 0(1 + fa)]

4.3.2 Transmission over LTI Systems

We have aIi:eady seen that, when a stationary random process with mean mx and auto­
correlation function Rx(r) passes through a linear time-invariant system with impulse
response h(t), the output process will be also stationary with mean

my = mx1: h(t) dt

and autocorrelation

-foand, therefore,

1 jT/2
lim - x(t; Wi)X(t - r; Wi) dt = E[X (t)X (t - r)] = Rx(r)
T~oo T -T/2

Random Processes

lim _E;:..[IX.....:.T--=(f...:-.:)1:..2.
2

]

T~oo T

Now, since the process is ergodic, the time average in the equation defining
Rx(t;liJ;) (r) is equal to the corresponding statistical average for all samples x (t; Wi),
namely,

From this definition, it is obvious that the power-spectral density is always a ,
real, non-negative and an even function of f. The fact that the power-spectraL
density is real and even is a direct consequence of the autocorrelation function .
being real and even, but non-negativeness of the power-spectral density is not
a direct consequence of the properties of the autocorrelation function that we
have studied so far. t Therefore we can add this property to the already mentioned
properties of the autocorrelation function of a stationary process as given in
Section 4.2.3.

The power-spectral density is showl). in Figure 4.17. All the power content of the process
is located at fa and - fa and this is expected because the sample functions of this process
are sinusoids with their power at those frequencies.

A2

SxU) = 4[OU - fa) +0(1 + fo)}

Sx(f) = 9F[Rx (r)] = S.x(t;liJ;)

This shows that for stationary and ergodic processes the power-spectral density
of each sample function is equal to the power-spectral density of the process.
In other words, each sample function is a good representative of the spectral
characteristics of the entire process. Obviously, the power content of the process
is also equal to the power content of each sample function.

• The power-spectral density was originally defined as

182

Example 4.3.3
For the stationary and ergodic random process in Example 4.2.3 we had

A2

Rx(r) = 2" cos(2rrfor)

tThe fact that SA!) is non-negative is aconsequence of the fact that Rx (r) is positive semi-definite iJl' ..
the sense that for any signal g(l), we have r:L: g(l)Rx(l - s)g{s) dt ds 2: O. ..



SXy(f) = Sx(f) H*(f)
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(4.3.17)

(4.3.18)

(4.3.16)

SzCf) = SxCf) + Sy(f)

Rz(r) = Rx(r) + Ry(r) + Rxy(r) + Ryx(r)

Sz(f) = S x (f) +Sy(f) + SXy(f) + Syx(f)
~

S'hU)

= Sx(f) +Sy(f) +2Re[Sxy(f)]

Random Processes in the Frequency DomainSection 4.3

These results are intuitive because the sample functions of this process are constant and
differentiating them results in zero output.

Equation (4.3.17) shows that the power-spectral density of the sum process is the sum
of the power spectra of the individual processes plus a third term which depends on the
correlation between the two processes.

If the two processes X(t) and YCt) are uncorrelated, then

Rxy(r) = mXmy

jA2nf(
SXy(f) = (- j2rrf)Sx(f) =-2-° [a(f + 10) - a(f - fo)]

Example 4.3.6
If the process in Example 4.2.3 passes through a differentiator, we have H(!) = j2rrf
and, therefore,

Sy(f) =4rr2f2(t8(f)) =0

SXy(f) = (- j2rrf) W(f)) = 0

Sy(f) =4rr2 f2 [ ~2 (8(f - 10) +8(f + 10»] = A2rr 2fl[a(f - 10)+ 8(f + fo)]

and

Now, if at !east one of the processes is zero mean we will have RXy (r) = 0 and

Example 4.3.7
Passing the process in Example 4.2.4 through a differentiator results in

Power-Spectral Density of a Sum Procl~ss. In practice, we often encounter
the sum of two random processes. For example, in the case of communication over a
channel with additive noise, the noise process is added to the signal process. Next, we
determine the power-spectral density for the sum of two jointly stationary processes.

Let us assume that Z(t) = X (t) +Y (t) whereX(t) and yet) arejointly stationary
random processes. We already know that Z(t) is a stationary process with

Taking the Fourier transform of both sides of this equation and using the result of
Problem 4.50, we obtain

Random Processes

Figure 4.18 Inpu(--Qutput relations for
Sy(f) power-spectral density and cross-spectral

density.

Srx(f)

SXy(f)

SxU) -~+---l~

Equation (4.3.11) says that, since the mean ofa random process is basically its dc
the mean value of the response ofthe system only depends on the value ofH (f) at f =
(dc response). The second equation says that, when dealing with the power spectrum,
the phase of H(f) is irrelevant; only the magnitude of H(f) affects the output
spectrum. This is also intuitive since power depends on the amplitude, and not
phase, of the signal.

We can also define a frequency domain relation for the autocorrelation lUlllOUUll.

Let us define the cross-spectral density SXy(f) as

and since Ryx(r) = Rxy(-r), we have

Then

Rxy(-r:) = Rx(r) *h(-r)

def
Sxy(f) = ~[RXy(r)]

x(t)~y(t)

Syx(f) = SXy(f) =Sx(f) H(f)

Note that, although Sx(f) and Sy(f) are real non-negative functions, SXy(f) and
Syx (f) can, in general, be complex functions. Figure 4.18 shows how the above
tities are related.

Translation of these relations into the frequency domain is straightforward. By noting
that ~[h(-r)] = H*(f) andJ~ooh(t)dt= H(O), we have

my = mxH(O)

Sy(f) =Sx(f)IH(f)!2
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We have also seen that X (t) and Y (t) will be jointly stationary with crosscoITI~lation

function



and, therefore,
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For Gaussian processes, WSS and strict stationarity are
..

Gaussian and White ProcessesSectIon 4.4

Theorem 4.4.3.
equivalent.

We also state the following theorem without proof. This theorem gives sufficient con­
ditions for the ergodicity of zero-mean stationary Gaussian processes. For a proof, see
Wong and Hajek (1985).

The following theorem is of fundamental importance in dealing with Gaussian
processes.

Theorem 4.4.4. A sufficient condition for the ergodicity of the stationary zero­
mean Gaussian process X (t) is that

1: IRx(r)1 dr < 00

Hence,

Theorem 4.4.2. If the Gaussian process X Ct) is ;,ed through an LTI system,
then the output process Y (t) will also be a Gaussian process.

Proof To prove that Yct) is Gaussian we have to prove that for all n and all
{t;}i'=I' the vector (YCtl), Y(tz), ... , YCtn)) is a Gaussian vector. In general, we have

00 j=N
YCti)=l X(r)hCt;-r)dr= lim lim I.: X(jb.)h(t;-jb.)

-00 N-+oo £>.-+0 .. ]=-N

(

YCtl) = limN-+ oo lim£>.-+o L}~~N X(j b.)hCtI - j b.)

Y(t,) 7limN~oolimA~O Z~~~NXU a)h (t, - j a)

Y (tn) = hmN-+oo lim£>.-+o Lj=-N X(; b.)hCtn - J b.)

Since {X(j b.)}f=-N is a Gaussian vector and random variables (YUl), Y(tz), ... ,
Y(tn)) are linear combinations of random variables {X(j b.)}f=-N' we conclude that
they are also jointly Gaussian. ..

This theorem is a very important result and demonstrates one of the nice properties of
Gaussian processes that makes them attractive. For a non-Gaussian process, knowledge
of the statistical properties of the input process does not easily lead to the statistical
properties of the output process. For Gaussian processes, we know that the output pro­
cess of an LTI system will also be Gaussian. Hence, a compl~te statistical description of
the output process requires only knowledge of the mean and autocorrelation functions
of it. Therefore, it only remains to find the mean and the autocorrelation function of
the output process and, as we have already seen in Section 4.2.4, this is an easy task.

Note that the above results hold for all Gaussian processes regardless of station­
arity. Since a complete statistical description of Gaussian processes depends only on
.mx(t) and RX(tl, tz), we have also the following theorem.

Random Processes186

4.4.1 Gaussian Processes

Hence,

Re[Sxy(f)] = 0

Gaussian processes play an important role in communication systems. The fundamental
reason for their importance is that thermal noise in electronic devices, which is produced ""
by random movement of electrons due to thermal agitation, can be closely modeled by
a Gaussian process. The reason for the Gaussian behavior of thermal noise is that the
current introduced by movement ofelectrons in an electric circuit can be regarded as the'
sum of small currents of a very large number of sources, namely individual electrons.
It can be assumed that at least a majority of these sources behave independently and, "
therefore, the total current is the sum of a large number of i.i.d. random variables. Now
by applying the central limit theorem, this total current has a Gaussian distribution.

Apart from thermal noise, Gaussian processes provide rather good models for"
some information sources as well. Some interesting properties of the Gaussian pro- "
cesses, which will be discussed in this section, make these processes mathematically'·
tractable and easy to deal with.

Example 4.3.8
Let XCt) represent the process in Example 4.2.3, and let Z(t) = X(t) + frX(t}. Then,

jAzn:fo
SXy(f) = -2- [o(f + fo) - o(f - fo)]

From the above definition it is seen that, in particular, at any time instant to the random
variable X Cto) is Gaussian, and at any two points tl, t2 random variables (X Ctl), X Ctz)) .
are distributed according to a two-dimensional Gaussian random variable. Moreover,'
since a complete statistical description of {X(t;)}7=1 depends only on m and C, the"
mean and autocovariance matrices, we have the following theorem.

We start our discussion with a formal definition of Gaussian processes.

Definition 4.4.1. A random process xCt) is a Gaussian process if for all
and all Ctl, tz, ... , tn), the random variables {X (ti) }i'=1 have a jointly Gaussian density
function.

Theorem 4.4.1. For Gaussian processes, knowledge of the mean and autocorre­
. lation; i.e., mxCt) and RXCtl' tz) gives a complete statistical description of the process.

II

4.4 GAUSSIAN AND WHITE PROCESSES

r



4.4.2 White Processes

We have also the following important theorem:

(4.4.1)
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Figure 4.20 Power spectrum of thermal
f noise.

Sn(f) = ( "I )
2 eFi - 1

kT
T
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Obviously, no real physical process can have infinite power and, therefore, a white
process is not a meaningful physical process. However, quantum mechanical analysis
of the thermal noise shows that it has a power-spectral density given by

'lif

in which 'Ii denotes Planck's constant (equal to 6.6 x 10-34 Joules x second) and k is
Boltzmann's constant (equal to 1.38 x 10-23 JoulesjKelvin). T denotes the temperature
in degrees Kelvin. This power spectrum is shown in Figure 4.20.

The above spectrum achieves its maximum at f = 0 and the value of this maxi­
mum is kJ. The spectrum goes to zero as f goes to infinity, but the rate of convergence
to zero is very slow. For instance, at room temperature (T = 300 K) Sn(f) drops to
90% of its maximum at about f ~ 2 X 1012 Hz, which is beyond the frequencies
employed in conventional communication systems. From this we conclude that ther­
mal noise, though not precisely white, for all pra:~tical purposes can be modeled as
a white. process with power spectrum equaling kJ. The value kT is usually denoted
by No and, therefore, the power-spectral density of thermal noise is usually given as
Sn (f) = !:fJ, and sometimes referred to as the two-sided power-spectral density, em­
phasizing that this spectrum extends to both positive and negative frequencies. We will
avoid this terminology throughout and simply use power spectrum or power-spectral
density..

Looking at the autocorrelation function for a white process, we see that

RnC-c) = ~-I [~o] = ~o 8(0)

This shows that for all 0 =I=- 0 we have Rx(o) = 0; i.e., if we sample a white process
at two points t1 and tz (tl =I=- tz), the resulting random variables will be uncorrelated. If
in addition to being white, the random process is also Gaussian, the sampled random
variables will also be independent. .

In short, the thermal noise that we will use :In subsequent chapters is assumed to
be a stationary, ergodic, zero-mean, white Gaussian process whose power spectrum is
~o =kJ.

Chapter 4Random Processes

Figure 4.19 Power-spectral density of a
white process.f
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Parallel to the definition ofjointly Gaussianrandom variables we can definejointly
Gaussian random processes.

Theorem 4.4.5. For jointly Gaussian processes, uncorrelatedness and indepen­
dence are equivalent.

Proof This is also a straightforward consequence of the basic properties of
Gaussian random variables as outlined in our discussion of jointly Gaussian random
variables. iii

The term white process is used to denote the processes in which all frequency com­
ponents appear with equal power; i.e., the power-spectral density is a constant for all
frequencies. This parallels the notion of "white light" in which all colors exist.

Definition 4.4.3. A process X Ct) is called a white process if it has a flat spectral
density; i.e., if Sx(f) is a constant for all f ..

Px =i: Sx(f)df =i:Cdf = 00

The importance ofwhite processes in practice stems from the fact that thermal noise can
be closely modeled as a white process over a wide range of frequencies. Also, a wide
range of processes used to describe a variety of information sources can be modeled
as the output of LTI systems driven by a white process. Figure 4.19 shows the power
spectrum of a white process.

If we find the power content of a white process using Sx (f) = C, a constant, we
will have

Definition 4.4.2. The random processes X (t) and Y (t) are jointly Gaussian if
for all n, m and all (tl' t2, , tn)and (01,02, ... , om), the random vector(X(tl), X (tz),
.•. , XCtn), YCoI)Y(oZ), , YCom» is distributed according to an n +m dimensional
jointly Gaussian distribution.

~I:l ..
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Figure 4.22 Frequency response of a

lowpass Refilter.f

IH(f)1 = 1
\/1 + 4Jr2j2,2

Gaussian and White Processes

1

Bneq = 'h = _1_
2 xl 4RC

H(f) = 1 +j~fRC

100 1
2 df

o )1 + 4Jr 2j2,2

U=;;;fr 2 roo _1_ x~
)0 1+u2 2Jr,

1 Jr
-x­
Jr, 2

2,

and is shown in Figure 4.22.

'.•;;. Defining, = RC, we have
l':~

"".\
~ '.;

.:.~~.

and, th~ie{ore, Hmax = 1. We also have

Hence,

Section 4.4

Example 4.4.1

Find the noise-equivalent bandwidth of a lowpass Refilter.

Solution . H (f) for this filter is(4.4.2) .

(4.4.3)

Chapter 4Random Processes

Figure 4.21 Noise-equivalent

bandwidth of a typical filter.f~ Bneq-t-
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100 ]V, 100

Py = Sy(f) df =~ IH(f)12 df
-00 2 -00

Noise-Equivalent B.mdwidth. When white Gaussian noise passes through a

filter, the output process, although still Gaussian, will not be white anymore. The filter

characteristics determine the spectral properties of the output process, and we have

Sy(f) = Sx(f)\H(f)12 = ~oIH(f)12

Now, if we want to find the power content of the output process, we have to integrate

Sy(f). Thus,

Therefore, to determine the output power, we have to evaluate the integral

J~oo IH(f)\2 df· To do this calculation, we define Bneq , the noise-equivalent bandwidth

of a filter with frequency response H(f), as

where Hmax denotes the maximum of IH(f)[ in the passband of the filter. Figure 4.21

shows H max and Bneq for a typical filter.

Using the above definition, we have

<~~~~%,...•py = No 100

;H(f)12 df
"'''. 2-00

No 2
= ""2 x 2BneqHmax

= No BneqH~ax

Therefore, by having Bneq , finding the output noise power becomes a simple task

The noise-equivalent bandwidth of filters and amplifiers is usually provided by the

manufacturer.



In the special case where Ts = 2~' the above relation simplifies to

193Bandlimited Processes and Sampling

= Rx(O) - .L RxCt - kTs) sinc[2W(t - kTs)]
k=-oo

00

00

+ L Rx(t - kTs) sinc[2W(t - kTs))
k=-oo

= Rx(O) - 2 L Rx(t - kTs) sinc[2W(t - kTs)]
k=-oo

00

00 00

= L sinc(2W(t - kT;;)) L Rx(mTs) sinc(2W(t ~ kTs - mT,))
k=-oo m=-oo

= Rx(O) - 2 L RxCt - kTs) sinc(2W(t - kTs))
k=-oo

00 00

00

00 00

+ L L Rx«k-l)Ts) sinc(2WCt - kTs)) sinc(2WCt -lTs))
k=-ool=-oo

Proof. Let us start by expanding the above relation. The left-hand side becomes

E /X(t) - kf;oo X(kTs) sinc(2W(t - k Ts ){

Rx(t) = L. Rx(kTs) sinc[2W(t - kTs))
k=-oo

00

00 00

= .L '.L Rx(-mTs) sinc(2W(t - kTs)) sinc(2W(t - kTs - mTs))
k=-oom=-oo

00

.L Rx(mTs) sinc[2W(t - kTs - mTs)] = Rx(t - kTs)
m=-oo

L .L Rx«k -l)Ts) sinc(2W(t - kTs)) sinc(2W(t -lTs))
k=-ool=-oo

Section 4.5

Introducing the change ofvariable m = l-k in the last line ofthe above relation, we have

where we have used the fact that Rx(-mTs) = Rx(mTs).
The fact that the process is bandlimited means lJIat the Fourier transform ofRx (r)

is bandlimited to Wand, therefore, for Rx (r) we have the expansion

from which we obtain

Therefore,

Chapter 4Random Processes

Figure 4.'23 d ·Power spectrum of a
bandlimited process•.

,
f

~-----w w

00

x(t) = L 2WTs x (kTs) sinc(2W(t - kTs))
k=-oo

x(t) = f x C~)SinC(2W (t - 2~))
k=-oo

One wonders if such a relation exists for bandlimited random processes. In other
words, if it is possible to express a bandlimited process in terms of its sampled values.
The following theorem, which is the sampling theorem for the bandlimited random
processes, shows that this is in fact true.

Theorem 4.5.1. Let X (t) be a stationary bahdlimited process; i.e., SxU) ==
for I! I ::: W. Then the following relation holds

E \X(t) - kf;oo X(kTs) sinc(2W(t - kTs){ = 0

We have already seen in Section 2.4 that for bandlimited signals there exists the
powerful sampling theorem which states that the signal can be perfectly reconstructed
from its sampled values as long as the sampling rate is more than twice the highest
frequency component in the signal; i.e., the bandlimited signal can be expressed in
terms of its samples taken at regular intervals Ts,where Ts .::: 2~' by the relation

where Ts = 2~ denotes the sampling interval.
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4.5 BANDLIMITED PROCESSES AND SAMPLING

A bandlimited process is a random process whose power-spectral density occupies a
finite bandwidth. In other words, a bandlimited process is a process with the property
that for alll!1 2: W, we have SxU) == 0 where W is the bandwidth of the process.

Almost all of the processes encountered in nature are bandlimited because there
is a limit on the bandwidth of all physical systems. Bandlimited processes also arise
when passing random processes through bandlimited linear systems. The output, usually
called a "filtered process," is a bandlimited process. The power-spectral density of a.
typical bandlimited process is shown in Figure 4.23.



Unless this condition is satisfied, the samples of the process will be correlated and this
correlation can be exploited to make their transmission easier. This fact will be further

explored in Chapter 6.

4.6 BANDPASS PROCESSES

Bandpass random processes are the equivalen~ of ban.dpass deterministic signals.
A bandpass process has all its power located 1ll the neIghborhood of some central

frequency fa.

Now that we have·seen that a bandlimited process can be recovered from its sampled
values taken at 1/2W intervals, an interesting question is whether or not these samples
are uncorrelated. It can be shown that a necessary and sufficient condition for the
uncorrelatedness of these samples is that the power spectrum of the process be fiat over.

the passband; i.e.
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Figure 4.24 Power spectrum of a bandpass process.
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Definition 4.6.1. X (t) is a bandpass or narrowband process if Sx (f) == 0 for
If - fol ~ W, where W < fa.

Although the term narrowband process is usually used for the case where W « fa,
we will use both terms bandpass process and narrowband process interchangeably.
Figure 4.24 shows the power spectrum of a bandpass process.

Note that, as in Section 2.5, there is no need for fa to be the mid-band frequency,
or, in general, there is even no need for fa to be in the frequency band of the process.

Bandpass processes are suitable for modeling modulated signals. A random pro­
cess is usually modulated on a carrier for transmission over a communication channel
and the resulting process is a bandpass process. The noise that passes through abandpass
filter at the front end of a receiver is also a bandpass process.

As we have seen in Section 2.5, there are certain ways to expressbandpass signals
in terms of equivalent lowpass signals. The purpose of this section is to generalize those
results to the case ofrandom processes. As we will see, many ofthe results ofSection 2.5
can be generalized in a straightforward manner to bandpass processes.

Let X(t) be a bandpass process as defined above. Then Rx(r) is a deterministic
bandpass signal whose Fourier transform Sx(f) is nonzero in the neighborhood of fa.
li X(t) is passed through a quadrature filter with impulse response ,h, and transfer
function H (f) = - j sgn(f), the output process is the Hilbert transform of the input
process, and according to Example 4.2.20, we have

Rxx.cr) = -Rx(r)

Ri(r) = Rx(r)

Now, parallel to the deterministic case, let us define two new processes Xc (t) and Xs (t)
by

Xc(t) = X(t) cos(2n:fot) + X(t) sin(2n:fot)

Xs(t) = X(t) cos(2n:fot) - X (t) sin(2n:fot)

As in the deterministic case, Xc(t) and Xs(t) are called in-phase and quadrature com­
ponents of the process X (t). Throughout the rest of this chapter, we will assume that
the process X (t) is stationary with zero mean and, based on this assumption, explore
the properties of its in-phase and quadrature components.

(4.5.2)
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Ifl< W
otherwiseSxCf) = {~

k=-oo

00

X(t)~; L X(kTs) sinc[2W(t - kTs)]

00

Rx(O) = I: RxU - kTs) sinc[2WU - kTs)]
k=-oo

E\X(t)- kf;ooX(kTs)SinC[2WU-kTs){ =0

This is usually called equality in quadratic mean or equality in the mean-squared sense

and denoted by

This concludes the proof of the theorem.

This result is a parallel to the sampling theorem for deterministic. signals ~eve1?ped in
Section 2.4. Note that, due to the random nature of the entities lllvolved III this case,
the equality of X(t) and I:~-oo X (kTs) sinc[2W(t - kTs)] is not pointwise, and we

can only say that

Substituting this result in the expression for E[X U)), we obtain

E \X(t) - kf;oo X (kTs) sinc[2W(t - kTs){ = 0

194

Now we can apply the result of Problem 2.42 to Rx(r) to obtain .



and

Theorem 4.6.1. If X(t) is a zero-mean stationary bandpass process, the pro­

cesses Xc(t) and Xs(t) will be zero-mean jointly stationary processes.

Proof The fact that both Xc(t) and Xs(t) are zero mean is trivial. It remains to

prove that Rxc(t + 7:, t), Rx,(t + 7:, t), and Rxcx,(t + 7:, t) are functions of 7: only

We have

Theorem 4.6.2. Xc(t) and Xs(t) are lowpass processes; i.e., their power spec­

trum vanishes for III 2: W.

Proof Note that Rxc(r) and Rx, (r) are deterministic signals. Comparing

Rxc(r) = Rx,(r) = RX(7:) cos(2nlor) + RX(7:) sin(2:rcfor)

with the corresponding relations for deterministic signals as developed in Section 2.5,

we observe that the relations describing both Rxc (7:) and Rx, (-r) are exactly the same

relations that describe Xc (t), the in-phase component of a deterministic bandpass signal

x(t). This means that Rx,(r) and Rx,(r) are both lowpass signals. This, in ~,:neans

that the Fourier transform of these signals; i.e., SxcCf) and Sx, (f) are bandlimited to

III < Wand, therefore, the theorem is proved. 111
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(4.6.2)

(4.6.3)

(4.6.4)

v(t) = / X~(t) + X;(t)

8(t) = arctan Xs(t)
Xc(t)

Bandpass Processes

Sx,U) = Sx,Cf) = {SXU - fo) +SxCf + fo) If I < fa

0, otherwise

Section 4.6

. To find the power spectrum of the in-phase and quadrature components, we have

Sxc(f) = Sx, (f)

= ~[Rx(7:) cos(2nfo-r) + Rx sin(2nfor)]

= SxCf - fo) + Sx(f + fa)

2 . 2

+ [- j sgn(f)Sx(f)] * [S(f - fo); o(f + fo) J

= Sx(f - fo) + Sx(f + fa)

2 2

+ ~ sgn(f + fo)Sx(f + fa) -! sgn(f - fo)Sx(f - fa)

Sx(f - fo) S U + 1< )
2 [1 - sgn(f - fa)] + x 2 0 [1 + sgn(f + fa)]

Sx(f - fa) f < - fo

SxU - 10) + ~SxU + fa) f =- fo

SxU - 10) + SxU + fa) If I < fa

SxU + fo) + !SxU - fo) f = fo

SxU+fo) I>fo

From the a~ove theorems it is seen that the processes Xc(t) and Xs (t) play the same

role as the Ill-phase and quadrature components for deterministic signals and there­

fore, they are called the in-phase and quadrature processes. Furthermore, ';e have

s~en that these processes are jointly stationary with the same power-spectral den­

SIty. Parallel to the deterministic case, we can also define the envelope and phase
processes by .

From the fact that the original process X (t) is bandpass, it follows that

!!:is simply mea~s that in o~~er to obtain the power spectrum of both Xc(t) and X
s
(t),

It IS eno~gh to shift the pOSItive-frequency part of SxU) to the left by fa and to shift

the negative-frequency part of it to the right by fa and add the result. Figure 4.25 shows

the relation between Sx(f), SxcU) and Sx, U). .

III

(4.6.1)
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RxJt + 7:, t)

= E[Xc(t +7:)Xc(t)]

= E[(X(t + 7:) cos (2:rcfo (t + -r» + X(t + 7:) sin(2:rcfo(t + 7:»)

x (X (t) cos(2:rcfot) + X(t) sin(2:rcfot»)]

= RxCr) cos(2:rcfot) cos(2:rcfo(t + -r» - Rx(-r) sin(2:rcfot) cos(2:rcfoCt + -r))

+ RX(7:) cos(2nfot) sin(2:rcfo(t + 7:» + Rx(7:) sin(2nfot) sin(2nfo(t + 7:»

=RX(7:) cos(2nfo-r) + Rx(-r) sin(2nfo7:)

where we have used results ofExample 4.2.20 and the fact that Rx (-r) is an odd function,

because it is the Hilbert transform of an even function (see Problem 2.46).

It can be proved similarly that

Rx, (7:) = Rx(7:) cos(2:rcfo7:) + Rx(-r) ;in(2:rcf07:)

RXcx,(-r) = RX(7:) sin(2nfo7:) - RX(7:) cos(2:rcfo 7:)

In conclusion, we have the following relations to which we will refer frequently

{
RXc(7:) = Rx, (r) = RX(7:) cos (::rc f 07:) + R X(7:) sin(2nfo-r)

Rxcx, (7:) = Rx(r) sin(2:rcfo-r) - Rx(-r) cos(2:rcfo7:)

This concludes the proof of the theorem.
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(4.6.5)

f

f

fo

SXCX,(j)

j

SxU + 10) =5 x U - fo)

-fo

Bandpass Processes

Figure 4.26 Cross-spectral density of in-phase and quadrature components.

Since the cross correlation function

Section 4.6

Rx, x,(r) = Rx(r)sin(2n-for) - Rx(r)cos(2n-for)

is an odd function, it follows that Rx , x, (0) = O. This means that at any time instant
to, the random variables XcCto) and X.Cto) are uncorrelated. Of course, from this we
cannot conclude that the random processes Xc(t) and Xs(t) are uncorrelated since, in
general, there is no guarantee that for arbitrary tl and t2 the random variables X C(1) and
X (t2) are uncorrelated. However, if the symmetry condition

is satisfied forallifl < fo, then Sx, x, U) == 0 and therefore Rx,x, (r) == 0 for all r.
This means that Xc(tl) and Xs (t2) are uncorrelated for arbitrary tl and t2, which in turn,
meansthat the random processes Xc(t) and Xs(t) are uncorrelated. If SxU) happens
to be symmetric around fo, then the above condition is satisfied and the processes xeCt)
and X s (t) will be uncorrelated.

If the zero-mean, stationary, and bandpass process X(t) is Gaussian as well,
then Xc(t) and X.(t) will be jointly Gaussian (why?). In this case, uncorrelatedness
is equivalent to independence and, therefore, under the above conditions the processes
xcCt) and X.(t) will be independent.

Example 4.6.1
The white Gaussian noise process N (t) with power spectrum !fJ: passes through an ideal
bandpass filter with frequency response

H(f) = {01, If - fel < W
otherwise

f

ffoo

Sx(f)

Sx/!)=Sx,(f)

-fo

Figure 4.25 Power spectrum of in-phase and quadrature components.

To obtain the cross-spectral density we have

5x,x,(f) = ~[Rx,x,(r)]

[
O(f - fo) - o(f + fo)]

=Sx(f) * 2j.

. foU-fo)+S(f+fo)]
-[-jsgn(f)Sx(f)] * l 2

=L[SxU -I- fa) - SxU - fa)]
2

-I- ~[sgn(.f -I- Io)Sx (.f + fo) + sgnU - fo)5xU - fa)]

= L
Sxu

-I- 10)[1 -I- sgn(f -I- 10)] - ~SxU - fo)[l- sgn(f - 10)]
2

- j S xU - 10) f < - fo

LSxU + fo) - jSxU - fo) f = -fa

= ;[Sx(f -I- 10) - SxU - fo)] If I < fo

-fSxU - fa) + jSxU + fo), f = fa

jSxU + fa) f >fo

Again, since the process is bandpass, the above relation simplifies to

{

j[SxU + fo) - SxU - fo)] If I < fo
Sx,x,U) = 0, otherwise

Figure 4.26 shows the relation between Sx, x, U) and SXU)·

Random Processes Chapter 4
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t Central frequency does not, of course, mean the center of the bandwidth. It means the frequency

with respect to which we are expanding the process;
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f2W

S,,(f)=s,,<f)~-------L

Further Reading

Figure 4.28 In-phase and quadrature components for secondpart ofExample 4.6.1.

-2W

_I

we have

Of course, in this case the processes Xe(t) and Xs(t) will not be independent. See Fig­
ure 4.28 for this case.

So far, we have defined Xc(t) and Xs(t) in terms of XU) and X(t) by

{
Xe(t) = '::(t) cos(2;rfot) + X(t) sin(2nfot)

X.(t) = X(t) cos(2;rfot) .- X (t) sin(2nfot)

and have shown that Xe(t) and X s(t) are jointly stationary lowpass processes. Obtaining
X(t) and X(t) in terms of the in-phase and quadrature components is straightforward,
and we can summarize the result as

These relations are frequently used in Chapters 5 and 7 to express bandpass processes
in terms of the corresponding lowpass processes.

The power contents of the in-phase and quadrature components of X (t) can be
obtained easily. From

Rx,(r) = Rxs(r) = Rx(r) cos(2;rfor) + Rx(r) sin(2nfor)

Section 4.7

{

X (t) = Xc(t) cos(2;rfot) - Xs(t) sin(2:nfot)

X(t) = Xc(t) sin(2;rfot) + Xs(t) cos(2;rfot)

Px, = PXs = RX,(r) 1,,=0 = Rx(O) = Px (4.6.6)

In other words, the power content of the in-phase and quadrature components is equal
to the power content of the original bandpass process.

4.7 FURTHER READING

The books by Leon-Garcia (1994), Helstrom (1991), Davenport and Root (1987),
Papoulis (1991), Nelson (1995), and Stark and Woods (1994) cover probability and ran­
dom processes with emphasis on electrical engineering applications. Gray and Davisson
(1986) is particularly interesting since it covers random processes for electrical engi­
neers without compromising mathematical vigor. Advanced treatment of the material
in this chapter, based on measure theory concepts, can be found in the book by Wong
and Hajek (1985).
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-zw < I < 0

0< I <ZW

otherwise
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and for the cross-spectral density, we will have

{

.&
-J 2'

SX,x,(f) = jtlt,
0,

If h +c -I' W as the central frequency, t the results will be quite
we c oose jO = je - fX( ) b' -I' t the

different. In this case, shifting the positive and negative components 0 t Y j 0 0

left and right and adding them results in

{
tit, III < ZW

Sx,(f) =Sx,(f) = . 0, otherwise

2NO -J:l-Z- 0

S
_ {tit, II - lei < W

xU) - 0, otherwise

Ifwe choose Ie as the central frequency, then to obtain power spectra of Xe(t) and Xs(t)
we have to shift the positive-frequency part of Sx(f) to the left by 10 = Ie and the
negative-frequency part of it to the right by the same amount and add the results. Ifwe do

this, the resulting spectrum will be

{
No, 1/1< W

Sx,(f) = Sx,(f) = 0, otherwise

Since we are choosing 10 to be the axis of symmetry of the spectrum of X(t), ~e process
Xe(t) and Xs(t) will be independent with this c~oice. and Sx,x, (f) = O. Figure 4.Z7
shows the relation between various power spectra m this case.

where W «fc. The output process is denoted by X (t). Find the po~er spectrum.and the
cross-spectral density of the in-phase and quadrature components m the followmg two

cases:

1. 10 is chosen to be equal to fe-
z. 10 is chosen to be equal to Ie - W.

Solution The process X (t) is obviously a bandpass process whose power-spectral den­

sity is given by

-W
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4.1 A random experiment consists of drawing a ball from an urn that contains 4 red

balls numbered 1, 2, 3,4 and three black balls numbered 1, 2, 3. Precisely state

what outcomes are contained in the following events.

1. E 1 =The number on the ball is even.

2. Ez = The color of the ball is red and its number is greater than 1.

3. E3 = The number on the ball is less than 3.

4. E4 = E1 U E3.

S. Es = E1 U (Ez n E3).

4.2 If all balls in the preceding problem are equally likely to be drawn, find the

probabilities of Ei , 1 sis 5.

4.3 In a certain city three car brands, A, B, C have 20%,30%, and 50% of the market

share, respectively. The probability that a car needs major repair during its first

year of purchase for the three brands is 5%, 10%, and 15%, respectively.

1. What is the probability that a car in this city needs major repair during its

first year of purchase?

2. If a car in this city needs major repair during its first year of purchase, what

is the probability 14at it is made by manufacturer A?

4.4 Under what conditions can two disjoint ev:ents A and B be independent?

4.5 An information source produces 0 and 1 with probabilities 0.3 and 0.7, respec­

tively. The output of the sourceis transmittedvia a channel that has a probability

of error (turning a 1 into a 0 or a 0 into a 1) equal to 0.2.

1. What is the probability that at the output a 1 is observed?

2. What is the probability that a 1 was the output of the source if at the output

of the channel a 1 is observed?

4.6 A coin is flipped thiee times and the random variable X denotes the total number

of heads that show up. The probability of ahead in one flip of this coin is denoted

by p.

1. What values can the random variable X take?

2. What is the Ptv1F' of the random variable X?

3. Derive and plot the CDF of X.

4. What is the probability that X exceeds 1? '

4.7 Coin A has a probability of head equal to *and probability of tail equal to ~,

and coin B is a fair coin. Each coin is flipped four times. Let the random variable

X denote the number of heads resulting from coin A and Y denote the resulting

number of heads from coin B.
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1. What is the probability that X = Y = 2?

2. What is the probability that X = Y?

3. What is the probability that X > Y?

4. What is the probability that X + Y s 5?

4.8 A random variable X is defined by the CDF

{

a, x < 0

Fx(x)= ~x, lsx<l

K, x?:: 1

1. Find the value of K.

2. Is this random variable discrete, continuous, or mixed?

3. What is the probability that 1 < X s I?

4. What is the probability that 1 < X < I?

5. What is the probability that X exceeds 2?

4.9 Random variable X is distributed according to !x (x) = A(x).

1. Find the CDF of X.

2. Determine P(X > 1).

3. Determine P(X > O/X < 1).

4. Whatis!x(xIX > 1)?

5. What is E[X IX > ~]?

4.10 Th~ noise .voltage in an electric circuit can be modeled as a Gaussian random

vanable WIth mean equal to zero and variance equal to 10-8.

1. What is the probability that the value of the noise exceeds 1O-4 ? What is

th~ probabi~ty that it exceeds 4 x 1O-4? What is the probability that the

nOIse value IS between -2 x 10-4 and 1O-4 ?

2. Given that the value of the noise is positive, what is the probability that it

exceeds 1O-4 ?

3. This noise passes through a half-wave rectifier with characteristics

g(x) = {X, x > 0
0, x S 0

Find the PDF of the rectified noise by first finding its CDF. Why can we not

use the general expression in Equation (4.1.10) here?

4. Find the expected value of the rectified noise in the previous part.

S. Now assume tI:at the noise.passes through a full-wave rectifier defined by

g(x) ~ Ix /. Frnd the densIty function of the rectified noise in this case.

What IS the expected value of the output noise in this case?



4.11 X is aH(O, 0-2 ) random variable. This random variable is passed through a system
whose input-output relation is given by y = g(x). Find the PDF or the PMF of
the output random variable Y in each of the following cases.

1. Square-law device, g(x) = ax2.

2. Limiter,

{

a x> 0

g(x) = 0: x =0
b, x < 0

4. Quantizer, g (x) =Xn for an ::: x < an+I, 1 ::: n :::: N, ",here Xn lies in the in­
terval [an, an+l] and the sequence {ai, a2, ... , aN+ll &atisfies the conditions
al = -00, aN+I = 00 and for i > j we have ai > aj'

4.12 The random variable cP is uniformly distributed on the interval [- ~, ~]. Find the
PDF of X =tan cPo Find the mean and the variance of X.

4.13 Let Y be a positive valued random variable; i.e., Jy(y) = 0 for y < O.

1. Let ex be any positive constant. Show that P (Y > ex) :::~ (Markov
inequality).

2. LetXbeanyrandomvariabiewithvariance0-2 anddefineY = (X - E[X])2
and IX = E2 for some E. Obviously the conditions ofthe problem are satisfied
for Y and IX as chosen here. Derive the Chebychev inequality

0-2

P(\X - E[XJ! > E) :::: 2
E

4.14 Show that for a binomial random variable, the mean is given by np and the
variance is given by np(l- p). "

4.15 Show that for a Poisson random variable defined by thePMF P(X = k) = ~e-!..
k = 0,1,2, ... , the characteristic function is given by 1/Jx(v) = e!..(ejo-l)."Use

this result to show that E[X] = Aand VAR(X) = A.
4.16 Let X denote a Gaussian random variable with mean equal to zero and variance

equal to 0-
2

• Show that

E[X"] = {O, ,n = 2k +1
1x3x5x···x(n-1)o-n, n=2k

4.17 Two random variables X and Y are distributed acconting to

_ { K(x + y), 0:::: x ::: 1, 0::: y ::: 1
ix,Y(x, y) - 0 th'

, 0 erwlse

Problems
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x>O

otherwise

• { 2
fx(x) = ~e-;"2,

0,

1. Find K.

2. What is the probability that X + Y > I?
3. Find P(X > Y).

4. What is P(X > YIX +2Y > I)?
5. Find P(X = Y)?

6. What is P(X > O.5IX = Y)?

7. Find fx(x) and jy(y).

8. Find fx(xlX + 2Y > 1) and E[XIX + 2Y > 1].

Let XI, X2 , ... , Xn denote i.i.d. random variables, each with PDF fx(x),

1. If Y = min{XI, X 2 , .•. , Xn }, find the PDF of Y.

2. If Z = max{XI , X2, ... , Xn }, find the PDF of Z.

Show that for a Rayleigh density function

and

jy(y) = {fJ e-
ftJ

, y>O
0, otherwise

where ex and fJ are assumed to be positive constants. Find the PDF of X + Y
Treat the special case ex = f3 separately. .

Two random variables X and Y are distributed according to

f ( ) {
K e-x -

y, x > y > 0
X,Y x, Y = - -

. 0, otherwise

1. Find the value of the constant K.

2. Find the marginal density functions of X and Y.
3. Are X and Y independent?

4. Find fXIY(x Iy).

5. Find E[X IY = y].

6. Find COy(X, Y) and PX,y.

4.18

4.19

we have E [X] = 0- /!f and VAR(X) = (2 - I )0-2 .

4.20 Let X and Y be independent random variables with

fx(x) = {lXe-etX

, x> 0
0, otherwise

4.21

x::: -b

x?::b

Ixl < b

Random Processes Chapter 4

{

-b

g(x) = ~:'
3. Hard limiter,
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where t = l;PX and

on the Q function.

4.24 It can be shown that the Q function can be well approximated by

207Problems

{

K _6i.-e 2 x >
!X,Y(x, y) = 7C ,y - °

0, xy < °

where 8 is a constant angle.

1. Show that Z and W are jointly Gaussian random variables and determine
their joint PDF.

2. For what values of 8 are the random variables Z and W independent?

4.30 Two random variables X and Yare distributed according to

{
.. Z =Xcos8+Ysin8
W = -X.sin8 + Y cos8

m=[l 2]

C= [4 -4]
-4 9

1. Find the correlation coefficient between X and Y.

2. If Z = 2X + Y and W = X - 2Y, find COV(Z, W).

3. Find the PDF of Z.

4.28 Let X and Y be two jointly Gaussian random variables with means mx and my,
variances 0'1 and O'f and correlation coefficient PX,y. Show that !xIY(x!y) is a
Gaussian distri?ution with mean mx +P;S- (y - my) and variance 0-1(1- pix).
What happens If p = O? What if p = ±l?

4.29 X and Y are zero-mean jointly Gaussian random variables, each with variance 0- 2
.

The correlation coefficient between X and Y is denoted by p. Random variables
Z and W are defined by

2. Find the PDF of the random variable R = f. What is the mean and the
variance of R?

4.27 Random variables X and Y are jointly Gaussian with

1. Find K.

2. Show that X and Y are each Gaussian random variables.

3. Show that X and Y are not jointly Gaussian.

4. Are X and Y independent?

5. Are X and Y uncorrelated?

6. Find fXjY(x!y). Is this a Gaussian distribution?

4.31 Let X and Y be two independent Gaussian random variables with common vari­
ance u 2• The mean of X is m and Y is a zero-mean random variable. We define

Random Processes

4.22 Let e be uniformly distributed on [0, rc] and let random variables X and Y be
defined by X = cos e and Y = sin e. Show that X and Y are uncorrelated but
they are not independent. .

4.23 Let X and Y be two independent Gaussian random variables, each with mean zero
and variance 1. Define the two events E I (r) = {X > rand Y > r} and E2(r) ::=:

{.JX2 + y2 > .j2r}, where r is any nonnegative constant.

1. Show that EI(r) £ E2(r), and therefore, P(EI(r»:::: P(E2(r».

2. Show that peEl (r» = Q2(r).

3. Use rectangular to polar transformation relations to find P (E2 (r» and con­
clude with the bound

p = 0.2316419

bi = 0.31-981530

b2 = -0.356563782

b3 = 1.781477937

b4 = -1.821255978

bs = 1.330274429

Using this relation write a computer program to compute the Q function at any
given value of its argument. Compute Q(x) for x =1,1.5,2,2.5,3,3.5,4,4.5,5
and compare the results with those obtained from the table of the Q function.

4.25 Let the random vector X = (Xl> X2 , ... , Xn ) bejointly Gaussian distributed with
mean m and covariance matrix C. Define a new random vector Y = AX

t +b,
where Y is an n-dimensional random vector and A and b are constant matrices.
Using the fact that linear functions of jointly Gaussian random variables' are
themselves jointly Gaussian, find the mean and, covariance matrices of Y.

4.26 Let X and Y be independent Gaussian random variables, each distributed accord­
ing to N(O, 0- 2

).

1. Find the joint density function of the random variables Z = X + Y and
W = 2X - Y. What is the correlation coefficient between these two random

variables.
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10(x) = 2- r2Jr
eXcosu du = 2-111: eXCOSU du

2rr Jo 2rr -11:
is called the modified Bessel function of the first kind and zero order. The distri­
bution of V is known as the Ricean distribution. Show that, in the special case of
m = 0, the Ricean distribution simplifies to the Rayleigh distribution.

4.32 A coin whose probability of a head is *, is flipped 2000 times

1. Using the law of large numbers, find a lower bound to the probability that
the total number of heads lies between 480 and 520.

2. Using the central limit theorem, find the probability that the total number
of heads lies between 480 and 520.

4.33 Find the covariance matrix of the random vector X in Example 4.2.2.

4.34 Find mx (t) for the random process X (t) given in Example 4.2.4. Is it independent
oft?

4.35 Let the random process X (t) be defined by X (t) = A + Bt, where A and B are
independent random variables each unifo.rmJ.y distributed on [-1,1]. Find mx (t)
and RxCtl, t2).

4.36 What is the autocorrelation function of the random process given in Exam-
ple 4.2.5?

4.37 Show that the process given in Example 4.2.4 is a stationary process.

4.38 Is the process given in Example 4.2.5 wide-sense stationary?

4.39 Show that any Mth-order stationary process, M ::: 2, is wide-sense stationary.

4.40 Which one of the following functions can be the autocorrelation function of a
random process and why?

1. fer) = sin(2rrfor).

2. fer) = ,2.

{
1- lr l 1,1~1

3. f(,) = 1+ 1"1 1"1 > 1

4. fer) as shown in Figure P-4.40.

4.41 Is the process given in Example 4.2.5 an ergodic process?
4.42 Is the process of Example 4.2.1 power-type or energy-type? Is this process

stationary?
4.43 A random process Z(t) takes values 0 and 1. A transition from 0 to 1 or from 1 to

ooccurs randomly, and the probability of having n transitions in a time interval

Random Processes
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T

n=0,1,2, ...

-1

1.2

f(T)

Figure P-4.40

of duration" (, > 0), is given by

PN(n) = _1_ (~)"
1+ a" 1+ a7:

where a > 0 is a constant. We furtber assume that at t = 0, X (0) is equally likely
to be 0 or 1.

Problems

X (t) = X cos 2rr/ot + Y sin2rrfot

where X and Y are two zero-mean independent Gaussian random variables each
with variance er 2 •

1. Find mz(t).

2. Find Rz(t + r, t). Is Z(i) stationary? Is it cyclostationary?

3. Determine the power of Z(t).

4.44 The random process X (t) is defined by

1. Find mx(t).

2. Find Rx(t + r, t). Is X(t) stationary? Is it cyclostationary?

3. Find the power-spectral density of X(t).

4. Answer the above questions for the case where eri = er¥
4.45 Let {Ad~_oo be a sequence of random variables with E [A

k
] = m and

E[AkAj]=RA(k - j). We furtber assume that RA(k - j)=RA,(j - k). Let
pet) be any deterministic signal whose Fourier transform is P (f), and define the

Chapter 4

v>O

v~O

where

random variable V as V = .JX2 + y2. Show that

{

,2+m2
v mv -~2

fv(v) = q;: 10 C·2) e 2c- ,

0,
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n=-OO

co
X(t) = l: AnPU - nT)

211Problems

l(
Ry(r) == T Jo RxCt + r, t) dt

2. Show that YU) and X (t) have equal power-spectral densities.

3. Conclude that

{
1, 0 ~ t ~ T

pet) =
0, otherwise

plot a sample function of XU). Find the power-spectral density of Xct) and
plot it.

3. Let Bn == An + aAn- 1 and find the power-spectral density of X (t). How
does the value of a change the power-spectral density of X (t). What is the
effect of the value of a on the 95%-power bandwidth of the process?

4.48 Let Xct) be a cyclostationary process with period T. From Corollary 4.3.3, we
h~ve s~en that, tn Clfder to find the power-spectral densjty of X (t), we first deter­
mme R(-r) == T fo RxU + -r, t) dt and then find ~[R(r)]. We now obtain this
result by another approach.

1. Let e be a random variable, independent of X (t) and uniformly distributed
on [0, T]. Show that Y ct) == X (t + El) is stationary and its autocorrelation
function is given as

according to Bn = An + An- 1, and the random process X (t) is defined as
X(t) = 2:::-co BnP(t - nT).

1. Using the results of Problem 4.45 determine the power-spectral density of
XU)·

2. Assuming that

Sx(f) == ~ [~faT Rx(t + -r, t) dt]

4.49 The RMS bandwidth of a process is defined as

W _Jo
CO

f2Sx (f)df
RMS - Ioco SxCf) df

Show that for a stationary process, we have

1 d
2 I

WRMS = - 4n2 Rx (0) dr2 Rx(r) r=O

4.50 Show that for jointly stationary processes XU) and yet), we have Rxy(r) ==
Ryx (-r). From this, conclude that SXYCf) == SYxCf)·

4.51 A zero-mean white Gaussian noise with power-spectral density of fJQ passes
through an ideallowpass filter with bandwidth B. 2

Chapter 4

+00
XCt) = I: AkP(t - kT)

k=-co

Random Processes

in the following cases
1. An's are independent random variables each taking values ±1 with equal

probability and

where T is a constant.

random process

{
1 0 < t < T

pct) = 0: otherwise

2. An's take values 0 and I with equal probability, all the other conditions as

in part l.
3. Solve parts 1 and 2 for the case where

{
1 0 < t <3T

pet) = 0: othe~se

4. In each of the above cases find the bandwidth that contains 95% of the total

power of the process.

4.47 Let An's denote a sequence of independent binary valu~d random variables,
each taking values ±1 with equal probability. Random vanables Bn are defined

1. Find mx(t).

2. Find Rx(t + -r, t).
3. Show that this process is cyclostationary with period T.

4. Show that
1 T 1 co .

Rx(-r) = - r RxU + -r, t) dt = T l: RA(n)Rp(-r - nT)
T Jo n=-OO

where Rp(-r) == p(-r) *p(-r) is the (deterministic) autocorrelation func­

tion of pU).
5. Show that the power-spectral density of X(t) is given by

Sx(f) = \p(f)\2 [RA(O) +2"f, RA(k) COS2TtkfT]
T k=l

4.46 Using the result of Problem 4.45 find the power-spectral density of the random

process
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Figure P-4.56

1. Is Y(t) stationary? Why?

2. What is the power-spectral density of Yct)?

Problems

IRxy(r) I ::: Rx(O)Ry(O) ::: ![Rx(O) + Ry(O)J

4.59 The stationary process X (t) is passed through an LTI system and the output
process is denoted by yet). Find the output autocorrelation function and the
crosscorrelation function between the input and the output processes in each of
the following cases.

1. A delay system with delay b...

2. A system with h(t) = 1.
t

3. A system withh(t) =_e-atu(t) where ex> O.

4. A system described by the differential equation

d d
-dY(t)+YCt)=-X(t)-X(t)

t dt

5. A finite time averager defined by the input-output relation

1 jt+T
yct) = 2T

t
_

T
x(r) dr

3. What frequency components cannot be present in the output process and
why?

4.57 The stationary random process X (t) has a power-spectral density denoted by
Sx(f).

1. What is the power-spectral density of yet) = X(t) - X(t - T)?

2. What is the power-spectral density of Z(t) = X'(t) - Xct)?

3. What is the power-spectral density of Wet) = yet) + Z(t)?

4.58 Show that for two jointly stationary processes X (t) and Y(t), we have

where T is a constant.

4.60 Give .an example of two processes X (t) and Y(t) for which Rxy(t + r, t) is a
functlOn of! but X(t) and Y (t) are not stationary.

4.61 For each of the following processes, find the power-spectral density

1. X (t) = A cos(2nfot+EJ), where A is a con.stant and e is a random variable
Uniformly distributed on (0, ~].

2. X(t) = X + Y, where X and Y are independent, X is uniform on (-1, 1J
and Y is uniform on (0, 1].

4.62 X (t) is a stationary random process with autocorrelation function Rx (r) = e-ajr I,
ex > O. This process is applied to an LTI system with h(t) = e-{Jtu(t), where
f3 > O. Find the power-spectral density of the output process yet). Treat the cases
ex =I- f3 and ex = f3 separately.

213
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is true for both stationary and cyclostationary processes.

4.55 Generalize the result of the Example 4.3.8 to show that if X (t) is stationary,

1. X (t) and 1tX (t) are uncorrelated processes.

2. The power spectrum of ZCt) = X(t) + 1tX(t) is the sum of the power
spectra of X(f) and ftX(t).

Express the power spectrum of the sum in terms of the power spectrum of X (t).

4.56 X(t) is a stationary process with power-spectral density Sx(f). This process
passes through the system shown in Figure P-4.56. .

1. Find the autocorrelation of the output process Y (t).

2. Assuming r = 2~' find the joint PDF of the random variables Y (t) and
yet + r). Are these random variables independent?

4.52 Find the output autocorrelation function for a delay line with delay b.. when the
input is a stationary process with autocorrelation Rx(r). Interpret the result.

4.53 We have proved that when the input to an LTI system is station~,. the output
is also stationary. Is the converse of this theorem also true? That IS, if we know
that the output process is stationary, can we conclude that the input process is
necessarily stationary?

4.54 It was shown in this chapter that if a stationary random process X (t) with
autocorrelation function Rx("r:) is applied to an LTI system with impulse re­
sponse h(t), the output YCt) is also stationary with autocorrelati~n .function
Ry(r) = Rx(r) * her) * h(-r). In this problem, we show that a slIIDlar rela­
tion holds for cyclostationary processes.

1. Let X (t) be a cyclostationary process applied to an LTI system with impulse
response h(t). Show that the output process is also cyclostationary.

. 2. Show that

X(I)

Ry(t, t +r) = Rx(t, t +r) * her) *h(-r)

3. Conclude that the relation

Sy(f) = Sx(f)IH(f)!2
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E[(XCt) - X(t»)Z(t - r)] = 0

E[XCt) - X(t)f ~ E[X(t) - X(t)f

for all values of -r: and t, where the second filter does not satisfy this property.

Show that

215

. n=-oo

00

X(t) = :L An sinc2W(t-nT)

2. Show that the optimal hCt) must satisfy

Rxz(-r:) = Rz(-r:) *h(r)

3. Show that the optimal filter satisfies

Problems

H(f) = Sxz(f)
Sz(f)

4. Derive an expression for E[E2 (t)] when the optimal filter is employed.

4.65 The random process X (t) is defined by

where An's are independent random variables with mean zero and common
variance cr 2 •

1. Use the result ofProblem 4.45 to obtain the power-spectral density of X(t).

2. In the special case of T = 2~ what is the power content of X (t)?

3. Now let X I~t) be a zero-mean stationary process withpower-spectral density
Sx, (f) = -f11(2'fv) .and let An = X.I(nT), where T = 2~' Determine the
power-spectral denSIty of X(t) and ItS power content. What is the relation
between Xl (t) and X (t)?

4.66 What is the noise-equivalent bandwidth of an ideal bandpass filter with band-
width w?

4.67 Work out Exarnple 4.6.1 with fa = fe -.!f.
4.68 Verify the Equation (4.6.6) for both parts of Example 4.6.1.

4.69 A zero-mean white. Gaussian noise, nw(t), with power-spectral density £!f, is
passed through an Ideal filter whose passband is from 3-11 KHz. The output
process is denoted by net).

1. If fa =.7 KHz, find Sn,(f), Sn, (f), and Rn~n, (-r:), where ne(t) and ns(t)
are the Ill-phase and quadrature components of n (t).

2. Repeat part I with fa = 6 KHz.

4.70 Let pet) be a bandpass signal with in-phase and quadrature components pc (t) and
Psct) and let X (t) = I::-oo AnP(t - nT), where An's are independent random
variables. Express Xe(t) and Xs(t) in terms of Pe(i) and Ps(t).

4.71 Let Xct) be a bandpass process and let Vet) denote its envelope. Show that for
all choices of the center frequency fa, V (t) remains unchanged.

4.72 Let nw (t) be a zero-mean white Gaussian noise with power-spectral density !:!JJ.,
and let this noise be passed through an ideal bandpass filter with bandwidth 2W
centered at frequency fe. Denote th.e output process by net).

Chapter 4Random Processes

i.e., the necessary and sufficient condition for an optimal filter is that its
output should satisfy the orthogonality condition as given by

E[(X(t) - X(t))Z(t - r)] = 0

which simply means that the estimation error ECt) = X(t) - X(t) must be
orthogonal to the observable process zct) at all times.

H _ Sx(f)+SxN(f)

(f) - Sx(f) + SN(f) + 2Re[SxN(f)]

3. Now assume that X (t) and N(t) are independent and N (t) is a zero-mean
white Gaussian process with power-spectral density !fl. Find the optimal
H (f) under these conditions. What is the corresponding value of E[X (t) ­

XCt)]2 in this case?

4. In the special case of SN(f) = 1, Sx(f) = 1';1" and SXN(f) = 0, find
the optimal H (f).

4.64 In this problem, we examine the estimation of a random process from observation
of another random process. Let X (t) and zct) be two jointly stationary random
processes. We are interested in designing an LTI system with impulse response
h(t) such that when Z (t) is passed through it the output process X(t) is as close
to X (t) as possible. In other words, we are interested in the best linear esp-mate
of xct) based on the observation of Yct) in order to minimize E[X{t) - X(t)]2.

1. Let us assume we have two LTl systems with impulse responses hCt) and
get). Z(t) is applied to both systems and the outputs are denoted by X(t) and
X(t), respectively. The first filter is designed such that its output satisfies

the condition

4.63 Let yet) = X (t)+ N(t), where X (t) and N(t) are signal and noise processes. It is
assumed that X (t) and N (t) are jointly stationary with autocorrelation functions
Rx(-r:) and RN(-r:) and crosscorrelation function RXN(-r:)· It is .desired to separate
the signal from the noise by passing Yct) through an LTl system with iml?-ulse
response hCt) and transfer function H(f).The output process is denoted by X(t),
which is desired to be as close to X (t) as possible.

1. Find the crosscorrelation between X(t) and X(t) in terms of her), Rx(r),

RN(-r:), and RXN(r).
2. Show that the LTl system that minimizes E[X(t) - X(t)]2 has a transfer

function
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1. Assuming fa = fe, find the power content of the in-phiise and quadrature
components of n (t).

2. Find the density function of V (t), the envelope of n (t).

3. Now assume X (t) = A cos 2nfot +net) where A is a constant. What is the
density function of the envelope of X(t)?

4.73 A noise process has a power-spectral density given by

Repeat parts 1,2, and 3 with this assumption.

-,-

In this section we determine the signal-to-noise ratio (SNR) of the output of the receiver
that demodulates the amplitude-modulated signals. In evaluating the effect of noise on
the various types of analog-modulated signals, it is also interesting to compare the result
with the effect of noise on an equivalent baseband communication system. We begin
the evaluation.of the effect of noise on a baseband system.
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Effect of Noise on Analog
Communication Systems

In Chapter 3, we studied the important characteristics of analog communication sys­
tems. These characteristics included time-domain and frequency-domain representa­
tions of the modulated signal, bandwidth requirements, and power content of the modu­
lated signal and, finally, modulator and demodulator implementation ofvarious analog
communication systems.

In this chapter the effectofnoise on various analog communication systems will be
analyzed. As we will see, angle-modulation systems and particularly FJ'v.I, can provide a
high degree ofnoiseimmunity, and therefore are desirable in cases ofseverenoise and/or
low signal power. This noise immunity is obtained at the price of sacrificing channel
bandwidth because, as we have seen in Chapter 3, the bandwidth requirements of
angle-modulation systems is considerably higher than amplitude-modulation systems.

This chapter starts with an analysis of the performance of linear-modulation sys­
tems in the presence of noise. Then, the performance of phase-locked loops (PLL) that
are used for carrier synchronization is studied. The effect of noise on angle-modulation
systems is treated next and, finally, the effects of transmission loss and noise on analog
communication systems in general are analyzed.

5.1 EFFECT OF NOISE ON LINEAR-MODULATION :SYSTEMS

Chapter 4

If I < 108

If I > 108

Random Processes

Sn(f) = {1O-8 (1 - !fJ-),
0,

2 _ {If1- 49 x 106
, 49 MHz < If I < 51 MHz,

IH(f)1 - 0 th .
, 0 erwlse .

This noise is passed through an ideal bandpass filter with a bandwidth of 2 MHz
centered at 50 MHz.

1. Find the power content of the output process.

2. Write the output process in terms ofthe in-phase and quadrature components
and find the power in each component. Assume fa = 50 MHz.

3. Find the power-spectral density of the in-phase and quadrature components.

4. Now assume that the filter is not an ideal filter and is described by
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and, therefore, the received signal at the output of the receiver noise-limiting filter is
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(5.1.8)

(5.1.11)

(5.1.12)
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P _lp
no - '4 nc

== ~ Pn (5.1.9)

where we h~ve use.d the fact that the power contents of ne(t) and nCt) are equal This
was shown m S~ctIon 4:6. as seen in Equation (4.6.6). The power content of n(;) can
be found by noting that It IS the result of passing nw(t) throuoh a filter with bandwidth
Be. Therefore, the power-spectral density of net) is given by'"

Sn(f) == {!it, if - fel < W
0, otherwise (5.1.10)

power. T~s can be avoided.by e~ploying a PLL as described in Section 5.2. The effect
of a PLL 1~ to generate a smusOld at the receiver with the same frequency and phase
of the camero If a PLL is employed, then cP == cPc, and the demodulator is called a
coherent or syn,chronous demodulator. In our analysis in this section, we assume that
we are ~mploymg a coherent demodulator. With this assumption and without loss of
generality, we can assume cP == ¢c == 0, and Equation (5.1.6) reduces to

yet) == ~ [Aem(t) +ne(t)] (5.1.7)

Therefore, at the receiver output the message SI''''''''al and th .
dd

' . 5'" e nOIse components are
a ltlve and we are able to define a meaningful SNR Th . al .givenby' . e message SIgn power IS

and the noise power is given by

== A~Pm
2WNo

Pn = 1: Sn(f) df

No
=-x4W

2
=2WNo

Now we can find the output SNR as

The noise power is

(5.1.3)

(5.1.2)

(5.1.1)

Chapter 5Effect of Noise on Analog Communication Systems

In DSB, we have

ret) == u(t) + net)

== Aem(t) cos(2rcfet + ¢e) + ne(t) cos2rcfet - ns(t) sin2rcfe t (5.1.4)

where we have used the in-phase and quadrature components of the noise as discussed

in Section 4.6.
Suppose we demodulate the received signal by first multiplying r (t) by a locally

generated sinusoid cos(2rcfct + ¢), where ¢is the phase of the sinusoid, and then
passing the product signal through an ideallowpass filter having a bandwidth W. The

multiplication of rCt) with cos(2rcfet + ¢) yields

ret) cos(2rcfet +¢) == Aem(t) cos(2rcfet + ¢J cos(2n:fet + ¢) + net) cos(2n:fe t + ¢)

== iAem(t) COS(¢e - ¢) + iAem(t) cos(4n:fct + ¢ + ¢e)

+ ~ [ne(t) cos ¢ + ns(t) sin ¢)

+ Hne(t) cos(4n:fet + ¢) - ns(t) sin(4n:fet + ¢») (5.1.5)

Thelowpass filterrejects the double-frequency compa'nents and passes only the lowpass

components. Hence, its output is

yet) == ~Aem(t) cos(¢e - ¢) + Hne(t) cos ¢ +ns(t) sin¢J (5.1.6)

As it was discussed in Chapter 3, the effect of a phase difference between the
transmitter and the receiver is a reduction equal to cos2 (¢e - ¢) in the received signal

(S) PR
N b == NoW

5.1.2 Effect of Noise on DSB-SC AM

If we denote the received power by PR , the baseband SNR is given by

5.1.1 Effect of Noise on a Baseband System

Since baseband systems serve as a basis for comparison ofvarious modulation systems,
we begin with a noise analysis of a baseband system. In this case, there exists no
demodulator, and the receiver consists only of a lowpass filter with bandwidth W. The
noise power at the output of the receiver is, therefore,

j +W No
Pno == -w 2 df

==NoW
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(5.1.19)

~-

-~

(5.1.20)
-~

(5.1.21)

(5.1.23)

(5.1.24)

(5.1.25)

"(5.1.27)

(
S) Po A~Pm
N oSSB = Pno = WNo

100 M
Pn"=. Sn(j)df = ~ x 2W = WNo

~OO 2
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and, therefore,

Therefore,

However, in this case, the desired signal is mCt), not 1 +amn(t). The dc component in
the demodulated waveform is removed by a dc blocking device and, hence, the lowpass
filter output is

But, in this case,

where we have assumed that the message signal is zero mean. Now we can derive the

Therefore,

where a is the modulation index arid mn(t) is normalized so that its minimum value
is -1. If a synchronous demodulator is employed, the situation is basically similar to
the DSB case, except that we have 1+amn(t) instead of met). Therefore, in this case,
after lnixing and lowpass filtering, we have

1 ne (t)
yet) = -Aeamn(t) +-- (5.1.26)

2 2

In this case, from Equation (5.1.24), we obtain the received signal power PR as

A2

PR= 2e [1+a2 pm,,]

Therefore, the received signal at the input to the demodulator is

ret) = [Ae[l+ amn(t)] + ne(t)] cos 27!fet - ns(t) sin 27!!et

(~) oSSB = :~o = (~) b (5.1.22)

Therefore, the SNR in a SSB system is equivalent to that of a DSB system.

5.1.4 Effect of Noise on Conventional AM

In conventional DSB AM, the modulated signal is

u(t) = Ae[l +amn(t)] cos 27!!et

(5.1.18)

(5.1.17)

(5.1.16)

(5.1.14)

(5.1.13)

Chapter 5

fe :::0 If I :::0 f + fe

otherwise

P _Ip _Ip
no -4 nc -4 n

{

&.
Sn(f) = 2'

0,

u(t) = Acm(t) cos 27!fct ± Aem(t) sin 27!fet

Effect of Noise on Analog Communication Systems

and

It is observed that, in this case, again the signal and the noise components are additive
and a meaningful SNR at the receiver output can be defined. Parallel to our discussion

of DSB we have

The noise power-spectral density in this case is Noli over the bandwidth of the front­
end filter at the receiver, which here has a bandwidth of W. For instance, in the USSB

case, we have

Here again we assume that demodulation occurs with an ideal-phase reference.
Hence, the output of the lowpass filter is the in-phase component (with a coefficient

of ~) of the above signal; i.e.

Therefore, the input to the demodulator is

rCt) = Aem(t) cos 27!fct ± Aem(t) sin 27!fet + net)

= (AemCt) + ne(t)) cos 27!fot + (±Acm(t) - ns(t)) sin 27!fct (5.1.15)

5.1.3 Effect of Noise on SSB AM

In this case

It is seen that in DSB-SC AM, the output SNR is the same as the SNR for a baseband
system. Therefore, DSB-SC AM does not provide any SNR improvement over a simple
baseband communication system.

In this case, the received signal power is PR = A~:m. Therefore, by using Equa­

tion (5.1.2), we obtain
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Now, we assume that the signal component in ret) is much stronger than the noise
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(5.1.33)

(5.1.32)
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component. With this assumption, we have

P (ns(t) « [Ac[1 + amn(t)]]) ~ 1

Therefore, with high probability

Vr(t) ~ [Ac[1 + amn(t)]] + nc(t)

After removing the dc component, we obtain

yet) = Acamn(t) + nc(t) (5.1.34)

which is basically the same as yet) for the synchronous demodulation without the 1
coefficient. This coefficient, of course, has no effect on the final SNR, and therefore w~
conclude that, under the assumption ofhigh SNR at the receiver input, the performance
~f sY,TIchronous a~d envelope demodulators is the same. However, if the above assump­
non IS not ~e, WIth synchro~ous demodulation we still have additive signal and noise
~t the -:-eceIver output, but WIth envelope demodulation, the signal and noise become
lllterrnmgled. To see this, let us assume that at the receiver input the noise powert is
much stronger than the signal power. This means that

Vr(t) = J[AcE1 + amn(t)] + nc(t)]2 + n~(t)

= JAW + amn(t»2 + n~(t) + n~(t) + 2Acn c(t)(l + amn(t))

~ (n~(t) + n~(t)) [1 + 2~~cnc(~() (1 + amn(t»]
nc t + ns t

b [Acnc(t) ]
~ Vn(t) 1+ Viet). (l +amn(t»

Acnc(t)
= Vn(t) + Vn(t) (l+amn(t» (5.1.35)

where in (a) we have used the fact that (1 + amn(t»2 is small compared to the
other compon.ents and in (b) we have denoted .jn~(t) + n~(t) by Vn(t), the enve­
lope of the nOIse process, and have used the approximation .jf+E~ 1+ *, for small
E, where -

2Acn c(t)
E = n~(t) + n~(t) (1 + amn(t» (5.1.36)

From Equ~tion (5.1.35), it is observed that at the demodulator output, the sig'nal
~nd th~ n?ISe components are no longer additive and, in fact, the signal component
IS mulnplied by noise and is no longer distinguishable. In this case, no meaningful
SNR can be defined. It is said that this system is operating below the threshold. The

lEy noise power at the receiver input we mean the power of the noise within the bandwidth of the
modulated signal, or equivalently, the noise'power at the output of the noise-limiting filter.

(5.1.31) ..

(5.1.30)

(5.1.29)

(5.1.28)
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1+a2 pm" NoW

a2pm" PR

1+a2 pm" NoW

(S) iA~a2 Pm"
N 0AN[ = ipnc

A~a2 Pm"
2NoW

a2 P g [1 + a2 P ]mn 2 mn
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ret) = [Ac{1 + amn(t)] + nc(t)} COS2TCfct - ns(t) sin2TCfct

and, therefore, the envelope of ret) is given by (see Equation (4.6.2»

denotes the modulation efficiency.
From above it is seen that, since a2 Pm" < 1+a2 Pm", the SNR in conventional

AM is always smaller than the SNR in a baseband system. In practical applications,
the modulation index a is in the range of 0.8-0.9. The power content of the normalized
message process depends on the message source. For speech signals that usually have
a large dynamic range, Pm" is in the neighborhood of 0.1. This means that the overall
loss in SNR compared to a baseband system is a factor of 0.075 or equivalent to a loss
of 11 dB. The reason for this loss is that a large part of the transmitter power is used to
send the carrier component of the modulated signal and not the desired signal.

To analyze the envelope detector performance in the presence of noise, we have
to use certain approximations. This is mainly due to the nonlinear structure of the enve­
lope detector that makes an exact analysis difficult. In this case the dem'odulator detects
the envelope of the received signal and the noise process. The input to the envelope

detector is

where we have used Equation (5.1.2) and

a2 p
m"

output SNR for the coherent demodulator. From Equation (5.1.26)
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(5.2.1)

BW = W = 10000 Hz = 10 KHz

= Acm(t) cos(2:rrlct + cPc) + net)

Carrier-Phase Estimation with a Phase-Locked Loop (PLL)

and

3. For conventional AM, with a = 0.8,

Section 5.2

or

0.82 X 1
T) = 9 ~ 0.22

1 + 0.82 x.~

Therefore,

Hence,

Pr ~ 909KW

The bandwidth of conventional AM is equal to the bandwidth of DSB AM; i.e.,

BW = 2W = 20KHz

(!-) = 7] (!-) = 7] Pr
NoN b 2

where 7] is the modulation efficiency given by

a2 p,
7] = m"

1 -I- a2 pm"

First we find Pm", the power content of the normalized message signal. Since
maxlm(t)/ = 6, we have

p _ Pm = Pm = 16 4
m" - (maxjmCt)/f 36 36 9

In this section, we describe a method for generating a phase reference for synchronous
demodulation of a DSB-SC AM signal. The received noise-corrupted signal at the input
to the demodulator is given by (compare with Equation (3.2.5».

rCt) = u(t) + net)

First, we note that the received signal r (t) has a zero mean, since the message
signal met) is zero mean; i.e., mCt) contains no de component. Consequently, the
average power at the output of a narrowband filter tuned to the carrier frequency Ic
is zero. This fact implies that we cannot extract a carrier-signal component directly
fromr(t).

5.2 CARRIER-PHASE ESTIMATION WITH A PHASE-LOCKED
LOOP (PLL)

Chapter 5Effect of Noise on Analog Communication Systems224

(!-) = 10
8

x 10-
8
Pr = Pr

N b 2 2

1. For DSB AM, we have

(~)o = (~)b =; ~50dB=105
therefore,

BW = 2W = 2 x 10000 = 20000 Hz ~ 20 KHz

subject of threshold and its effect on the performance of a communication system will
be covered in Section 5.3.1 when we discuss the noise performance in angle modula­
tion.

Example 5.1.1
The message signal met) has a bandwidth of 10 KHz, a power of 16 W and a maximum
amplitude of 6. It is desirable to transmit this message to a destination via a channel with
SO-dB attenuation and additive white noise with power-spectral density Sn (f) ;: ~ =
10-12 WIHz, and achieve a SNR at the modulator output of at least 50 dB. What is the
required transmitter power and channel bandwidth if the following modulation schemes
are employed?

1. DSBAM
2. SSB AM
3. Conventional AM with modulation index equal to 0.8

Solution We first determine (~) b as a basis of comparison.

(
S ) PR P R 108PR

N b = NoW = 2 X 10-12 X 104 = -2-

Since the channel attenuation is 80 dB, the ratio of transmitted power Pr to received power
PR is

2. For SSB AM,

Pr
10 10g- = 80

PR

and

Hence,

and, therefore,



5.2.1 The Phase-Locked Loop (PLL)

The PLL consists ofa multiplier, a loop filter, and a voltage-controlled oscillator (YeO), .
as shown inFigure 5.2. SupposethattheinputtothePLLis the sinusoid cos (4rrfet +2¢)
and the output of the veo is sin(4rrfet + 2$), where $ represents the estimate of ¢.
The product of these two signals produces the signal

e(t) = cos(4rrfet + 2¢) sin(4rrfet + 21))

= ~ sin 2($ - ¢) + ~ sin(8rrfct + 2$ + 2¢) (5.2.3)

Note that e(t) contains a low-frequency term (dc) and a term at four times the carrier.
The loop filter is a lowpass filter that responds only to the low-frequencycompo­

nent sin 2(J- ¢) and removes the component at 4 fe. This filter is usually selected to

If we square r (t), the squared signal contains a spectral component at twice the
carrier frequency; Le.,

r2(t) = A~m2(t) cos2(2rrfet + ¢e) + noise terms

= ~A~m2(t) + ~ A~m2(t) cos(4rrfet + 2¢e) + noise terms (5.2.2)

Since m 2 (t) > 0, there is signal power at the frequency 2fe, which can be used to drive
a phase-locked loop (PLL).

In order to isolate the desired double-frequency component from the rest of the
frequency components, the squared-input signal is passed through a narrowband filter
that is tuned to the frequency 2fe. The mean value of the output of such a filter is
a sinusoid with frequency 2fe, phase 2¢", and amplitude A~m2(t)H(2fe)/2, where
IH(2fe) I is the gain (attenuation) of the filter at f=2fe. Thus, squaring the input
signal produces a sinusoidal component at twice the carrier frequency which can be
used as the input to a PLL. The general configuration for the carrier-phase estimation
system is illustrated in Figure 5.1.
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(5.2.8)

Loop
filter
G(s)
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have the relatively simple transfer function

G(s) = 1 + r2S
1+ rlS (5.2.4)

where ~e time constants :1 and r2 are design parameters (rl » r2) that control the
?andwldth of the loop. A higher-order filter that contains additional poles may be used
If necessary, to obtain a better loop response. '

. The o~tpu: of the .loop, vet), prOVides the control voltage for the veo whose
Imple::nenta.tlOn IS d~scnbed in Section 3.3.3, in the context of PM modulation. The
veo IS baSIcally a smusoidal signal generator with an instantaneous phase given by

4nfet + 2$ = 4nfe t + Xv 1~ vCr) dr (5.2.5)

where Xv is a gain constant in radi~s/volt-sec.Hence, the carrier-phase estimate at the
output of the veo is

veo
Xv
s

Figure 5.3 Model of a PLL.

2$ = Xv 1~ vCr) dr (5.2.6)

and its transfer function is Kv Is.
. Because the ~ouble-frequency term reSUlting from the multiplication of the input

SIgnal to the loop WIth the output of the veo is removed by the loop filter, the PLL may
be represented.by the close~-loop system model shown in Figure 5.3. The sine function
of the pha~e dIfference 2(¢ - ¢) m~es the system nonlinear and, as a consequence,
the analY~I~ of the PL~ performance ill the presence of noise is somewhat involved,
although It IS mathematIcally tractable for simple-loop filters.

. In steady-state op~ration when the loop is tracking the phase of the received
carner, the phase error ¢ - ¢ is small and, hence,

~ sin 2($ - ¢) ~ $ - ¢ (5.2.7)

Wi.th t?is approximation, the PLLis represented by the linearmode l shown in Figure 5.4.
This lmear model has a closed-loop transfer function.

H(s) = KG(s)ls
1+ KG(s)ls

where the factor of 112 has been absorbed into the gain parameter K. By SUbstituting

Chapter 5

Figure 5.1 System for carrier-phase
estimation.

Figure 5.2 Basic elements of a PLL.

PLL

Output

Bandpass
filter

tuned to 2fc
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Square-law
device
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10

(5.2.14)

(5.2.15)

(5.2.17)

(5.2.16)

(5.2.13)

3 4 5 72

xc(t) = nc(t) cos ¢ (t) + ns (t) sin ¢ (t)

Xs (t) = -nc(t) sin ¢ (t) + ns (t) cos ¢ (t)

0.2 0.3 0.4 0.5 0.7 1.0
w/w7r

Carrier-Phase Estimation with a Phase-Locked Loop (pLU

net) = xc(t) cos[2rrjct + ¢(t)] - xs(t) sin[2rrjct + ¢(t)]

8

6
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Figure 5.5 Frequency response of a second-order loop. (From Phaselock
Techniques, 2nd Ed., by F. M. Gardner; © 1979 by John Wiley & Sons. Reprinted
with permission of the publisher.)

We note that

where

Section 5.2

set) = Ac cos[2nfct + ¢(t)]

which is corrupted by the additive narrowband noise

net) = nc(t) cos 2rrjct - ns(t) sin2rrjct

5.2.2 Effect of Additive Noise on Phase Estimation

In order to evaluate the effects of noise on the estimate of the carrier phase, let us
assume that the PLL is tracking a sinusoidal signal of the form

The in-phase and quadrature components of the noise are assumed to be statisti­
cally independent, stationary Gaussian noise processes with (two-sided) power-spectral
density No/2 WlHz. By using simple trigonometric identities, the noise term in
Equation (5.2.14) can be expressed as

(5.2.9) "

(5.2.10)

Chapter 5

Figure 5.4. Linear model of a PLL.

Loop
filter
G(s)

veo
!f...
s
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where Sis called the loop-dampingjactor arid Wn is the naturalfrequency of the loop. In
terms of the loop parameters, Wn = -JKI"CI and S = wn (r2 + IIK)/2, the closed-loop

transfer function becomes

The magnitude response 20 logIH (j w) Ias a function of the normalized frequency
wiW

n
is illustrated in Figure 5.5, with the damping factor as a parameterandrl » 1. Note

that, S= 1results in a critically damped loop response, S< 1produces an underdamped
loop response, and S> 1 yields an overdamped loop response:

The (one-sided) noise equivalent bandwidth of the loop IS (see Problem 5.6)

r{(IJri + KI"Cl) 1+ ("C2WnP
Beg = ( 1) = 8 I4 r2 + K S Wn

In practice, the selection of the bandwidth of the PLL involves a u:a~e-off?etween speed·
of response and noise in the phase estimate. On the one hand, It IS d~ITable.to. sele~t
the bandwidth of the loop to be sufficiently wide in order to track any tlme vanatlons.ID
the phase of the received carrier. On the other hand, a wideband PLL allows more nmse
to pass into the loop, which corrupts the phase estimate. Next, we assess the effects of
noise in the quality of the phase estimate. ".

from Equation (5.2.4) for G(s) into Equation (5.2.8), we obtain

1+ r2s
H(s) = ---,--~-~

1+ (r2 + -it) s + XS2

Hence, the closed-loop system function for the linearized PLL is second order when the
loop filter has a single pole and a single zero. The parameter r2 deterrninesthe position
of the zero in H(s), while K, rl, and r2 control the position of the closed-loop system

poles.
The denominator of H(s) may be expressed in the standard form
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Figure 5.6 Equivalent model of PLL with additive noise.
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(5.2.21)2 1(J. =-
4> PL
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where PL is defined as the SNR

where Bneq is the (one-sided) noise-equivalent bandwidth of the loop, given by Equa­
tion (5.2.12). Note that A~/2 is the power of the input sinusoid and (JJ is simply the
ratio of the total noise power within the bandwidth of the PLL divided by the input
signal power. Hence,

A~/2
PL = (5.2.22)

BneqNO/2

Thus, the variance of ¢ is inversely proportional to the SNR.
The expression for the variance (JJ of the yeO-phase error applies to the case

where the SNR is sufficiently high so that the linear model for the PLL applies.
An exact analysis based on the nonlinear PLL is mathematically tractable when
G(s) = 1, which results in a first-order loop_ In this case, the PDF for the phase er­
ror can be derived [see Viterbi (1966)], and has the form

f( A"') = exp(PL cos ll¢)
'-''I' (5.2.23)

2rr 10(PL)

where PL is the SNR defined in Equation (5.2.22), Bneq is the appropriate noise­
equivalent bandwidth of the first-order loop, and 100 is the modified Bessel function
of order zero.

From the expression for f (ll¢) we may obtain the exact value of the variance (JJ
for the phase error of a first-order PLL. This is plotted in Figure 5.8 as a function of
IIPL. Also shown for comparison is the result obtained with the linearizedPLL model.
Note that the variance for the linear model is close to the exact variance for PL > 3.
Hence, the linear model is adequate for practical purposes.

Approximate analysis of the statistical characteristics of the phase error for the
nonlinear PLL have also been performed. Of particular importance is the transient
behavior of the nonlinear PLL during initial acquisition. Another important problem is
the behavior of the PLL at low SNR. It is known, for example, that when the SNR at
the input to the PLL drops below a certain value, there is a rapid deterioration in the
performance of the PLL. The loop begins to lose lock and an impulsive-type of noise,
characterized as clicks, is generated, which degrades the performance of the loop.
Results on these topics can be found in the texts by Viterbi (1966), Lindsey (1972),
Lindsey and Simon (1973), and Gardner (1979), and in the survey papers by Gupta
(1975) and Lindsey and ehie (1981).

Squaring Loop. Now that we have established the effect of noise on the per­
formance of the PLL, let us return to the problem of carrier synchronization based on
the system shown in Figure 5.9. The squaring of the received signal that produces the
frequency component at 2 fe also enhances the noise power level at the input to the PLL
and, thus, it increases the variance of the phase error.
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Figure 5.7 Linearized model ofPLL
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It is easy to verify that a phase shift does not change the first two moments of ne(t)
and ns(t), so that the quadranrre components xc(t) and xs(t) have exactly the same
statistical characteristics as nc(t) and ns(t) (see also Problem 4.29).

Now, if set) +n(t) is multiplied by the output of the veo and the double­
frequency terms are neglected, the input to the loop filter is the noise-corrupted signal

e(t) = Ac sin ll¢ + xc(t) sin ll¢ - Xs(t) cos ll¢ (5.2.18)

where, by definition, ll4J = if> - 4J is the phase error. Thus, we have the equivalent
model for the PLL with additive noise as shown in Figure 5.6.

When the power Pc = A~/2 of the incoming signal is much larger than the noise
power, the phase estimate (/> ~ ¢. Then, we may linearize the PLL and, thus, easily
determine the effect of the additive noise on the quality of the estimate (/>. Under
these conditions, the model for the linearized PLL with additive noise is illustrated in
Figure 5.7. Note that the gain parameter Ac may be normalized to unity, provided that
the noise term is scaled by II Ae. Thus, the noise term becomes .

xe(t) . xs(t)
nj (t) = -- sm ll¢ - -- cos ll¢ (5.2.19)

Ac Ae

Since the noise nj (t) is additive at the input to the loop, the variance of the phase
error ll¢, which is also the variance of the veo output phase, is

2 NoBneq(J;;. = -- (5.2.20)
'Y A~
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ret) = AemCt) cos(2rrfct + ¢) +net)

r(t)

Figure 5.10 Block diagram of Costas loop.

have spectral power in the frequency band centered at 2Ie. Consequently, the bandpass
filter with bandwidth Bneq centered at 2Ie, which produces the desired sinusoidal signal
component that drives the PLL,also passes noise due to these two noise terms.

Let us select the bandwidth of the loop to be significantly smaller than the band­
width Bbp of the bandpass filter, so that the total noise spectrum at the input to the PLL
may be approximated by a constant within the loop bandwidth. This approximation
allows us to obtain a simple expression for the variance of the phase error as

2 1
0",;, = -- (5.2.25)

'I' PLSL

where SL is called the squaring loss and is given as

1

Chapter 5

Figure 5.8 Comparison of YCO-phase .
variance for exact and approximate (linear
order) first-order PLL. (From Principles
of Coherent Communication, by A. J.
Viterbi; © 1966 by McGraw-Hill.
Reprinted with permission of the
·publisher.) .

.cos (47rfct+2cf»

Frequency
divider

Bandpass
filter

tuned to
2fc

Figure 5.9 Carrier recovery using a square-law device.
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1.4

1.6

To elaborate on this point, let the input to the squarer be u(t) + nCt)· The out­
put is

yet) = u2 (t) + 2u(t)n(t) + n2 (t) (5.2.24)

The noise terms are 2uCt)n(t) and n2 (t). By computing the autocorrelation and power­
spectral density of these two noise components, one can show that both components

'"'"E
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~
'".a
'i"
o 0.8
u
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(a)

(b)
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5

-5

Fi~e 5.11 Effect of noise on the zero crossings of (al low-power and
(b) high-power modulated signals.
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m~ssa~e inf?r:rnation is ~ont.ain~d in the amplitude of !.t1e modulated signal, and since
nOIse IS add:tive, the nOI~e I~ dIrectly added to the signal. However, in a frequency­
~odula~ed sI.gnal, the nOIse IS added to the amplitude and the message information
IS c?ntamed m the ~equency of the modulated signal. Therefore, the message is con­
tammated b~ the nOIse to the exten~ that the added noise changes the frequency of the
modulated SIgnal. The fre~u.ency ?f a signal can be described by its zero crossings.
Therefore, the effect of additIve nOIse on the demodulated FM signal can be described
b~ the changes that it produces in the zero crossings of the modulated FM signal.
FIgure 5.11 ~hows the eff~ct ~f additive noise on the zero crossings of two frequency­
~odula.ted SIgnalS, one WIth high power and the other with low power. From the above
dIscussIOn and also from Figure 5.11, it should be clear that the effect of noise in an
~M system is less than that for an AM system. It is also observed that the effect ofnoise
m a low-p0;,er~ system is more than in a high-power FM system. The analysis that
we present m this chapter verifies our intuition based on these observations.
. . The block diagram of the receiver for a general angle-modulated signal is shown
m FIgure 5.12. The angle-modulated signal is represented ast

u(t) = Accos(2nfct + ¢ (t))

= {Accos(2nfct + 2nkf J~oo meT) dT), FM

A (2
-r (5.3.1)

eCOS nJct + kpm(t)), PM

. tWhen we refer to the modulated signal, we mean the signal as received by the receiver. Therefore,
the Slgnal power 15 the power in the received signal not the transmitted power.

Chapter 5Effect of Noise on Analog Communication Systems

In this section, we will study the performance of angle-modulated signals when con­
taminated by additive white Gaussian noise and compare this performance with the
performance of amplitude-modulated signals. Recall that in amplitude modulation, the

is multiplied by cos(2nfct + 1» and sin(2nfct +$), which are outputs from the VCO.

The two products are

yc(t) = [Acm(t) cos (2nfct + ¢)

+nc(t) cos2nfct - ns(t) sin2nfct] cos(2nfct + $)
Ae 1 A A

= 2:m(t) cos fl¢ + 2: [nc(t) cos ¢ + ns(t) sin ¢1

+ double-frequency terms (5.2.27)

ys(t) = [Acm(t)cos(2nfct+¢)

+ ne(t) cos 2nfet - ns(t) sin2nfct] sin(2nfct + $)
Ac . 1 h A

= 2:m(t) smfl¢ + 2: [nc(t) sin¢ - ns(t)cos¢1

+double-frequency terms (5.2.28)

where fl¢ = J; - ¢. The double-frequency terms are eliminated by the lowpass filters
following the multiplications.

An error signal is generated by multiplying the two outputs y~(t) and y; (t) of the

lowpass filters. Thus,

e(t) = y~(t)y;(t)

A2 2' Ac A A

= -tm (t) sm2fl¢ + 4m(t)[f!e (t) cos¢ + ns(t) sin¢] sinL:,.¢

Ac A A+ 4 m (t)[n c(t) sin ¢ - ns(t) cos ¢] cos t,¢

1 A • A A A

+ 4[nc(t) cos ¢ + ns(t) sm ¢ ][nc(t) sin ¢ - ns(t) cos ¢]

This error signal is filtered by the loop filter whose output is the control voltage that

drives the VCO.
We note that the error signal into the loop filter consists of the desired term

(A~m2(t)/8) sin 2fl¢, plus terms that involve signal x noise and noise x noise. These
terms are similar to the two noise terms at the input of the PLL for the squaring method.
In fact, if the loop filter in the Costas loop is identical to that used in the squaring loop,
the two loops are equivalent. Under this condition, the PDF of the phase error and the
performance of the two loops are identical.

In conclusion, the squaring PLL and the Costas PLL are two practical methods
for deriving a carrier-phase estimate for synchronous ,demodulation of a DSB-SC AM

signal.
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(5.3.5)

(5.3.6)

(5.3.7)

Re

PM

PM

PM

PM

PM
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Im
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( )
def Vn(t) .

Yn t = ~ Slll(epn(t) - ¢J(t)).
c

{

kpm(t) + Yn(t),
yCt) = 1 d

kJm(t)+2rrdiYn(t), PM

_ {kpm(t) + VA~) sin(cPn(t) - ¢(t)),

- kfm(t) + 2~ ft VA~) sin(ep"Ct) - ¢(t)),

where, we have defined

Figure 5.13 Phasor diagram of signal and noise in an angle-modulated system.

{

kpm(t),
¢(t) = t

2nkJ LCX! mer) dr,

the output of the demodulator is given by

signal.t Therefore, noting that

IOf course, in the FM case the demodulator output is the instantaneous frequency deviation of vCt)
from the carrier frequency ic.

The first term in Equations (5.3.5-5.3.7) is the desired signal component and the second
term is the noise component. From this expression, we observe that the noise component
is inversely proportional to the signal amplitude Ae . Hence, the higher the signal level,
the lower will be the noise level. This is in agreement with the intuitive reasoning
presented at the beginning of this section based on Figure 5.11. Note also that this
is not the case with amplitude modulation. In AM systems, the noise component is
independent of the signal component and a scaling of the signal power does not affect
the received noise power.

(5.3.4)

(5.3.2)

Chapter 5

r(t)=u(t) +net)
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ret) = u(t) + net)

= u(t) + ne(t) cos 2rr:fet -ns(t) sin 2nfet

Figure 5.12 Block diagram of receiver for a general angler-demodulated signal.

Therefore, the phasor diagram of the signal and the noise are as shown in Figure 5.13.
From this figure it is obvious that we can write

r(t) ~ ( A c + Vn(t) cos(<pn(t) - ¢(t))) cos (2nf et + ¢(t)

Vn(t) sin(<pn(t) - </J(t)) )+ arctan--':':":"":'_--:""":'::":"":--'---'--'-'--,-
Ae + Vn(t) cos(cPn(t) - ¢(t))

~ (Ae+Vn(t)COS(<Pn(t)-¢(t))) '

(
Vn(t) . )

X cos 2rr:fet + ¢Ct) +Ii; sm(<pn(t) - ¢(t))

The demodulator processes this signal and, depending whether it is a phase or a fre­
quency demodulator, its output will be the phase or the instantaneous frequency of this

As with conventional AM noise-performance analysis, a precise analysis is quite in­
volved due to the nonlinearity of the demodulation process. Let us make the assumption
that the signal power is much higher than the noise power. Then, if the bandpass noise
is represented as

/ ( ~OO)net) = Vn~(t) +n;(t) cos 2nfct + arctan ne(t)

= Vn(t) cos(2nfct + cPn (t)) (5.3.3)

where Vn(t) and <pn(t) represent the envelope and the phase of the bandpass noise
process, respectively, the assumption that the signal is much larger than the noise
means t.1-:lat

The additive white Gaussian noise nw Ct) is added to u(t) and the result is passed through
a noise-limiting filter whose role is to remove the out-of-band noise. The bandwidth of
this filter is equal to the bandwidth of the modulated signal, and therefore, it passes the
modulated signal without distortion. However, it eliminates the out-of-band noise and,
hence, the noise output of the filter is a bandpass Gaussian noise denoted by net). The
output of this filter is
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where we have used the fact that the noise process is stationary and Rn,(T) = Rn,(T)
and Rn,n,(T) = 0 [see Equation (4.6.1) and Example (4.6.1)]. Now we assume that the
message m (t) is a sample function of a zero-mean, stationary Gaussian process }.If (t)
with the autocorrelation function RM(T). Then, in both PM and fl\.1 modulation, ¢(t)
will also be a sample function of a zero-mean stationary, Gaussian process <P (t). For
PM this is obvious because

Noting that J~co represents a linear time-invariant operation it is seen that, in this case,
<P(t) is the output of an LTI system whose input isa zero-mean, stationary Gaussian
process. Consequently cI> (t) will also be a zero-mean, stationary Gaussian process.

At any fixed time t, the random variable Z (t, r) = cI> Ct + T) - cI>Ct) is the differ­
ence between two jointly Gaussian random variables. Therefore, it is itself a Gaussian
random variable with mean equal to zero and variance

239

(5.3.13)

(5.3.14)

(5.3.15)Ifl <.if
otherwise

= ~2 Rn, (T)Re [E ejCq;(t+~)-q;Ct))]
e

= ~2Rn,(T)Re[Eej2Ct.~J]
e

1 I 2
= A2 Rn,(r)Re[e-;:O"z]

e

1
:::; A2 Rn,(T)Re[e-CR$COJ-R$Cr))]

e

1= - R (T)e-CR$CO)-R$C~)J
A2 n,

e

e-R" CO)

= A2Sn,(f) * G(f)
e

Sy(f) = :<F[Rr(T)]

=:<FU2 RI1,(T)e-CR$CO)-R"Cr)Jl
e "

e-R"COJ
= ~~[RI1,(r)eR"C~)]

e

e-R"CO)
= A2~[Rn,(T)g(T)]

e
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Now, using this result in Equation (5.3.9) we obtain

1
E[YI1 (t + T)Yn(t)] = A2 Rn,(T)E[cos(<P(t + T) - cI>Ct»]

e

Section 5.3

where w,e have used ~quation (4.1.15). This result shows that under the assumption
?f a statlOn~ GaUSSIan message, the noise process at the output of the demodulator
IS also a stationary process whose autocorrelation function is given above and whose
power-spectral density is

where geT) = eR$Cr) and G(f) is its Fourier transform.
It can be shown (see Problem 5.12) that bandwidth ofg(T) is halfthe bandwidth Be

ofthe angle-modulated signal, which for high modulation indices is much larger than W,
the message bandwidth. Since the bandwidth of the angle-modulated signal is defined
as the frequencies that contain 98%-99% of the signal power, G(f) is very small in
the neighborhood of If I = .if and, of course,

(5.3.9)

(5.3.8)

(5.3.11)

(5.3.12)

(5.3.10)

Chapter 5

cI> (t) = kpM(t)

<P(t) =2rrkf [co M(T)dT

cri = E[<P\t + T)] + E[q,2(t)] - 2Rq,(T)

= 2[Rq,(0) - Rq,(T)]

1
E[Yn(t + T)YI1 (t)] = A2 E[Rn,(T)COS(¢(t» cos(¢(t + T»

e

+ Rn,(T) sin(¢(t + T» sin(¢(t»]

1
= A2 Rn,(T)E[cos(¢(t +T) - ¢(t»]

e

Effect of Noise on Analog Communication Systems

Vn(t) .
Yn(t) = -- srn(cI>n(t) - ¢(t»

Ae

1 . .
= A

e
[Vn(t) smcI>ll(t) cos¢(t) - VnCt) cos cI>11(t)sm¢(t)]

1
= A

e
[ns(t) cos¢(t) - ne(t) sin¢(t)]

Let us study the properties of the noise component given by

and in the FM case, we have

The autocorrelation function of this process is given by

238



241

(5.3.16)

(5.3.17)
PM

PM

w f Figure 5.15 Noise power spectrum at
demodulator output in Ca) PM and (b) FM.

W f

No
AZ

c

Ca)

Cb)
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-w

-w
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It should be noted that Equation (5.3.16) is a good approximation only for If I <
w. This means that for If I < W, the spectrum oithe noise components in the PM and
PM case are given by

where we have used the fact that ill PM the noise component is given by trr fc Yn (t) as
previously indicated in Equation (5.3.6). The power spectrum of the noise component
at the output of the demodulator in the frequency interval If I < W for PM and PM is
shown in Figure 5.15. It is interesting to note that PM has a flat noise spectrum and PM
has a parabolic noise spectrum. Therefore, the effect ofnoise in PMfor higher-frequency
components is much higher than the effect of noise on lower-frequency components.
The noise power at the output of the lowpass filter is the noise power in the frequency

f

f

f
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w

w

G{f)

-w

-w
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Figure 5.14 Typical plots of G(f), Sn, (f), and the result of their couvolution.

A typical example of G (f), Snc (f) and the result of their convolution is shown in
Figure 5.14. Because G(f) is very small in the neighborhood of If I = ~, the resulting
Sy (f) has almost a flat spectrum for If I < W, the bandwidth of the message. From
Figure 5.14 it is obvious that for all If I < W, we have

e-R", CO)

Sy(f) = --.;;zSncCf) *G(f)
c

e-R",(O) jif
= -z-No G(f) df

Ac -if .
e-R",(O) JOO

>';j -z-No G(f) df
Ac -00

e-R",(O) I
= --z-NOg(r)

Ac <=0
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Then, the SNR, defined as
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(5.3.24)

(5.3.25)

PM

FM

Effect of Noise on Angle ModulationSection 5.3

Therefore,

Now using Carson's rule Be = 2(~ + 1) W, we can express the output SNR in terms
of the bandwidth expansion factor, which is defined to be the ratio of the channel
bandwidth to the message bandwidth and denoted by Q

Be
Q = W =2(~ + 1)

From this relationship we have ~ = ¥- 1. Therefore,

(~) = {PM(mjl:~t)lr(~)b' PM
N ( g-l )2 S (5.3.26)

o 3PM m~lm(I)1 (fi)b' PM

From Equations (5.3.22) and (5.3.26), we observe that:

1. In both PM and PM, the output SNRis proportional to the square ofthe modulation
index ~. Therefore, increasing ~ increases the output SNR even with low received
power. This is in contrast to amplitude modulation where such an increase in the
received SNR is not possible.

2. The increase in the received SNR is obtained by increasing the bandwidth. There­
fore, angle modulation provides a way to trade-off bandwidth for transmitted
power.

3. The relation between the output SNR and the bandwidth expansion factor, Q, is
a quadratic relation. This is far from optimal. t We will see in Chapter 9 that the
optimal relation between the output SNR and the bandwidth expansion factor is
an exponential relation.

4. Although we can increase the output SNR by increasing ~ , having a large ~ means
having a large Be (by Carson's rule). Having a large Be means having a large
noise power at the input of the demodulator. This means that the approximation
P(Vn (t) «Ac)~ 1 will no longer apply and that the above analysis will not hold.
In fact, if we increase fJ such that the above approximation does not hold, a
phenomenon known as the threshold effect will occur, and the signal will be lost
in the noise.

5. A comparison of the above result with the SNR in amplitude modulation shows
that, in both cases, increasing the transmitter power will increase the output SNR,

tBy optimal relation we mean the maximum saving in transmitter power for a given expansion in
bandwidth. An optimal system achieves the fundamental limits on communication predicted by information
theory.

(5.3.23)

(5.3.20)

(5.3.19)

(5.3.18)
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PM

PM

PM

FM
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{

PMj3~ (S) PM

(~) = (maxlm(t)p' N b'

N PMfJt (S) PM
o 3 (maxim (t) D2 fi b'

Note that in the above expression (maxf:(t)[)2 is the average-to-pe~-powerratio of the
message signal (or, equivalently, the power content of the normalized message, PM,,)·

becomes

Noting that !f is the received signal power, denoted by PR, and

{
~p =kp max[m(t)j, PM

(5.3.21)
?I _ kfmax[m(I)[ PM
f-'f - W '

we may express the output Sl\TR as

(~) = {PR (max'fm(')lr /o"!w' PM (5.3.22)

N 0 3P ( fJJ ).hL PM
R maxlm(t)1 NoW'

If we denote J:.JL by (2..) the SNR of a baseband system with the same received
NoW N b'

power, we obtain

= {::~:
3A; , PM

Now we can use Equation (5.3.6) to determine the output SNR in angle modula­
tion. First, we have the output signal power

{
k~PM' PM

P -
so- k2p FM

f M,
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but the mechanisms are totally different. In AM, any increase in the received
power directly increases the signal power at the output of the receiver. This is due
basically to the fact that the message is in the amplitude of the transmitted signal
and an increase in the transmitted power directly affects the demodulated signal
power. However, in angle modulation, the message is in the phase ofthe modulated
signal and, consequently, increasing the transmitter power does not increase the
demodulated message power. In angle modulation what increases the output SNR
is a decrease in the received noise power as seen from Equation (5.3.18) and
Figure 5.11. .

6. In PM, the effect of noise is higher at higher frequencies. This means that signal
components at higher frequencies will suffer more from noise than the lower­
frequency components. In some applications, where PM is used to transmit
SSB-FDM signals, those channels which are modulated on higher-frequency car­
riers suffer from more noise. To compensate for this effect, such channels must
have a higher-signal level. The quadratic characteristics of the demodulated noise
spectrum in PM is the basis of pre-emphasis and de-emphasis filtering that will
be discussed in Section 5.3.2.

5.3.1 Threshold Effect in Angle Modulation

The noise analysis of angle demodulation schemes is based on the assumption that the
SNR at the demodulator input is high. With this crucial assumption, we observed that
the signal and noise components at the demodulator output are additive, and we were
able to carry out the analysis. This assumption ofhigh SNRis a simplifying assumption
that is usually madein analysis of nonlinear-modulation systems. Due to the nonlinear
nature of the demodulation process, there is no reason that the additive signal and noise
components at the input of the modulator result in additive signal and noise components
at the output of the demodulator. In fact, this assumption is not at all correct in general,
and the signal and noise processes at the output of the demodulator are completely
mixed in a single process by a complicated nonlinear functional. Only under the high
SNR assumption is this highly nonlinear functional approximated as an additive form.
Particularly at low SNRs, signal and noise components are so intermingled that one
can not recognize the signal from the noise and, therefore, no meaningful SNR as a
measure of performance can be defined. In such cases, the signal is not distinguishable
from the noise and a mutilation or threshold effect is present. There exists a specific
signal to noise ratio at the input ofthe demodulator1u10wn as the threshold SNR, beyond
which signal mutilation occurs. The existence of the threshold effect places an upper
limit on the trade-off between bandwidth and power in an PM system. This limit is a
practical limit in the value of the modulation index f3/. The analysis of the threshold
effect and derivation of the threshold index f3 / is quite involved and beyond the scope
of our analysis. The interested reader is referred to the references cited at the end of this
chapter for an analytic treatment of the subject. Here we only mention some results on
the threshold effect in PM.

~-
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(5.3.27)
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Figure 5.16 Output SNR vs. baseband SNR in an PM system for various values
of /3.

dB scale

It can be shown that at threshold the following approximate relation between
:a~ = (~) b and {3f holds in an PM system:

(~) = 20({3/ + 1)
b,th

From the above relation, given a received power PR, we can calculate the maximum
allowe~ {3 to make sure that the system works above threshold. Also, given a bandwidth
allocatio~ of Be, we can find an appropriate (3 using Carson's rule Be = 2({3 + 1) W.
The~, usmg the threshold relation given above, we determine the required minimum
receIved power to make the whole allocated bandwidth usable.
. In ~ener~, ~er~ are two factors that limit the value of the modulation index f3.
The first IS ~e 111mt~ti?n ?n channel bandwidth which affects j3 through Carson's rule.
The second IS ~e hrmtation on ilie received power that limits the value of j3 to less
than what IS denved ~omEquation(5.3.27). Figure 5.16 shows plots of the SNR in an
PM system as a function of the baseband SNR. Tile SNR values in these curves are in
dB and different curves correspond to different values of {3 as marked. The effect of
threshold is apparent from the sudden drops in the output SNR. These plots are drawn

Chapter 5Effect of Noise on Analog Communication Systems244



(!...) = 60 ~ 17.8 dB (5.3.33)
N b,th

From this discussionitis apparent that, iffor example (~) b =20 dB, then, regardless of
the available bandwidth,. we can not use~ =5 for.such a system because the demodulator
will not demodulate below the threshold of20.8 dB. However, ~ = 2 can be used which
yields an SNR equal to 27.8 dB at the output of the receiver. This is an improvement
on.8 dB compared to a baseband system.

In general, if we want to employ the maximum available bandwidth, we must
choose the largest possible ~ that guarantees the system operates above _threshold. This
is the value of ~ that satisfies

(~) = 20(~ + 1) (5.3.34)
b,th

By substituting this value in Equation (5.3.24), we obtain

(~) 0 = 60f/(~ + I)PM" (5.3.35)

which relates a desired output SNR to the highest possible ~ that achieves that SNR.

Example 5.3.1
Design an PM: system that achieves an SNR at the receiver equal to 40 dB and requires
the minimum amount of transmitter power. The bandwidth of the channel is 120 KHz, the
message bandwidth is 10 K.Hz, the average-to-peak-power ratio for the message, PMn =.
max!:: tlll' is ~, and the (one-sided) noise power-spectral density is No = 10-

8
WfHz.

What is the required transmitter power if the signal is attenuated by 40 dB in transmission
through the channel?
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(5.3.36)

(5.3.37)

(5.3.38)

(5.3.39)
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Solution First we have to see whether the threshold or the bandwidth impose a more
restrictive bound on the modulation index. By Carson's rule

Be = 2(13 + l)W

120,000 = 2(13 +"1) X 10,000

from which we obtain f3 = 5. Using the relation

(~ ) 0 = 60f3\f3 + I)PM"

and

(S) 800Ii b = 3 = 266.6 ~ 24.26 dB

Since (~) b = ~ with W = 10,000 and No = 10-8, we obtain

8
PR = 300 = 0.0266 ~ -15.74 dB

. yields

Section 5.3

Pr = -15.74 +40 = 24.26 dB ~ 266.66 W (5.3.40)

Had there been no bandwidth constraint we could have chosen fJ = 6.6, which results in
(~)b "" 153. In turn, we have ~R "" 0, 0153, and Pr "" 153 W.

Threshold Extension in Frequency Modulation. We have already seen that
the nonlinear demodulation effect in angle modulation in general results in nonadditive
signal and noise at the output of the demodulator. Inhigh received signal-to-noise ratios,
the nonlinear-demodulation process can be wen approximated by a linear equivalent
and, therefore, signal and noise at the demodulator output will be additive. At high
noise levels, however, this approximation is not valid anymore and the thres!).old effect
results in signal mutilation. We have also seen that, in general, the modulated signal
bandwidth increases with the modulation index and since the power of the noise entering
the receiver is proportional to the system bandwidth, higher-modulation indices cause
the threshold effect to appear at higher-received powers.

In order to reduce the threshold, in other words, in order to delay the threshold
effectto appear at lower-received signal power, itis sufficient to decrease the input-noise
power at the receiver. This can be done by decreasing the effective system bandwidth
at the receiver.

Two approaches to PM threshold extension are to employ FtvlFB or PLL-FM
(see Figures 3.37 and 3.38) at the receiver. We have already seen in Section 3.3.3 in
the discussion following FMFB and PLL-FM systems, that these systems are capable

:,ith (~t= 104
, we obtain 13 "" 6.6. Since the value 0(8 given by the bandwidth constraint

IS less than the value of fJ given by the power constraint, we are limited in bandwidth as
opposed to being limited in power. Therefore, we choose 13 = 5 which, when substituted
in the expression for the output SNR

(5.3.32)

(5.3.30)

(5.3.29)

(5.3.31)

(5.3.28)

Chapter 5Effect of Noise on Analog Communication Systems

( S)/ - (S)I- =7.8+-
N odB N bdB

PM 1
(max[m(t)!)2 - 2

(~-) I = 15.7 + (!...) IN odB N bdB

(!...) = 120 ~ 20.8 dB
N b,th

On the other hand, if ~ = 2, we have

In such a case,

(:)0 =~~2(:)b
As an example, for ~ = 5, the above relation yields
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for a sinusoidal message for which
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(5.3.42)

Figure 5.17 Pre-emphasis Ca) and
de-emphasis (b) filter characteristics.210 310 410 510 I/0o
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}+f/l
1
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transmitter filter.
The characteristics of t.'Je pre-emphasis and de-emphasis filters depend largely

on the power-spectral density of the message process. In commercial FM broadcasting
of music and voice, first-order lowpass and highpass RC filters with a time constant of
75 microseconds (f..Ls) areemployed. In this case, the frequency response of the receiver
(de-emphasis) filter is given by

1
Hd(f) = --I (5.3.41)

l+jTo

where fo = 2JrX7LlO-6 ~ 2100 Hz isthe 3-dB frequency of the filter.
To analyze the effect of pre-emphasis and de-emphasis filtering on the overall

SNR in PM broadcasting, we note that, because the transmitter and the receiver filters
cancel the effect of each other, the received power in the message signal remains
unchanged and we only have to consider the effect of filtering on the received noise.
Of course, the only filter that has an effect on the received noise is the receiver filter
that shapes the power-spectral density of the noise within the message bandwidth. The
noise component before filtering has a parabolic power spectrum. Therefore, the noise
component after the de-emphasis filter has a power-spectral density given by

SnpD(f) = Sno(f)IHd(f)1 2

No 2 1
= A~f 1 + ~

-5/0 -4/0 -3/0 -2/0 /0 0 /0 2/0 3/0 4/0 5/0 /

-510 -4th -310 -2/0 /0
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5.3.2 Pre-emphasis and De-emphasis Filtering

As observed in Figure 5.15, the noise power-spectral density at the output of the de­
modulator in PM is fiat within the message bandwidth whereas for FM the noise power
spectrum has a parabolic shape. This means that for low-frequency components of the
message signal FM performs better and for high-frequency components PM is a bet­
ter choice. Therefore, if we can design a system that for low-frequency components
of the message signal performs frequency modulation and for high frequency com­
ponents works as a phase modulator, we have a better overall performance compared
to each system alone. This is the idea behind pre-emphasis and de-emphasis filtering
techniques.

The objective in pre-emphasis and de-emphasis filtering is to design a system
which behaves like an ordinary frequency modulator-demodulator pair in the low fre­
quency band of the message signal and like a phase modulator-demodulator pair in
the high-frequency band of the message signal. Since a phase modulator is nothing but
the cascade connection of a differentiator and a frequency modulator, we need a filter
in cascade with the modulator that at low frequencies does not affect the signal and
at high frequencies acts as a differentiator. A simple highpass filter is a very good ap­
proximation to such a system. Such a filter has a constant gain for low frequencies and
at higher frequencies it has a frequency characteristic approximated by Klfl, which
is the frequency characteristic of a differentiator. At the demodulator side, for low fre­
quencies we have a simple PM demodulator and for high-frequency components we
have a phase demodulator, which is the cascade of a simple PM demodulator and an
integrator. Therefore, at the demodulator, we need a filter that at low frequencies has a
constant gain and at high frequencies behaves as an integrator. A good approximation
to such a filter is a simple lowpass filter. The modulator filter which emphasizes high
frequencies is called the pre-emphasis filter and the demodulator filter which is the
inverse of the modulator filter is called the de-emphasis filter. Frequency responses of
a sample pre-emphasis and de-emphasis filter are given in Figure 5.17.

Another way to look at pre-emphasis and de-emphasis filtering is to note that, due
to the high level of noise in the high-frequency components of the message in PM, it is
desirable to attenuate the high-frequency components of.the demodulated signal. This
results in a reduction in the noise level, but it causes the higher-frequency components
of the message signal to be also attenuated. To compensate for the attenuation of the
higher components of the message signal, we can amplify these components at the
transmitter before modulation. Therefore, at the transmitter we need a highpass filter
and at the receiver we must use a lowpass filter. The net effect of these filters should
be a fiat-frequency response. Therefore, the receiver filter should be the inverse of the

of reducing the effective bandwidth of the receiver. This is exactly what is needed for
extending the threshold in PM demodulation. Therefore, in applications where power
is very limited and bandwidth is abundant, these systems can be employed to make it
possible to use the available bandwidth more efficiently. Using FMFB, the threshold
can be extended approximately by 5-7 dB.
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where we have used Equation (5.3.17). The noise power at the output ofthe demodulator

noW can be obtained as

Because the demodulated message signal power in this case is equal to that of a simple
FM system with no pre-emphasis and de-emphasis filtering, the ratio of the output
SNRs in these two cases is inversely proportional to the noise power ratios; i.e., .

251Comparison of Analog-Modulation SystemsSection 5.4

Now we are at a point that we can present an overall comparison of different analog com­
munication systems. The systems that we have studied include linear-modulation sys­
tems (DSB-SC, Conventional AM, SSB-SC, VSB) and nonlinear systems (PM and PM).

The comparison of these systems can be done from various points of view. Here
we present a comparison based on three important practical criteria:

1. The bandwidth efficiency of the system.

2. The power efficiency of the system as reflected in its performance in the presence
of noise.

3. The ease of implementation of the system (transmitter and receiver).

Bandwidth Efficiency. The most bandwidth-efficient analog communication
system is the SSB-SC system with a transmission bandwidth equal to the signal band­
width. This system is widely used in bandwidth-critical applications such as voice
transmission over microwave and satellite links, and some point-to-point communica­
tion systems in congested areas. Since SSB-S C cannot effectively transmit dc, it cannot
be used for transmission of signals that have a significant dc component such as im­
age signals. A good compromise is the VSB system, which has a bandwidth slightly
larger than SSB and is capable of transmitting dc values. VSB is widely used in TV
broadcasting, and also in some data communication systems. PM and particularly FM
are least-favorable systems when bandwidth is the major concern, and their use is only
justified by their high level of noise immunity.

(5) (f,/ (5)
N - 3' llC - arctan llC N

opo fo fo 0

( 15000)3 ()2100 S
- 3' 15000 _ arctan 15000 -N

2100 2100 0

= 21.3 (f) 0

~ 13.3 + (f)1B
~ 13.3 + 15.7 + (f) JdB

~ 29 + (f)JdB (5.3.46)

The overall improvement compared to a baseband system is, therefore, 29 dB.

Therefore, PM with no pre-emphasis and de-emphasis filtering performs 15.7-dB better
than a baseband system. For PM with pre-emphasis and de-emphasis filtering, we have

5.4 COMPARISON OF ANALOG-MODULATION SYSTEMS

(5.3.45)

(5.3.44)

(5.3.43)
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where we have used Equation (5.3.18). Equation (5.3.44) gives the improvement ob­
tained by employing pre-emphasis and de-emphasis filtering.

Example 5.3.2 .
In commercial PM broadcasting W = 15 KHz, fo = 2100 Hz, and f3 = 5. Assurrung
that the average-to-peak-power ratio of the message signal is 0.5, find the improvement in
output SNR of PM with pre-emphasis and de-emphasis filtering compared to a baseband

system.

Solution From Equation (5.3.26) we have
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5.5 EFFECTS OF TRANSMISSION LOSSES AND NOISE IN ANALOG
COMMUNICATION SYSTEMS

In any communication system there are usually two dominant factors that limit the per­
formance of the system. One important factor is additive noise generated by electronic
devices that are used to filter and amplify the communication signal. A second factor
that affects the performance of a communication system is signal attenuation. Basi­
cally all physical channels, including wireline and radio channels, are lossy. Hence, the
signal is attenuated (reduced in amplitude) as it travels through the channel. A simple
mathematical model of the attenuation may be constructed, as shown in Figure 5.18, by

Power Efficiency. A criterion for comparing power efficiency of various sys­
tems is the comparison of their output SNR at a given received signal power. We have
already seen that angle-modulation schemes and particularly FM provide a high level of
noise immunity and, therefore, power efficiency. FM is widely used on power-critical
communication links such as point-to-point communication systems and high fidelity
radio broadcasting. It is also used for transmission of voice (which has been already
SSBIFDM multiplexed) on microwave LOS and satellite links. Conventional AM and
VSB+C are the least power-efficient systems and are not used when the transmitter
power is a major concern. However, their use is justified by the simplicity of the re­
ceiver structure.
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(5.5.1)

(5.5.2)

Figure 5.19 A physical resistor Ca) is
modeled as a noiseless resistor in series
with a noise source (b).

net)

(b)

ret) = as(t) + net)

(a)

S (f) = 2R7ilfl V2/Hz
R ('III)e kT - 1

Effects of Transmission Losses

5.5.1 Characterization of Thermal Noise SOlUrces

Any conductive two-terminal device is generally characterized as lossy and has some
resistance, say R ohms. A resistor which is at a temperature T above absolute zero
contains free electrons that exhibit random motion and, thus, result in a noise voltage
across the terminals of the resistor. Such a noise voltage is called thermal noise.

In general, any physical resistor (or lossy device) may be modeled by a noise
source in series with a noiseless resistor, as shown in Figure 5.19. The output net) of
the noise source is characterized as a sample function of a random process. Based on
quantum mechanics, the power-spectral density of thermal noise (see Section 4.4) is
given as

R

Section 5.5

where n. is Planck's constant, k is Boltzmann's constant, and T is the temperature of
the resistor in degree Kelvin; i.e., T = 273 + C, where C is in degrees Centigrade. As
indicated in Section 4.4, at frequencies below 1012 Hz (which includes all conventional

multiplying the transmitted signal by a factor a < 1. Consequently, if the transmitted
signal is set), the received signal is

Clearly, the effect of signal attenuation is to reduce the amplitude of the desired sig­
nal s (t) and, thus, to render the communication signal more vulnerable to additive
noise.

In many channels, such as wirelines and microwave LOS channels, signal atten­
uation can be offset by using amplifiers to boost the level of the signal during transmis­
sion. However, an amplifier also introduces additive noise in the process of amplifica­
tion and, thus, corrupts the signal. This additional noise must be taken into consideration
in the design of the communication system.

In this section, we consider the effects of attenuation encountered in signal trans­
mission through a channel and additive thermal noise generated in electronic amplifiers.
We also demonstrate how these two factors influence the design of a communication
system.

R
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Figure 5.18 Mathematical model of
channel with attenuation and additive
noise.

net)

Noise
n(l)

Effect of Noise on Analog Communication Systems

Attenuation
C<

252

Ease of Implementation. The simplest receiver structure is the receiver for
conventional AM, and the structure of the receiver for VSB+C system is only slightly
more complicated. FM receivers are also easy to implement. These three systems are
widely used for AM, TV; and high-fidelity FM broadcasting (including FM stereo).
The power inefficiency of the AM transmitter is compensated by the extremely simple
structure of literally hundreds of millions of receivers. DSB-SC and SSB-SC require
synchronous demodulation and, therefore, their receiver structure is much more com­
plicated. These systems are, therefore, never used for broadcasting purposes. Since the
receiver structure of SSB-SC and DSB-SC have almost the same complexity and the
transmitter of SSB-SC is slightly more complicated compared to DSB-SC, DSB-SC is
hardly used in practice, due to its relative bandwidth inefficiency.

ansmitted Channel Received
signal signal

X +
set) ret) = O's(l) +

a

Tr



5.5.2 Effective Noise Temperature and Noise Figure

When we employ amplifiers in communication systems to boost the level ofa signal, we
are also amplifying the noise corrupting the signal. Since any amplifier has some finite
passband, we may model an amplifier as a filter with frequency-response characteristic
H (f). Let us evaluate the effect of the amplifier on an iriput thennal noise source. .

Figure 5.21 illustrates a thennal noise source connected to a matched two-port
network having frequency response H (f). The output of this network is connected to
a matched load. First, we recall that the noise power at the output of the .network is

When connected to a load resistance with value RL , the noise voltage shown in
Figure 5.20 delivers the maximum power when R = RL . In such a case, the load is
matched to the source and the maximum power delivered to the load is E[N2 (t)]/4RL.
Therefore, the power-spectral density of the noise voltage across the load resistor is

kT
Sn(f) = 2: W/Hz (5.5.5)

As previously indicated in Section 3.4.2, kT is usually denoted by No. Hence, the
power-spectral density of thennal noise is generally expressed as

No
Sn(f) = 2: W/Hz (5.5.6)

For example, at room temperature (To = 290 K), No = 4 X 10-21 W/Hz.

Figure 5.20 Noisy resistor connected to
a load resistance RL.
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(5.5.11)

(5.5.12)

(5.5.14)
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(0 ( Pni )Pno = 7ikBneq T +---
,§kBneq

This leads us to define a quantity

T:-~
e - ,§kB

neq

which we call the effective noise temperature of the two-port network (amplifier). Then,

Pno =:= ,§kBneq(T + Te) (5.5.13)

Thus, we interpret the output noise as originating from a thermal noise source at tem­
perature T + Te•

A signal source at the input to the amplifier with power Psi will produce an output
with power

From Section 3.4.2, we recall that the noise-equivalent bandwidth of the filter is defined
as

1 (eo
Bneq = 2,§ 1-00 IH(f)1

2
df (5.5.8)

where, by definition, '§ = IH (f) I~ax is the maximum available power gain of the
amplifier. Consequently, the output noise power from an ideal amplifier that introduces
no additional noise may be expressed as

Pno = 'f3NoBneq (5.5.9)

Any practical amplifier iritroduces additional noise at its output due to internally
generated noise. Hence, the noise power at its output may be expressed as

Pno.= ,§NoBneq + Pni

= ,§kTBneq + Pni (5.5.10)

where Pni is the power of the amplifier output due to internally generated noise.
Therefore,

Pso = '§Psi

Hence, the output SNR from the two-port network is

(S) Pso '§Psi

N 0 = Pno = ,§kTBneq (1 + Te/T)

Psi

NoBneq(l + TelT)

= 1 + ~e/T (~) i (5.5.15)

where, by definition, (S/ N)i is the input SNR to the two-port network. We observe that
the SNR at the output of the amplifier is degraded (reduced) by the factor (l + Te / T).

(5.5.3)

(5.5.7)

. (5.5.4)
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Figure 5.21 Thermal noise converted to
amplifier and load.

R

nCt)

Matched
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100 ~ 100

Pno = Sn(f)IH(f)1 2 df = ~ .IH(f)12 df
-eo 2 -eo

Matched
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communication systems) and at room temperature,

'Iii Jilfl
e'T ~ 1+-­

kT
Consequently, the power-spectral density is well approximated as

SR(f) = 2RkT V2/Hz

Thermal Amplifier
noise Load
source

H(j)



or, equivalently, FoB = 8.57 dB.

F = 6 + 1 + 0.2 = 7.2
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(5.5.20)
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As we indicated previously, any physical channel attenuates the signal transmitted
through it. The amount ofsignal attenuation generally depends on the physical medium,
the frequency of operation, and the distance between the transmitter and the receiver.
We define the loss 5!- in signal transmission as the ratio of the input (transmitted) power
to the output (received) power of the channel; i.e.,

5!- = PT
PR

5.5.3 Transmission Losses

for the 10-KIn path and

•

Yl- = (4~d)2A (5.5.22)

where J,. =c/ f is the wavelength of the transmitted signal, c is the speed of light
(3 x 108 m1sec), f is the frequency of the transmitted signal, and d is the distance
between the transmitter and the receiver in meters. In radio transmission, 5!- is called
thefree-space path loss.

Example 5.5.3
Determine the free-space path loss for a signal transmitted at f = 1 MHz over distances
of 10 Km and 20 KIn.

Solution The loss given in Equation (5.5.22) for a signal at a wavelength A = 300 ill is

Yl-dB = 20log10 (41T x 104/300)

= 52.44 dB (5.5.23)

Yl-dB .= 2010glQ(81T x 104/300)

= 58.44 dB (5.5.24)

for the 20-Km path. It is interesting to note that doubling the distance in radio transmission
increases the free-space path loss by 6 dB.

or, in decibels, as

5!-d.B == 1010g5!- = 10logPT -lOlogPR (5.5.21)

In wireline channels, the transmission loss is usually given in terms ofdB per unit length;
e.g., dBlKm. For example, the transmission loss in coaxial cable of 1 em diameter is
about 2 dBIKm at a frequency of 1:MHz. This loss generally increases with an increase
in frequency.

Example 5.5.2
Determine the transmission loss for a lO-Km and a 20-Km coaxial cable if the 10sslKm
is 2 dB at the frequency operation.

Solution The loss for the lO-Km channel is ;£dB = 20 dB. Hence, the output (received)
poweris PR = PT/Yl-= lO-zPT. For the 20-Km channel, the10ss is Yl-dB =40 dB. Hence,
PR = 10-4 PT. Note that doubling the cable length increased the attenuation by two orders
of magnitude.

In LOS radio systems the transmission loss is given as

(5.5.17)
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(~)O =*(~)i
By taking the logarithm of both sides of Equation (5.5.17), we obtain

10log (~) 0 = -lOlog F + 1010g (~) i (5.5.18)

Hence, 10 log F represents the loss in SNR due to the additional noise intro~uced by
the amplifier. The noise figure for many low-noise amplifiers such as tr~veling wave
tubes in below 3 dB. Conventional integrated circuit ampliiiers have nOlse figures of

6dB-7 dB.
It is easy to show (see Problem 5.18) that the overall noise figure of a ~ascade of

K amplifiers with gains <§k and corresponding noise figures Fb 1 :5 k :5 K 1S

F2 - 1 F3 - 1 FK - 1
F = Fj +--+--+ ... + (5.5.19)

<§1 <§j<§2 <§j% ... <§K-1

This expression is known as Fries' fonnula. We observe that the dominant term is .F1,

which is the noise figure of the first ampliiier stage. Therefore, the fran: ~ndof a re~e1ver
should have a low-noise figure and a high gain. In that case, the remlllIlUlg terms ill the

sum will be negligible.

Example 5.5.1 . .
Suppose an amplifier is designed of three identical s~ates, each of whl~h has a gam of
'§j = 5 and a noise figure Fi =6, i = 1, 2, 3. Detenmne the overall nOlse figure of the
cascade of the three stages.

Solution From Equation (5.5.19), we obtain

Fz -1 F3 -'-1
F=Fl+--+--

% '§l%

where F1 = Fz = F3 = 6 and '§l = '§z = 5. Hence,

Thus, T
e

is a measure of the noisiness of the amplifier. An ideal amplifier is one for

which Te = O. .
When T is taken as room temperature To(290 K) the factor (1 + Te/To) 1S called

the noise figure of the amplifier. Specifically, the noise figure of a. two-port netwo.rk is
defined as the ratio of the output noise power Pno to the output nOlse power of an 1deal
(noiseless) two-port network for which the thermal noise source is at room temperature

(To = 290 K). Clearly, the ratio

F = (1 + ~) (5.5.16)

is the noise figure of the amplifier. Consequently, Equation (5.5 .15) may be expressed

as
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(5.5.34)

(5.5.35)

F = K5£Fa - (K - 1) ~ K5£Fa

Fignre 5.23 Acommunication system employing repeaters.

Effects of Transmission LossesSection 5.5

If we select ega = 1/5£, then,

Based on this result, we may view the lossy transmission medium followed by the
amplifier as a cascade of two networks, one with a noise figure 5£ and the other with a
noise figure Fa. Then, for the cascade connection, the overall noise figure is

F = 5£ + Fa - 1 (5.5.30)
C§a

Fa -1
F = 5£ + 1/5£ = 5£Fa (5.5.31)

Hence, the cascade of the lossy transmission medium and the amplifier is equivalent to
a single network with noise figure 5£Fa.

Now, suppose that we transmit the signal over K segments of the channel where
each segment has its own repeater, as shown in Figure 5.23. Then, if Fi = 5£; Fai is the
noise figure of the ith section, the overall noise figure for the K sections is

w 5£2 Fa2 - 1 5£3Fa3 - 1
F = -'.-IFal + + ...

egaJ/5£1 (egaJ/5£I) (ega2/5£2)
5£KFaK - 1+ (5.5.32)

(egaJ/5£I) (ega2/5£2) '" (egaK/5£K)

Therefore, the SNR at the output of the repeater (amplifier) at the receiver is

(~)o = ~(~)i
= ~(~) (5.5.33)

F No Bneq

In the important special case where the K segments are identical; i.e., 5£i = 5£
for all i and Fa; = Fa for all i, and where the amplifier gains are designed to offset the
losses in each segment; i.e., C§ai = 5£; for all i, then the overall noise figure becomes

Hence,

(5.5.26)

(5.5.27)

(5.5.29)
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)p

= -50 + 15 = -35 dBW
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Lossy
PR = ...I.. (~ 1Transmitter PT -+-

;e Amplifier
channel ~PT ;e 'iJ,Fa

Figure 5.22 Aco=unication system employing a repeater to compensate for
channelloss.
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5.5.4 Repeaters for Signal Transmission

Analog repeaters are basically amplifiers that are generally used in telephone wireline
channels and microwave LOS radio cbannels to boost the signal level and, thus, to
offset the effect of signal attenuation in transmission through the channel.

Figure 5.22 illustrates a system in which a repeater is used to amplify the signal
that has been attenuated by the lossy transmission medium. Hence, the input signal
power at the input to the repeater is

Example 5.5.4
A signal is transmitted through a 10-Km coaxial line channel which exhibits a loss of
2 dBlKm. The transmitted signal power is PTdB = -30 dBW (-30 dBW means 30 dB
below 1 W or, simply, 1 mW). Determine the received signal power and the power at the
output of an amplifier which has a gain of cgdB = 15 dB.

Solution The transmission loss for the 10-Km channel is ~dB = 20 dB. Hence, the
received signal power is

PRdB = PTdB - ;t;dB = -30 - 20 = -50 dBW (5.5.25)

The amplifier boosts the received signal power by 15 dB. Hence, the power at the output
of the amplifier is

The output power from the repeater is

Po = egPR = egPT/5£ (5.5.28)

We may select the amplifier gain eg to offset the transmission loss. Hence, eg = 5£ and

Po = Pr·
Now, the SNR at the output of the repeater is



Hence,

Therefore,

But,
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Figure P-S.2

A DSB amplitude-modulated signal with power-spectral density as shown in
Figure P-5.3(a) is corrupted with additive noise that has a power-spectral density
No/2 within the passband of the signal. The received signal-pIus-noise is demod­
ulated and low pass filtered as shown in Figure P-5.3(b). Determine the SNR at
the output of the LPF. .

5.3

5.1 The received signal r (t) = s(t) + n (t) in a communication system is passed
through an ideal LPF with bimdwidth Wand unity gain. The signal component
set) has a power-spectral density

S (f) - Po
s - 1+ (fIB)2

where B is the 3-dB bandwidth. The noise component net) has a power-spectral
density No/2 for all frequencies. Determine and plot the SNR as a function of the
ratio WIB. What is the filter bandwidth W that yields a maximum SNR?

5.2 The input to the system shown-in Figure P-5.2 is the signal plus noise waveform

ret) = A e cos 2Jrfet + net)

where n (t) is a sample function of a white-noise process with spectral density
No/2.

1. Determine and sketch the frequency response of the RC filter.

2. Sketch the frequency response of the overall system.

3. Determine the SNR at the output of the ideal LPF assuming that W> fe.
Sketch the SNR as a function of W for fixed values of Rand C.

c

Problems

Analysis of the effect of noise on analog communication systems can be found in
Carlson (1986), Ziemer and Tranter (1990), Couch (1993), and Gibson (1993). The
book by Sakrison (1968) provides a detailed analysis of PM in the presence of noise.
Phase-locked loops are treated in detail in Viterbi (1966), Lindsey (1972), Lindsey
and Simon (1973), and Gardner (1979}, and in the survey papers by Gupta (1975) and
Lindsey and Chie (1981). Taub and Schilling (1986) provides in-depth treatment of the
effect of threshold and various methods for threshold extension in FM.

5.6 FURTHER READING

PROBLEMS
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which is an astronomical figure.
(2) The use of a repeater every 10 Km reduces the per segment loss to .:EdB = 20 dB:

There are 20 repeaters, and each repeater has a noise figure of 5 dB. Hence, Equa-

tion (5.5.35) yields

(S/N)adB = -lOlog K - 10log.:£ - 10 log Fa - 10log(NoBneq) + 10log PT

30 = -13 - 20 - 5 + 168 + PTdB

PTdB = -100 dBW

PTdB = (S/N)adB + FadB + (NoBneq)dB + 10log.:£

= 30 + 5 + 400 + (NoBneqJdB

PT = 10-10 W (0.1 pW)

The above example clearly illustrates the advantage of using analog repeaters
in communication channels that span large distances. However, we also observed that
analog repeaters add noise to the signal and, consequently, degrade the oUlfut SNR.
It is clear from Equation (5.5.35) that the transmitted po,,":er PT must be mcreased
linearly with the number K of repeaters in order to mamtam the.same (81 N)o as K
increases. Hence, for every factor of two increase in K, the transrmtted power PT must

be increased by 3 dB.

(NoBneq)dB = 10log(1.6 x 10-17
) = -168 dBW.

where dBW denotes the power level relative to 1 W. Therefore,

PTdB = 435 - 168 = 267 dBW

PT = 5 X 1026 W

or, equivalently,

Therefore, the overall noise figure for the cascade of the K identical segments is simply

K times the noise figure of one segment.

Example 5.5.5 . ' . lin
. A signal with bandwidth 4 kHz is to be. transIDltted a distar;ce of 200 Km ?ver a wrre e
channel that has an attenuation of 2 dBlKm. (1) DeterIIDne the transIDl~er power. PT

required to achieve an SNR of (S/ N)o = 30 dB at the output of the receIver amplifi~r
which has a noise figure FadB = 5 dB. (2) Repeat the calculation whe?- a repeater IS
inserted every 10 Km in the wireline channel, where the repeater has. a gam of 20 dB and

. fi e of F - 5 dB Assume that the noise-equivalent bandWIdth of each repeateranOlse gur a - •

is Bneq =4 KHz and that No =4 x 10-21 WfHz. .
Solution (1) The total loss in the 200-Km wire1ine is 400 dB. From Equation (5.5.35),

with K = 1, we have

1010g(S/NJ = -lOlog.:£ -1010g Fn - 10log(NoBneq) + 10log PT
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263Problems

1. Find the signal power and the noise power at the output of the noise-limiting
filter.

2. Find the output SNR.

5.6 Derive the expression for the (one-sided) noise-equivalent bandwidth of the PLL
given by Equation (5.2.12).

5.7 In an analog communication system, demodulation gain is defined as the ratio of
the SNR at the output of the demodulator to the SNR at the output of the noise­
limiting filter at the receiver front end. Find expressions for the demodulation
gain in each of the following cases:

1. DSB.

2. SSB.

3. Conventional AM with a modulation index ofa. What is the largest possible
demodulation gain in this case?

4. PM with modulation index fJf.
5. PM with modulation index fJp.

5.8 In a broadcasting communication system the transmitter power is 40 KW, the
channel attenuation is 80 dB, and the noise power-spectral density is 10-10 W1Hz.
The message signal has a bandwidth of 104 Hz.

1. Find the predetection SNR (SNR in ret) = ku(t) + nCt))

2. Find the output SNR if the modulation is DSB.

3. Find the output SNR if the modulation is SSE.

4. Find the output SNR if the modulation is conventional AM with a modula­
tion index of 0.85 and ~onnalized message power of 0.2.

5.9 A communication channel has a bandwidth of 100 KHz. This channel is to be used
for transmission of an analog source met), where Im(t)1 < 1, whose bandwidth
is W = 4 KHz. The power content of the message signal is 0.1 W.

1. Find the ratio of the output SNR of an PM system that utilizes the whole
bandwidth, to the output SNR of a conventional AM system with a modu­
lation index of a = 0.85. What is this ratio in dB?

2. Show thatif an PM system and a PM system are employed and these systems
have the same output signal to noise ratio, we have

BWPM ..f3fJf + 1
--=
BWFM fJf + 1

5.10 The nonnalized message signal mn (t) has a bandwidth of 5000 Hz and power of
0.1 W, and the channel has a bandwidth ofl 00 KHz and attenuation of 80 dB. The
noise is white with power-spectral density 0.5 x 10-12 WfHz and the transmitter
power is 10 KW

1. If AM with a = 0.8 is employed what is (~t?

2. IfPM is employed what is the highest possible (~) 0 ?

Chapter 5
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S,n<f)

Received
signal

Figure P-S.3

5.4 A certain communication channel is characterized by 90-dB attenuation and ad­
ditive white noise with power-spectral density of!'f = 0.5 X 10-

14
WfHz. The

bandwidth of the message signal is 1.5 MHz and its amplitude is unifo~y dis­
tributed in the interval [-1, 1]. If we require that the SNR after demodulatlOn be
30 dB, in each of the following cases find the necessary transmitter power.

1. USSB modulation.

2. Conventional AM with a modulation index of 0.5.

3. DSB-SC modulation.

5.5 A sinusoidal message signal whose frequency is less than ~'OOO Hz, ~odu1ates
the carrier c(t) = 10-3 cos 2rrJet. The modulation scheme IS conven~onal AM
and the modulation index is 0.5. The channel noise is additive white WIth power­
spectral density of !'f = 10-12 WfHz. At the receiver, the signal is p~oce~s~~ as
shown in Figure P-S.S(a). The frequency response of the bandpass nOlse-11ID1tmg

filter is shown in Figure P-S.S(b).
H(f)
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FDM
SSB

Figure P-S.13

Problems

1. Plot a typical spectrum of the USSB modulated signal met).

2. Determine the bandwidth of m (t).

3. At the receiver side, the received signal ret) = u(!) + nw(t) is first PM
demodulated and then passed through a bank of USSB demodulators. Show
that the noise power entering these demodulators depends on i.

4. Determine an expression for the ratio of the noise power entering the de­
modulator whose carrier frequency is j; to the noise power entering the
demodulator with carrier frequency h, 1 ::: i, j :s K.

5. How should the carrier amplitudes Ai be chosen to guarantee that, after
USSB demodulation, the SNR for all channels is the same?

5.14 A power meter that measures· average power is connected to the output of a
transmitter as shown in Figure P-5.l4. The meter reading is 20 W when it is
connected to a 50 Q load. Determine:

1. The voltage across the load resistance.

2. The current through the load resistance.

3. The power level in dBm units.

FigureP-5.14

5.15 A twisted-pair telephone wireline channel with characteristic impedance Ze =
300 Q is terminated with a load of ZL = 300 Q. The telephone line is 200 Km
long and has a loss of 2 dBIKm.

1. If the average transmitted power PT = 10 dBm, determine the received
power PR if the line contains no repeaters.

2. Ifrepeaters with a gain of 20 dB are used to boost the signal on the channel
and if each repeater requires an input signal level of 10 dBm, determine the
number of repeaters and their spacing. The noise figure of each repeater is

·6dB.

Chapter 5Effect of Noise on Analog Communication Systems

where

G(f) = e-R$(O);gi [e R$(')]

This shows that the bandwidth of the angle-modulated process U (t) is twice
the bandwidth of ;gi(eR$(')].

5.13 In the transmission oftelephone signals over LOS microwave links, a combination
of FDM-SSB and PM is often employed. A block diagram of such a system
is shown in Figure P-5.13. Each of the signals mi(t) is bandlimited to W Hz
and these signals are USSB modulated on carriers Ci (t) = Ai cos 2n:lei t where
lei = (i - 1)W, 1 ::: i ::: K and m (t) is the sum of all USSB modulated signals.
This signal is PM modulated on a carrier with frequency Ie with a modulation
index of (3.

g(r) = e-(R$(O)-R$('»

3. Determine the power-spectral density of UCt), and show that

A2

Su(f) = 4e [G(f - Ie) + G(f + Ie)]

5.11 A normalized message signal has a bandwidth of W = 8 KHz and a power of
Pm = ~. It is required to transmit this signal via a channel with an available band­
width of 60 KHz and attenuation of40 dB. The channel noise is additive and white
with a power-spectral density of ~ = 10-12 WlHz. A frequency-modulation
scheme, with no pre-emphasis/de-emphasis fil~ering, has been proposed for this
purpose.

1. If it is desirable to have an SNR of at least 40 dB at the receiver output,
what is the minimum required transmitter power and the corresponding
modulation index?

2. If the minimum required SNR is increased to 60 dB, how would your answer
change?

3. If in part 2, we are allowed to employ pre-emphasis/de-emphasis filters with
a time constant of, = 75 p,sec, how would the answer to part 2 change?

5.12 Let <p(t) denote a zero-mean, stationary Gaussian process with autocorrela­
tion function Rep(')' This process modulates a sinusoid to generates the angle­
modulated process UCt) = A~cos(2nfet+ <p(t)).

1. .Show that, in general, U Ct) is not a stationary process.

2. Show that Ru('), the average autocorrelation function of U(t) is given by

- 1 jTI2 A2
Ru(r) = lim - RuCt, t + r) dt = -.£ cos(2rr/er)g(r)

T->oo T -Tj2 _ 2
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5.16 A radio antenna pointed in a direction of the sky has a noise temperatures of
50 K. The antenna feeds the received signal to the preamplifier which has a gain
of35 dB over a bandwidth of 10 MHz and a noise figure of2 dB.

1. Determine the effective noise temperature at the input to the preamplifier.

2. Determine the noise power at the output of the preampliiier.

5.17 An amplifier has a noise-equivalent bandwidth Bneq = 25 KHz and a maximum
available power gain of c:g = 30 dB. Its output noise power is 108kTo. Determine
the effective noise temperature and the noise figure.

5.18 Prove that the effective noise temperature of k two-port networks in cascade is

Te2 Te3 Tek
Te = Tel + Cr1 + co. (0. + ... + co. co co.

"1 "1 "2 "1"2 ... "k
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6

Information Sources
and Source Coding

Communication systems are designed to transmit information. In any communication
system there exists an information source thatproduces the information, and the purpose
of the communication system is to transmit the output of the source to the destination.
In radio broadcasting, for instance, the information source is either a speech source or
a music source. In TV broadcasting, the information source is a video source whose
output is a moving image. In FAX transmission, the information source produces a still
image. In communication between computers, either binary data or ASCII characters
are transmitted and, therefore, the source can be modeled as a binary or ASCII source.
In storage of binary data on a computer disk, the source is again a binary source.

In Chapters 3 and 5 we studied transmission ofanalog information using different
types of analog modulation and, in particular, we studied the trade-off between band­
width and power in FM modulation. The rest of this book deals with transmission of
digital data. Digital data transmission provides higher level of noise immunity, more
flexibility in bandwidth-power trade-off, the possibility of applying cryptographic and
antijamming techniques, and ease of implementation using large-scale integration. In
order to be able to employ the benefits of digital data transmission, we have to first con­
vert analog information into digital form. Conversion of analog signals into digital data
should be carried out in a way that the least amount of information is lost. Therefore,
it is necessary to have a precise notion of information.

Everyone has an intuitive notion of the meaning of information. However, per­
formance analysis of communication systems can hardly be conceived without a quan­
titative measure of information and mathematical modeling of information sources.
Hartley, Nyquist, and Shannon were the pioneers in defining quantitative measures
for information. In this chapter, we investigate mathematical modeling of information
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sources and provide a measure of information. Then we will see h~w the outp~t of
an information source can be made more compact and, therefore, eaSIer to transrmt or
store.

6.1 MODELING OF INFORMATION SOURCES

The intuitive and common notion of information refers to any new knowledge about
something. One can obtain information via hearing, seeing, or other me~ns of percep­
tion. The information· source, therefore, produces outputs which are of mterest to the
receiver of information, who does not know these outputs in advan~e.T.he role o~ the
communication-system designer is to make sure that this informati?n IS. transrmt~ed
to the receiver correctly. Since the output of the information so:rr~e .IS a time-varymg
unpredictable function (if predictable, there is no need to trans.IDIt It) It c~ be. modeled
as a random process. We have already seen in Chapter 4 that ill co~umcatIonchan­
nels the existence of noise causes stochastic dependence between th~ mput and output
of the channel. Therefore, the communication-system designer deSIgns ~ sy~tem ~at

transmits the output of a random process (information source) to a destination VIa a
random medium (channel) and ensures low distortion. '.

Information sources can be modeled by random processes, and the properties
of the random process depend on the nature of the information source.. For example,
when modeling speech signals, the resulting random process has all Its power u: a
frequency band of approximately 300-4000 Hz. Therefo~e, the pov:er-spectral denSIty
of the speech signal also occupies this band of frequenCIes ..A typICal power-spectral
density for the speech signal is shown in Figure 6.1. Video SIgnals are ~estored fro~ a
still or moving image and, therefore, the bandwidth depends on the reqUlred.resolution.
For TV transmission, depending on the system employed (NTSC, PAL or SECAM),
this band is typically between 0-4.5 :MHz. and 0-6.5 :MHz. For telemetry data the
bandwidth, of course, depends on the rate of change of data. . .

What is common in all these processes is that they are bandlimited processes
and, therefore, can be sampled at the Nyquist rate or larger and rec.onstruc~edfrom the
sampled values. Therefore, it makes sense to confine ourselves.to discrete-time random
processes in this chapter because all information sou!ces of I~terest can ~e model~d

by such a process. The mathematical model ~or an ~ormation source IS sho:n ill

Figure 6.2. Here the source is modeled by a discrete-time random pr~cess \Xdi=-c:"
The alphabet over which the random variables Xi are defined can be eIther discrete (ill

SxU)

f Figure 6.1 Typical power spectrum of
speech signal.

I . 1.... X-.2'X-r'Xo'Xr'X2 ....
Informallon source . '" . ) Figure 6.2 Mathematical model for a

discrete-time information source.

transmission of binary data, for instance) or continuous (e.g., sampled speech). The
statistical properties of the discrete-time random process depend on the nature of the
information source.

In this chapter, we will only study rather simple models for information sources.
Study ofmore complicated models is mathematically demanding and beyond the scope
of our treatment. However, even simple models enable us to define precisely a measure
of information and bounds on compression of information.

The simplest model for the information source that we study is the discrete
memoryless source (DMS). A DMS is a discrete-time, discrete-amplitude random pro­
cess in which all Xi'S are generated independently and with the same distribution.
Therefore a DMS generates a sequence of i.i.d. random variables taking values in a
discrete set.

Let set SI1. = {aI, a2, ... , aN} denote the set in which the random variable X takes
its values, and let the probability mass function for the discrete random variable X
be denoted by Pi = P(X = ai) for all i = I, 2, ... , N. A full description of the DMS
is given by the set SI1., called the alphabet, and the probabilities {Pi }~l'

Example 6.1.1

An info=ation source is described by tlle alphabet SI1. = {O, I} and p(X
j
= 1) = 1 _

p(Xj =0) =p. TIlls is an example of a discrete memoryless source. In tlle special case
where p = 0.5 the source is called a binary symmetric source, or BSS for short.

6.1.1 Measure of Information

In order to give a quantitative meaSure of information, we will start with the basic
model of an information source and try to define the information content of the Source
in such a way that certain intuitive properties are satisfied. Let us assume that the Source
that we are considering is a discrete source. Let the outputs of this source be revealed
to an interested party. Let al be the most-likely and aN be the least-likely output. For
example, one could imagine the source to represent both the weather condition and
air pollution in a certain city (in the northern hemisphere) during July. In this case, SI1.
represents various combinations of various weather conditions and pollution such as
hot and polluted, hot and lightly polluted, cold and highly polluted, cold and mildly
polluted, very cold and lightly polluted, etc. The question is: which output conveys
more information, al or aN (the most probable or the least probable one)? Intuitively,
revealing aN (or, equivalently, very cold and lightly polluted in the previous example)
reveals the most information. From this it follows that a rational measure ofinformation
for an output ofan information source should be a decreasing function of the probability
of that output. A second intuitive property of a measure of information is that a small
change in the probability ofa certain output should not change the information delivered
by that output by a large amount. In other words, the information measure should be a
decreasing and continuous function of the probability of the source output.

--



where 0 log 0 = O. Note that there exists a slight abuse' of notation here. One would
expect H (X) to denote a function of the random variable X and, hence, be a random
variable itself. However, H (X) is a function of the PMF of the random variable X and
is, therefore, a number.

271

(6.1.2)

(6.1.3)

H(X) = -p log p - (l - p) log(l - p)

H(X, Y) = - I: p(x, y) log p(x, y)
x,y

Modeling of Information SourcesSection 6.1

TIris function, denoted by Hb (p), is known as the binary entropy function and a plot of it
is given in Figure 6.3.

6.1.2 Joint and Conditional Entropy

When dealing with two or more random variables, exactly in the same way thatjoint and
conditional probabilities are introduced, one can introduce joint and conditional entro­
pies. These concepts are especially important when dealing with sources with memory.

Definition 6.1.2. The joint entropy of two discrete random variables (X, Y) is
defined by

Example 6.1.2

In the binary memoryless source with probabilities p and 1 - p, respectively, we have

Example 6.1.3

A source with bandwidth 4000 Hz is sampled at the Nyquist rate. Assuming that the result­
ing sequence can be approximately modeled by a DMS with alphabet .iL = (-2, -1, 0,
1, 2) and with corresponding probabilities H, i, k, ~, k}, determine the rate of the
source in bits/sec.

Solution We have
. 1 1 1 1 15

H(X) = -2 log 2 + -log4 + -log 8 + 2 x -log 16 = - bits/sample
4 8 16 8

and since we have 8000 samples/sec the source produces information at a rate of
15,000 bits/sec.

1
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o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 p Figure 6.3 The binary entropy function.

(6.1.1)
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N N (1)
H (X) = - .E Pi log Pi = .E Pi log --:

;=1 i=l P,
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Now let us assume that the information about output aj can be broken into
two independent parts, say a jl and aj2; Le., X j = (X(j1) , XU2l), aj = {a jl , aj2}, and
p(X =aj) = p(XUll =ajl )p(XU2) =aj2). This can happen, for example, if we as­
sume that the temperature and pollution were almost independent and, therefore, each
source output can be broken into two independent components. Since the components
are independent, revealing the information about one component (temperature) does
not provide any information about the other component (pollution) and, therefore, intu­
itively the amount ofinformation provided by revealing aj is the sum ofthe informations
obtained by revealing ajl and a j2. From the above discussion, we can conclude that
the amount of information revealed about an output aj with probability p j must satisfy
the following four conditions:

1. The information content ofoutput aj depends only on the probability ofaj and not
on the value of aj' We denote this function by I (p j) and call it self-information.

2. Self-information is a continuous function of pj; i.e., 1(·) is a continuous
function.

3. Self-information is a decreasing function of its argument i.e., least probable out­
comes convey most information.

4. If p j = pUll p U2l , then 1(pj) = I(p Ul l ) + I (p U2l ).

It can be proved that the only function that satisfies all the above properties is the
logarithmic function; i.e., I (x) = -log(x). The base of logarithm is not important and
defines the unit by which the information is measured. If the base is 2, the information
is expressed in bits, and if the naturallogarithin is employed, the unit is nats. From
this point on we assume all logarithms are in base 2 and all information is given in
bits.

Now that the information revealed about each source output ai is defined as the
self-infonnation of that output, given by -IOg(Pi), we can define the information con­
tent of the source as the weighted average ofthe self-information of all source outputs.
This is justified by the fact that various source outputs appear with their correspond­
ing probabilities. Therefore, the information revealed by an unidentified source output
is the weighted average of the self-information of the various source outputs; Le.,
2:f..l Pi I (Pi) = ~f..l - Pi log Pi· The information content of the information source
is known as the entropy of the source and is denoted by H(X).

Definition 6.1.1. The entropy of a discrete random variable X is a function of
its F:MF and is defined by



XI",·,X/J
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(6.1.10)H(X) = I::H(Xi )

i=l
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the same information is transferred by eitherrevealing the pair (X, Y), or by first revealing
Y and then revealing the remaining information in X. The proof for general n is similar
and is left as an exercise. hI the case where the random variables (X], X2,"" X n) are
independent, Equation (6.1.6) reduces to

Entropyrate plays the role ofentropy for sources with memory. It is basically a measure
of the uncertainty per output symbol of the source.

The source-coding theorem is one of the three fundamental theorems of information
theory introduced by Shannon (1948a, 1948b). The source-coding theorem establishes
a fundamentallirnit on the rate at which the output of an information source can be
compressed without causing a large error probability. We have seen already that the
entropy of an information source is. a measure of the uncertainty or, equivalently,
the information content of the source. Therefore, it is natural that in the statement
of the source-coding theorem, the entropy of the source plays a major role.

The entropy of an information source has a very intuitive meaning. Let us assume
that we are observing outputs oflength n ofa DMS where n is very large. Then, accord­
ing to the law oflarge numbers (see Chapter 4), in this sequence, with high probability
(that goes to 1 as n -i> 00) letter al is repeated approximately npI times, letter az is
repeated approxinlately nPz tim'?s, ... , and letter aN is repeated approxinlately npN

times. This means that for n large enough, with probability approaching one, every
sequence from the source has the same composition and, therefore, the same proba­
bility. To put it in another way, asymptotically "almost everything is almost equally

Stationarity ensures the existence of the limit, and it can be proved that an alternative
definition of the entropy rate for sources with memory is given by

lim
1

H = -H(XI, X 2,···, Xn).
n-*co n

If the random variable X n denotes the output of a discrete (not necessarily memoryless)
source at time n, then H(X2/ Xl) denotes the fresh information provided by source
output Xz to someone who already knows the source output Xl' In the same way,
H(Xn IXI, X z,···, X n- l ) denotes the fresh information in X n for an observer who
has observed the sequence (Xl, Xz, ., . , Xn- l ). The limit of the above conditional
entropy as n tends to infinity is known as the entropy rate of the random process.

Definition 6.1.4. The entropy rate of a stationary discrete-time random process
is defined by

6.2 SOURCE-CODING THEOREM

(6.1.9)

(6.1.8)

(6.1.7)

(6.1.4)
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x,y

= H(Y) + H(X IY)

x

=- I::p(y)logp(y)- I::p(x,y)logp(xly)
y x,y

where in the last step we have used

I:: p(x, y) = p(y)

= - I::p(x,y)logp(y) - I::p(x, y)logp(x IY)

As seen, the joint entropy is simply the entropy of a vector-valued random variable.
The conditional entropy of the random variable X, given the random variable Y,

can be defined by noting that if Y = y, then the PMF of the random variable X will be
p(x Iy), and the corresponding entropy is H(X IY = y) = - LxP(X Iy)logp(x Iy),
which is intuitively the amount of uncertainty in X when one knows Y = y. The
weighted average of the above quantities over all y is the uncertainty in X when Y
is known. This quantity is known as the conditional entropy and defined as follows:

Definition 6.1.3. The' conditional entropy of the random variable X given the

random variable Y is defined by

H(X IY) = - I::p(x, y)logp(x IY) (6.1.5)
x,y

Example 6.1.4
Using chain rule for PIvlFs, p(x, y) = p(y)p(x Iy), show that H(X, Y) =H(Y) +
H (X IY). Generalize this result to the case of n random variables to show the following
chain rule for entropies

In general, we have

H(Xn IXl, .. ·, Xn-l) = - I:: p(XI, .. · ,xn)logp(xn IXl> ... ,Xn-l) (6.1.6)

= - I::p(x,y)log[p(y)p(xly)]
x,y

x,y

Solution From the definition of the joint entropy of two random variables, we have

H(X, Y) = - I::p(x, y)logp(x, y)

This relation says that the information content of the pair (X, Y) is equal to the information
content of Y plus the information content of X after Y is known. Equivalently, it says that
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For the case of n random variables X = (Xl, Xz, ... , Xn), we have

Hex) = - I:: p(XI,XZ, ... ,xn)lOgp(XI,XZ, ... ,xn)



tBorrowed from Cover and Thomas (1991).
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From the above result and since E is an arbitrary positive number, it is seen that we
can only represent the typical source outputs without introducing considerable error.
Since the total number of typical sequences is roughly 2nH(X), we need nH(X) bits
to represent them. However, these bits are used to represent source outputs of length
n. Therefore, on the average, any source output requires H(X) bits for an essentially
error-free representation. This, once again, justifies the notion of entropy as the amount
of information per source output.

So far we have assumed that the source is discrete and memoryless and therefore
it can be represented by an i.i.d. random variable. Such a source can only be compressed
if its PMF is not uniform. For X uniformly distributed, we have H (X) = log Nand,
therefore, 2nH(X) =2n log N =N n • This means that the "effective" number of source
outputs oflength n is equal to the total number of source outputs, and no compression
is possible.

We have not considered the case where the source has memory. For a source with
memory, the outputs of the source are not independent and, therefore, previous outputs
reveal some information about the future ones. This means that the rate at which fresh
information is produced decreases as more and more source outputs are revealed. A
classic example ofsuch a case is the English alphabet, which shows a lot of dependency
between letters and words (a "q" is almost always followed by a "u," a single letter
between two spaces is either "I" or "a," etc.). The entropy per letter fora large text
of English is roughly the limit of H (Xn IXl, X2 , ••• , Xn- 1) as n becomes large (the
entropy rate defined in Section 6.1.2). In general stationary sources, the entropy rate
has the same significance as the entropy for the case ofmemoryless sources and defines
the number of "effective" source outputs for n large enough; i.e., 2nH where H is the
entropy rate.

Studies with statistical models of printed English show that the entropy rate
converges rather quickly, and for n == 10 we are very close to the limit. These studies
show that for n = 1; i.e., a memoryless source model, we have H (X) = 4.03 bits/letter.
As the memory increases, the size of the space over which conditional probabilities
are computed increases rapidly and it is not easy to find the conditional probabilities
required to compute the entropy rate. Some methods for estimating these conditional
probabilities have been proposed in the literature and, based on these methods, the
entropy ofprinted English is estimated to be around 1.3 bits/letter. It is worth mentioning
here that in these studies only the 26 letters of the English alphabet and the space mark
(a total of 27) have been considered.

So far, we have given an informal description of the source-coding theorem and
justified it. A formal statement of the theorem, without proof, is given next. The inter­
ested reader is referred to the references at the end of this chapter for a proof.

Theorem 6.2.1 [Source-Coding Theorem]. A source with entropy (or entropy
rate) H can be encoded with arbitrarily small error probability at any rate R (bits/source
output) as long as R > H. Conversely if R < H, the error probability will be bounded
away from zero, independent of the complexity of the encoder and the decoder
employed. II
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Figure 6.4 The set of typical and
nontypical sequences.

Set of typical sequences with = 2nH
(X)

elements

_ nN 2npiIogpi
- i=l

= 2-nH(X)

(In this chapter, all the logarithms are in base 2, and all entropies are in bits unless
otherwise specified.) This means that for large n almost all the output sequences of
length n of the source are equally probable with p~~bability~ 2-nH

(X). ~ese are called
typicalsequences. On the other hand, the probabIlity of the set ofnontypIcal sequences

is neg~fn~~efue probability of the typical sequences is almost one an? each typical
sequence has a probability of almost 2-nH(X), the total numb~r of typIcal sequence~
is almost 2nH(X). Therefore, although a source of alphabet SIze N can p~oduce N
sequences oflength n, the "effective". number of outputs i~ 2nH

(X). By effectIVe number
of outputs we mean that almost nothing is lost by neglectIng ~e ot?er o~tputs, and. the
probability of having lost anything goes to zero as n goes.to. mfimty. ~lgure 6.4 gIVes
a schematic diagram of the property mentioned above. This IS a v.ery Important res,ult,
which tells us that for all practical purposes, it is enough to conSIder the ~et of tYPIc~l
sequences rather than the set ofall possible outputs ofthe source. The error mtroduc.ed ill
ignoring nontypical sequences can be made smaller than any given E ~ 0 by choosill? n
to be large enough. This is the essence ofdata compression, the pracuce of representmg
the output of the source with a smaller number of sequences compared to the number

of the outputs that the source really produces..

probable."t The sequences x that have .the.above structure are called typical sequences.
The probability of a typical sequence IS gIven by

N np'
P(X = x) ~ ni=lPi '
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6.3 SOURCE-CODING ALGORITHMS

In the first code, each code word end~ with a 1. Therefore, as soon as the decoder observes
a 1 it knows that the code word has ended and a new code word will start. This means
tha~ the code is a self-synchronizing code. In the s.econd code each code word starts with
a 1. Therefore, upon observing a 1, the decoder knows that a new code word has started

This theorem, first proved by Shannon (1948a), only gives necessary and sufficient
conditions for the existence of source codes. It does not provide any algorithm for the
design of codes that achieve the performance predicted by this theorem. In the next
section, we present two algorithms for compression of information sources. One is due
to Huffman (1952), and the second is due to Ziv and Lempel (1977, 1978).

-.
-.
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1 1 1 1 1 31
E[L] = 1 x - + 2 x - + 3 x - + 4 x - + 5 x _ = _

2 . 4 8 16 16 16

Huffman Encoding Algorithm.

1. Sort source outputs in decreasing order of their probabilities.

2. Merge the two least-probable outputs into a single output whose probability is
the sum of the corresponding probabilities.

3. If the number of remaining outputs is 2, then go to the next step, otherwise go to
step 1.

and for code 3

. 1 1 1 1 1 30
E[L] = 1 x - +2 x - + 3 x - + 4 x - + 4 x _ = _

2 4 8 16 16 16

Code 4 has a major disadvantage. This code is not uniquely decodable. For example, the
sequence 110110 can be decoded in two ways, as asas or as a4a2a3. Codes that are not
uniquely decodable, are not desirable and should be avoided in practice. From the discus­
sion above it is seen that the most desirable of the above four codes is code 3, which is
uniquely decodable, instantaneous, and has the least-average code word length. This code
is an example of a Huffman code to be discussed shortly.

and, hence, the previous bit was the last bit of the previous code word. This code is again
self-synchronizing but not as desirable as the first code. The reason is that in this code
we have to wait to receive the first bit of the next code word to recognize that a new code
word has started, whereas in code 1 we recognize the last bit without having to receive
the first bit of the next code word. Both codes 1 and 2 therefore are uniquely decodable.
However, only code 1 is instantaneous. Codes 1 and 3 have the nice property that no code

.word is the prefix of another code word. It is said that they satisfy the prefix condition. It
can be proved that a necessary and sufficient condition for a code to be uniquely decod­
able and instantaneous is that it satisfy the prefix condition. This means that both codes
1 and 3 are uniquely decodable and instantaneous. However, code 3 has the advantage
of having a smaller average code word length. In fact, for code 1 the average code word
length is

As already mentioned, the idea in Huffman coding is to choose code word lengths such
that more probable sequences have shorter code words. If we can map each source
output of probability Pi to a code' word of length approximately log.l. and at the
same time ensure unique decodability, we can achieve an average code ;ord length of
approximately H (X). Huffman codes are uniquely decodable instantaneous codes with
minimum-average code word length. In this sense they are optimal. By optimality we
mean that, amo~g all codes that satisfy the prefix condition (and therefore are uniquely

. decodable and Instantaneous), Huffman codes have the minimum-average code word
length. Next, we present the algorithm for the design of the Huffman code. From the
algorithm, it is obvious that the resulting code satisfies the prefix condition. The proof
of the optimality is omitted and the interested reader is referred to the references at the
end of this chapter.
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Codewords

Letter Probability Code 1 Code 2 Code 3 Code 4

al PI = ~ 1 1 0 00

a2 P2= ~ 01 10 10 01

a3 P3 = t 001 100 110 10

a4 P4 = ft 0001 1000 1110 11

as PS = ft 00001 10000 1111 110
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In the preceding section, we observed that H, the entropy of a source, gives a sharp
bound on the rate at which a source can be compressed for reliable reconstruction.
This means that at rates above entropy it is possible to design a code with an erro.r
probability as small as desired, whereas at rates below entropy such a code does not
exist. This important result however does not provide specific algorithms to design
codes approaching this bound. In this section, we will introduce two algorithms to
design codes that perform very close to the entropy bound. These coding methods are
the Huffman coding algorithm and the Lempel-Ziv source-coding algorithm.

6.3.1 The Huffman Source-Coding Algorithm

In Huffman coding, fixed-length blocks of the source output are mapped to variable­
length binary blocks. This is called fixed- to variable-length coding. The idea is to
map the more frequently occurring fixed-length sequences to shorter binary sequences
and the less frequently occurring ones to longer binary sequences. In variable-length
coding, synchronization is a problem. This means that there should be one and only one
way to break the binary-received sequence into code words. The following example
clarifies this point

Example 6.3.1
Let us assume that the possible outputs of an information source are [aj, a2, a3, a4, as},
and consider the following three codes for this source
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Now, if instead of single-source letters, the Huffman code is designed for sequences of
source letters oflength n (nth extension ofthe source), we would have

It can be shown that the average length of a Huffman code, defined by

R = L p(x)l(x)
"'Eiie

where I (x) is the length of the code word corresponding to the source output x, satisfies
the following inequality .

where Rn ~notes the average code word length for the extended source sequence and,
therefore, R = ~Rn . In case the source we are dealing with is memoryless, we also have
H (Xn ) = nH (X). Substituting these in the above equation and dividing by n we have

- 1
H(X) :s R < H(X) + -

n

Therefore, for n large enough R can be made as close to H (X) as desired. It is also obvi­
ous that for discrete sources with memory, R approaches the entropy rate of the source.

Example 6.3.3
A DMS with equiprobable outputs and alphabet .iL = {aJ' a2, a3} has the Huffman code
designed here.

Chapter 6 .

Figure 6.5 Huffm:m coding algorithm.

Information Sources and Source Coding

yes Append the code word
with 0 and 1

Is any element the
result of merger
of two elements

4. Arbitrarily assign 0 and 1 as code words for the two remaining outputs.

5. If an output is the result of the merger of two outputs in a preceding step, app~nd
the current code word with a 0 and a 1 to obtain the code word for the precedmg
outputs and then repeat 5. Ifno output is preceded by another output in a preceding

step, then stop.

Figure 6.5 shows a flow chart of this algorithm.

Example 6.3.2
Design a Huffman code for the source given in the preceding example.

Solution The tree diagram shown below summarizes the design steps for code construc­
tion and the resulting code words.

Numbe; of elements = 2? ,>-_-,,-no~
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Here the average code word length is R2 = 3.222 bits/pair of source outputs or 1.611
bits/each source output. Comparing this with the previous example we see that the average
length in this case is closer to the entropy of the source.

In our treatment only binary Huffman codes were treated. The algorit.1un for design
of binary Huffman codes can be easily generalized to an algorithm for the design of
general M_ary Huffman codes. We will exanrine the general algorithm in a problem at

the end of this chapter.

6.3.2 The Lempel-Ziv Source-Coding Algorithm

We have already seen that Huffman codes are op~al in the sense that for a given
source they provide a prefix code with minimum-average block leng~. Nevertheless,
there exist major problems implementing Huffman codes. One problem IS tha~ ~uffman
codes depend strongly on the source probabilities (statistics). The source statlst1cs have
to be known in advance to design a Huffman code. If we can only observe the source
outputs, then we have to do the coding in two passes. In ~e first pass, we ~stimate
the statistics of the source (which, in the case of sources WIth memory and III cases

The entropy of the source is H(X) = 10g3 = 1.585 and R = ~ = 1.667. If we use
sequences of two letters, we will have the source
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where we want to apply Huffman coding to the extension of the source, becomes
quite time consuming) and in the second pass coding is done. The other problem with
Huffman codes is that if the code is designed for source blocks of length 1, it only
employs variations in the frequency of the source outputs and not the source memory.
Ifone wants to employ the source memory as well, one has to design the code for blocks
of length 2 or more and this exponentially increases the complexity of the algorithm.
For instance, encoding of ASCII characters with a block length of 1 requires a tree
with 256 terminal nodes, but if a block length of 2 is desired the size of the tree and,
therefore, the complexity of coding becomes much higher. In certain applications, such
as storage in magnetic or optical media where high transfer rates are desirable, the
complexity and speed of Huffman coding becomes a bottleneck.

The Lempe1-Ziv algorithm belongs to the class of universal source-coding al­
gorithms; i.e., algorithms that are independent of the source statistics. This algorithm
is a variable~ to fixed-length codin"g scheme. This means that any sequence of source
outputs is uniquely parsed into phrases of varying length and these phrases are encoded
using code words of equal length. Parsing is done by identifying phrases of the smallest
length that have not appeared so far. To this end, the parser observes the source output,
and as long as the new source output sequence after the last phrase coincides with one
ofthe existing phrases, no new phrase is introduced and another letter from the source is
considered. As soon as the new output sequence is different from the previous phrases,
it is recognized as a new phrase and encoded. The encoding scheme is simple. The new
phrase is the concatenation of a previous phrase and a new source output. To encode it,
the binary expansion ofthe lexicographic ordering of the previous phrase and the new
bit are concatenated. For example, let usassume that we want to parse and encode the
following sequence:

0100001100001010000910100000110000010100001001001

Parsing the sequence by the rules explained before results in the following phrases:
0, 1, 00, 001, 10, 000, 101, 0000, 01, 010, 00001, 100, 0001, 0100, 0010,

01001, .... It is seen that all the phrases are different and each phrase is a previ­
ous phrase concatenated with a new source output. The number of phrases is 16. This
means that for each phrase we need 4 bits,plus an extra bit to represent the new source
output. The above sequence is encoded by 0000 0, 0000 1, 0001 0, 0011 1, 0010 0,
0011 0, 0101 1, 0110 0, 0001 1, 1001 0, 1000 1, 0101 0, 0110 1, 1010 0, 0100 0,
1110 1, .... Table 6.1 summarizes this procedure.

This representation can hardly be called a data compression scheme because a
sequence of length 49 has been mapped into a sequence of length 80, but as the length
of the original sequence is increased, the compression role of this algorithm becomes
more apparent. It can be proved that for a stationary and ergodic source, as the length
of the sequence increases, the number of bits in the compressed sequence approaches
nH(X), where H(X) is the entropy rate of the source. The decompression of the
encoded sequence is straightforward and can be clone very easily.

One problem with the Lempel-Ziv algorithm is how the number of phrases should
be chosen. Here we have chosen 16 phrases and, therefore, 4 bits to represent each
phrase. In general, any fixed number of phrases will sooner or later become too small
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1
000 9

0010
1
9

0011
1
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1
010 9
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1
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1
110 9

1
111 9

s1.2 = {(aI, al), (aI, a2), (aI, a3),"" (a3, a2), (a3, a3)}

with the probability vector p(2) = {~, ~, ~, ~,~, ~, ~, ~, ~}. A Huffman code for this
source is designed in the following tree diagram.
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Mutual information has certain properties that are explored in problems and sum­
marized here.

number an infinite number of bits are required. Therefore, in a practical digital system
there exists no way to transmit or store analog data without any loss in precision. To
encode analog samples, the samples must be quantized and the quantized values are
then encoded using one of the source-encoding algorithms.

In this section, we will study the case of data compression subject to a fidelity
criterion. We first introduce some quantities that are needed for quantitative analysis of
this case and then define the rate-distortion function.

Example 6.4.1

Let X and Y be binary random variables with P(X=O, Y=O)=t, P(X=1,
Y = 0) = t and P(X = 0, Y = 1) = t. Find I (X; Y) in this case.

Solution From above P(X = 0) = P(Y = 0) = i and, therefore, H(X) = H(Y) =
Hb (~) = 0.919. On the otherhand, the (X, Y) pair is a randomvectoruniforrnly distributed
on three values (0,0), (1,0), and (0, 1). Therefore, H(X, Y) = log 3 = 1.585. From
this, we have H(X IY) = H(X. Y) - H(Y) = 1.585 - 0.919 = 0.666 and leX; Y) =
H(X) - H(X I Y) = 0.919 - 0.666 = 0.253.
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(6.4.1)leX; Y) = H(X) - H(X IY).

Rate-Distortion TheorySection 6.4

1. I (X; Y) ~ 0 with equality if and only if X and Yare independent.

2. leX; Y) ::: min(H(X), H(Y)).

3. leX; Y) = I:x.yp(x, y)log pf;~~{~)·
4. leX; Y) = H(X) + H(Y) - H(X, Y).

5. I (X; Y! Z) is the conditional mutual information and defined by I (X; Y IZ) =
H(X! Z) - H(X IY, Z).

6. leX; Y IZ) = I:zp(z)I(X; Y IZ = z).
7. I(XY; Z) = I (X; Z) + I(Y; Z IX). This is the chain rule for mutual information.

8. In general, I(X1, ... ,Xn;Y) = I(XI;Y) + I(X2 ;YIX1) + ... + l(Xn;
YI Xl, ... , Xn- l )·

6.4.1 Mutuallnformation

For discrete random variables, H(X! Y) denotes the entropy (or uncertainty) of the
random variable X after random variable Y is known. Therefore, if the starting entropy
of the random variable X is H(X), then H(X) - H(X IY) denotes the amount of
uncertainty of X that has been removed by revealing random variable Y. In other words,
H (X) - H (X IY) is the amount of information provided by the random variable Y
about random variable X. This quantity plays an important role in both source and
channel coding and is called the mutual information between two random variables.

Definition 6.4.1. The mutual information between two discrete random vari­
ables X and Y is denoted by leX; Y) and defined by
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TABLE 6.1 SUMMARY OF LEMPEL-ZIV EXAMPLE

Dictionary Dictionary
Location Contents Codeword

1 0001 0 0000 0

2 0010 1 0000 1

3 0011 00 0001 0

4 0100 001 0011 1

5 0101 10 0010 0

6 0110 000 0011 0

7 0111 101 0101 1

8 1000 0000 0110 0

9 1001 01 0001 1

10 1010 010 1001 0

11 1011 00001 1000 1

12 1100 100 0101 0

13 1101 0001 0110 1

14 1110 0100 1010 0

15 1111 0010 0100 0

16 1110 1

and overflow would occur. For example, if we were to continue coding of the above
source for additional input letters, we could not add the new phrases to our dictionary
because we have assigned four bits for representation of the elements of the dictionary
and we have already 16 phrases in the dictionary. To solve this problem, the encoder and
decoder must purge those elements from therr dictionaries that are not useful anymore
and substitute new elements for them. The purging method should, of course, be a
method on which the encoder and the decoder have agreed.

The LempeI-Ziv algorithm is widely used in practice to compress computer files.
The "compress" and "uncompress" utilities under the UNIX© opera~g system .and
numerous other algorithms (ZIP, ZOO, LZH, ARJ, etc.) are implementatlOns ofvanous

versions of this algorithm.

6.4 RATE-DISTORTION THEORY

In Section 6.2, we saw that it is possible to encode the output of a discrete-memoryless
information source at a rate arbitrarily close to its entropy and still be able to recover the
output reliably. Reliable reconstruction of the source means that the error probability
can be made to approach zero as the block length approaches infinity. In many cases,
however, transmitting at rates close to entropy is no~ possible. For example, if one ha1l
limited storage space and the entropy ofthe information source is greate:t~an the ~torage ...
capacity, error-free retrieval of the source output from the stored data IS lffiposslble. In
cases such as this, some lossy compression technique has to be employed and some

distortion will be introduced. .
An example of such a case is the encoding of the output of an analog source...

The samples of an analog source are real numbers, and in order to represent a real



Figure 6.6 represents the relation among entropy, conditional entropy and mutual in­

formation quantities.
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(6.4.4)

(6.4.6)

(6.4.7)

heX IY) = heX, Y) - hey)
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leX; Y) = hey) - hey IX) = heX) -heX r Y)
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The mutual infonnation between two continuous random variables X and Y is defined

similarly to the discrete case as

Extensions of the definition of differential entropy to joint random variables and con­

ditional differential entropy are straightforward. For two random vanables, we have

heX, y) =-1:1: I(x, y) log I(x, y) dx dy (6.4.5)

Example 6.4.3

Determine the differential entropy of a Gaussian random variable with mean zero and
variance (T 2•

Solution The PDF is f (x) =~ e- fir. Therefore, using natural logarithms we find
the differential entropy in nats 2Jrer

heX) = -100
1n (.j 1 2) j(x)dx -100

1n(e-fir)j(x)dx
-00 2rc a -00

(T2

= 1n (.j2JrO"2) + 20'2

1
= z1n(2rcea

2
) nats (6.4.3)

where we have used J':' j(x).dx = 1 and!':' x 2 f(x) dx = (T2. Changing the base of
logarithms to 2, we have

and

Although differential entropy does not have the intuitive interpretation of discrete en­

tropy, it can be shown that the mutual information of continuous random variables has

basically the same interpretation as the mutual information ofdiscreterandom variables;

i.e., the information provided by one random variable about the other random Variable.

6.4.3 Rate-Distortion Function

Returning to our original problem of representing a continuous source with finite num­

ber of bits/symbol, the question is: if the Source output is to be compressed and repre­

sented by a certain number of bits/symbol, how close can the compressed version and

the original version be? This question is not applicable only to continuous sources. A

similar question can be asked for discrete sources. Let there be a discrete source with

entropy H (X). This means that we can transmit the output of this source using HeX)

bits/source output and with arbitrarily small-error probability. Now let us assume that

uSing H (X) bits/source symbol is too high and that we can not tolerate it (for example
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H(Y!X)

H(Y)

I(X:Y)
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Figure 6.6 Entropy, conditional entropy, and mutual information.

H(XIY)
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where 0 log 0 = O.

Example 6.4.2 .. f d variable X uniformly distributed on [0,
Determine the differentIal entropy 0 a ran om

Solution Using the definition of differential entropy

1
a 1 1

h(X)=- -log-dx=loga
o a a

heX) °which is in contrast to the nonnegativity
It is seen that for a < 1, we have h«X)' _ °without X being deterministic. This
the discrete entropy. Also, for a = 1, -

again in contrast to the properties of discrete entropy.

6.4.2 Differential Entropy

d tual information for discrete sources. If we
So far we have defined entropy an mu h tp ts are real

dealing with a discrete-time, continuous-alphabet source w ose o~ u tin

are .. t that has the intuitive meaning of entropy. In e con uous

numbers, ~Othing .~~~ ~at resembles entropy, called differential entropy, is defined.

case, ano er quan~J .. . anin of entropy In fact, to reconstruct the

However, it does. not have the m~~~~l~ma: infi~te numbe; of bits/source output are

output of a continuous source re 1 '. al number and the binary expansion of
required because any output of the s.ource IS are

a real number has infinitely many bIts.

Definition 6.4.2. The differential entropy of a continuous random variable X

with PDF fxex) is denoted by heX) and defined by

heX) = - f: fx(x) log IxCx) dx

I
I
J
:J

rl·
!;" .

l
::
~1.

~1 ....." .. ,



In the continuous case the squared-error distortion defined by

d(x, x) = (x - x)2

is frequently used. It is also assumed that we are dealu:g with a per-letter d~stort~on
measure, meaning that the distortion between sequences 1S the average of the d1StortlOll

between their components; i.e.,

dCX', in) = ~ t d(Xi, Xi)
n i=1

This assumption simply means that the position of the "error" in reproduction is not

important and the distortion is not context dependent.
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(6.4.8)R(D) = min. leX; X)
p(Jilx):Ed(X,X);o;D
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Now, since the source output is a random process, d(Xn
, :xn

) is a random variable.
We define the distortion for the source as the expected value of this random variable,

A 1~ A A

D = E[d(Xn, xn)] = - L." E[d(Xi, Xi)] = E[d(X, X)]
n i=l

where in the last step we have used the stationarity assumption on the source (indepen­
dence of the distributions from the index i).

Example 6.4.4
Show that with Hamming distortion, D represents the error probability.

Solution

D = E[dH(X, X)) = 1 x P[X i= X] +0 x P[X = X]

= P[X i= X] ",; P[error]

With all these definitions, our original question can be restated as follows: given a
memory1ess informatio? source with alphabet 2e and probability distribution p(x), a
repro?uction alphabet :Jl';' and a distortion measure d (x, x) defined for all x E:Jl';' and
x E:Jl';', what is R, the minimum number of bits/source output required to guarantee
that the average distortion between the source-output sequence and the corresponding
reproduction-output sequence does not exceed some given D? It is obvious that R is a
decreasing function of D; i.e., ifwe need high-fidelity reproduction (low D) we require
a high R. The relation between R and D is expressed via the rate-distortion function.
The following theorem gives the general form of the rate-distortion function. For a
proof, the reader is referred to the references at the end of this chapter.

Theorem 6.4.1 [Rate-Distortion]. The minimum number ofbits/source output
required to reproduce a memoryles~ source with distortion less than or equal to D is
called the rate-distortion function, denoted by R(D) and given by

..
Figure 6.7 is a schematic representation of this theorem. The space of S01}.rce

outputs of length n; i.e., :Jl';'n is divided into 2nR regions. If the output of the source,
xn falls in region i, the binary representation of i is transmitted to the decoder. Since
1 SiS 2nR , the binary representation is of length nR and, therefore, coding is done at
a rate of R bits/source output. The decoder, after receiving the binary representation of
i, generates a predetermined sequence in such that its average distance (distortion) from
the x sequences in region i is minimum. This is the best representation of the region
i sequences. Note that, for large values of R, we have a large number of regions and,
therefore, our representation is very precise (fine quantization), whereas for small R, the
number of regions is small and the distortion is large (coarse quantization). There exist
two extreme cases. The first happens when there is only one region (R = 0). In this case,
the representation point is in some sense (which will be clarified later) the centroid of
the whole input space. The second extreme case is when each region consists of a single
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in magnetic disk storage, the disk space required becomes huge). Now that the number'
of available bits/source output is less than H (X), error-free restoration of the source is
not possible and some errors will be inevitable. The question is: at a given number of
bits/source symbol, what is the minimum achievable error rate and, of course, how can
this minimum be achieved? The question can also be asked in the opposite direction;
i.e., what is the minimum number of bits/source output required to reproduce the source

at a certain level of distortion?
To formally present the above discussion, we have to define the notion of dis-

tortion. Distortion in reproduction of a source is a measure of fidelity or closeness
of the reproduction to the original source output. In a high-fidelity reproduction, the
reproduced signal is very close to the original signal and distortion is I?,,:, wh~reas in a
low-fidelity reproduction there exists more "distance" between the ongmal Slgnal and
the reproduction and, therefore, a higher distortion. A "distortion ~easure" is a :neas~re
of how far apart the signal and its reproduction are. One could thmk of many d1stort1on
measures between a signal x (t) and its reproductionx(t), for instance, maxi Ix (t)-x(t) I,
limT->oo t f.!?~2Ix(t) - x(t)1 dt, and limT->oo t f?~2(X(t) - x(t))2 dt are three dis-

tortion measures. '
A good distortion measure must satisfy two properties. First, it has to be a good '

approximation to the perception process, and second, it has to be simple eno~gh to be
mathematically tractable. The first property simply says that, for example, if we are
dealing with speech transmission and in perception ofspeech the phase.ofthe waveform
is not a very crucial factor, the distortion measure should not be heavily dependent on
exact phase reproduction. On the other hanc\, if we are dealing willi. image pe.rception,
phase plays an important role and, therefore, this must be reflected m our ch01~e of the
distortion measure. Finding a distortion measure that meets both of these requrrements.

is usually not an easy task. . ' A

In general, a distortion measure is a distance between ~ and.1ts reproduc~on x
denoted by d(x, x). In the discrete case a commonly used d1stortlOn measure 1S the

Hamming distortion defined by

{
I x #x

dH(x, x) = 0, otherwise



tThe distortion is zero when the source alphabet and the representation alphabet are the same. In
general, the distortion is given by D min =E[mini d(X, x)] = L.,P(x) minid(X, x).
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(6.4.10)
0::: D ::: 0-2

otherwise

min (p, I-p)

{

II ,,2

R(D) = 2: og1)
0,

Rate-Distortion Theory

1.2

1.4

0.6

0.4

R(D)

Figure 6.8 Rate-distortion function for a binary source with Hamming dis tortion.

Section 6.4

A plot of the rate-distortion function for a binary source and with a Hamming distortion
measure is .given in Figure 6.8. Note that for zero distortion (zero-error probability), we
have R(D) = Hb(p), which is in agreement with the source-coding theorem. Assuming
p < 0.5, for D = P we have R(D) = 0; i.e., we can reproduce the source at a distortion
of p with no transmission at all, by setting the reproduction vector to be the all-zero
vector. This means that D = Pe = P[X =f:. X] = P[X ¥ 0] = P[X = 1] = p.

It can also be shown that for a zero-mean Gaussian source with variance 0-2 and
with squared-error distortion measure, the rate-distortion function is give~by

A plot of this rate-distortion function is given in Figure 6.9. An interesting question
now is: by what factor is the distortion decreased if the rate of the coding ofthe source is
increased by one bit? The answer, of course, depends on·the rate-distortion function of
the source (which, in turn, depends on the source statistics and the distortion measure).
Let us consider the case of a zero-mean Gaussian discrete memoryless source with

s~uare~-errordisto~on. Since for 0 ::: D ::: 0-2 , R(D) = ~ log ~, we can express the
dlstortlOn-ratejunctlOn as D(R) = 0-22-2R . Obviously, increasing R by 1 will decrease
D by a factor of 4, or equivalently by 6 dB. This means that every 1 bit of transmission
capability/source output reduces the distortion by 6 dB.

(6.4.9)
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R(D) = {Hb(P) - Hb(D) 0::: D.::: min{p, 1-p}
0, otherwIse
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Figure 6.7 Schematic representation of the rate-distortion theorem.

source output. In this case R is taking its maximum value and the distortion is zero.t
From the rate-distortion theorem it is seen that if the rate-distortion function is given
for a source and a distortion measure, we know the minimum number of bits/source
symbol required to reconstruct the source with any.given distortion measure. Given
any rate, we can determine the minimum achievable distortion if a code of that rate is
used. It should be emphasized that, as was the case with the source-coding theorem, the
results indicated by the rate-distortion function are "fundamental limits" in the sense
that they can only be achieved asymptotically and with increasing complexity of the
encoding-decoding schemes. .

Example 6.4.5
For a binarymemoryless source with P(Xi = 1) =1-P(Xi = 0) = p, and with Hamming
distortion, it can be shown that the rate-distortion function is given by

1. Assuming P = 0.5, how many bits/source output are required to transmit this
info=ation source with a probability of error at most equal to 0.25?

2. With P = 0.5, and a channel that can transmit 0.75 bits/each source output, what
is the minimum achievable error probability?

. Solution
1. Recall that for Hamming distortion, the error probability and the average distortion

coincide (see Example 6.4.4). Therefore, Pe = D = 0.25 and since p = 0.5, we are
dealing with the case where 0::: D::: min{p, 1 - pl. This means that R(0.25) =
Hb(0.5) - Hb(0.25), which results in R "'" 0.189.

2. For R = 0.75, we must solve the equation Hb(P) - Hb(D) = 0.75, where HbCP) =
Hb(0.5) = 1 and, therefore, Hb(D) = 0.25, which gives Pe = D = 0.042.

,
L



Example 6.4.6 ..' th .. urn
In the representation of a zero-mean unit-vanance GaUSSIan source, what:s e ~rurn.
attainable distortion if 8 bits/source output are employed? By what factor IS the distortlon
decreased if we use 16 bits/source output?
Solution Using the relation D(R) = (J22-2R with R = 8 and.J =.1, v:e have D =
J,. "" 1 52 X 10-5• If instead of 8, 16 bits are employed, the dlstortlon IS reduced by
2'0 .
48 dB, or a factor of 48

•

6.5 QUANTIZATION

In Section 6.4, we saw that when dealing with analog sources, ~ pr~cise descri~tion of
the source requires an infinite number of bits/source out~ut, W:llC~ IS not an aChievabl~

oal Therefore, in transmission of analog sources some dIstortIon IS al:-vays?resent,~
~e .oal is to minimize this distortion. We also introduced the rate-dlstortlOn.func:lOn
whi~h gives a fundamentallirnit on the tradeoffbetweyn the code rate and the distortl~n.
In this section, we will investigate practical schemes to represent the o~tput.ofan.ana ~g
source at low rates and, at the same time, without introducing excess:ve d:stortIon.. s
we have already seen, the fundamental limit promise~by the rate-dIstortIon functlon
can only be approached asymptotically, that is, by usmg very complex ~ncoder~~
decoders The encoder observes source outputs of length n, x E :::en, an maps e
into repr~sentation sequences oflength n, in E 'kn

. The number of the latter sequences

291QuantizationSection 6.5

6.5.1 Scalar Quantization

In scalar quantization each single-source output is quantized into a number of levels
and these levels are encoded into a binary sequence. In general, each source output is
a real number, but transmission of real numbers requires an infinite number of bits.
Therefore, it is required to map the set of real numbers into a finite set and, at the same
time, minimize the distortion introduced. In scalar quantization, the set of real numbers
JR is partitioned into N disjoint subsets denoted by '!kk, I :5 k :5 N. Corresponding to
each subset '!kk, a representation point Xk, which usually belongs to '!kk, is chosen. If .
the source output at time i, Xi, belongs to '!kb then it is represented by Xb which is the
quantized version of x. Xk is then represented by a binary sequence and transmitted.
Since there are N possibilities for the quantized levels, log N bits are enough to encode
these levels into binary sequences (N is generally chosen to be a power of 2). Therefore,
the number of bits required to transmit each source output is R = log N bits. The
price that we have paid for a decrease in rate from infinity to log N is, of course, the
introduction of distortion.

is 2nR and therefore R bits/source output are required for their transmission. The larger
the value of n, the closer to the rate-distortion limit the system operates. This means that
an effective quantization scheme shouldwork on blocks of source outputs rather than
single-source outputs. Quantizers that operate on blocks of source output are called
"vector quantizers," as opposed to "scalar quantizers," which quantize single-source
outputs. In this section, we will study both scalar and vector quantizers.

Other than the classification of quantizers into scalar and vector quantizers, one
can classify quantizers (or, in general, source coders), on the basis of their general
method for compressing data, as eitherwavefonn coders or analysis-synthesis coders. In
waveform coding for data compression, the output ofthe source, which is a waveform, is
compressed using one ofseveral compression schemes. In this approach the mechanism
by which the waveform is generated is not important and the only important factors
are the characteristics of the source output as a waveform; i.e., its bandwidth, power­
spectral density, statistical properties, etc. Since in this approach, the mechanism by
which the waveform is generated is not important, the results are very robust and can
be applied to all sources regardless of their nature. In analysis-synthesis coders, the
waveform is not directly compressed and transmitted. Instead, a model for production
of the waveform is adopted and the main parameters of that model are compressed
and transmitted. For example, in speech coding the mechanism by which speech is
produced can be modeled as a time-varying filter excited by either white noise or a
sequence of impulses. In the analysis-synthesis approach to speech coding, parameters
of the time-varying filter and its inputs are quantized (by scalar or vector quantization)
and transmitted. At the receiving end, a filter that simulates the behavior ofthe vocal tract
is generated and then excited by the appropriate input and, thus, a close replica of the
waveform is generated. This approach is certainly a model-based approach and does not
have the generality ofthe waveform-coding approach. On the positive side, model-based
quantization schemes achieve better compression ratios compared to waveform coders.

Chapter 6Information Sources and Source Coding
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Figure 6.9 Rate-distortion function for a Gaussian source with squared-error

distortion.
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D = E[d(X, X)] = E[X - Q(X)]2

{
2 IfI < 100 Hz

s.,(f) = .
0, otherwIse
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or, equivalently,

The source is sampled at the Nyquist rate, and each sample is quantized using the 8-level
quantizer shown in Figure 6.10 with al = - 60, a2 = - 40, a3 = - 20, a4 = 0, as = 20,
a6=40, a7 = 60, and Xl = -70, X2 = -50, X3 = -30, X4 = -10, Xs = 10,
X6 = 30, X7 = 50, Xg =70. What is the resulting distortion and rate?

Solution The sampling frequency is fs = 200 Hz. Each sample is a zero-mean Gaussian
random variable with variance

1
"" 1100

(T2 = E[Xl] = Rx(r)I,=o = SxU) df = 2df = 400
-"" -100

Since each sample is quantized into 8 levels, then log 8 = 3 bits are required per sample
and, therefore, the required rate is

D = 1:(x - Xj)2 fx(x) dx+t 1:, (x - Xj)2 fx(x) dx+ 1,""(x - xs? fx(x) dx

(6.5.2)

R = 3 fs = 600 bits/sec.

To find the distortion, we haveto evaluate E[X - X]2 for each sample. We will prove
in a problem at the end of this chapter (see Problem 6.45) that, as long as the process is
stationary this is·equal to PX(r)' the power content of the process X(t), or equivalently, the
time-average distortion introduced by quantization. But

D = E[X - X]2 = 1:(x --: Q(x)/ fx(x) dx

where fx(x) denotes the PDF of the random variable X. From here, we have

8

D =~1; (x ~ Q(x»2 fx(x) dx

2

where fx(x) in the above iSJ2~400e-ioo. Substituting {adf=l and {xd~=j in the above
integral and evaluating the result with the Q-function table, we obtain D "" 33.38. Note
that, if we were to use zero bits/source output, then the best strategy would be to set
the reconstructed signal equal to zero. In this case, we would have a distortion of D =
E (X - 0)2 = (T2 =400. The above quantization scheme and transmission of three bits/
source output has enabled us to reduce the distortion to 33.38. It is also interesting to
compare the above result with the resultpredictedby the rate-distortion bound. Substituting
R = 3 and CT = 20, in

1 (T2
R = -10"-2 >=> D

we obtain D = 6.25. ObViously, the simple quantization scheme shown in Figure 6.10 is
far from optimal. The reason for this poor perfolmance is threefold. First and foremost, the
rate-distortion bound is an asymptotic bound and holds for optimal mapping of blocks of
source outputs when the length of the block tends to infinity, whereas, in this example, we
have employed a scalar quantizer operating on single-source outputs. The second reason
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Figure 6.10 Example of an 8-level quantization scheme.
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Example 6.5.1
The source X (t) is a stationary Gaussian source with mean zero and power-spectral

density

Figure 6.10 shows an example of an eight-level quantization scheme. In this
scheme, the eight r~gions are defined as Qll.J, = (-00, all, Qll.2= (aI, a2], ... , Qll.g =
(a7, +00). The representation point (or quantized value) in each region is denoted
by Xi and shown in the figure. The quantization function Q is defined by

Q(x) = Xi for all x E ffi-i (6.5.1)

This function is also shown in the figure. As seen, the quantization function is a nonlinear
function that is noninvertible. This is because all points in <!Ri are mapped into a single
point Xi. Because the quantization function is noninvertible, some information is lost
in the process of quantization and this lost information is not recoverable.

If we are using the squared-error distortion measure, then .

d(x, x) = (x - Q(x»2 = x2

where x = x - X = x - Q(x). Since X is a random variable, so are X and X, and

therefore
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A
X

Figure 6.11 7-level unifonn quantizer.

of an 8-1evel uniform quantizer. In a unifonn quantizer, the distortion is given by

raj N-2 a!+i6.

D=L
oo

(X-Xl)2 fx(x) dx+ L 1 (X-Xi+li fx(x)dx

i=i a,+(i-l)A

+100

(x - xNi fx(x) dx (657)

a!+(N-2) A
..

It is seen from Equation (6.5.7) that D is a function of N + 2 design ararn t

n~e1y ~1, Do., an? {Xi }~1' In order to design the optimal uniform quantize; one ;a~~~

dlfferentlate D WIth r~spect.to ~e above Variables and find the values that mlmmize D.

f ( r?rther assumpti~nssImplify the above relation to some extent. Ifwe assume that

~llx lIS .Z: even functlon of x (symmetric density function), then the best quantizer

Wi a so aveNsy~etryproperties. This means that for even N we will have a. _

-aN . - ( ) A.(: 11"1 . N " -

-z - - "2 - I w. lor a ::5 I :::: - (Which means a = 0) d '. __ •

.(: 1 . N . 2 Ii, an x, - xN+l i

lor ::5 I ::5 "2' In this case, we have 2
-

r(-If-l)6. If-I C-l!+i+l)6.

D = 2 L oo
(x - Xi)2!X(x) dx + 2 L 1N 2. (x - Xi+1P fx(x) dx

i=1 C-T+')A

Wh N' d
(6.5.8)

a. ~n_ IS ~ ~ wetJave.a situation sU~h as the one shown in Figure 6.11. In this case,

z aN_, - (-"2 +1)Do.,for 1 < 1< l:!.=1 and x'· - x· forI <. N+l

hi h • . - - 2 , - - N+l-i I < -

W C means XNj! = O. The distortion is given by - - 2'

rC-r+1)!>.

D = 2L
oo

(x - Xi)2!x(x) dx
(6.5.3)

(6.5.4)

(6.5.5)
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and

is that even as a scalar quantizer with 8 levels (3 bits/source output), no attempt has been

made to design an optimal quantizer by choosing the {ad and x;'s appropriately. The

third reason is that after quantization the 8 outputs {x}~=l are not equiprobable and can be

further compressed. In this example

l a; l' '
P(Xj) = ---e-foi; dx

a;_1 .)2rr400

294

P(Xl) = P(xs) = 100

~e-~dx
. . a,.y 2rr400

which results in P(Xl) = P(xs) =.0014, P(X2) = P(X7) =0.0214, P(X3)=P(X6)=

0.1359, P(X4) = P(xs) =0.3414. Using the source-coding theorem, we see that the out­

put of the quantizer can be compressed further to H (X) = 2.105 bits/source output. This
means that a more fair comparison is to compare 33.38 with the value of the rate-distortion

function at R = 2.105, which results in D = 21.61 as opposed to 6.25.

In the above example we have chosen E(X - Q(X))2, which is called mean­

squared distortion, or quantization noise, as the measure of performance. A more

meaningful measure of performance is a normalized version of the quantization noise,

normalized with respect to the power of the original signal.

Definition 6.5.1. If the random variable X is quantized to Q(X), the signal-to­

quantization-noise ratio (SQNR) is defined by

S NR =' E[X
2

]

Q E[X - Q(X))2

1 t
Px = lim -1 E[X2(t») dt

T->oo T _I
2

When dealing with signals, the quantization-noise power is

1 f
Px = lim -1 E[X (t) - Q(X (t)]2 dt

T->oo T _I
2

and the signal power is

Hence, the SQNR is

SQNR = Px (6.5.6)

Px

It can be shown (see Problem 6.45 at the end of this chapter) that if X (t) is stationary,

then the above relation simplifies to Equation (6.5.3) where X is the random variable

representing X (t) at any point.

Uniform Quantization. Uniform quantizers are the simplest examples of .

scalar quantizers. In a uniform quantizer the entire realline is partitioned into N re­

gions. An regions except 01,1 and 01,N are of equal length, which is denoted by Do.. This .

means that for alII ::: i ::: N - 1, we have ai+1 - ai = Do.. Figure 6.10 is an example



Minimization of distortion in these cases, although much simpler compared to the
general case, is still a tedious task and is done mainly by numerical techniques.
Table 6.2 gives the optimal quantization level spacing for a zero-mean unit variance
Gaussian random variable when x's are chosen to be the mid-points of the quantization

regions.

which results in
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(6.5.14)

(6.5.12)

(6.5.13)

(6.5.11)

A J:'~lxfx(x) dx
Xi = ·a·

Jai~l fx(x) dx

J:'~lxfx(x)dx

P(a;-1 < X :::: ai)

l a; fxex)
= x dxai_I P(ai-l < X :::: ai)

1
+00

= -00 xfx(x Ia;-1 < X :::: ai) dx

= E[X Ia;-1 < X :::: ai]

alai
~ = 2ex -x;)fx(x)dx = 0

Xl ai_J

Quantization

which results in

Section 6.5

This result simply means that, in an optimal quantizer, the boundaries ofthe quantization
regions are the midpoints of the quantized values. Because quantization is done on a
minimum distance basis, each x value is quantized to the nearest {x; }~1'

To determine the quantized values x;, we differentiate D with respect to Xi and
define ao = -00 and aN = +00. Thus, we obtain

Nonuniform Quantization. If we relax the condition that the quantization
regions (except for the first and the last one) be of equal length, then we are minimizing
the distortion with less constraints and, therefore, the resulting quantizer will perform
better compared to a uniform quantizer with the same number of levels. Let us assume
that we are interested in designing the optimal quantizer with N levels of quantization
with no other constraint on the regions. The distortion will be given by

l
a1 N-21ai+l

D = -00 (x - X1)2 fx(x) dx + tr a, (x - X;+1)2 fx(x) dx

+1:, (x -XN)2fx(x)dx (6.5.10)

There exist a total of 2N - 1 variables in Equation (6.5.10) and the minimization of D
is to be done with respect to these variables. Differentiating with respect to ai yields

a
-aD = fx(a;)[(a; - x;)2 - (ai - Xi+l)2] = 0

ai
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TABLE 6.3 OPTIMAL NONUNIFORM QUANTIZER FOR A GAUSSIAN SOURCE

N ±a,. ±x, D H(X)

1 0

2 0

1 0

0.7980 0.3634 1

3 0.6120

4 0,0.9816

0,1.224 0.1902 1.536

5 0.3823,1.244
0.4528, 1.510 0.1175 1.911

6 0, 0.6589, 1.447
0, 0.7646, 1.724 0.07994 2.203

7 0.2803,0.8744, 1.611
0.3177,1.000,1.894 0.05798 2.443

8 0,0.5006, 1.050, 1.748
0,0.5606, 1.188,2.033 0.04400 2.647

9 0.2218,0.6812, 1.198, 1.866
0.2451,0.7560, 1.344,2.152 0.03454 2.825

10 0, 0.4047, 0.8339, 1.325, 1.968
0,0.4436, 0.9188, 1.476.2.255 0.02785 2.983

0.1996,0.6099,1.058, 1.591. 0.02293 3.125

11

2.345

0.1837,0.5599,0.9656,1.436, 0,0.3675,0.7524, l.179, 1.693,

2.059

0.01922 3.253

2.426

12 0,0.3401, 0.6943, 1.081, 1.534, 0.1684,0.5119.0.8768, 1.286,

2.141

0.01634 3.372

13 0.1569,0.4760,0.8126,1.184,
1.783, 2.499

1.623,2.215
0,0.3138, 0.6383,0.9870, 1.381, 0.01406 3.481

14 0,0.2935,0.5959,0.9181, 1.277,
1.865,2.565

1.703,2.282
0.1457.0.4413,0.7505,1.086. 0.01223 3.582

15 0,1369,0.4143,0.7030,1.013,
1.468, 1.939, 2.625

1.361, 1.776,2.344
0,0.2739,0.5548,0.8512,1.175, 0.01073 3.677

16 0,0.2582,0.5224,0.7996, 1.099,
1.546,2.007,2.681

0.1284,0.3881.0.6568,0.9424, 0.009497 3.765

1.437, 1.844,2.401 1.256, 1.618, 2.069. 2.733

17 0.1215.0.3670,0.6201,0.8875,

l.178, 1.508, 1.906,2.454
0,0.2430,0.4909,0.7493, 1.026, 0.008463 3.849

1.331,1.685,2.127,2.781

18 0,0.2306, 0.4653, 0.7091, 0.9680, 0.1148,0.3464,0.5843,0.8339,

1.251, 1.573, 1.964,2.504
0.007589 3.928

19 0.1092,0.3294,0.5551,0.7908,
1.102,1.400,1.746.2.181,2.826

1.042,1.318,1.634,2.018,2.55
0,0.2184,0.4404,0.6698,0.9117, 0.006844 4.002

20 0.0.2083,0.4197,0.6375,0.8661,
1.173, 1.464, 1.803.2.232.2.869

0.1038,0.3128,0.5265,0.7486, 0.006203 4.074

l.111, 1.381, 1.690.2.068,2.594 0.9837,1.239,1.524,1.857,

21 0.09918,0.2989,0.5027.0.7137,
2.279,2.908

0.9361, 1.175, 1.440, 1.743,
0,0.1984,0.3994,0.6059,0.8215, 0.005648 4.141

1.051, 1.300, 1.579, 1.908,

2.116,2.635 2.324. 2.946

22 0,0.1900,0.3822,0.5794,0.7844, 0.09469,0.2852, 0.4793, 0.6795,

1.001, 1.235, 1.495, 1.793,
0.005165 4.206

0.8893,1.113,1.357,1.632,

2.160.2.674 1.955,2.366.2.982

23 0.09085,0.2736,0.4594,0.6507,

0.8504. 1.062, '1.291, 1.546,
0.0.1817,0.3654,0.5534,0.7481, 0.004741 4.268

0.9527, l.172, 1.411, 1.682,

1.841,2.203,2.711 2.000,2.406,3.016

24 0,0.1746,0.3510,0.5312, 0.7173, 0.08708,0.2621,0.4399,0.6224, 0.004367 4.327

0.9122, l.119, 1.344,1.595, 0.8122, 1.012, 1.227, 1.462,

1.885,2.243,2.746 1.728,2.042,2.444,3,048

25 0.08381,0.2522,0.4231,0.5982,

0.7797.0.9702, 1.173. 1.394,
0.0.1676,0.3368,0.5093,0.6870, 0.004036 4.384

0.8723, 1.068, 1.279, 1.510,

1.641, 1.927,2.281,2.779 1.772,2.083,2.480, 3.079

26 0,0.1616,0.3245, 0.4905,0.6610, 0.08060, 0.2425, 0.4066, 0.5743,

0.8383, 1.025, 1.224, 1.442,
0.003741 4.439

0.7477,0,9289, 1.121, 1.328,

1.685, 1.968,2.318,2.811 1.556, 1.814,2.121,2.514,3.109

27 0.07779,0.2340,0.3921,0.5587,

0.7202, 0.8936, 1.077, 1.273,
0,0.1556,0.3124,0.4719,0.6354, 0.003477 4.491

0.8049. 0.9824, 1.171, 1.374,

1.487,1.727,2.006,2.352,2.842 1.599,1.854,2.158.2.547,3.137

28 0,0.1503.0.3018.0.04556,

0.6132, 0.7760, 0.9460, 1.126,
0.07502. 0.2256, 0.3780, 0.5333, 0.003240 4.542

0.6930, 0.8589, 1.033, 1.118,

1.319, 1.529, 1.766,2.042, 1.419,1.640,1.892,2.193,

2.385, 2.871 2.578,3.164

. (From Max; © 1960 IEEE.)

299

Chapter 6
Information Sources and Source Coding

298

where we have used the definition of the conditional density function

{

fx(x) ai-1 < x :'S ai-1

fx(x Iai-1 < X :'S ai) = op,(ai-, <X::sa,)
otherwise

Equation (6.5.14) shows that in an optimal quantizer the quantized value (or represen­

tation point) for a region should be chosen to be the centroid (conditional expected

value) of that region. Equations (6.5.12) and (6.5.14) give the necessary conditions

for a scalar quantizer to be optimal and are known as the Lloyd-Max conditions. The

criteria for optimal quantization can then be summarized as

1. The boundaries ofthe quantization regions are the midpoints of the corresponding

quantized values (nearest neighbor law).

2. The quantized values are the centroids of the quantization regions.

Although the above rules are very simple, they do not result in analytical solutions

to the optimal quantizer design. The usual method of designing the optimal quantizer.

is to start with a set of quantization regions and then using the second criterion, to find

the quantized values. Then, we design new quantization regions for the new quantized

values, and alternating between the two steps until the distortion does not change much

from one step to the next. Based on this method, one can design the optimal quantizer

for various source statistics. Table 6.3 shows the optimal nonuniform quantizers for

various values of N for a zero-mean unit variance Gaussian source.

Example 6.5.2
How would the results of the previous exampIe change if instead of the unifonn quantizer

shown in Figure 6.10, we used an optimal nonunllonn quantizer with the same number

oflevels?

Solution We can' find the quantization regions and the quantized values ff()l'l Table 6.3

with N = 8. It should be noted that this table is designed for a unit variance Gaussian

source, and to obtain the values for the source under study, all the Xand a values read from

the table should be multiplied by the (J of the source, which is 20 in this case. This gives

us the values al = -a7 = -34.96, a2 = -a6 = -21, a3 = -a5 = -10.012, a4 = 0 and

Xl = -X8 = -43.04, X2 = -X7 = -26.88, X3 = -X6 = -15.12, X4 = -X5 = -4.902.

Based on these values, the distortion is evaluated to be D = 13.816. The SQNR is

SQNR = 1:'~~6 = 28.95 ~ 14.62 dB

If one computes the probability of each quantized value using the relation

P(Xi) = 1:', fx(x) 4x

andfinds the entropy ofthe randomvariable X, one would obtain H(X) = 2.825bitfsource

output. The distortion obtained from the rate-distortion function with R = 2.825 and with

cr = 20 is D = 7.966. The difference between 13.816 and 7.966 is purely the difference

between a quantization scheme based on individual-source outputs (scalar quantization)

and blocks of source outputs (vector quantization).
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Figure 6.14 Vector quantization in two
dimensions.

QuantizationSection 6.5

Let us assume that the quantization regions in the n-dimensional space are denoted
by ffii, 1 ::: i ::: K. These K regions partition the n-dimensional space. Each block
of source output of length n is denoted by x E jRn ,and if x E ffii, it is quantized to
Q(x) = Xi. Figure 6.14 shows this quantization scheme for n = 2. Now since there
are a total of K quantized values, log K bits are enough to represent these values. This
means that we require log K bits/n source outputs or, the rate of the source code is

10gK .
R =-- bIts/source output (6.5.15)

n

The optimal vector quantizer of dimension n and number of levels K is the
one that chooses the region ffii's and the quantized values Xi'S such that the resulting
distortion is minimized. Applying the same procedure that we used for the case of scalar
quantization, we obtain the following criteria for an optimal vector quantizer design:

1. Region ffii is the set of all points in the n-dimensional space that are closer to Xi
than any other Xj, for all j ::j:. i.

ffii = {x ERn: IIx - xiii < IIx -Xjll, Vj::j:. i}

2. Xi is the centroid of the region ffii .

Xi = PCX 1Effii)JI ..Jffi,X!x(X)dX

A practical approach to designing optimal vector quantizers is based on the same
approach employed in designing optimal scalar quantizers. Starting from a given set of
quantization regions, we derive the optimal quantized vectors for these regions using
criterion 2, then repartition the space using the first criterion, and going back and forth
until changes in distortion are negligible.

Chapter 6

Figure 6.13 Scalar 4-level quantization
applied to two samples.

Figure 6.12 4-level scalar quantizer.
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6.5.2 Vector Quantization

In scalar quantization, each output ofthe discrete-time source (which is usually the result
of sampling of a continuous-time source) is quantized separately and then encoded. For
example, ifwe are using a 4-lev,el scalar quantizer and encoding each level into 2 bits, we
are using 2 bits/each source output. This quantization scheme is shown in Figure 6.12.

Now if we consider two samples of the source at each time, and interpret these
two samples as a point a in plane, the scalar quantizer partitions the entire plane into
16 quantization regions, as shown inFigure 6.13. It is seen that the regions in the two­
dimensional space are all of rectangular shape. If we allow 16 regions of any shape
in the two-dimensional space, we are capable of obtaining better results. This means
that we are quantizing 2 source outputs at a time using 16 regions, which is equivalent
to 4 bits/two source outputs, or 2 bits/each source output. Therefore, the number of
bits/source output for quantizing two samples at a time is equal to the number of
bits/source output obtained in the scalar case. Because we are relaxing the requirement
of having rectangular regions, the performance will be improved. Now ifwe take three
samples at a time and quantize the entire three-dimensional space into 64 regions, we
will have even less distortion with the same number of bits/source output. The idea
of vector quantization is to take blocks of source outputs of length n, and design the
quantizer in the n-dimensional Euclidean space rather than doing the quantization based
on single samples in one-dimensional space.



Figure 6.15 Block diagram of a PCM system.
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(6.6.2)

(6.6.5)SQNRI~B ~ PgldB + 6v + 4.8
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The quantized values in uniformPCM are chosen to be the midpoints of the quantization
regions and, therefore, the error x = x - Q(x) is a random variable taking values in
the interval (-~' +~]. In ordinary PCM applications, the number of levels (N) is
usually high and the range of variations of the input signal (amplitude variations x max)

is small. This means that the length of each quantization re~ion (1::1) is small and, under
these assumptions, in each quantization region the error X = X - Q(X) can be well
approximated by a uniformly distributed random variable on (- ~' +~]. The distortion
introduced by quantization (quantization noise) is, therefore,

1
+~ 1 1::12 x2 x2

E[X2
] = -x2 dx= - =~=~

_,," 1::1 12 3N2 3 x 4"
2

where v is the number of bits/source sample. The SQNR ratio then becomes

X2 3 X N 2X2 3 x 4"X2

SQNR = = = 2 2 (6.6.3)
22 xmax Xmax

If we denote the normalized X by X, that is X= ..JL, then
Xmox

SQNR=3xN2X 2 =3x4"X2 (6.6.4)

Note that by definition IXI :::: 1 and, therefore, X2 :::: 1. This means that 3N2 = 3 x 4"
is an upperbound to the SQNR in uniform PCM. This also means that SQNR in uniform
PCM deteriorates as the dynamic range of the source increases because an increase in

the dynamic range of the source results in a decrease in X2 . In a problem at the end of
this chapter (see Problem 6.57), we will see that this sensitivity to the source dynamic
range can be improved by employing nonuniform PCM.

Expressing SQNR in dB, one obtains

It is seen that each extra bit (increase in v by one) increases the SQNR by 6 decibels.
This increase is comparable to that of an optimal system, as was shown in Section 6.4.

Example 6.6.1
What is the resulting SQNR for a signal uniformly distributed on [-1, 1] when uniform
peM with 256 levels is employed.

Solution Since Xmax = 1, then 1 = X and Pg = J~l ~x2 dx = t. Therefore, using
11 = log 256 = 8, we have

SQNR = 3 x 4"12 = 4" = 65536 ~ 48.16 dB

The issue of bandwidth requirements of pulse transmission systems, of which
PCM is an example, is dealt with in detail in Chapter 8. Here we briefly discuss some
results concerning the bandwidth requirements of a PCM system. If a signal has a
bandwidth of W, then the minimum number of samples for perfect reconstruction of
the signal is given by the sampling theorem and is equal to 2W samples/sec. If some
guard-band is required, then the number of samples/sec is Is, which is more than
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Vector quantization has found widespread applications in speech and image cod­
ing, and numerous algorithms for reducing its computational complexity have been
proposed. It can be also proved that for stationary and ergodic sources, the performance
of the vector quantizer approaches the optimal performance given by the rate-distortion
function as n becomes large.

6.6.1 Pulse-Code Modulation (PCM)

Pulse-code modulation is the simplest and oldest waveform-coding scheme. A pulse­
code modulator consists of three basic sections, a sampler, a quantizer, and an encoder.
A functionalblock diagram of a PCM system is shown in Figure 6.15.

Waveform-coding schemes are designed to reproduce the waveform output ofthe source
at the destination with as small a distortion as possible. In these techniques, no attention
is paid to the mechanism that produces the waveform, and all attempts are directed
at reproduction of the source output at the destination with high fidelity. Because the
structure ofthe source plays no role in the design ofwaveform coders and only properties
of the waveform affect the design, waveform coders are robust and can be used with
a variety of sources as long as the waveforms produced by the sources have certain
similarities. In this section, we study some basic waveform-coding methods that are
widely applied to a variety of sources.

The waveform entering the sampler is a bandlirnited waveform with bandwidth
W. Usually there exists a filter with bandwidth W prior to the sampler to prevent any
components beyond W from entering the sampler. This filter is called the presampling
filter. The sampling is done at a rate higher than the Nyquist rate to allow for some
guard-band. The sampled values then enter a scalar quantizer. The quantizer is either a
uniform quantizer, which results in a uniform PCM system, or a nonuniform quantizer.
The choice of the quantizer is based on the characteristics of the source output. The
output of the quantizeris then encoded into a binary sequence oflength v where N = 2"
is the number of quantization levels.

Uniform PCM. In uniform PCM, it is assumed that the range of the input
samples is [-Xmax , +xmax] and the number of quantization levels N is a power of 2,
N = 2". From this, the length of each quantization region is given by

2xmax Xmax1::1 =-- = - (6.6.1)
N 2"-1



Figure 6.16 Block diagram of a nonuniform PCM system.
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(6.6.10)
N la.

D=L: '(x-xi)2Ix(x)dx
i==l ai-l

x

Figure 6.17 JL-Iaw compander characteristics.
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The paramete.r ,u controls the amount of compression and expansion. The standard
PCM system m the U.S. and Canada employs a compressor with f.L = 255 followed
by a un~orm quantizer with 128 levels (7 bits/sample). Use of a compander in this
system lillproves the performance of the system by about 24 decibels. A plot of the
,u-law compander characteristics is shown in Figure 6.17.

. Th~ s~cond ,:",idely used logarithmic compressor is the A-law compander. The
charactenstlc of this compander is given by

1+logAlxl
g(x) = 1 + log A sgn(x) (6.6.9)

where A is chosen to be 87.56. The performance of this compander is comparable to
the performance of the ,u-Iaw compander. The characteristics of this compander are
shown in Figure 6.18.

Optimal Compander Design. In Section 6.5.1, we studied the criteria for
optimal quantizer de~ign. We app~oach the problem of optimum compander design in
the .same manner. This approach gives us an approximation to the characteristics of the
optlIDal compressor th~t, when followed by a uniform quantizer, gives close to optimal
performance. By definrng ao = -Xmax and aN = +xmax, we have

(6.6.6)

(6.6.7)
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BW=vW
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BW= vIs
2

which, in the case of sampling at the Nyquist rate, gives the absolute minimum band­
width requirement as

304

This means that a PCM system expands the bandwidth of the original signal by a factor
of at least v.

Nonuniform peM. As long as the statistics of the input signal are close to the
uniform distribution, uniform PCM works fine. However, in coding of certain signals
such as speech, the input distribution is far from being uniformly distributed. For a
speech waveform, in particular, there exists a higher probability for smaller amplitudes
and lower probability for larger amplitudes. Therefore, it makes sense to design a
quantizer with more quantization regions at lower amplitudes and less quantization
regions at larger amplitudes. The resulting quantizer will be a nonuniform quantizer
having quantization regions of various sizes.

The usual method for performing nonuniform quantization+ is to first pass the
samples through a nonlinear element that compresses the large amplitudes (reduces
dynamic range of the signal) and then perform a uniform quantization on the output. At
the receiving end, the inverse (expansion) ofthis nonlinear operation is applied to obtain
the sampled value. This technique is called companding (compressing-expanding). A
block diagram of this system is shown in Figure 6.16.

There are two types of companders that are widely used for speech coding. The
,u-Iaw compander used in the U.S. and Canada employs the logarithmic function at the
transmitting side, where Ix I :s 1,

(
x) _ log(l + ,ulxl) .

g - 1 (1 sgn(x)
og +,u)

tA more practical bandwidth requirement is ~, where I < a < 2.

ISometimes the term nonlinear quantization is used, wbich is misleading because all quantization
schemes, uniform or nonuniform, are nonlinear.

2W. For each sample v bits are used, therefore a total of vIs bits/sec are required for .
transmission of the PCM signal. In case of sampling at the Nyquist rate, this is equal to .
2vW bits/sec. The minimum bandwidth requirement for transmission of R bits/sec (or,
more precisely, R pulses/sec) is ~ (see Chapter 8).t Therefore the minimum bandwidth
requirement of a PCM system is



where.6.i = ai - ai-I' Noting that the input to the compressor is a nonuniformly quan­
tized sample with quantization regions of size .6.i and the output is a uniformly quan­
tized sample with quantization regions of equal size .6., from Figure 6.19 we see
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(6.6.12)

(6.6.13)

(6.6.14)

(6.6.15)

(6.6.16)

(6.6.17)

Waveform Coding

that
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, .6.
g (ai-I) R:; ­

.6.;

We are assuming that the function g(x) maps the interval [-Xmax , Xmax ] into [-Ymax,
Ymax] and, therefore, the boundary conditions are

{
g(-xmax) = -Ymax

g(xmax) = Ymax

Substituting from Equation (6.6.12) into Equation (6.6.11), we have

1 N [.6.]2
DR:; 12 L fX(ai-l) -----;--(.) .6..;

i=1 g a,_1

Using the relation .6.. = ~, and assuming that N is very large, one obtains

D R:; Y~ax 100

fx (x) dx
3 x 4" -00 [g'(x)]2

where g(x) denotes the characteristics of the compressor. The above relation gives the
distortion when a compressor with characteristics g(x) is employed. One can minimize
D to obtain the optimal compressor. The resulting optimal compressor has the form

1 [100

,] 3D = 12 x 4" _}fx(ry)] 3 dry

()_ [2 Doo[fx(ry)] t dry 1]
gx -Ymax 00 ,-

Loo[fx(ry)]J dry

and the resulting distortion is

6.6.2 Differential Pulse-Code Modulation (DPCM)

In a PCM system, after sampling the information signal, each sample is quantized
independently using a scalar quantizer. This means that previous sample values have no
effect on the quantization ofthenew samples. However, as was mentioned in Section 4.5,
when a bandlimitedrandomprocess is sampled at the Nyquist rate or faster, the sampled
values are usually correlated random variables. The exception is the case when the
spectrum of the process is fiat within its bandwidth. This means that the previous
samples give some information about the next sample, and this information can be
employed to improve the performance of the PCM system. For instance, if the previous
sample values were small, with high probability the next sample value will be small
as well and, hence, it is not necessary to quantize a wide range of values to achieve a
good performance..

In the simplest form ofdifferential pulse-code modulation (DPCM), the difference
between two adjacent samples is quantized. Because two adjacent samples are highly
correlated, their difference has small variations and, therefore, to achieve a certain

(6.6.11)
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Figure 6.19 Compander input-output
relation.
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Figure 6.18 A-law compander characteristics.
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Ifthe number ofquantization regions is large and the density function is smooth enough,
one can assume a uniform distribution in each region and, therefore, Xi = ai_~+ai. After
substituting for Xi in the above relation, we have

N .6.}
DR:; Lfx(ai-I)-'-

i=1 12
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(6.6.23)

(6.6.24)

(6.6.25)

(6.6.26)

f\

Y"

P

I>iRXCi - j) = Rx(j)
i=1

Waveform CodingSection 6.6

Expanding and assuming the process Xn to be stationary, one obtains

P p P

D = Rx(O) - 2 L.aiRX(i) + L.L.aiajRx(i _ j)

i=:1 i=1 j=1

To minimize D, we differentiate with respect to the a;'s and find the roots. After dif­

ferentiating, we have

P f\

2: a;Xn_ i
;=1

P A

~ aiY~-i
;=1

Figure 6.21 A general DPCM system.

In a more complex version of DPCM, instead of using only the previous sample,

the last p samples are used to predict the value of the next sample. Then the difference

between the sample Xn and its predicted value is quantized. Usually a linear predictor

ofth~ ~or:n2:f=l ai Xn- i is employed, and the coefficients of the predictor ai are chosen

to mllllITUZe the mean-squared error between the sample Xn and its predicted value

Because we are using a p-step predictor, we are using more information in predicting

Xn and, therefore, the range of variations of Yn will be less. This in turn means that

~ven lower bit :-ates are possible here. Differential PCM systems find wide applications

m speeCh and Image compression. .

.where Rx denotes the autocorrelation function of the process Xn
. Solving the above set

of equations (usually referred to as Yule-Walker equations), one can find the optimal

set of predictor coefficients {ad;=l .
Figure 6.21 shows the block diagram of a general DPCM system. This block

diagram is quite similar to the block diagram shown in Figure 6.20. The only difference

is that the delay T = 1 has been substituted with the prediction filter 2:;-laiX
n

- i.
Exactly the same analysis shows-that -

(6.6.18)

(6.6.19)

Chapter 6
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Information Sources and Source Coding

Figure 6.20 A simple DPCM system.
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we obtain the quantization error between the input and the output of the quantizer as

Yn - Yn = Yn - (Xn - Y~-I)

= Yn - Xn + Y~_I

= Y~ - Xn (6.6.20)

At the receiving end, we have

level of perfonnance fewer bits are required to quantize it. This means that DPCM can

achieve perfonnance levels compared to PCM at lower bit rates. .

Figure 6.20 shows a block diagram of this simple DPCM scheme. As s~en III the

figure, the input to the quantizer is not simply Xn - Xn-b but rather Xn - Y~_I' We

will see that Y~_I is closely related to Xn - I , and the above choice has the advantage

that accumulation of quantization noise is prevented. The input to the guanti~er, Yn,

is quantized by a scalar quantizer (unifonn or nonunifonn) to produce Yn' Usmg the

relations

and

in =Yn+ i n- I (6.6.21)

By comparing Equations (6.6.19) and (6.6.21), it is seen that/~ and in satis.fythe.s~e

difference equation with the same excitation function (i.e., Yn)' Therefore, if the lllitial

conditions of Y' and in are chosen to be the same, they will be equal. For instance,

if we let Y:" I ,: i_I = 0, then for all n we will have Y~ = in. Substituting this in

Equation (6.6.20), one obtains

Yn - Yn = in - Xn (6.6.22)

This shows that the quantization error between Xn and its reproduction in is the same

as the quantization error between the input and the output ofthe quantizer. However, the

range ofvariations of Yn is usually much smaller compared to that of Xn and, therefore,

Yn can be quantized with fewer bits.
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Figure 6.24 Large 6. and grannlar noise.

Figure 6.25 Small 6. and slope­

overload distortion.

Figure 6.23 6.M with integrators.
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ta~es ~ rather lo~g ti~e fa: the o~tput to follow the illput and an excessive quantization

~01~e IS caused 1ll thi~ penod. This type of distortion, which is caused by high slope of

e illput wavefonn, IS called slope-overload distortion.

, Adaptive.AM. W~haveseen thattoo large a step size causes granular noise and

too small step SIZe results ill slope-overload distortion This meaDS that a g d h .

for Ll' " d'''· . 00 c Olce

C ~s a me :u:n. ~alue, but 1ll some cases the performance of the best medium value

~e., e one~zmg the meaD-squared distortion) is Dot satisfactory. An approach

. at works ",:,eIl ill these cases is to change the step size according to changes in the

:put. If the mput tends to change rapidly, the step size is chosen to be large such that

e output can follow the input quickly and no slope-overload distortion results. When

(6.6.27)

(6.6.28)
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n
A '""' AX n = L-Yi

;=0
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Figure 6.22 ll.M system.

By solving this equation fOJ Xn' and assuming zero initial conditions, one obtains

Because in deltamodulation only 1bit/sample is employed, the quantization noise

will be high unless the dynamic range of Yn is very low. This in turn means that Xn and

Xn-l must have a very high correlation coefficient. To have high correlation between

Xn and Xn- h one has to sample at rates much higher than the Nyquist rate. Therefore,

in ~M the sampling rate is usually much higher than the Nyquist rate but, since the

number of bits/sample is only 1, the total number of bits/second required to transmit a

waveform is lower than that of a PCM system.

A major advantage of ~M is the very simple structure of the system. At the

receiving end we have the following relation for the reconstruction of Xn

6.6.3 Delta Modulation (AM)

Delta modulation (~M) is a simplified version of the simple DPCM scheme shown

in Figure 6.20. In delta modulation, the quantizer is a I-bit (two-level) quantizer with

magnitudes ±A. A block diagram of a .t.M system is shown in Figure 6.22. The same

analysis that was applied to the simple DPCM system is valid here.

This means that to obtain it.n, one only has to accumulate the values ofYn . Ifthe sampled

values are represented by impulses, the accumulator will be a simple integrator. This

simplifies the block diagram of a ~M system to Figure 6.23.

The step-size ~ is a very important parameter in designing a delta modulator

system. Large values of A cause the modulator to follow rapid changes in the input·,

signal but at the same time cause excessive quantization noise when input changes

slowly. This case is shown in Figure 6.24. As seen ill this figure, for large~, when"

the illputs varies slowly, a large quantization noise occurs, which is known as granular­

noise. The case of a too small ~ is shown in Figure 6.25. In this case we have problem

with rapid changes in the input. When the input changes rapidly (high input slope), it
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(6.7.2)

(6.7.1)

All-poie filter ~ Speech signal

for 1 :s; n :s; N

gain G

p

X n = ~aiXn-i + GWn
i=!

Analysis-Synthesis Techniques

Figure 6.27 Model for speech generation mechanism.

White-noise
generator

Periodic-impulse \-__-'
genex:ator

Section 6.7

signal generator. The vocal tract is a combination of the throat, mouth, tongue, lips, and
the nose, that change shape during generation of speech and, therefore, it is modeled
as a time-varying system. The properties of the excitation signal highly depend on the
type of speech sounds, either voiced or unvoiced. For voiced speech, the excitation can
be modeled as a periodic sequence of impulses at a frequency fa, the value of which
depends on the speaker. The reciprocal*is called thepitchperiod. For unvoiced speech,
the excitation is well modeled as a white noise. This model is shown in Figure 6.27.
The vocal tract filter is usually modeled as an all-pole filter described by the difference
equation

where W n denotes the input sequence (white noise or impulses), G is a gain parameter,
{ad are the filter coefficients, and p is the number of poles of the filter. The process
w", which represents that part of Xn which is not contained in the previous p samples,
is called the innovation process.

Speech signals are known to be stationary for short periods of time, of the order
of 20-30 msec. This characteristic behavior follows from the observation that the vocal
tract can not change instantaneously. Hence, over 20-30 msec intervals, the all-pole
filter coefficients may be assumed to be fixed. At the encoder, we observe a 20-30 msec
record of speech from which we estimated the model parameters {ail, the type of
excitation signal (white noise or impulse), the pitCh period *if the speech is voiced,
and the gain parameter G.

To elaborate on this process, suppose that the speech signal is filtered to 3 KHz
and sampled at a rate of 8000 samples/sec. The signal samples are subdivided into
blocks of 160 samples, corresponding to 20-msec intervals. Let {xn , 1 :s; n :s; 160} be
the sequence of samples fat a block. The encoder must measure the model parameters
to be transmitted to the receiver.

Linear prediction is used to determine the filter coefficients at the encoder. A
linear predictor of order p is an all-zero digital filter with input {xn } and output

p

xn = ~akxll-k
k=l

(6.6.29)
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where En is the output of the quantizer before being scaled by the step ~ize and K is
some constant larger than one. It has been verified that in the 20-60 kbIts/sec range,
with a choice of K = 1.5, the performance of adaptive AM systems is 5-10 dB better
than the performance of AM when applied to speech sources.

the input is more or less flat (slowly varying) the step size is changed to a small value
to prevent granular noise. Such changes in the step size are shown ~ Figure 6.26: .

To adaptively change the step size one has to design a mechanIsm for reco~mg
large and small input slopes. If the slope of the input is small, the output of the quantizer
Yalternates between A and - A as shown in Figure 6.26. This is the case where granular
noise is the main source of noise and one has to decrease the step size. However, in
the case of slope overload, the output carmot follow the input rapidly and the output of
the quantizer will be a succession of +A'S or -A'S. From the above it is seen that the
sign of two successive Yn's is a good criterion for changing th~ step size. If ~e two
successive outputs have the same sign, the step size should be mcreased, and if they
are of opposite signs, it should be decreased.

A particularly simple rule to change the step size is given by
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6.7 ANALYSIS-SYNTHESIS TECHNIQUES

In contrast to waveform coding, analysis-synthesis techniques are methods that are
based on a model for the mechanism that produces the waveform. The parameters
of the model that are extracted from the source waveform are quantized, encoded, and
transmitted to the receiving end. At the receiving end, based on thereceived information, .
the same model is synthesized and used to generate an output similar to the original
waveform. These systems are mainly used for speech coding, and in this section we
will briefly treat one such system known as linear predictive coding or LPC.

Speech is produced as a result of excitation of the vocal tract by the voc~ cords.
This mechanism can be modeled as a time-varying filter (the vocal tract) eXCIted by a
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(6.7.6)

(6.7.7)

(6.7.8)

(6.7.11)

for 1 ::: i ::: p

P
min A '\" A

~P =RO-L..-Rk
k=1

Analysis-Synthesis Techniques

we can write the Equation (6.7.5) as

1 00 looP

N 2=: XnXn-i = N 2=: 2=: akXn-iXn-k
n=-oo n=-co k=l

A 1 00

Ri = N 2=: XnXn-i
n=-oo

Now if we define

we can write Equation (6.7.6) as

Section 6.7

p.

k = 2=: akk-k
k=1

which is the same as the Yule-Walker Equation (6.6.25) derived in Section 6.6. We can
further s:implify the above equation to the matrix equation

r=Ra (6.7.9)

where a is the vect?r of the linear predictor coefficients, Ris a p x p matrix whose
(i, j)th element is Ri - j , and r is a vector whose components are R;,s. It can be easily
verified from the definition of k that

R; = R_i (6.7.10)

'!.nd, therefore, the matrix:R is a symmetric matrix. Also it is obvious that all elements of
R that are on a line parallel to the diagonal elements are equal. Such a matrix is called a
Toeplitz matrix and there exist efficient recursive algorithms for finding its inverse. One
such algorithm is the well known Levinson-Durbin algorithm. The interested reader is
referred to the references at the end of this chapter for the details of this algorithm.

For the optinlal choice of the predictor coefficients, the squared-error term can
be shown to be

According to the speech-production model

~~n = ~ t [xn - t akxn-k] 2

n=l k=l

N
= 0 2 2. '\" w2N L..- n (6.7.12)

n=1

Ifwe normalize the excitation sequence {wn } such that ~~:=1 w~ = 1, we obtain the

(6.7.5)

(6.7.4)

(6.7.3)
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for 1 ::: i ::: p

P

= Xn - 2=: akXn-k

k=l
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1 N
~ = _ '\" e2

P NL..-n
n=l
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= N L Xn - LakXn-k

n=1 . k=l

Figure 6.28 Functional block diagram of linear prediction.

Since we have assumed that outside the stationary interval, 1 ::: n ::: N, we have Xn = 0,

is minimized. By differentiating ~P with respect to each of the prediction filter coeffi­
cients {ai} and setting the derivative to zero, we obtain a set oflinear equations for the
filter coefficients; i.e., .

In order to extract as much information as possible from the previous values of Xn, we
choose the coefficients {ad so that the average of the squared-error terms; i.e.,

where we have assumed that outside the interval of interest Xn = O. Figure 6.28 illus­
trates the functional block diagram for the prediction process. The difference between
the actual speech sample Xn and the predicted value xn constitutes the prediction error

en; i.e.,
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-6.8 DIGITAL AUDIO lRANSMISSION AND DIGITAL
AUDIO RECORDING

Audio signals constitute a large part of our daily communications. Today, thousands
of radio stations broadcast audio signals in analog form. The quality of voice-signal
broadcasting is generally acceptable as long as the voice signal is intelligible. On the
other hand, the quality ofmusic signals that are broadcast via AM radio is relatively l?w
fidelity because the bandwidth of the transmitted signal is restricted through regulatIon
(by the Federal Communication Commission). PM radio broadcast of ~alog si~nals

provides higher fidelity by using a significantly larger channel bandWIdth for SIgnal
transmission. In the near future, commercial radio broadcasting of audio signals will
convert to digital form.

In the transmission of audio signals on telephone channels, the conversion from
analog to digital transmission, which has been taking place over the past three de.cades
is now nearly complete. We will describe some of the current developments ill the
digital encoding of audio signals for telephone transmission..

The estimation of the type of excitation (impulsive or noise), and the estimate
of the pitch peri~d*when tt:e excitation con~ists of impulses, may be acc0ID:plished
by various algonthins. One slIDple approach IS to transform the speech data mto the
frequency domain and look for sharp peaks in the signal spectrum. If the spectrum ex­
hibits peaks at some fundamental frequency 1o, the excitation is taken to.b~ a periodic
impulse train with period t. If the spectrum of the speech samples exhibIts no sharp
peaks, the excitation is take~ as white noise.

The prediction filter coefficients, gain, voiced-unvoiced information, and pitch "*
are quantized and transmitted to the receiver for each block of sampled speech. The
speech signal is synthesized from these parameters using the system model shown
in Figure 6.27. Typically the voiced-unvoiced information requires 1 bit, the pitch
frequency is represented by 6 bits, the gain parameter can be represented by 5 bits using
logarithmic companding, and the prediction coefficients require 8-10 bits/coefficient.
Based on linear-predictive coding, speech can be compressed to bit rates as low as
2400 bits/sec. One could alternatively use vector quantization when quantizing the
LPC parameters. This would further reduce the bit rate. In contrast, PCM applied to
speech has a bit rate of 56,000 bits/sec.

LPC is widely used in speech coding to reduce the bandwidth. By vector quan­
tizing the LPC parameters, good quality speech can be achieved at bit rates of about
4800 bits/sec. One version of LPC with vector quantization has been adopted as a stan­
dard for speech compression in mobile (cellular) telephone systems. Efficient speech
coding is a very active area for research, and we expect to see further reduction in the
bit rate of commercial speech encoders over the coming years.

The entertainment industry has experienced the most dramatic changes and ben­
efits in the conversion of analog audio signals to digital form. The development of the
compact disc (CD) player and the digital audio tape recorder has rendered the previous
analog recording systems technically obsolete. We shall use the CD player as a case
study of the sophisticated source encoding/decoding and channel encoding/decoding
methods that have been developed over the past few years for digital audio systems.
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6.8.1 Digital Audio in Telephone Transmission Systems

Nearly all of the transmission of speech signals over telephone channels is currently
digital. The encoding of speech signals for transmission over telephone channels has
been a topic of intense research for over 50 years and continues to be today. A wide
variety of methods for speech-source encoding have been developed over the years,
many of which are in use today.

The general configuration for a speech signal encoder is shown in Figure 6.29.
Because the frequency content ofspeech signals is limited to below 3200 Hz, the speech
signal is first passed through an anti-aliasing lowpass filter and then sampled. To ensure
that aliasing is negligible, a sampling rate of 8000 Hz or higher is typically selected.
The analog samples are then quantized and represented in digital form for transmission
over telephone channels.

peM and DPCM are widely used waveform-encoding methods for digital speech
transmission. Logarithmic jJ.. = 255 compression, given by Equation (6.6.8) is gen­
erally used for achieving nonuniform quantizalion. The typical bit rate for PCM is
64,000 bits/sec, while for DPCM the bit rate is 32,000 bits/sec.

PCM and DPCM encoding and decoding are generally performed in a telephone
central office where telephone lines from subscribers in a common geographical area are
connected to the telephone transmi~sion system. The PCM or DPCM encoded speech
signals are transmitted from one telephone central office to another in digital form
over so-called trunk lines that are capable of carrying the digitized speech signals of
many subscribers. The method for simultaneous transmission of several signals over a
common communication channel is called multiplexing. In the case ofPCM and DPCM
transmission, the signals from different subscribers are multiplexed in time, hence, the

(6.7.13)
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value of the gain predictor as
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Figure 6.30 Digital TDM hierarchy for North American telephone communication

system.

name time-division multiplexing (TDM). In TDM, a given time interval Tf is selected
as a frame. Each frame is subdivided into N subintervals of duration Tf / N, where N
corresponds to the number of users that will use the common communication channel.
Then, each subscriber who wi.shes to use the channel for transmission is assigned a
subinterval within each frame. In PCM, each user transmits one 8-bit sample in each

subinterval.
. In digital speech transmission over telephone lines via PCM there is a standard

TDM hierarchy that has been established for accommodating multiple subscribers. In
the first level· of the TDM hierarchy, 24 digital subscriber signals are time-division
multiplexed into a single high-speed data stream of 1.544 Mbits/sec (24 x 64 kbs plus a
few additional bits for control purposes). The resulting combined TDM signal is usually
called a DS-I channel. In the second level ofTDM, four DS-1 channels are multiplexed
into a DS-2 channel, having the bit rate of 6.312 Mbits/sec. In a third level ofhierarchy,
seven DS-2 channels are combined viaTDM producing a DS-3 channel, which has a bit
rate of 44.736 Mbits/sec. Beyond DS-3, there are two more levels of TDM hierarchy.
Figure 6.30 illustrates the TDM hierarchy for the North American telephone system.

Inmobile cellularradio systems (see Section 3.5 for a description) fortransmission
of speech signals, the available channel bandwidth per user is small and cannot support
the highbit rates requiredby waveform-encoding methods such as PCM and DPCM. For
this application, the analysis-synthesis method based on linear predictive coding (LPC)
as described in Section 6.7, is used to estimate the set of model parameters from short
segments of the speech signal. The speech model parameters are then transmitted over
the channel using vector quantization. Thus, abit rate in the range of4800-9600 bits/sec

is achieved with LPC.
In mobile cellular communication systems the base station in each cell serves

as the interface to the terrestrial telephone system. LPC speech compression is only
required for the radio transmission between the mobile subscriber and the base sta­
tion in any cell. At the base station interface, the LPC-encoded speech is converted to
PCM or DPCM for transmission over the terrestrial telephone system at a bit rate of
64,000 bits/sec or 32,000 bits/sec, respectively. Hence, we note that a speech signal
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SpecificationiFeature LP record CD system

Frequency response 30Hz-20KHZ 20Hz-20KHz
±3 dB +0.51-1 dB

Dynamic range 70 dB >90 dB
@lKHz

Signal-to-noise ratio 60 dB >90 dB
Harmonic distortion 1-2% 0.005%
Durability High-frequency response Permanent

Stylus life
degrades with playing

500-600 hours 5000 hours

Section 6.8

6.8.2 Digital Audio Recording

His~orically, audio recording became a reality with the invention of the phonograph
dunng .the second half of the nineteenth century. The phonograph had a lifetime of
~pproX1mat~ly 100 year~ before it was supplanted by the compact disc, which was
m~oduC~d ill 1982. Dunng the 100-year period, we witnessed the introduction of a
WIde van~ty of re~ords, the ~ost popular of which proved to be the long-playing (LP)
rec~rd whic~ was mtroduced m 1948. LP records provide relatively high-quality analog
audlO recordmg.

In spit.e ~f tr:eir v.:ide acceptance and popularity, analog audio recordings have a
numb~r of hmItatlOnS, lllc~uding a limited dynamic range (typically about 70 dB) and
a relatlVely low SNR (typIcally about 60 dB). By comparison, the dynamic range of
?rchestral music is in the range of 100-120 dB. Thismeans that, to record the music
1ll analog form, the dynami~ range has to be decreased to fit the range that can be
acc~mmodan~dby the. recordmg system. Otherwise, at low music levels, noise will be
audIble and, I~ one WIshes to prevent this, saturation will occur at high music levels.
The co~presslonof the dynamic range of music during recording is usually done by
controllmg the volume of the input signal.

. . Digi~al audi? recording and playback allow us to improve the fidelity of recorded
~USIC by rncreasmg the dynamic range and the SNR. Furthermore, digital record­
mgs m:e generally more durable and do not deteriorate with playing time, as do analog
r~cordmgs. Below,.w.e descri.be a cOJ;npact disc (CD) system as an example of a commer­
CIally suc.cessful digtta:- audlO system that was introduced in 1982. Table 6.4 provides
a companson of some rmportant specifications of an LP record and a CD system. The
advantages of the latter are clearly evident.

Fro~ ~ systems point of view, the CD system embodies most of the elements of a
modern digItal communications system. These include analog-to-digital (AID) and

transmitted from a mobile subscriber to a fixed subscriber will undergo two different
types of en, "hll(!. whereas speech-signal communication between two mobiles ser­
viced by different ~ase stations ~onnected via the terrestrial telephone system, will
undergo four encoding and decodmg operations.

TABLE 6.4 COMPARISON OF LP RECORDS WITH CD SYSTEM
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di ital-to-analog (J)/A) conversion, interpolation, modulation/demodulatio~~nd cha~­
ne~ coding/decoding. A general block diagram of ~e elemen~s of a CD dlgItal audlO
system are illustrated in Figure 6.31. Next, we descnbe the mam features of the source

encoder and decoder. . din
The two audio signals from the left (L) and right (R) ~crophonesm a recor~

studio or a concert hall are sampled and digitized by pas~m~ ~em through ~
rt Recall that the frequency band of audible sound 1S l1ID1ted to apprOXlIDately

~~n~rTherefore, the corresponding Nyquist sampling rate ~s 40 ~z. To allow for
some frequency guard-band and to prevent aliasing, the samplmg rate m a CD system
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has been selected to be 44.1 KHz. This frequency is compatible with video recording
equipment that is commonly used for digital recording ofaudio signals on magnetic tape.

The samples of both the L and R signals are quantized using uniform PCM with
16 bits/sample. According to the formula for SQNR given by Equation (6.6.5), 16-bit
uniform quantization results in an SQNR of over 90 dB. In addition, the total harmonic
distortion achieved is 0.005%. The PCM bytes from the digital recorder are encoded
to provide protection against channel errors in the readback process and passed to the
modulator.

At the modulator, digital control and display information is added, including a
table of contents of the disc. This information allows for programmability of the CD
player. The type ofmodulation and demodulation and the channel coding and decoding
operation will be described in Chapters 8 and 9.

Using a laser, the digital signal from the modulator is optically recorded in the
surface of a glass disc that is coated with photoresist. This results in a master disc which
is used to produce CDs by a series of processes that ultimately convert the information
into tiny pits on the plastic disc. The disc is coated with a reflective aluminum coating
and then with a protective lacquer.

In the CD player, a laser is used to optically scan a track on the disc at a constant
velocity of 1:25 rnlsec and, thus, reads the digitally recorded signal. After the L and
R signals are demodulated and passed through the channel decoder, the digital audio
signal is converted back to an analog audio signal by means of a D/A converter.

The L and R digital audio signals into the D/A converter have a precision of
16 bits. In principle, the digital-to-analog conversion of the two l6-bit signals at the
44.1 KHz sampling rate is relatively simple. However, the practical implementation of a
16-bit D/A converter is very expensive. On the other hand, inexpensive D/A converters
with 12-bit (or less) precision are readily available. The problem is to devise a method
for D/A conversion that employs a low-precision and, hence, low~costD/A converter,
while maintaining the 16-bit precision of the digital audio signal.

The practical solution to this problem is to expand the bandwidth of the digital
audio signal by oversampling through interpolation and digital filtering prior to analog
conversion. The basic approach is shown in the block diagram given in Figure 6.32. The
16-bit L and R digital audio signals are up-sampled by some multiple U by inserting
U -1 zeros between successive 16-bit signal samples. This process effectively increases
the sampling rate to U x 44.1 KHz. The high-rate L and R signals are then filtered by a
finite-duration impulse response (FIR) digital filter which produces a high-rate, high­
precision output. The combination of up-sampling and filtering is a practical method
for realizing a digital interpolator. The FIR filter is designed to have linear phase and a
bandwidth of approxinlately 20 KHz. It serves the purpose of eliminating the spectral
images created by the up-sampling process and is sometimes called an anti-imaging
filter.

If we observe the high sample rate, high-precision L and R digital audio signals
of the output of the FIR-digital filter, we will find that successive samples are nearly
the same, differing only in the low-order bits. Consequently, it is possible to represent
successive samples of the digital audio signals by their differences and, thus, to reduce
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The JPEG Image-Coding Standard

Figure 6.35 . SDM D/A converter with first-order integrator.
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Figure 6.34 Basic configuration of a SDM followed by a I-bit D/A converter and

IOwpass smoothing filter.
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fOI~ow~d ?y a conve~tional ~log filter (a Butterworth filter, for example) for providing

anti-aliasr.ng protectIon and SIgnal smoothing. The output analog filters have a passband

of approxImately 20 KHz and, thus, eliminate any noise above the desired signal band.

In modem CD players, the interpolator, the SDM, the I-bit D/A converter, and the

lowpass smoothing filter are generally implemented on a single integrated chip.

6.9 THE JPEG IMAGE-CODING STANDARD

The JPEG standard, adopted by the Joint Photographic Experts Group, is a widely

~sed standard for lossy compression of still images. Although several standards for

Im~ge compression exist, JPEG is by far the most widely accepted. The JPEG standard

achie,:,es very good to excen~nt image quality and is applicable to both color and gray­

~cale Images..The standard IS also rather easy to implement and can be implemented

ill software WIth acceptable computational complexity.

JPEG belongs to the class of transform coding techniques; i.e., coding techniques

th~t do not comp:ess the signal (in this case image) directly but compress the transform

of It. The most WIdely used transform technique in image coding is the Discrete Cosine

Transf~rm (DCT). Th~ m~j.orbenefits ofDCT are its high degree of energy compaction

propertIes and the availabIlity of a fast algorithm for computation of the transform. The

energy compaction property of the DCT results in transform coefficients with only a

few of them having significant values, so that nearly all of the energy is contained in

those partiCUlar components.

Output
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L
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the dynamic range of the signals. If the oversampling factor U is sufficiently large,

b..M may be employed to reduce the quantized output to a precision of 1 bit/sample.

Thus, the D/A converter is considerably simplified. An oversampling factor U = 256

is normally chosen in practice. This raises the sampling rate to 11.2896 MHz.

Recall that the general configuration for the conventional b..M system is as shown

in Figure 6.33. Suppose we move the integrator from the decoder to the input of the

delta modulator (DM). This has two effects. First, it preemphasizes thelow frequencies

in the input signal and, thus, it increases the correlation of the signal into the DM.

Second, it simplifies the DM decoder because the differentiator (the inverse system)

required at the decoder is canceled by the integrator. Hence, the decoder is reduced to

a simple lowpass filter. Furthermore, the two integrators at the encoder can be replaced

by a single integrator placed before the quantizer. The. resulting system, shown in

Figure 6.34; is called a sigma-delta modulator (SDM). Figure 6.35 illustrates a SDM

that employs a single-digital integrator (first-order SDM) with a system function

.z-I
H(z)=-­

l-c1

Thus, the SDM simplifies the D/A conversion process by requiring only a I-bit D/A
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Figure 6.36 The block diagram of a JPEG encoder (a) and decoder (b).

The DCTofanNxNpicturewithluminancefunctionx(m, n), 0 S m, n S N-l
can be obtained ).Ising the following equations:.

1 N-l N-l

X(O,O) = N L Lx(k,l)
k=O 1=0

2 N-IN-l . [(2k + l)UTr] [(21 + l)VTr]
X(U,V) = NLLx(k,l)cos 2N cos 2N

k=O 1=0

The X (0, 0) coefficient is usually called the DC component and the other coefficients
are called the AC components.

The JPEG encoder consists of three blocks, the DCT component, the quantizer,
and the encoder as shown in Figure 6.36.

The OCT Component. A picture consists of many pixels arranged in an m x n
array. The first step in DCT transformation ofthe image is to divide the picture array into
8 x 8 subarrays. This size of subarrays has been chosen, as a compromise of complexity
and quality. In some other standards, 4 x 4 or 16 x 16 subarrays are chosen. If the
number of rows or columns (m or n) is not a multiple of 8, then the last row (or column)
is replicated to make it a multiple of 8. The replications are removed at the decoder.

After generating the subarrays, the DCT of each subarray is computed. This pro­
cess generates 64 DCT coefficients, for each subarray starting from the DC component
X(O, 0) and going up to X (7,7). The process is shown in Figure 6.37. .

Figure 6.37 The DCT transformation in JPEG.

. The Quantizer. Due to the energy-compaction property of the DCT, only low­
frequency components of the DCT coefficients have significant values.

Since the DC component carries most of the energy, and also since there exists
a strong correlation between the DC component of a subarray and the DC component
of the preceding subarray, for quantization of DC components a uniform differential­
quantization scheme is employed. The AC components are quantized using uniform­
quantization schemes. Although all components are quantized usinga UTliform scheme,
different uniform-quantization schemes use different step-sizes. All quantizers, how­
ever, have the same number of quantization regions, namely 256.

A 64-element quantization table determines the step size for uniform quantization
ofeachDCTcomponent. These step-sizes are obtained using psychovisual experiments.
The output of the quantization step is an 8 x 8 array with nonzero elements only at the
top left corner and many zero elements in other locations. A sample quantization table
illustrating the quantization steps for different coefficients is shown in Table 6.5.

After the quantization process, the quantized DCT coefficients are arranged in a
vector by zig-zag sampling as shown in Figure 6.38.

Using this type of sampling, we obtain a vector X of length 64 with nonzero
values only in the first few components.



The Encoding. The quantization step provides lossy compression of the im­
age using the method described above. After this step, entropy coding is employed to
provide lossless compression of the quantized values. One of the entropy-codingmeth­
ods specified in the JPEG standard is Huffman coding, as discussed in Section 6.3.1.
Huffman codes, in this case, are based on tables specifying codewords for different
amplitudes. Since the quantized subarrays contain a large number of zeros, some form
of runlength coding is used to compress these zeros. The interested reader can refer to
the references at the end of this chapter for further details.

Compression and Picture Quality in JPEG. Depending on the rate, JPEG
can achieve high compression ratios with moderate to excellent image quality for both
gray-scale and color images. At rates of 0.2-0.5 bits/pixel, moderate to good quality
pictures can be obtained that are sufficient for some applications. Increasing the rate

327Problems

to 0.5-0.75 bits/pixel results in good to very-good quality images that are sufficient
for many applications. At 0.75-1.5 bits/pixel, excellent quality images are obtained
sufficient for most applications. Finally, at rates of 1.5-2 bits/pixel, the resulting image
is practically'indistinguishable from the original. These rates are sufficient for the most
demanding applications.

6.1 A source has an alphabet {a!, a2, a3, a4, as, ad with corresponding probabili­
ties {0.1, 0.2, 0.3, 0.05, 0.15, 0.2}. Find the entropy of this source. Compare this
entropy with the entropy of a uniformly distributed source with the same alphabet.

6.2 Let the random variable X be the output ofthe source that is uniformly distributed
with size N. Find its entropy.

6.3 Show that H (X) :::: 0 with equality holding if and only if X is deterministic.

6.4 Let X be a geometrically distributed random Variable; i.e.,

P(X = k) = p(1- pl-l k = 1,2,3, ...

1. Find the entropy of X.

2. Knowing that X > K, where K is a positive integer, what is the entropy of
X?

6.5 Let Y = g(X), where g denotes a deterministic function. Show that, in general,
H (Y) S H (X). When does equality hold?

6.6 An information source can be modeled as a bandlirnited process with a bandwidth
of6000 Hz. This process is sampled at a rate higher than the Nyquist rate to provide
a guard band of 2000 Hz. It is observed that the resulting samples take values in
the set.sa. = {-4, -3, -1,2,4, 7} with probabilities 0.2, 0.1, 0.15, 0.05, 0.3, 0.2.

Any standard text on information theory covers source-coding theorems and algorithms
in detail. Gallager (1968), Blahut (1987), and particularly Cover and Thomas (1991)
provide nIce and readable treatments of the subject. Our treatment of the Lempel-Ziv
algorithm follows that of Cover and Thomas (1991). Berger (1971) is devoted entirely
to rate-distortion theory. Jayant and Noll (1984) and Gersho and Gray (1992) examine
various quantization and waveform~coding techniques in detail. Gersho and Gray (1992)
includes detailed treatment of vector quantization. Analysis-synthesis techniques and
linear-predictive coding are treated in books on speech coding such as Markel and Gray
(1976), Rabiner and Schafer (1978), and Deller, Proakis, and Hansen (2000). The JPEG
standard is described in detail in the book by Gibson, et al. (1998).

Among the original works contributing to the material covered in this chapter, we
mention Shannon (1948a, 1959), Huffman (1952), Lloyd (1957), Max (1960), Ziv and
Lempel (1978), and Linde, Buzo, and Gray (1980).

6.10 FURTHER READING

PROBLEMS

Figure 6.38 Zig-zag sampling of the
DCT coefficients.Zig-zag Order

/
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TABLE 6.5 QUANTIZATION TABLE FOR JPEG

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99
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Show that among all random variables that satisfy the above condition, the geo­
metric random variable which is defined by

00

LiPi = m
i=I

Find the entropy of the quantized source.

6.12 Using both definitions of the entropy rate of a process, prove that for a DMS the
entropy rate and the entropy are equal.
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n

H(XI , Xl, ... , Xn ) ~ L H(Xi )

;=1

and

H(X IY) = LP(y)H(X IY = y)
y

6.15 Let X and Y denote two jointly distributed discrete valued random variables

1. Show that

x,y

H(X) = - LP(x,y)logp(x)
x,y

H(Y) = - I>(x,y)logp(y)

6.13 A Markov process is a process with one-step memory; i.e., a process such that

.p(xn IXn-I, Xn-z, Xn-3, ...) = p(x" IX,,-I)

for all n. Show that for a stationary Markov process the entropy rate is given by
H(Xn IXn- I ). •

6.14 Show that

2. Use the above result to show that

H(X, Y) ~ H(X) + H(Y)

When does the equality hold? (Hint: Consider the two distributions p(x, y)
and p(x)p(y) on the product set ge x O;Y, and apply the inequality proved in
Problem 6.7 to Lx yp(x, y) log P(x()P()y).)

, p x,y

6.16 Use the result of Problem 6.15 to show that

H(X IY) ~ H(X)

with equality if and only if X and Y are independent.

6.17 Show that H (X) is a concave function of the probability distribution on ge; i.e.,
for any two probability distribution vectors PI and pz on ge, and any 0 .:5 A ~ 1
we have .

AH (PI) +~H (pz) ~ H (J'PI + )'pz)
- def . _

where A = 1 - A. (Note: You have to first show that API + APZ is a legitimate
probability vector.)

6.18 Show that in general

When does the equality hold?

6.19 Assume that a BSS generates a sequence of n outputs.

1. What is the probability that this sequence consists of all zeros?

2. What is the probability that this sequence consists of all ones?

Chapter 6Information Sources and Source Coding

HeX) ~ H(Y)

with equality if and only if X is also uniformly distributed. (Hint: First prove the
inequality lnx ~ x - 1 with equality for x= 1, then apply this inequality to

N 1.
Ln=IPn In(t.)). .

6.8 A random variable X is distributed on the set of all positive integers 1,2,3, ...
with corresponding probabilities PI, Pz, P3, .... We further know that the ex­
pected value of this random variable is given to be m; i.e.,

What is the entropy of the discrete-time source in bits/output (sample)? What is
the entropy in bits/sec?

6.7 Let X denote a random variable distributed on the set.sd = {aI, az, ... ,aN} with
corresponding probabilities {PI, Pz, ... , PN}. Let Y be another random variable
defined on the same set but distributed uniformly. Show that

1 ( 1 );-1
Pi =;:;:; 1 - ;:;:; i =1,2,3, ...

has the highest entropy. (Hint: Define two distributions on the source, the first
one being the geometric distribution given above and the second one an arbitrary
distribution denoted by qi, and then apply the approach of Problem 6.7.)

6.9 Two binary random variables X and Y are distributed according to the joint
distribution p(X = Y = 0) = p(X = 0, Y = 1) = p(X = Y = 1) = ~. Com­
pute H(X), H(Y), H(X IY), H(Y IX), and H(X, Y).

6.10 Show that if Y =g(X) where g denotes a deterministic function, then
H(Y IX) = 0.

6.11 A memoryless source has the alphabet.sd = {-5, -3, -1,0, 1,3, 5} with corre- .
sponding probabilities {O.05, 0.1, 0.1, 0.15, 0.05, 0.25, 0.3}.

1. Find the entropy of the source.

2. Assume that the source is quantized according to the quantization rule

{

q(-5) = g(-3) = -4,
q(-I) = q(O) = q(l) = 0

q(3) = q(5) = 4
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3. What is the probability that in this sequence the first k symbols are ones

and the next n - k symbols are zeros?

4. What is the probability that this sequence has k ones and n - k zeros?

5. How would your answers change if instead of a BSS we were dealing with

a general binary DMS with p(Xi = 1) = p.

6.20 Give an estimate of the number of binary sequences oflength 10,000 with 3000

zeros and 7000 ones.

6.21 A memoryless ternary source with output alphabet aI, a2, and a3 and correspond­

ing probabilities 0.2, 0.3, 0.5 produces sequences oflength 1000.

1. Approximately what is the number of typical sequences in the source

output?

2. What is the ratio of typical sequences to nontypical sequences?

3. What is the probability of a typical sequence?

4. What is the number of bits required to represent all output sequences?

5. What is the number of bits required to represent only the typical output

sequences?

6. What is the most probable sequence and what is its probability?

7. Is the most probable sequence a typical sequence?

6.22 A source has an alphabet {aI, a2, a3, a4} with corresponding probabilities {0.1,

0.2,0.3,OA}.

1. Find the entropy of the source.

2. What is the minimum required average code word length to represent this

source for error-free reconstruction?

3. Design a Huffman code for the source and compare the average length of

the Huffman code with the entropy of the source.

4. Design a Huffman code for the second extension of the source (take two

letters at a time). What is the average code word length? What is the average

required binary letters per each source output letter?

5. Which one is a more efficient cocling scheme, Huffman coding ofthe original

source or Huffman coding of the second extension of the source?

6.23 Design a Huffman code for a source with n output letters and corresponding

probabilities {~' ~' ~' ... , 2"~1' 2"~1}' Show th~t the average code word length

for such a source is equal to the source entropy.

6.24 Show that{Ol, 100, 101, 1110, 1111,0011, 0001} cannot be a Huffman codefor

any source probability distribution.

6.25 Design a ternary Huffman code, using 0, 1,2 as letters, for a source with output

alphabet probabilities given by {0.05, 0.1,0.15,0.17,0.18,0.22, 0.13}. What is

the resulting average code word length? Compare the average code word length

leX; YZW) = leX; Y) + l(X : Z 1Y) + leX; WI ZY)

Can you interpret this relation?

6.33 Let X, Y, and Z be three discrete random variables.

1. Show that if p(x, y, z) = p(z)p(x Iz)p(y Ix), we have

leX; Y! Z) ::::: leX; Y)

2. Show that if p(x, y, z) = p(x)p(y)p(z rx, y), then

leX; Y).:s leX; Y IZ)

3. In each case give an example where strict inequality holds.

:vith the entropY of the source. (In what base would you compute the logarithms

ill t~e expresslOn for the entropy for a meaningful comparison?)

6.26 ~esIgn a ternary Huffman code for a source with output alphabet probabilities

gIVen by. {0.05, 0.1, 0.15, 0.17, 0.13, 004). (Hint: You can add a dummy source

output WIth zero probability.)

6.27 Find the Lempel-Ziv source code for the binary source sequence

00010010000001100001000000010000001010000100000011010000000110

Rec~ver the original seque~ce back from the Lempel-Ziv source code. (Hint: You

re~U1re two passes of the bIllary sequence to decide on the size of the dictionary.)

6.28 Usmg the definition of H (X) and H (X IY) show that

leX; y) = I:>cx, y) log p(x, y)

x,y p(x)p(y)

~ow by us~g the approach of Problem 6.7 show that I (X; Y) > 0 with equality

if and only if X and Y are independent. -

6.29 Show that

1. I(X; Y) ~ rnin{H(X) , H(Y)}.

2. If!2l':j and jG,Yj represent the size ofsets 2l': and G,Y, respectively thenI(X' Y) <

mm{logl2l':l,logjG,Y/}. ' '-

6.30 ShowthatI(X;~) = H(X)+H(Y)-H(X, Y) = H(Y)-H(Y IX) = I(Y; X).

6.31 Let X deno.te a bmary random variable with p(X = 0) = 1 - p(X = 1) = p and

let Y be a bmary random variable that depends on X through p(Y = 11 X = 0) =

p(Y=OIX=l)=E.

1. Find H (X), H(Y), H (Y 1X), H (X, Y), H (X IY), and I (X; Y).

2. For a fixed E, which p maximizes leX; Y)?

3. For a fixed p, which Erninimizes I (X; Y)?

6.32 Show that
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1. Show that heY) = 10glal +heX).

2. Does a similar relation hold if X is a discrete random variable?

6.36 Find the differential entropy of the continuous random variable X in the following
cases

6.34 Let ge and ay denote finite sets. We denote theprobability vectors on ge by p and
the conditional probability matrices on ay given ge by Q. Then leX; Y) can be
represented as a function of the probability distribution on ge and the conditional
probability distribution on ay given ge as I (P; Q).

1. Show that! (p; Q) is a concave function in p; i.e., for any Q, any 0 :::: A :::: 1,
and any two probability vectors PI and pz on ge, we have

AI (PI; Q) + J..1(pz; Q) :::: I (J...PI + J..P2; Q)
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Figure P-6.41

IGaussian source ~hannel ~

(see Berger [1971]).

1. How many bits/sample are required to represent the outputs of this source
with an average distortion not exceeding ~?

2. Plot R(D) for three different values of Aand discuss the effect of changes
in ).. on these plots.

R(D) = {IOg~,
0,

6.38 Using an approach similar to Problem 6.8, show that among all continuous random
variables distributed on the positive real line and having a given mean m, the
exponential random variable has the highest differential entropy.

6.39 Using the method of Problem 6.8, show that among all continuous random vari­
ables with a given variance (J'z, the Gaussian random variable has the highest
differential entropy.

6.40 A memoryless source emits 2000 binary symbols/sec and each symbol has a
probability of 0.25 to be equal to 1 and 0.75 to be equal to 0.

1. What is the minimum number ofbits/sec required for error..free transmission
of this source?

2. What is the minimum number of bits/sec required for reproduction of this
source with an error probability not exceeding O.l?

3. What is the minimum'number of bits/sec required for reproduction of this
source with an error not exceeding 0.25? What is the best decoding strategy
in this case?

6.41 A Gaussian source with mean zero and variance 1 is to be transmitted via a
channel that can provide a transmission capacity of 1 bit/each source output (see
Figure P-MI).

1. What is the minimum mean-squared-error achievable?

2. If the maximum tolerable distortion is O.°1, what is the required transmission
capacity/source output?

6.42 It can be shown that the rate distortion function for a Laplacian source, fx(x) =
-i!:e-if with an absolute value of error distortion measure d (x, x) = Ix - xI is
given by

Chapter 6Information Sources and Source Coding

1. X is an exponential random variable with parameter A > 0; i.e.,

fx(x) = {t e-
r, x>O.

0, otherWlse

2. X is a Laplacian random variable with parameter).. > 0; i.e.,

1 1.<1
fx(x) = -e-T

2A
3. X is a triangular random variable with parameter).. > 0; Le.,

{

X+A "':'A < x < °.v' --
fx(x) = -~iA, 0 < x :::: )..

0, otherwise

6.37 Generalize the technique developed in Problem 6.7 to continuous random vari­
ables and show that for continuous X and Y

1. heX IY) :::: heX) with equality if and only if X and Y are independent.

2. I (X; Y) ::: °with equality if and only if X and Y are independent.

- def '
where A = 1-)".

2. Show that I (p; Q) is a convex function in Q; i.e., for any p, any 0 :::: ).. :::: 1,
and any two conditional probabilities QI and Qz, we have

I (p; AQI + J..Qz) :::: AI (p; Ql) + XI (P; Qz)

(Note: You have to first show that APl + J..pz and AQI + J..Qz are a legitimate
probability vector and conditional probability matrix, respectively.)

6.35 Let the random variable X be continuous with PDF fx (x) and let Y = aX where
a is a nonzero constant.
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(Hint: Use the results of Problem 6.36.)

6.44 With the assumptions of Example 6.4.6, if we want to reduce the distortion by a

factor of 1000, how many extra bits/source symbol have to be introduced?

6.45 Let X (t) be a strictly stationary random process.

1. Show that Q(X(t)) is also strictly stationary for any function Q.

2. From above conclude that X (t) - Q(X (t)) is also strictly stationary and,

therefore, in any quantizer

E[X2 ] . Px Rx(O)

SQNR = E(X -'Q(X))2 = Px = Rx(O)

where X(t) = X(t) - Q(X(t))

335

x2

2

-2

Figure P·6.49

Figure P-6.S0

-2

y

2

1

2 1 1 2 x

-1

-2

Problems

y

1. Find fx(x) and frey).

2. As.sume each ~f the random variables X and Y are quantized using 4-level

umform quannzers. What is the resulting distortion? What is the resultin cr

number of bits/pair (X, Y)? 0

3. Now ~ssume i~s:..ead of scalar quantizers for X and Y, we employ a vector

quant~zer to acmeve ~e same level of distortion as in part 2. What is the

resultmg number of bIts/source output pair (X, Y)?

6.50 T:vo random variables X and Y are uniformly distributed on the square shown in

FIgure P-6.50.
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6.43 It can be shown that if X is a zero-mean continuous random variable with vari­

ance a 2 , its rate distortion function, subject to squared-error distortion measure,

satisfies the lower and upper bounds given by the inequalities

1 1 a 2

heX) - "2 log(2rreD)::: R(D)::: "21ogT

where h(X) denotes the differential entropy of the random variable X (see Cover

and Thomas [1991]).

1. Show that for a Gaussian random variable, the lower and upper bounds

coincide. .

2. Plot the lower and upper bounds for a Laplacian source with a = 1.

3. Plot the lower and upper bounds for a triangular source with a = 1.

6.46 Let X (t) denote a wiele-sense stationary Gaussian process with Px = 10.

1. Using Table 6.2 design a 16-level optimal uniform quantizer for this source.

2. What is the resulting distortion if the quantizer in part 1 is employed?

3. What is the minimum number of bits/source symbol required to represent

the quantized source?

4. Compare this result with the result obtained from the rate-distortion bound

that achieves the same amount of distortion.

5. What is the amount of improvement in SQNR (in dB) that results from

doubling the number of quantization levels from 8 to 16?

6.47 Using Table 6.2 design an optimal quantizerfor the source given in Example 6.5.I.

Compare the distortion of this quantizer to the'distortion obtained there. What is

the entropy of the quantized source in this case?

6.48 Solve Problem 6.46 using Table 6.3 instead of6.2 to design an optimal nonuniform

quantizer for the Gaussian source.

6.49 Consider the encoding ofthe two random variables X and Y, which are uniformly

distributed on the region between the two-squares as shown in Figure P-6.49.



fx(x)

The bandwidth of this process is 5 KHz, and it is desired to transmit it using a
PCMsystem.

1. If sampling is done at the Nyquist rate and a uniform .quantizer v.:ith 3~
levels is employed, what is the resulting SQNR? What IS the resultmg bIt
rate?

2. If the available bandwidth of the channel is 40 KHz, what is the highest
achievable SQNR?

1. Find fx(x) and fy(y).

2. Assume that each of the random variables X and Y are quantized using
4-level uniform quantizers. What is the resulting distortion? What is the
resulting number of bits/pair (X, Y)?

3. Now assume that instead of scalar quantizers for X and Y, we employ a
vector quantizer with the same number of bits/source output pair (X, Y) as
in part 2. What is the resulting distortion for this vector quantizer?

6.51 Solve Example 6.6.1 for the case when the samples are uniformly distributed on
[-2,2].

6.52 A stationary random process has an autocorrelation function given by Rx =:

£e-I<I cos 2rr for and it is known that the random process never exceeds 6 in
~agnitude. Assuming A =: 6,

1. How many quantization levels are required to guarantee a SQNR of at least
60 dB?

2. Assuming that the signal is quantized to satisfy the condition of part 1
and assuming the approximate bandwidth of the signal is W, what is the
minimumrequired bandwidthfor transmission ofabinary PCM signal based
on this quantization scheme?

6.53 A signal can be modeled as a lowpass stationary process X (t) whose PDF at any
time to is given in Figure P-6.53.
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1<x:s2
O<x:::;l
-1 < x:::; 0
-2:::;x:::;-1

{

1.5,
0.5,

Q(x) ~ -0.5,

-1.5,

Problems

3. If instead of sampling at the Nyquist rate we require a guard-band of at
least 2 KHz, and the bandwidth of the channel is 40 KHz again, what is the
highest achievable SQNR?

6.54 A stationary source is distributed according a triangular PDF, fx (x) = ~1\(I)'
This source is quantized using a 4-level uniform qualltizer described below

1. Find the entropy of the quantized source.

2. Determine the PDF of. the random variable representing the quantization
error; i.e., X= X - Q(X).

6.55 The random process X (t) is defined by X (t) = Y cos(2rrfot + e) where Y and
e are two independent random variables, Y uniform on [-3,3] and e uniform
on [0, 2rr].

1. Find the autocorrelation function of X (t) and its power-spectral density.

2. If X(t) is to be transmitted to maintain a SQNR of at least 40 dB using a
uniform PCM system, what is the required number of bits/sample and the
least bandwidth requirement (in terms of fa)?

3. If the SQNR is to be increased by 24 dB, how many more bits/sample have
to be introduced and what is the new minimum bandwidth requirement in
this case?

6.56 In our analysis of PCM systems, it was always assumed that the transmitted
bits are received with no errors. However, practical channels cause errors. Let
us assume that the output of a PCM system is transmitted via a channel whose
error probability is denoted by Pb. It is further assumed that Pb is small enough
such that, in transmission of the v bits resulting from encoding of each quantized
sample, either no error occurs or at most one error occurs. This means that the
probability of each transmitted bit being in error is Pb and the probability of no
error in transmission of v bits is roughly 1 - VPb. We also assume that, for the
binary representation of each quantized value, natural binary coding (NBC) is
employed; i.e., the lowest quantized level :is mapped into a sequence of zeros and
the largest level is mapped into a sequence of all ones and all the other levels are
mapped according to their relative value.

1. Show that if an error occurs in the least significant bit, its effect on the
quantized value is equivalent to 6., the spacing between the levels; if an
error occurs in the next bit its effect on the quantized value is 21::., ... , if
an error occurs in the most significant bit, its effect on the quantized value
is 2v- 11::..
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in dB as a function of ECX2
) (in dB) for,u = 255 and v = 8. Compare

the results and note the relative insensitivity of the p,-law scheme to the

dynamic range of the input signal.

6.58 Design an optimal compander for a source with a triangular PDF given by

{

X + 1, -1 < x < 0

fx(x) = -x + 1, 0::: x::: 1

0, otherwise

Plot the resulting g(x) and determine the SQNR.

6.59 In a CD player, the sampling rate is 44.1 KHz and the samples are quantized using

a 16-bit/sample quantizer. Determine the resulting number of bits for a piece of

music with a dnration of 50 minutes.

Chapter 6Information Sources and Source Coding

4" -1
Dchannel = Pb!l2_

3
-

where !l = ~ = ~ is the spacing between adjacent levels.

3. From the above conclude that the total distortion which is the sum of the

quantization distortion and the transmission distortion due to channel errors,

can be expressed by

x 2 ~ ..

Dtotal = max 2 (1 + 4Pb(N2 -1» = 3 max
4

" (1 +4PbW - 1»
3xN X

4. Finally, show that the SNR defined as the ratio of the signal power to the

total noise power is given by

3N2X2 3x4"X2

SNR= =-----
1 + 4pb(N2 - 1) 1+ 4PbC4" - 1)

2. From above, show that the lli;';;ln-squared-error resulting from channel errors

is given by

= (In(l + ,u»2 ,u2E(X2) + 2,uE\XI + 1

3. Compare the above result with the SQNR for a uniform quantizer and

conclude that

SQNR",_law = SQNRunifom,G(,u, X)

and determine G(,u, X).

4. Now assume that X is a truncated zero-mean Gaussian random virriable

truncated to [-4()x, 4()x]. Plot both the SQNR",-law and the SQNR"nifonn

SQNR = (In(l + ,u»2 ,u2E(X2) + 2,uE\XI + 1

3,u24" E(X2)

where X= L.
xma.1.

6.57 In this problem we study the performance of nonuniform PCM systems. Let the

signal samples be distributed according to the PDF fx(x).

1. Use Equation 6.6.15 to show that ~or a ,u-law compander

D ~ [lnO + p,)]2 x~ax (,u2 E(X2) + 2p,EC\XI) + 1)
3fJ)N2 .

= [!nO + p,)]2 x~ax (,u2E(X2) +2,uECIXI) + 1)

3,u24"

where Xrepresents the normalized random virriable x':•.
2. Show that
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Section 7.1 Geometric Representation of Signal Waveforms 341

7
signals is then described and their performance on the AWGN channel is evaluated in
terms ~f the pr?bability of error. The various modulation methods are compared on
~e baSIS of ~eIr performance characteristics, their bandwidth requirements and their
lIDplementation complexity.

Gram-Schmi?t ?rthogonalization Procedure. We begin with the first
waveform Sl (t), which IS assumed to have energy £1. The first waveform of the or­
thonormal s~t is constructed simply as

.'~

(7.1.1)

(7.1.2)

(7.1.3)

(7.1.4)

(7.1.5)

,I, ( ) _ Sl (t)
'1'1 t ---.;r;;

Thus, 'h (t) is simply SI (t) normalized to unit energy.
The second waveform is constructed from S2(t) by first computing the projection

of S2(t) onto 'h (t), which is .

C21 = I: S2(t)1/I1(t)dt

Then, c21 1/11 (t) issubtracted from S2 (t) to yield

Now, d~(t) is orthogonal to 1/11 (t), but it does not possess unit energy. If £2 denotes the
energy 1U d2 (t), then the energy normalized waveform that is orthogonal to 1/11 (t) is

,I, ( ) d2 (t)
'1'2 t = .j&;.

£z = I: di(t) dt

7.1 GEOMETRIC REPRESENTATION OF SIGNAL WAVEFORMS

The Gr~m-Schmidtorthogonalization procedure may be used to construct an orthonor­
n:al baSIS for a set of signals. In this section, we develop a geometric representation of
SIgnal wa:ef~rms as, points in a signal space. Such a representation provides a compact
characten~ationof.sIgnal sets for transmitting information over a channel and sinlplifies
the. analySIS of therr performance. Using vector representation, waveform communi­
cation channels are represented by vector channels, This reduces the complexity of
analysis considerably.

Suppose we have a set of M signal waveforms sm(t), 1::: m::: M which are to
be used for transmitting information over a communication channel. From the set
of M waveforms, we first construct a set of N :::: M orthonormal waveforms where
N is the dimension of the signal space. For this purpose we use the Gram-Schmidt
orthogonalization procedure. '

In Chapter 6, we described methods for converting the output of a signal source into
a sequence of binary digits. In this chapter, we consider the transmission of the digital
information sequence over communication channels that are characterized as additive
white Gaussian noise (AWGN) channels. The'AWGN channel is one of the simplest
mathematicalmodels for va..'i.ous physical communication channels, including wirelines
and some radio channels. Such channels are basically analog channels, which means
that the digital information sequence to be transmitted must be mapped into analog

. signal waveforms.
Our treatment focuses on the characterization and the design of analog signal

waveforms that carry digital information and their performance on an AWGN channel.
We consider both baseband channels; i.e., channels having frequency passbands that
usually include zero frequency (f =0), and bandpass channels; i.e., channels having
frequency passbands far removed from f = O. When the digital information is trans­
mitted through a baseband channel, there is no need to use a carrier frequency for
transmission of the digitally modulated signals. On the other hand, there are many
communication channels, including telephone channels, radio channels, and satellite
channels, that are bandpass channels. In such channels, the information-bearing signal is
impressed on a sinusoidal carrier, which shifts the frequency content ofthe information­
bearing signal to the appropriate frequency band that'is passed by the channel. Thus,
the signal is transmitted by carrier modulation.

We begin by developing a geometric representation of these types of signals,
which is useful in assessing their performance characteristics. Then, we describe several
different types of analog signal waveforms for transmitting digital information and
give their geometric representation. The optimum demodulation and detection of these

·Oigital Transmission through
the Additive White Gaussian

Noise Channel
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and

1
00 N

Cm = -00 s;;, (t) dt = 'L, s;;'n (7.1.11)
n=1

Based on the expression in Equation (7.1.7), each signal waveform may be rep­
resented by the vector

sm = (Sml' Sm2,.··, SmN) (7.1.12)

or equivalently, as a point in N-dimensional signal space with coordinates (s . i =
1, 2, ... , N}. The en:rgy of the mth signal waveform is simply the square of th;i~ngth
of the .ve~tor or, eqmvalently, the square of the Euclidean distance from the origin to
the pomt m the N-dimensional space. We can also show that the inner product of two

(7.1.10)

(7.1.8)

(7.1.7)

(7.1.6)

Chapter7

k-l

dk(t) = SkCt) - 'L, Cki 1h(t)
;=1

Smn =I: Sm (t)1/!n (t) dt

N

sm(t) = 'L,Smn 1/!n(t), m = 1,2, ... , M
n=1

. Digital Transmission through Gaussian Noise Channel

In general, the orthogonalization of the kth function leads to

1/!k (t) = dk(t)
-.rtk

where

d3(t) = S3(t) + -.li1f!2(t)

Since d3(t) has unit energy, it follows that 1f!3(t) = d3(t). Finally, we find that C41

-.Ii, C42 = 0, C43 = 1. Hence,

d4(t) = S4(t) - -.li1f!1 (t) - 1f!3 (t) = 0

Thus, S4(t) is a linear combination of 1f!1 (t) and 1f!3(t) and, consequently, the dimen­
sionality of the signal set is N = 3. The functions 1f!1(t), 1f!2(t), and 1f!3(t) are shown in

Figure 7.l(b)

Once we have constructed the set of orthogonal waveforms (1/!n(t)}, we can
express the M signals {sm(t)} as exact linear combinations of the (1/!n(t)}. Hence, we

may write

Cki =I: Sk(t)1/!;(t) dt, i = 1,2, ... , k - 1 (7.1.9)

Thus, the orthogonalization process is continued until all the M signal waveforms
(sm (t) } have been exhausted and N ~M orthonormal waveforms have been constructed.
The N orthonormal waveforms {1/!n (t)} form a basis in the N-dimensional signal space.
The dimensionality N of the signal space will be equal to M if all the M signal
waveforms are linearly independent; i.e., if none of the signal waveforms is a linear

combination of the other signal waveforms.

Example 7.1.1
Let us apply the Gram-Schmidt procedure to the set of four waveforms illustrated in
Figure 7.l(a). The waveform SI (t) has energy Cl = 2, so that lh (t) = Sl (t)/ -.fi. Next
we observe that C21 = 0, so that V/j (t) and S2(t) are orthogonal. Therefore, ,y2(t) =
S2(t)/..[t2 = S2(t)/-.fi. To obtain 1f!3(t), we compute C31 and C32, which are C31 =°and

C32 = --.fi. Hence,

and

where

342



345

(7.2.1)

Figure 7.4 Binary PAM signals.

o
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o

Section 7.2

vectors aresj = (1,1,0), S2 = (1, -1, 0), S3 = (-1,1,1), ands4 = (1,1,1). The reader
should note that the change in the basis functions does not change the dimensionality
of the space N, the lengths (energies) of the signal vectors, or the inner product of any
two vectors.

Although the Gram-Schmidt orthogonalization procedure is guaranteed to gener­
ate an orthonormal basis for representation of the signal set, in many cases it is simpler
to use a method based on inspection to generate the orthonOlmal basis. We explore this
method in the problems at the end of this chapter.

A 1-------,

In pulse amplitude modulation (PAM), the information is conveyed by the amplitude
of the transmitted signal. Let us .first consider PAM signals that are appropriate for
baseband channels.

Baseband Signals. Binary PAM is the simplest digital modulation method.
In binary PAM, the information bit 1 may be represented by a pulse of amplitude A
and the information bit 0 is represented by a pulse of amplitude -A, as shown in
Figure 7.4. This type of signaling is also called binary antipodal signaling. Pulses are
transmitted at a bit rate Rb = 1/Tb bits/sec, where Tb is called the bit interval. Although
the pulses are shown as rectangular, in practical systems, the rise time and decay time
are nonzero and the pulses are generally smoother. The pulse shape determines the
spectral characteristics of the transmitted signal as described in Chapter 8.

The generalization of PAM to nonbinary (M -ary) pulse transmission is relatively
straightforward. Instead of transmitting one bit at a time, the binary information se­
quence is subdivided into blocks ofk bits, called symbols, and each block, or symbol, is
represented by one ofM = 2k pulse amplitude values. Thus with k = 2, we have M = 4
pulse amplitude values. Figure 7.5 illustrates the PAM signals for k = 2, M = 4. Note
that when the bit rate Rb is fixed, the symbol interval is

"as shown in Figure 7.6.

7.2 PULSE AMPLITUDE MODULATION

Chapter 7

Figure 7.2 Signal vectors corresponding
to the signals 'j(t), i = 1,2,3,4.

2

Figure 7.3 Alternate set of basis functions.

Digital Transmission through Gaussian Noise Channel

o

o

Finally, we should observe that the set of basis functions {1frn(t)} obtained by the
Gram-Schmidt procedure is not unique. For example, another set of basis functions
that span the three-dimensional space is shown in Figure 7.3. For this basis, the signal

'2

signals is equal to the inner product of their vector representations; i.e.,L: sm(t)sn(t)dt = Sm' Sn (7.1.13)

Thus, any N-dimensional signal can be represented geometrically as a point in the
signal space spanned by the N orthonormal functions {1frn(t)}.

Example 7.1.2
Let us determine the vector representation of the four signals shown in Figure 7.1(a) by
using the orthonormal set of functions in Figure 7.l(b). Since the dimensionality of the
signal space is N = 3, each signal is described by three components, which are obtained
by projecting each of the four signal waveforms on the three orthonormal basis functions
lfrl (I), ¥2(1), 1/1"3 (t). Thus, we obtain SI = (.,J2, 0, 0), S2 = (0, .,J2, 0), S3 = (0, -.,J2, 1),
S4 = (.,J2, 0,1). These signal vectors are shown in Figure 7.2. .
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Figure 7.8 Amplitude modules
sinusoidal carrier by the baseband signal.
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Bandpass signal
X }---''---='~

sm(t) cos 2-rrfet

Baseband signal

sln(t)

Pulse Amplitude ModulationSection 7.2

their energies. We note the signals have different energies; Le.,

Em =1T
s;,(t)dt = A~1T

gi-(t)dt = A~Eg, m = 1,2, ... , M (7.2.3)

where Eg is the energy of the signal pulse gT(t).

Bandpass Signals. To transmit the digital signal waveforms through a band­
pass channel by amplitude modulation, the baseband signal waveforms Sm (t), m =
1, 2, ... , M are multiplied by a sinusoidal carrier oftheform cos 2nfet , as shown in Fig­
ure 7.8, where fe is the carrier frequency and corresponds to the center frequency in the
passband of the channel. Thus, the transmitted signal waveforms may be expressed as

um(t) = AmgT(t) cos2n:fet, m = 1,2, ... , M (7.2.4)

As previously described in Section 3.2, amplitude modulation of the carrier
cos 2n: fet by the baseband signal waveforms Sm (t) = AmgT(t), shifts the spectrum
of the baseband signal by an amount fe and, thus places the signal into the passband of
the channel. Recall that the Fourier transform ofthe carrier is [3(f - fe) +3(f+ fe) ]/2.
Because multiplication of two signals in the time domain corresponds to the convolu­
tion of their spectra in the frequency domain, the spectrum of the amplitude-modulated
signal given by Equation (7.2.4) is

A'
Um(f) = 2

m
[GT(f - fJ + GT(f + fe)] (7.2.5)

Thus, the spectrum of the baseband signal Sm (t) = AmgT (t), is shifted in frequency
by an amount equal to the carrier frequency fe. The result is a DSB-SC AM signal, as
illustrated in Figure 7.9. The upper sideband of the carrier modulated signal is com­
prised of the frequency content of U m(t) for If I> fe; Le., for fe < If I :'S fe + w.
The lower sideband of um(t) comprises the frequency content for If I < fe; i.e.,
for fe - W :'S IfI < fe. Hence, the DSB-SC amplitude-modulated signal occupies a
channel bandwidth of 2W, which is twice the bandwidth required to transmit the base­
band signal.

The energy of the bandpass signal waveforms Um (t), m = 1, 2, ... , M, given by
Equation (7.2.4) is defined as

Em =I: u~ (t) dt = I: A~g} (t) cos
2

2n:fe t dt

= A
2
; lco

g}(t)dt+ A~100

g}(t) cos4n:fet dt (7.2.6)
-co 2 -00

(7.2.2)

Chapter 7

Figure 7.7 Signal pulse for PAM.

Figure 7.6 Relationship between the
symbol interval and the bit interval.

Figure 7.5 M = 4 PAM signal
waveforms.

T

(a)

~(:k

oTt

Sm(t) = Amgr(t), m = 1,2, ... , M, 0 :'S t :'S T

Digital Transmission through Gaussian Noise Channel

T t

o

We may characterize the PAM signals in tews oftheir basic properties. In general,
the M-ary PAM signal waveforms maybe expressed as

where gr (t) is a pulse of some arbitrary shape as shown for example in Figure 7.7. We
observe that the distinguishing feature among the M signals is the signal amplit.ude. A?
the M signals have the same pulse shape. Another important feature of these sIgnals IS
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(7.2.9)

(7.2.10)

(7.2.13)

(7.2.12)

(7.2.11)

(7.2.14)

Figure 7.11 Signal points
(constellation) for symmetric PAM.

{
f[; O<t<T

gT(t) = VT --
0, otherwise

Sm=fi;Am, m=1,2, ... ,M

o

Pulse Amplitude Modulation

Sm(t) = sm1f.r(t), m = 1,2, ... , M

where the basis function 1f.r(t) is defined as

1
1f.r(t) = VC;gT(t),

the amplitude-modulated carrier signal is usually called amplitude-shift keying (ASK).

as

If we select the signal amplitudes {Am} to be symmetrically spaced about zero
and equally distant between adjacent signal amplitudes, we obtain the signal points for
symmetric PAM, as shown in Figure 7.11.

We observe that the PAM signals have different energies. In particular, the energy
of the mth signal is

Section 7.2

Eg is the energy of the signal pulse gT(t), and the signal coefficients (one-dimensional
vectors) are simply

An important parameter is the Euclidean distance between two signal points, which is
defined as

Geometric Representation of PAM Signals. The baseband signal wave­
forms for M-ary PAM are given in Equation (7.2.2), where M=2k, and gT(t) is a
pulse with peak amplitude normalized to unity as previously illustrated in Figure 7.7.

The M -ary PAM waveforms'are one-dimensional signals, which may be expressed

where Eg is the energy in the signal pulse gT (t). Thus, we have shown that the energy
in the baildpass signal is one-half of the energy in the baseband signaL The scale factor
of ! is due to the carrier component cos 2nfet, which has an average power of !.

When the transmitted pulse shape gT(t) is rectangular; i.e.,

(7.2.8)

f

Chapter 7

fW

o
(b)

o
(a)

1
'2

IUm(f)1

-w
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Figure 7.9 Spectra of (a) baseband and (b) amplitude-modulated signals.

--fe - W - fe - fe + W

cos 47rf,J

Figure 7.10 The signal g} (I) cos4nfc l .

We note that when fe » W, the term1: g}(t) cos4nfet dt (7.2.7)

involves the integration of the product of a slowly varying func~on,.namely g} (t), with
a rapidly varying sinusoidal term, namely cos 4nfet as sho,;n ill Fl~re7.10. Because
gT(t) is slowly varying relative to cos4nfet, th~ integral m Equatl~n (7.2.7) over a
single cycle of cos4nfct is zero and, hence, the mtegral over an arbltrary number of

cYGles is also zero. Consequently,

A2 JOO A
2

[m = ---!!!. g} (t) dt = ; Eg
2 -00
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7.3 TWO-DIMENSIONAL SIGNAL WAVEFORMS

As we observed, PAM signal waveforms are basically one-dimensional signals. In this

section, we consider the construction of two-dimensional signals.

351

(7.3.3)

(7.3.4)

T

(b)

T/2

T/2
o

T

T

T/2

(a)

Figure 7.12 'IWo sets of orthogonal siguals.
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o
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Section 7.3 Two-dimensional Signal Waveforms

property in Equation (7.3.1) and both signal pairs have identical energy; i.e.,

E - f 2 rT
2' f rT

- )0 SI (t) dt = )0 S2 (t) dt =')0 [s; (t)f dt = )0 [S~ (t)]2 dt = A2T (7.3.2)

~ither pair of these signals may be used to transmit binary information with one

~I~nal w~vef~rm corresponding to a 1 and the other signal waveform con~eying the

In,ormatlon bIt O.

?eom~trica1ly, these signal waveforms can be represented as signal vectors in

futwo-~ImenslOnal
space. As basis functions, we may select the unit energy rectanaular

nctIOns
' '"

Vrl(t) = {v'2/T' 0~t~T/2
0, otherwise

Vr2(t) = {v'2/T' T /2 < t ~ T

0, otherwise

Then, the signal waveforms SI (t) and S2(t) shown in FiglJIe 7.12(a) can be expressed as

Sl(t) = Sl1Vrl(t) + S12Vr2(t)

S2(t) = S2I Vtl (t) + S22Vr2U)

(7.2.16)

(7.2.15)

(7.2.18)

(7.2.19)

Chapter 7
Digital Transmission through Gaussian Noise Channel
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um(t) =sm1/J'(t)

where the basic signal waveform 1/J' (t) is defined as

Vt(t) = IfgT(t) cos 2rr!e t

and

For equally probable signals, the average energy is

1 M E M

Eav = M I: Em = ~ I: A;
m=l m=l

If the signal amplitudes are symmetric about the origin, then

Am = (2m - 1 - M), m = 1,2, ... , M

and, hence, the average energy is

E M

Eav = ~ '2::(2m -1 - M)2 = Eg (M2 - 1)/3 (7.2.17)

m=l
.

'When the baseband PAM signals are impressed on a carrier, the basic geometric

representation of the digital PAM signal waveforms remains the same. The bandpass

signal waveforms Urn (t) may be expressed as

Sm = flAm, m = 1,2, ... , M (7.2.20)

Note that the only change in the geometric representation of bandpass PAM

signals, compared to baseband signals, is the scale factor .fi, which appears in Equa­

tions (7.2.19) and (7.2.20).

7.3.1 Baseband Signals

Let us begin with the construction of two orthogonal signals. Two signal waveforms

Sl (t) and S2 (t) are said to be orthogonal over the interval (0, T) if

1T

Sl(t)S2(t)dt = 0 (7.3.1)

Two examples of orthogonal signals are illustrated in Figure 7.12. Note that the two

signals Sl(t) and S2(t) completely overlap over the interval (0, T), while the signals

s~ (t) and s~(t) are nonoverlapping in time. Both signal pairs satisfy the orthogonality
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Fignre 7.16 M = 8 signal-point
constellation corresponding to the two
points of orthogonal signal waveforms in
Figure 7.12 and their negatives, i.e.,
Sj (t), S2 (t), si (t), s~(t), -Sj (t), -S2 (t),
-s; (t) and -s~ (t).

Figure 7.15 Signal constellation for
M = 4 biorthogonal signals.

S2

Two-dimensional Signal WaveformsSection 7.3

distance between the signal points sl and s; is identical to that for signal points Sl
and S2. ,.

Suppose that we wishto construct four signal waveforms in two dimensions. With
four signal waveforms, we can transmit two information bits in a signaling interval
of length T. If we begin with the two orthogonal signals Sl(t) and S2(t), shown in
Figure 7.12(a), and their corresponding vector representation in Figure 7.13, it is easy to
see that a simple construction is one that adds two additional signal vectors, namely, -SI

and -S2. Thus, we obtain the 4-point signal-point constellation shown in Figure 7.15,
which corresponds to the analog signal waveforms Sl (t), S2 (t), -Sl (t), and -S2(t). Since
the pair Sl (t) and S2 (t) are orthogonal and the pair -SI (t) and -S2 (t) are orthogonal,
the signal set consisting of the four signal waveforms is called a set of biorthogonal
signals.

The procedure for constructing a larger set of signal waveforms is relatively
straightforward. Specifically, we can add additional signal points (signal vectors) in the
two-dimensional plane, and construct the corresponding signal waveforms by using
the two orthonormal basis functions lh(t) and 'h(t) given by Equation (7.3.3). For
example,suppose we wish to construct M = 8 two-dimensional signal waveforms, all
of equal energy c. These eight signal points are illustrated in Figure 7.16, and allow us
to transmit three bits at a time. The corresponding eight signal waveforms are the two
sets of biorthogonal signal waveforms constructed from the two pairs of orthogonal
signals shown in Figure 7.12.

Alternatively, suppose that we remove the condition that all eight waveforms
have equal energy. For example, suppose that we select four biorthogonal waveforms

(7.3.7)

(7.3.6)

(7.3.5)

Chapter 7

Figure 7.13 The two signal vectors
corresponding to the signals waveforms
Sj (I) and S2(t).S2

Digital Transmission through Gaussian Noise Channel

where C = £1 = £2 is the signal energy. ..' ) b ressed
Similarly, the pair of orthogonal signals shown m FIgure 7.l2(b can e exp

as in Equation (7.3.4), where

S'l = (A../T, 0) = (.ft, 0) (7.3.8)

s~ = (0, A../T) = (0, .ft)

These two signal vectors are illustrated inFi~re7.14. ~ote t?at skand s~t~e~~~~~~:
the signal vectors shown in Figure 7.13 by a sImple 45 rotatlon. ence,

Figure 7.14 The two signal vectors
corresponding to the signal waveforms

s; (t) and s~(t),

SI = (S11, S12) = (A.jT /2, A../'f72)

S2 = (S21 , S22) = (A.jT /2, -A.jT/2)

The signal vectors Sl and S2 are illustrated in Figure 7.13. Note that the Si~~ v~cto~

t d by 900 so that they are orthogonal. Furthermore, the square 0 e eng
are separa e , . ' ..
of each vector gives the energy m each slgnal, Le.,

Cl = IIsl11
2 = A

2
T

£2 = IIS2112 =A2 T

The Euclidean distance between the two signals is

d12 = VIIS1 - s211 2 = A.J2T = .j2A2T =.J2l

where
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(7.3.12)

(7.3.13)

(7.3.14)

(7.3.15)

Figure 7.18 Example of a four PSK

signal.

m = 0, 1, ... , M - 1,

m = 0, 1, ... , M - 1,

4T3T2T

Two-dimensional Signal Waveforms

T

(
2rrm)

um(t)=gT(t)COS 2rrJet + M '

Section 7.3

the corresponding transmitted signal waveforms

ru; ( 2rrm)
um(t) = VTCos 2rrfet + M '

have a constant envelope (the pulse shape gT (t) is a rectangular pulse) and the carrier

phase changes abruptly at the begirnJing of each signal interval. This type of digital­

phase modulation is calledphase-shift keying (PSK). Figure 7.18 illustrates afour-phase

(M = 4) PSK signal waveform, usually called a quadrature PSK (QPSK) signaL

By viewing the angle of the cosine function in Equation (7.3.14) as the sum of

two angles, we may express the waveforms in Equation (7.3.14) as

From this geometric representation for M = 4, we observe that the signal points

are equivalent to a single signal whose phase is shifted by mUltiples of rr/2. That is,

a bandpass signal of the form s(t) cos(2rrfet + rrm/2) , m = 0,1,2,3, has the same

geometric representation as an M = 4 general biorthogonal signal set. Therefore, a

simple way to generate a set of M bandpass signals having equal energy is to impress

the information on the phase of the carrier. Thus, we have a carrier-phase modulated

signal.

The general representation of a set of M carrier-phase modulated signal wave­

forms is

where gT (t) is a baseband pulse shape, which determines the spectral characteristics of

the transmitted signal, as will be demonstrated in Chapter 8. When gT (t) is a rectangular

pulse, defined as

Llm(t) = gT(t) Ame cos2rrfc t - gTCt) Ams sin2rrfct

t t t t t

180°-phase 0°-phase -90°-phase
shift shift shift

t t t

0d\J'v¥v/f\d"
o

Chapter 7

Figure 7.17 Two M = 8 signal-point

constellations in two dimensions,

corresponding to a superposition of two

sets of biorthogonal signal wavefonns .

with different energies.(b)
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that have energy E1 and another four biorthogonal waveforms that have energy E2 ,

where E2 > E1 . Two possible eight signal-point constellations are shown in Figure 7.17,

where the signal points are located on two concentric circles of radii .f[; and ..;&;. In

Section 7.6.5 we show that the signal set in Figure 7.17(b) is preferable in an AWGN

channel to that shown in Figure 7.17'(a).

7.3.2 Two-dimensional Bandpass Signals-Carrier-Phase

Modulation

In the case of PAM, we recall that bandpass signal waveforms, appropriate for trans­

mission on bandpass channels, were generated by taking a set of baseband signals and

impressing them on a carrier. In a similar manner, ifwe have a set of M two-dimensional

signal waveforms, say sm(t), m = 1, 2, ... , M, we can generate a set of M bandpass

signal waveforms as

um(t)=Sm(t)cos2rrfcf, m=1,2, ... ,M, O~t~T (7.3.9)

In this section, we consider the special case in which the M two-dimensional bandpass

signals waveforms are constrained to have the same energy; i.e.,

Em = faT u; (t) dt = faT s;, (t) cos2 2rrfet dt

= ~ rT
S;;, (t) dt + ~ fT s;;, (t) cos 4rrJet dt (7.3.10)

2)0 2)0

As indicated previously, the integral of the double-frequency component in Equa­

tion (7.3.10) averages to zero when fe » W, where W is the bandwidth ofthe baseband

signal Sm (t). Hence,

Em = ~ faT s;;, (t) dt = Es f9r all m (7.3.11)

where Es denotes the energy/signal or/symboL .

As we indicated in the discussion following Equation (7.1.12), when all the slgnal

waveforms have the same energy, the corresponding signal points in the geometric

representation of the signal waveforms fallon a circle of radius ..;t;. For exampl~,

in the case of the four biorthogonal waveforms, the signal points are as shown m

Figure 7.15 or, equivalently, any phase-rotated version of these signal points.



Figure 7.19 Digital-phase modulation
viewed as two amplitude-modulated
quadrature carriers. ~d the minimum Euclidean distance (distance between two adjacent signal points) is

sImply
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(7.3.18)

Two-dimensional Signal WaveformsSection 7.3

the most likely errors caused by noise involve the erroneous selection of an adjacent
phase to the transmitted phase, only a single bit error occurs in the k-bit sequence with
Gray encoding.

The Euclidean distance between any two signal points in the constellation is

dmn = Jilsm - snll 2

2[s (I_COS
2
:rr(:-n))

Chapter 7Digital Transmission through Gaussian Noise Channel356
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Figure 7.20 PSK signal constellations.

dmin = 2[s (1 - cos :) (7.3.19)

As we shall demonstrate in Equation (7.6.10), the minimum Euclidean distance
dmin plays an important role in determining the error-rate performance of the receiver
that demodulates and detects the information in the presence ofadditive Gaussian noise.

·7.3.3 Two-dimensional Bandpass Signals-Quadrature
Amplitude Modulation

In our discussion of caTrier-phase modulation, we observed that the bandpass signal
waveforms may be represented as given by Equation (7.3.15), in which the signal wave­
forms are viewed as two orthogonal carrier signals, cos 2:rrfet and sin 2:rrfet, modulated
by the information bits. However, the carrier-phase modulation signal waveforms are
constrained to have equal energy [s, which implies that the signal points in the ge­
ometric representation of the signal waveforms lie on a circle of radius -Jt;. If we
remove the constant energy restriction, we can construct signal waveforms that are not
constrained to fall on a circle.

The simplest way to construct such signals is to impress separate information bits
on each of the quadrature carriers, cos 2:rrfct and sin2:rrfet. This type of digital mod­
ulation is called quadrature amplitude modulation (QAM). We may view this method
of information transmission as a form of quadrature-carrier multiplexing, previously
described in Section 3.2.6. .

The transmitted signal waveforms have the form

um(t) = A l1legT(t) cos2:rrfet + AmsgT(t) sin2:rrfet, In = 1,2, ... , M (7.3.20)

where {Ame } and {Ams } are the sets of amplitude levels that are obtained by mapping
k-bit sequences into signal amplitudes. For example, Figure 7.21 illustrates a I6-QAM
signal constellation that is obtained by amplitude modulating each quadrature carrier by
M = 4 PAM. In general, rectangular signal constellations result when two quadrature
carriers are each modulated by PAM.

More generally, QAM may be viewed as a form of combined digital amplitude
and digital-phase modulation. Thus, the transmitted QAM signal waveforms may be

(7.3.16)
Ame=cos2nmIM, m=O,I, ,M-I

A ms =sin2nmIM, m=O,I, ,M-l

Thus, a phase-modulated signal may be viewed as two quadrature carriers with ampli­
tudes gT (t) Ame and gT (t )Ams as shown in Figure 7.19, which depend on the transmitted

phase in each signal interval.
It follows from Equation (7.3.15) that digital phase-modulated signals can be rep-

resented geometrically as two-dimensional vectors with components ..;t;cos 2:rr m1M,
and.f[; sin2nmlM, i.e.,

Sm = (.jl;cos2nm/M, ..jl; sin 2nm/M) (7.3.17)

Note that the orthogonal basis functions are 1/rl (t) = IfgT (t) cos 2nfe t , and

1/r2(t) = -fligTCt) sin2nfct· Signal-~ointconstellations f~r ~ ~ 2,~, 8 are ~llus­
trated in Figure 7.20. We observe that bmary-phase modulation IS Identical to bmary

PAM.
The mapping or assignment ofk information bits into the M = 2k possible phas~s

may be done in a number of ways. The preferred assignment is to use Gray encoding, In

which adjacent phases differ by one binary digit as illustrated in Figure 7.20. Because

where
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Figure 7.23 (a) Rectangular signal-space constellations for QAM. (b, c) Examples
of combined PAM-PSK signal-space constellations.
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It is clear that the geometric signal representation of the signals given by Equa­
tions (7.3.20) and (7.3.21) is in terms of two-dimensional signal vectors of the form

Sm = (,ff; Amc,,ff; A ms ), m = 1,2, ... , M (7.3.22)

Examples of signal space constellations for QAM are shown in Figure 7.23.

(7.3.21)

Chapter 7

Transmitted
QAM
signal

+ 1----.;...

cos 2'Tffct

Balanced
modulator

Balanced
modulator
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..
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.. ..
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Transmitting
filter
gTCt)

Transmitting
filter
gT(t)

Figure 7.21 M = 16-QAM signal
constellation.
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Figure 7.22 Functional block diagram of modulator for QAM.

Umn(t) = Amgr(t) cos(2rrfct + en), m = 1,2, , Ml
n = 1,2, , M2

Serial to
parallel

converter

Binary
data

expressed as

If Ml = 2k , and M2 = 2kZ, the combined amplitude- and phase-modulation method
results in the simultaneous transmission ofk1 + k2 =log2 M1M2 binary digits occurring
at a symbol rate Rb/(kl + k2). Figure 7.22 illustrates the functional block diagram of
a QAM modulator.
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The average transmitted energy for these signal constellations is simply the sum
of the average energies on each of the quadrature carriers. For rectangular signal
constellations, as shown in Figure 7.23(a), the average energy/symbol is given by
Eav = -k ~;:1 IISi 11

2.The Euclidean distance between any pair of signal points is
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(7.3.23)
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(7.4.1)

Figure 7.24 Two sets of M = 4 orthogonal signal waveforms.

7.4 MULTIDIMENSIONAL SIGNAL WAVEFORMS

In the previous section, we observed that a number of signal waveforms, say M = 2k ,

can be constructed in two dimensions. By transmitting anyone of these M signal wave­
forms in a given interval of time, we convey k bits of information. In this section, we
consider the design of a set of M = 2k signal waveforms having more than two dimen­
sions. We will show in Section 7.6.6 the advantages of using such multidimensional
signal waveforms to transmit information.

We begin by constructing M signal waveforms that are mutually orthogonal,
where each waveform has dimension N = M.

7.4.1 Orthogonal Signal Waveforms

First, we consider the construction of baseband orthogonal signals and, then, discuss
the design of bandpass signals.

Baseband Signals. Orthogonal signal waveforms at baseband can be con­
structed in a variety of ways. Figure 7.24 illustrates two sets of M = 4 orthogonal
signal waveforms. We observe that the signal waveforms siCt), i = 1,2,3,4 com­
pletely overlap over the interval (0, T), while the signal waveforms s;(t), i = 1,2,3,4
are nonoverlapping in time. These are just two examples of a set of M = 4 orthogonal
signal waveforms. In general, if we begin with a set of K baseband signal waveforms,
we can use the Gram-Schmidt procedure to construct M ::; K mutually orthogonal
signal waveforms. The M signal waveforms are simply the orthonormal signal wave­
forms o/i Ct), i = 1, 2, ... , M, obtained from the Gram-Schmidt procedure. For exam­
ple, a set of M = 2k overlapping orthogonal signal waveforms can be constructed from
Hadamard sequences, also called Walsh-Hadamard sequences (see Problem 7.31).

When the M orthogonal signal waveforms are nonoverlapping in time, the digital
information that is transmitted is conveyed by the time interval in which the signal pulse
occupies. This type of signaling is usually called pulse position modulation (pPM). In
this case, the M baseband signal waveforms may be expressed as

sm(t) = AgT(t - (m -1)T1M), m = 1,2, ..,., M

(m -1)TIM::;t ::;mT1M

where gT (t) is a signal pulse of duration TIM and of arbitrary shape.
Although each signal waveform in a set of M orthogonal signal waveforms may

be designed to have different energy, it is desirable for practical reasons that all M
signal waveforms have the same energy. For example, in the case of M PPM signals

S4 (t)

A f- r-- .- r-

T

0

-A - - '-- '--

<a)

2A

o
(b)

3T/4 T
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(7.4.6)

(7.4.7)

Multidimensional Signal Waveforms

Bandpass Signals. Bandpass orthogonal signals can be constructed from a
set of baseband orthogonal signals waveforms sm(t), m = 1,2, ... , M, by simply
multiplying the baseband orthogonal signal waveforms by the carrier cos 2n: fet. Hence,
the M bandpass signals constructed in this manner are

um(t) = sm(t) cos2n:fet, m = 1,2, ... , M

09~T

Section 7.4

ru; (um(t) = VT cos(2n:fet + 2n:m/:::'ft) , m = 0,1, ... , M -1, °9::5 T 7.4.8)

where the double frequency term is zero on a cycle-by-cycle when the carrier frequency
fe is large compared to the bandwidth of the baseband signals.

M -ary PPM signals achieve orthogonality in the time domain by means of no­
overlapping pulses. As an altemative, we can construct a set of M carrier-modulated
signals which achieve orthogonality in the frequency domain. This type of modulation
is generally called carrier-frequency modulation. The simplest form is frequency-shift
keying, which is described next. Other types of carrier-frequency modulation are de­
scribed in Chapter 10.

The energy in each of the bandpass signal waveforms is one-half of the energy of the
corresponding baseband signal waveforms. To demonstrate the orthogonality of the
bandpass signal waveforms, we have

IT
um(t)un(t)dt = faT Sm(t)S,,(t)cos22n:fetdt

11T
' 11T

= - Sm (t)Sn (t) dt + - Sm (t)s" (t) cos 4rr fet dt
2 0 2 0

=0

Frequency-Shift Keying (FSK). The simplest form of frequency modulation
is binary frequency-shift keying. In binary FSK we employ two different frequencies,
say f1 and f2 = fl + /:::,f, to transmit a binary information sequence. The choice
of frequency separation /:::'f = h - fl is considered below. Thus, the two signal
waveforms may be expressed as

V
2Cb

UI(t) = -cos 2n:f1t, O::5t::::Tb
Tb

V
2Cb

U2(t) = T; cos 2n:ht, 0::5 t ::5 Tb

where Cb is the signal energy/bit and Tb is the duration of the bit interval.
More generally, M-ary FSK may be used to transmit a block of k =

log2 M bits/signal waveform. In this case, the M signal waveforms may be expressed
as

Chapter 7Digital Transmission through Gaussian Noise Channel

Figure 7.25 Orthogonal signals for
M=N=3.

SM = (0,0, D, ... ,.,ft;)

Clearly, these vectors are orthogonal; i.e., Si' Sj. =. 0. when! # j. It is also interesting
to note that the M signal vectors are mutually eqUldistant; I.e.,

dmn = Vllsm - Sn 11 2 =.j2{;, for all m =1= n (7.4.5)

Hence, the minimum distance between signal points is .jU;. Figure 7.25 shows an

example of M = 3 orthogonal signals.

(nonoverlapping signal pulses of duration T / M), all signal waveforms have the same

amplitude A and, hence,

T lmT/Mr s;,(t)dt=A2 g}(t-(m-1)T/M)dt
io (m-l)T/M

I
T/ M

= A2 0 g}(t) dt = cs , all m (7.4.2)

The geometric representation of PPM signal waveforms is relatively simple. We

define the M basis functions as

{
.kg (t-(m-1)T/M), (m-1)T/M~t~mTIM

tm(t) = (7.4.3)
0, otherwise

for m = 1,2, ... , M. Hence, M-ary PPM signal waveforms are represented geometri­

cally by the M -dimensional vectors.

SI = (.,ft;, 0, 0, ,0)

S2 = (0, .,ft;, 0, ,0) (7.4.4)
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By substituting for Um (t) and Un (t) in Equation (7.4.9), we obtain

365

(7.4.11)

(7.4.12)5M/2 = (0, 0, 0, ... , .y'£;)

5H.+l = (-.y'£;, 0, 0, ... , 0)
2

Multidimensional Signal Waveforms

M-ary orthogonal FSK waveforms have a geometric representation as M, M­
dimensional orthogonal vectors, given as

51 = (.y'£;, 0, 0, ,0)

52 = (O,.y'£;, 0, ,0)

Section 7.4

8M = (0,0,0, ... , -.y'£;)

Figure 7.15 illustrates the signal constellation for M = 4 biorthogonal signals. We
observe that this signal constellation is identical to the signal constellation for quadrature
(four phase) phase-shift keying.

Bandpass Signals. Given a set of M baseband biorthogonal signals wave­
forms {smCt)}, a corresponding set of M bandpass signals {um(t)} is obtained by

5M = (O,O, ... ,O,.y'£;)

where the basisfunction~ areVrm (t) = ..J21T cos 2:rr(fe+mi:lf)t. The distance between
pairs of signal vectors is d =..[JI; for all m, n, which is also minimum distance among
the M signals.

7.4..2 Biorthogonal Signal Waveforms

As in the case of orthogonal signals, biorthogonal signals can be constructed for trans­
mission through baseband channels and passband channels.

Baseband Signals. We have already described the construction of M = 4
biorthogonal signals in two dimensions using the signal waveforms in Figure 7.12. In
general, a set of M biorthogonal signals can be constructed from a set of M12 orthog­
onal signals Si(t), i = 1, 2, ... , MI2 and their negatives -StCt), i = 1, 2, .,. , M12. As
we shall observe in Section 7.6.10, the channel bandwidth required to transmit the
information sequence by use of biorthogonal signals is just one-half of that required to
transmit M orthogonal signals. For this reason, biorthogonal signals are preferred in
some applications over orthogonal signals.

The geometric representation of M -ary biorthogonal signals {sm (t), 1 :::: m ::::
M 12, -Sm (t), M 12 + 1 :::: m :::: M} is straightforward. We begin with M12 orthogonal
vectors in N = M 12 dimensions and then append their negatives. For example, if the
M/2 orthogonal waveforms are PPM signals, the M biorthogonal vectors are given as

51 = (.y'£;, 0, 0, ,0)

52 = (0, .y'£;, 0, ,0)

(7.4.9)

(7.4.10)

Chapter 7Digital Transmission through Gaussian Noise Channel

1 rT 2£
Ymn = Es)o -f cos (2:rrfet + 2:rrmi:lft) cos(2:rrfet + 2:rrni:lft) dt

1 faT 1 faT= _ cos 2:rr(m - n)l::.ft dt + - cos[4:rrfet + 2:rr(m + n)l::.ft] dt
ToT 0

sin2:rr(m - n)l::.fT

2:rr(m - n)i:lfT

Figure 7.26 Crosscorrelation coefficient
as a function of frequency separation for
FSK signals.

where the second integral vanishes when fe » 11T. A plot of Ymn as a function of the
frequency separation I::.f is given in Figure 7.26.'We observe fl.1a~ the signal waveforms
are orthogonal when i:lf is a multiple of 1/2T. Hence, the :tIll1l1mum frequency sepa­
ration between successive frequencies for orthogonality is 1/2T. We also note that the
minimum value of the correlation coefficient is Ymn = - 0.217, which occurs at the

frequency separations I::.f = 0.715IT.

where Es =kEb is the energy/symbol, T = kTb is the symbol interval and I::.f is the
frequency separation between successive frequencies; Le., I::.f = fm - fm-l, where
fm=fe +ml::.f· .

Note that the M FSK waveforms have equal energy Es• The frequency separation
I::.f determines the degree to which we can discrinlinate among the M pos~ible ~ans­

mitred signals. As a measure of the similarity (or dissimilarity) between a parr of SIgnal
waveforms, we define the correlation coefficients Ymn as
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code words. Given M code words, we can construct M signal waveforms by mapping
a code bit Cmj = 1 into a pulse gT (t) of duration TIN and a code bit Cmj = 0 into the

negative pulse -gT(t).

Example 7.4.1
Given the code words

construct a set of M = 4 signal waveforms, as described above, using a rectangular pulse

gT(t).
Solution As indicated above, a code bit 1 is mapped into the rectangular pulse gT (t)
of duration T15, and a code bit 0 is mapped into the rectangular pulse -gT(t). Thus,
we construct the four waveforms shown in Figure 7.28 that correspond to the four code

words.

Digital Transmission through Gaussian Noise Channel 367

(7.4.19)

(7.4.21)

E; = IIs~1I2 = IIsm - 811 2

= (1- ~) Es

Cm =(Cm l,Cm2, .•. ,CmN), m=1,2, ... ,M

Multidimensional Signal WaveformsSection 7.4

from each orthogonal vector is to translate the origin of the M orthogonal signals to
the point 8 and to minimize the energy in the signal set (s~}.

If the energy per signal for the orthogonal signals is Es = II Sm 11 2, then the energy
for the simplex signals is

The distance between any two signal points is not changed by the translation of the
origin; i.e., the distance between signal points remains at d = .j2t;. Finally, as in­
dicated above, the M simplex signals are correlated. The crosscorrelation coefficient
(normalized crosscorrelation) between the mth and nth signals is

where Cmj = 0 or 1 for all m and j. N is called the block length, or dimension, of the

8' . 8'

Ymn = IIs:III1~1I
-11M 1

(I-11M) = - M -1 (7.4.20)

Hence, all the signals have the same pair-wise correlation. Figure 7.27 illustrates a set
of M = 4 simplex signals.

Finally, we mention that by modulating the carrier signal cos 2]( fet by a set of M
baseband simplex signal waveforms we obtain a set of M bandpass signal waveforms
that satisfy the properties of the baseband simplex signals.

7.4.4 Binary-Coded Signal Waveforms

Signal waveforms for transmitting digital information may also be constructed from a
set of M binary code words of the form

Chapter 7

()Sz t

A r---

T

-A

Cl = [1 1 1 1 0]

Cz = [1 1 0 0 1]

C3 = [1 0 1 0 1]

C4 = [0 1 0 1 0]

T

TI5 2TI5 3TI5

A~------'"

Si (t)

-A
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Figure 7.28 A set of M =4 signal waveforms of dimension N =5 constructed

from the four code words in Example 7.4.1.
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Figure 7.27 Signal constellation for
M = 4 simplex signals.



code words. Given M code words, we can construct M signal waveforms by mapping
a code bit Cmj = I into a pulse gr (t) of duration TIN and a code bit Cmj = 0 into the
negative pulse -gT(t).

Example 7.4.1
Given the code words

construct a set of M = 4 signal waveforms, as described above, using a rectangular pulse
gT(t).

Solution AB indicated above, a code bit 1 is mapped into the rectangular pulse gT (t)
of duration T14, and a code bit 0 is mapped into the rectangular pulse -gT(t). Thus,
we construct the four waveforms shown in Figure 7.28 that correspond to the four code
words.

-/
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(7.4.22)

(7.4.23)

(7.4.25)

Figure 7.29 Signal-space diagrams for
signals generated from binary codes.

d =2v£slN

N=2

52 0

8m = (Sml, Sm2,··., SmN), m = 1,2, ... , M

Cm =(Cml,Cm2, ... ,CmN), m=1,2, ... ,M

Multidimensional Signal WaveformsSection 7.4

Let us consider the geometric representation of a set of M signal waveforms
generated from a set of M binary words of the form

where Cmj = 0 or 1 for all m and j. The M signal waveforms are of dimension Nand
are represented geometrically in vector form as

where Smj = ±.Jes1N for all m and j.
In general, there are 2N possible signals that can be constructed from the 2N

possible binary code words. The M code words are a subset of the 2N possible binary
codewords. We also observe that the 2N possible signal points correspond to the vertices
of an N-dimensional hypercube ~ith its center at the Origin. Figure 7.29 illustrates the
signal points in N = 2 and N = 3 dimensions.

The M signals constructed in this manner have equal energy £s. The crosscorre­
, lation coefficient between any pair of signals depends on how we select the M signals
from the2N possible signals. This topic is treated in Chapter 9. It is apparent that any
adjacent signal points have a crosscorrelation coefficient of (see Problem 7.2)

N-2
y =~ (7.4.24)

and a corresponding Euclidean distance

T

Chapter 7
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-A
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T

-A

Cl = [1 1 1 1 0]

Cz = [1 1 0 0 1]

C3 = [1 0 1 0 1]

C4 = [0 1 0 1 0]

T

T
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Figure 7.28 A set of M = 4 signal waveforms of dimension N = 5 constructed
from the four code words in Example 7.4.1.
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Figure 7.30 Model for received signal passed through an AWGN channel.

Noise
net)
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(7.5.2)

(7.5.3)

(7.5.4)

rN

I 0----+­

I

Sample
aU = T

To detector

r= Sm +n

rk=Smk+nk, k=1,2, ... ,N

Figure 7.31 Correlation-type demodulator.

Optimum Receiver for Digitally Modulated Signals

Received
signal

ret)

Section 7.5

:rre expanded into a series of linearly weighted orthonormal basis functions {1{!n (t)}. It

IS assumed that the N basis functions {1{!n (t)} span the signal space, so that every one of

the possible transmitted signals of the set {sm (t), 1 ::; m ::; M} can be represented as a

weighted linear combination of {1/rn (t)}. In the case of the noise, the functions {1/rn (t)}

do not span the noise space. However, we show below that the noise terms that fall

outside the signal space are irrelevant to the .detection of the signal.

Suppose the received signal ret) is passed through a parallel bank of N cross

correlators which basically compute the projection of r(t) onto the N basis functions

{1{!n (t)}, as illustrated in Figure 7.31. Thus, we have

iTr(t)1{!k(t) dt = foT [Sm(t) + n(t)]1/rk(t) dt

where

Smk= iT sm (t)1{!k(t)dt, k= 1,2, ... ,N

nk = foT n(t)1/rk(t) dt, k = 1, 2, " ., N

Equation (7.5.2) is equivalent to

(7.5.1)

Chapter 7

Channel

ret) = sm(t) + net), 09::; T

Digital Transmission through Gaussian Noise Channel

Transmitted
signal +__-+{ Received signal

s",(t) +../}----1--?-r(t) = sn,(t) + net)
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Let us consider a digital communication system that transmits digital information by

use of anyone of the M-ary signal waveforms described in the preceding sections.

Thus, the input sequence to the modulator is subdivided into k-bit blocks or symbols

and each of the M = 2k symbols is associated with a corresponding baseband signal

waveform from the set {sm (t), m = 1,2, ... , M}. Each signal waveform is transmitted

within the symbol (signaling) interval or time slot of duration T. To be specific, we

consider the transmission of information over the interval 0 ::; t ::; T.

The channel is assumed to corrupt the signal by the addition of white Gaussian

noise as shown in Figure 7.30. Thus, the received signal in the interval 0::; t ::; T may

be expressed as

where net) denotes the sample function of the additive white Gaussian noise (AWGN)

process with power-spectral density Sn (f) = t!f W1Hz. Based on the observation of

r (t) over the signal interval, we wish to design a receiver that is optimum in the sense

that it minimizes the probability of making an error.

It is convenient to subdivide the receiver into two parts, the signal demodulator and

the detector. The function of the signal demodulator is to convert the received waveform

ret) into an N-dimensional vector r = (rl, r2,"" rN), where N is the dimension of

the transmitted signal waveforms. The function of the detector is to decide which of

the M possible signal waveforms was transmitted based on observation of the vector r.

Two realizations of the signal demodulator are described in Sections 7.5.1 and

7.5.2. One is based on the use of signal correlators. The second is based on the use of

matched filters. The optimum detector that follows the signal demodulator is designed

to minimize the probability of error.

7.5.1 Correlation-Type Demodulator

In this section, we describe acorrelation-type demodulator that decomposes the received

signal and the noise into N -dimensional vectors. In other words, the signal and the noise

7.5 OPTIMUM RECEIVER FOR DIGITALLY MODULATED SIGNALS

iN ADDITIVE WHITE GAUSSIAN NOISE



The term nl(t), defined as

N 1 _ ""N i.
fen) = II f(ni) = e LJ;~I NO

. (n No)N/2
.=1

-.

-.'

373

(7.5.9)

(7.5.11)

(7.5.15)

N-

fer ISm) =II f(rk ISmk) , m = 1,2, ... ,11:1
k=1

Optimum Receiver for Digitally Modulated SignalsSection 7.5

where

and equal variance

From the previous development, it follows that the correlator outputs {rd condi­
tioned on the mth signal being transmitted are Gaussian random variables with mean

f(rk ISmk) = ..j:No e-(rk-s",d/No, k = 1,2, ... , N (7.5.12)

By substituting Equation (7.5.12) into Equation (7.5.11), we obtain thejoint conditional
PDFs as

fer ISm) = (n N~)N/2 exp [- t(rk - smdlNo] (7.5.13)
k=1

1 2
(nNo)N/2exp[-:-IIr-smIIINo], m=1,2, ... ,11:1 (7.5.14)

As a final point, we wish to show that the correlator outputs (r1, r2, ... , rN) are
sufficient statistics for reaching a decision on which of the 11:1 signals was transmitted;
i.e., that no additional relevant information can be extracted from the remaining noise
process nl(t). Indeed, nl(t) is uncorrelated with the N correlator outputs {rk}; i.e.,

E[n'(t)rk] = E[nl(t)]Smk + E[nl(t)nkJ

=E[n'(t)nk]

ar
2 = a; = No/2 (7.5.10)

Since the noise components {nk} are uncorrelated Gaussian random variables, they are
also statistically independent. As a consequence, the correlator outputs {rk} conditioned
on the mth signal being transmitted are statistically independent Gaussian variables.
Hence, the conditional probability density functions (PDFs) of the random variables
(r1' r2, ... , rN) = r are simply

Since n'(t) and {rk} are Gaussian and uncorrelated, they are also statistically

(7.5.7)
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where the signal is now represented by the vector 8m with components Smk, k == ;
1,2, ... , N. Their values depend on which of the 11:1 signals was transmitted. The
components of n, i.e., {nk), are random variables that arise from the presence of the -__
additive noise.

In fact, we can express the received signal r (t) in the interval 0 :::: t :::: T as

N N

r(t) = I:SmkVrk(t)+ I:nkVrk(t) +nl(t)
k=l k=1
N

= I:rk1frk(t) +nl(t) (7.5.5)
k=1

E[nkl = faT E[n (t)]Vrk (t) dt = 0

for all k. Their covariances are

E[nknmJ = fa
T1T

E[n(t)n(T:)]Vrk(t)Vrm(T:) dt dT:

= rT
( No o(t _ T:)Vrk (t)Vrm (T:) dt dT:

io io 2

N°1T= - Vrk(t)Vrm(t) dt
2 0 . .

No
= 2"0mk (7.5.8)

whereomk = 1 when m = k and zero otherwise. Therefore, the N noise components
{nk} are zero-mean, uncorrelated Gaussian random variables with a common variance
a; = No/2, and

N

nl(t) = net) - I:nkVrk(t) (7.5.6)
k=1

is a zero-mean, Gaussian noise process that represents the difference between the
original noise process n (t) and that part which corresponds to the projection ofn(t) onto
the basis functions {Vrk(t)}. We will show below that nl(t) is irrelevant to the decision
as to which signal was transmitted. Consequently, the decision may be based entirely
on the corre-Iator output signal and noise components rk = Smk +nb k = 1, 2, ... , N.

Since the signals {sm(t)} are deterministic, the signal components are determin­
istic. The noise components {nd are Gaussian. Their mean values are



independent. Consequently, n'(t) does not contain any information that is. reIevan: to
the decision as to which signal waveform was transmitted. All the relevant informatIon
is contained in the correlator outputs {rk}. Hence, n'(t) may be ignored.

Example 7.5.1 .
Consider an M-ary PAM signal set in which the basic pulse shape gT (t! IS re~tangular as
shown in Figure 7.32. The additive noise is a zero-mean white .Gausslan nOlse process.
Determine the basis function 1{r(t) and the output of the correlatIon-type demodulator.

Solution The energy in the rectangular pulse is

r =Sm +n
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(7.5.16)

(7.5.17)
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where {Vrk(t)} are the N basis functions andhk(t) = 0 outside of the interval 0 ::::: t ::::: T.
The outputs of these filters are

Yk(t) = l r(r)hk(t - r) dr

= lr(r)1/!k(T-t+r)dr, k=1,2, ... ,N

Now, if we sample the outputs of the filters at t = T, we obtain

where the noise term E[n] = 0, and

a; = E {~ l T1T

n(t)n(T) dt dT }

= .!.IT

( E[n(t)n(T)] dt dr
T 0)0

= No ((o(t-T)dtdT = No
2T )0)0 2

The probability density function for the sampled output is

fer ISm) = _l_e-(r-sm)'/No
.jrr No

7.5.2 Matched-Filter-Type Demodulator

Instead of using a bank of N correlators to generate the variables {rk}, we may use a
bank of N linear filters. To be specific, let us suppose that the impulse responses of the
N filters are

Yk(T) = iT r(r)1/!k(r) dr = Tko k = 1,2, ... , N (7.5.18)

Hence, the sampled outputs of the filters at time t = T are exactly the same as the set
of values {rk} obtained from the N linear correlators.

A filter whose impulse response h(t) = seT - t), where set) is assumed to be
confined to the time interval 0::::: t ::::: T, is called the matchedfilter to the signal set).
An example of a signal and its matched filter are shown in Figure 7.33. The response
of h(t) = seT - t) to the signal set) is

yet) = i l

s(r)s(T - t + r) dr

which is basically the time-autocorrelation function of the signal set). Figure 7.34
illustrates yet) for the triangular signal pulse shown in Figure 7.33. We note that the
autocorrelation function y(t) is an even function of t which attains a peak at t = T.

Chapter 7

Figure 7.32 Sigualpulse for Example
7.5.1.To

gT(I)

A f--.-----,

Digital Transmission through Gaussian Noise Chan'nel

1 (
r = ...ff)o [sm(t) + net)] dt

= .Jr [I T
sm1{r(t)dt+ l T

n(t)dt]

1
1{r(t) = r;;;;;:;gT(t)

...;A2T

{

I
- O<t<T

= .jf' - - .

0, otherwise

The output of the correlation-type demodulator is

r = l T
r(t)1{r(t) dt = .Jr l T

rCt) dt

It is interesting to note that the co.rrelator becomes a simple integrator when 1{r (t)

is rectangular. If we substitute for r(t), we obtain

£g =l T
g}(t) dt = l T

A
2

dt = A
2
T

Since the PAM signal set has a dimension N = 1, there is only one basis function 1{r(t).
This is obtained from Equation (7.2.11), and given as

374
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(7.5.21)

(7.5.23)
[J[ h(r)s(T - r)dr]2

!ff J[ h2(T - t) dt

I~
I.

Sample Figure 7.35 Matched filter-type
at t = T demodulator.

(.S) Y;(T)
N 0 = E [y;(T)]

[J[ s(r)h(T - r)dr]2

!ff JOT h2(T - t) dt
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Received
signal

ret)
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where Ys (T) repres~nts the signal component and Yn (T) represents the noise compo­
nent. The problem IS to select the filter impulse response that maximizes the output
SNR defined as

The denominator in Equation (7.5.21) is simply the variance of the noise term at
the output of the filter. Let us evaluate E [y;(T)]. We have

E [y;(T)] =l~T E[n(r)n(t)]h(T - r)h(T - t) dt dr

= ~o l~T 8(t - r)h(T - r)h(T - t) dt dr

No (
= 2 Jo h

2
(T - t) dt (7.5.22)

~ote tI:at the variance depends on the power-spectral density of the noise and the energy
III the nnpulse response h(t).

By substituting for ys(T) and E[y;(T)] into Equation (7.5.21), we obtain the
expression for the output SNR as

Chapter 7 ..

Figure 7.34 Matched filter output is the
autocorrelation function of set).2T

OTt

(b) Impulse response Figure 7.33 Signal set) and filter
of filter matched to set) matched to set).

T

h(t) = seT - t)

A
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yet) = J~ SeT) s(T-t + T) dT

yeT)

o

o T

(a) Signal s(t)

In the case ofthe demodulator described above, the N matched filters are matched .
to the basis functions {Yk(t)}. Figure 7.35 illustrates the matched filter-type demodu­
lator that generates the observed variables {rd.

Properties of the Matched Filter. A matched filter has some interesting
properties. Let us prove the most important property, which may be stated as follows:
If a signal set) is corrupted by AWGN, the filter with impulse response matched to set)
maximizes the output SNR.

To prove this property, let us assume that the received signal r (t) consists of the
signal sct) and AWGN net) which has zero-mean and power-spectral density Sn (j) =
No/2 WfHz. Suppose the signal rCt) is passed through a filter with impulse response
h(t),O ::: t ::: T, and its output is sampled at time t = T. The filter response to
signal and noise components is

yet) = [ r(r)h(t - r) dr

= [S(r)h Ct - r) dr + [n(r)h(t - r) dr

At the sampling instant t = T, the signal and noise components are

yeT) = faT s(r)h(T - r) dr + faT n(r)h(T - r) dr

= ys(T) +Yn(T)

376
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(7.5.28)

(7.5.29)

(7.5.30)

(7.5.31)

(7.5.32)

t, 1<) ~ { ,fi,
T

O<t<-
- - 2

0, otherwise

,y,«) ~ { Jf.
T
2:s. t :s. T

(7.5.33)

0, otherwise

1
00 T

ys(T) = IS(f)12 df = r S2(t) dt = £s
-00 Jo
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Pn =1: So(f)df

100 N, N, 100

= ~IH(f)12df = --..E. IS(f)12df = £sNo
-00 2 2 -00 2

The output SNR is simply the ratio of the signal power Ps , given by

Ps = y';(T)

Section 7.5

By sampling the output of the matched filter at t = T, we obtain

So(f) = IH(f)12No/2

Hence, the total noise power at the output of the matched filter is

to the noise power Pn. Hence,

where the last step follows from Parseval's relation.

The noise of the output of the matched filter has a power-spectral density

(S) _ Ps E; 2£s

N 0 Pn = EsNo/2 = No

which agrees with the result given by Equation (7.5.25).

Example 7.5.2

Co~sider ~e M.. = ~ biorthogonal signals constructed from the binary PPM signals and

therr n~ga~ves ill FIgure 7.12(b), for transmitting info=ation over an AWGN channel.

Th~ nOIse :s assurne~ to. have zero mean and power-spectral density No/2. Determine the

baSIS functJons for this SIgnal set, the impulse response of the matched-filter demodulators

~d the output wavefo=s of the matched filter demodulators when the transmitted signal

IS Sl (t).

Solu~ion The M = 4 biorthogonal signals have dimension N = 2. Hence, two basis

functIOns are needed to represent the signals. From Figure 7.12(b), we choose 1f.r1 (I) and

1f.r2(t) as

(7.5.25)
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Since the denominator of the SNR depends on the energy in h(t), the maximum output

SNR over h(t) is obtained by maximizing the numerator of (S IN)o sUbject to the

constraint that the denominator is held constant. The maximization of the numerator

is most easily performed by use of the Cauchy-Schwarz (see Problem 2.9) inequality,

which states, in general, that if gl (t) and g2(t) are finite energy signals, then

[1: gl(t)g2(t) dtf :::: 1: gf(t) dt1: gi(t)dt (7.5.24)

where equality holds when gl (t) = Cg2(t) for any arbitrary constant C. If we set

gl (t) = h(t) and g2(t) = seT -t), it is clear that the (SI N)o is maximized when h(t) =
Cs(T - t); i.e., h(t) is matched to the signal set). The scale factor C2 drops out of the

expression for (SIN)o since it appears in both the numerator and the denominator.

The output (maximum) SNR obtained with the matched filter is

(~) 0 = ~o IT

s2(t)dt

2£s
=

No

Note that the output SNR from the matched filter depends on the energy of the waveform

sct) but not on the detailed characteristics of set). This is another interesting property

of the matched filter.

Frequency Domain Interpretation of the Matched Filter. The matched

filter has an interesting frequency domain interpretation. Since h(t) =s(T - t), the

Fourier transform of this relationship is

HU) = loT seT - t)e-j2rrjt dt

= [loT s(r)ej2rrjT dr] e-j2rrjT

= S*U)e- j2rrjT (7.5.26)

We observe that the matched filter has a frequency response which is the complex

conjugate of the transmitted signal spectrum multiplied by the phase factor e-j2
1I:

j T,

which represents the sampling delay of T. In other words, \H (f) I = IS(f) I, so that the

magnitude response of the matched filter is identical to the transmitted signal spectrum.

On the other hand, the phase of H(f) is the negative of the phase of S(f).

Now, if the signal sct), with spectrum S(f), is passed through the matched filter,

the filter output has a spectrum Y (j) = IS(j)\2e- j2rrj T. Hence, the output waveform is

ys(t) =1: Y(j)ej2rrjt df

=1: IS(f)\2e- j2rrj Tej2rrjt df (7.5.27)



These wavefonns ate illustrated in Figure 7.36(a). The impulse responses of the two
matched filters ate

-.
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(7.5.35)

(7.5.36)

(7.5.37)
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t = Tis

where nj := Yln(T) and nz = Y2n(T) ate the noise components at the outputs of the
matched filters, given by

Ykn(T) = lTn(t)Vrk(t)dt, k=1,2

Cleatly, E[nk] = E[Ykn (T)] = O. Their variance is

a; = E [yin(T)] = l~T E[n(t)n(r)]Vrk(t)Vrk(r)dtdr
. 0 0

= No l~T oCt - r)Vrk (r)Vrk (t) dt dr
2 0 0

= No I T
'Vri (t) dt = No

2 0 2

Observe that the (51 N)o for the first matched filter is

Section 7.5

which agrees with our previous result. Also note that the four possible outputs of the
two matched filters, corresponding to the four possible transmitted signals ate (Tj, T2) =
(fl; +nj, nz), (nj, fl; +n2), (-fl; +nj,nz), and (n], -fl; +nz)·

7.5.3 The Optimum Detector

In Sections 7.5.1 and 7.5.2, we demonstrated that, for a signal transmitted over an
AWGN channel, either a correlation-type demodulator or a matched-filter-type demod­
ulator produces the vector r = (T], T2, ..• , TN) which contains all the relevant informa­
tion in the received signal waveform. In this section, we describe the optimum decision
rue based on the observation vector r. For this development, we assume that there is
no memory in signals transmitted in successive signal intervals.

As it is seen from Equation (7.5.4), the received vector r is the sum of two
vectors, Sm, the vector equivalent of the transmitted signal, and n, the noise vector. The
vector 8m is a point in the signal constellation and the vector n is an N-dimensional
random vector with ii.d. components each being a Gaussian random variable with
mean 0 and variance No/2. Since components of the noise are independent and have
the same mean and variance, the distribution of the noise vector n in the N-dimensional
space has spherical symmetry. When Sm is transmitted, the received vector r, which
represents the transmitted signal Sm plus the spherically symmetric noise n, can be
represented by a spherical cloud centered at Sm' The density of this cloud is higher at
the center and becomes less as we depart from Sm; i.e., these points become less likely
to be received. The variance of the noise No/2 determines the density of the noise

(7.5.34)

T
-<t<T2 - -

otherwise
{If:hi (t) = Vrl (T - t) =.

0,

{
If, 0 < t < T12

hz(t) = Vrz(T-t) = T' --

0, otherwise

and ate illustrated in Figure 7.36(b).
If Sj (t) is transmitted, the (noise-free) responses of the two matched filters ate

shown in Figure 7.36(c). Smce YI (t) and yz(t) ate sampled at t = T, we observe that

Yls(T) = jtii and Y2s(T) = O. Note that A ZTI2 = Es, the signal ener~y. ~ence,
the received vector fanned from the two matched filter outputs at the samphng mstant
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'IW) "'z(l)

4 4
0 I 0 T T 2I

2 2 2

Ca)

hjCI)= "'ICT-I) hZCI)= "'zCT-I)

4 4
0 T T 3T 0 T T 3T

"2 2 2 2
(b)

YlsCI) yz,,(t)

i¥
0 I 0 I T 2I

2 2 2

Ce)

Figure 7.36 Basis functions and matched filter responses for Example 7.5.2.



which we abbreviate as P (sm Ir). The decision criterion is based on selecting the signal
corresponding to the maximum of the set of posterior probabilities {P(sm Ir)}. At the
end of this section we show that this criterion maximizes the probability of a correct
decision and, hence, minimizes the probability of e,rror. Intuitively this decision is
the best possible decision that minimizes the error probability. It is clear that in the
absence of any received information r, the best decision is to choose the signal Sm
that has the highest prior probability P(sm)' After receiving the information r, ~e
prior probabilities P (sm) are substituted with the posterior (condi~onal~ ~roba?ili~es

P (sm Ir) and the receiver chooses Sm that maximizes P(sm Ir). ThIS decIsIOn cntenon
is called the maximum a posteriori probability (MAP) criterion.
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(7.5.38)

(7.5.39)

(7.5.40)

(7.5.41)

M

fer) =L fer ISm)P(Sm)
m=!

P(sm Ir) = fer ISm)P(Sm)
fer)

N

D(r, sm) = L(rk - Smk)2
k=l
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Using Bayes rule, the posterior probabilities may be expressed as

Section 7.5

where f (r Ism) is the conditional PDF ofthe observed vector given Sm, and P (Sm) is the
a priori probability of the mth signal being transmitted. The denominator of Equation
(7.5.38) may be expressed as

From Equations (7.5.38) and (7.5.39) we observe that the computation of the
posterior probabilities P (sm Ir) requires knowledge of the a priori probabilities P(sm)
and the conditional PDFs f (r Ism) for m = 1, 2, ... , M.

Some simplification occurs in the MAP criterion when the M signals are equally
probable a priori; i.e., P (sm) = 11M for all M. Furthermore, we note that the denomi­
nator in Equation (7.5.38) is independent of which signal is transmitted. Consequently,
the decision rule based on finding the signal that maximizes P(sm Ir) is equivalent to
finding the signal that maximizes fer ISm).

The conditional PDF f (r Ism) or any monotonic function of it is usually called the
likelihoodfunction. The decision criterion based on the maximum of f (r Ism) over the
M signals is called the maximum-likelihood (ML) criterion. We observe that a detector
based on the MAP criterion and one that is based on the l'v1L criterion make the same
decisions as long as the a priori probabilities P(sm) are all equal; Le., the signals {sm}
are equiprobable.

In the case of an AWGN channel, the likelihood function fer ISm) is given by
Equation (7.5.11). To simplify the computations, we may work with the naturalloga­
rithm of f (r Ism), which is a monotonic function. Thus,

Themaximum onn f (r Ism) over Sm is equivalent to finding the signal Sm that minimizes
the Euclidean distance

We call D(r, sm) m = 1,2, ... , M, the distance metrics. Hence, for the AWGN
channel, the decision rule based on the l'v1L criterion reduces to finding the signal Sm
that is closest in distance to the received signal vector r. We will refer to this decision
rule as minimum distance detection.

Chapter 7

m = 1,2, ... , M

Figure 7.37 Signal constellation, noise
cloud and received vector for N = 3 and
M = 4. It is assumed that SI is
transmitted.

r

P(signal Sm was transmitted Ir)
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'1'2

----}~=:.---------'I'1

cloud around the center signal Sm. For low No/2, the cloud is quite centered around
8m and its density (representing the probability) reduces sharply as the distance from
the center is increased. For high No/2, the cloud is spread and larger distances have
a higher probability compared with the low No/2 case. The signal constel1ation, the
noise cloud, and the received vector are shown in Figure 7.37 for the case of N = 3
andM = 4.

We wish to design a signal detector that makes a decision on the transmitted signal
in each signal interval based on the observation of the vector r in each interval, such that
the probability of a correct decision is maximized. With this goal in mind, we consider
a decision rule based on the computation of the posterior probabilities defined as

382

'1'3



Note that selecting the signal Sm that minimizes D'(r, sm) is equivalent to selecting the
signal that maximizes the metric C(r, sm) = -D'(r, sm); i.e.,

C(r, sm) = 2r· Sm -lIsmll2 (7.5.44)

The term Irl2 is common to all decision metrics and, hence, it may be ignored in the
computations of the metrics. The result is a set of modified distance metrics

D'(r, sm) = -2r· Sm + IIsml12 (7.5.43)
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(7.5.46)

(7.5.47)

(7.5.48)

(7.5.49)

(7.5.50)

(7.5.51)

(7.5.52)

(7.5.53)

(7.5.54)
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Solution The received signal vector (one dimensional) for binary PAM is

r = ±,JE;+ Yn(T)

where Yn (T) is a ~~ro-mean Gaussian random variable with varian~e a} = No /2. Conse­
quently, the conditional PDFs fer /sm) for the two signals are

1fer /sJ) = __e-(r-.J[b)'/2u;
&an

fer IS2) = __1_e -(r+,fE,)'/2o';

&an

Then the metrics PM(r, 5J) and PM(r, 52) defined by Equation (7.5.45) are

= _p_e-(r-.J[b)'/2U,;

&an

l-pPM(r, S2) = __e-(r+,fE,)'/2u;
&an

IfPM(r, 51) > PM(r, S2), we select S1 as the transmitted signal; otherwise, we select S2.
This decision rule may be expressed as

But

PM(r,5J) ;
=-::----'- < 1
PM(r, S2) '2

PM(r, SI) = _p_e(r+./E;Y-Cr-.J[b)'1/2u,;
PM(r, S2) 1~ p

so that Equation (7.5.51) may be expressed as

(r + -/Ebf - (r - .fEb)2; 1 _ P
-_':"""":"--::-::-=---"':--=-=-<In--

2a; '2 p
or, equivalently,
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$, 2
,JE;r ~ an In 1- P == No In 1- P

,,2 P 4 p

This is the final form for the optimum detector. It computes the correlation metric
C(r, Sl) = r.fEb and compares it with the threshold (No/4) In(l _ p)/p.

It is interesting to note that in the case ofunequal prior probabilities, it is necessary
to know not only the values of the prior probabilities but also the value of the power­
spectral density No, in order to compute the threshold. When p = 1/2, the threshold
is zero, and knowledge of No is not required by the detector.

We conclude this section with the proof that the decision rule based on the
maximum-likelihood criterionminimizes theprobability oferror when the M signals are
equally probable a priori. Let us denote by Rm the region in the N-dimensional space for

(7.5.42)

(7.5.45)
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= IIrll 2 - 2r· Sm + IIsm 11
2

, m = 1,2, ... , M
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PM(r, sm) = fer Ism)P(sm)

The following example illustrates this computation for binary PAM signals.

Example 7.5.3 .
Consider the case of binary PAM signals in which the two possible signal points are
SI = -S2 = .fEb, where £b is the energy per bit. The prior probabilities are P(SI) = P
and P (S2) = I - p. Determine the metrics for the optimum MAP detector when the
transmitted signal is corrupted with AWGN.
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Another interpretation of the optimum decision rule based on the ML criterion is
obtained by expanding the distance metrics in Equation (7.5.41) as

N N N

D(r, Sni) = 2':>; - 2 2':>nSmn + LS;m
n=1 n=1 n=1

The term r . Sm represents the projection of the received signal vector onto each of
the M possible transmitted signal vectors. The value of each of these .projections !s
a measure of the correlation between the received vector and the mth SIgnal. For thIS
reason, we call C(r, sm), m = 1,2, ... , M, the correlation metrics for deciding which
of the M signals was transmitted. Finally, the terms II Sm 11 2=&"" m = 1, 2, ... , M, may
be viewed as bias terms that serve as compensation for signal sets that have unequal
energies, such as PAM. If all signals have the' same energy, IIsm 11 2 may also be ignored
in the computation ofthe correlation metrics C (r, sm) and the distance metrics D(r, sm)
or D'(r, sm). .

In summary, we have demonstrated that the optimum ML detector computes a
setof M distances D(r, sm) or D'(r, sm) and selects the signal corresponding to the
smallest (distance) metric. Equivalently, the optimum ML detector computes a set
of M correlation metrics C(r, sm) and selects the signal corresponding to the largest
correlation metric.

The above development for the optimum detector treated the important case in
which all signals are equally probable. In this case, the MAP criterion is equival~nt to
the ML criterion. However, when the signals are not equally probable, the optimum
MAP detector bases its decision on the probabilities P(sm Ir), m = 1,2, ... , M, given
by Equation (7.5.38) or, equivalently, on the posterior probability metrics,



where R;" is the complement of Rm . The average probability of error is
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Figure 7.38 Demodulation of bandpass
digital PAM signal.

To detector
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By crosscorrelating the received signal ret) with the basis function 1jr(t), we have

faT r(t)1jJ(t)dt=:Am[fiT
g}(t)cos22Jrfetdt+ iT n(t)1jJ(t)dt

=:AmJEg/2+n (7.5.60)

where n represents the additive noise component at the output of the correlator.
An identical result is obtained if a matched filter is used in place of the correlator

to demodulate the received signal.

Carrier-Phase Recovery. In the above development, we assumed that the func­
tion 1jJ(t) is perfectly synchronized with the signal component of ret) in both time and
carrier phase, as shown in Figure 7.38 for PAM. In practice, however, these ideal condi­
tions do not hold. First of all, the propagation delay encountered in transmitting a signal
through the channel results in a carrier-phase offset in the received signal. Second, the
oscillator that generates the carrier signal cos 2Jrfet at the receiver, is not generally
phase locked to the oscillator used at the transmitter. Practical oscillators usually drift
in frequency and phase. Consequently, the demodulation of the bandpass PAM signal,
as illustrated in Figure 7.38, is ideal, but it is not practical. In a practical system, it is nec­
essary to generate a phase-coherent carrier at the receiver to perform the demodulation
of the received signal.

In general, the received signal has a carrier phase offset cp. To estimate cp from
the received signal requires that we observe ret) over many signal intervals. Because
the message signal, when observed over many signal intervals, is zero mean due to the
randomness in the signal amplitude values {Am}, the transmitted DSB-SC amplitude­
modulated signal has zero-average power at the carrier frequency fe. Consequently, it
is not possible to estimate the carrier phase directly from r (t). However, if we square
ret), we generate a frequency component at f =2fe that has nonzero-average power.
This component can be filtered out by a narrowband filter tuned to 2fe, which can be

Received
signal
r(t)

(7.5.56)

(7.5.55)

(7.5.57)

(7.5.58)

(7.5.59)
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net) = ne(t)cos2Jrfet - ns (t)sin2Jrfe t

Um(t) =: AmgT(t)cos2Jrfet, 0::::: t::::: T

ret) =: AmgT(t)cos2Jrfct +n(t), 0::::: t::::: T
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The received signal may be expressed as

Pee) is a minimum when the points that are to be included in each particular region
Rm are those for which P(sm Ir) exceeds all other posterior probabilities.

M

pee) =: 1- L 1 F(sm lr)f(r)dr
m=l Rill

which we decide that signal Sm (t) was transmitted when the vector r = (rl, r2, ... , rN)
is received. The probability of a decision error given that Sm (t) was transmitted is

We note that pee) is minimized by selecting the signal Sm if fer Ism) is larger than
fer ISkY for all m =1= k.

Similarly for the MAP criterion, when the M signals are not equally probable,
the average probability of en-or is
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7.5.4 Demodulation and Detection of Carrier-Amplitude
Modulated Signals

The demodulation of a bandpass digital PAM signal may be accomplished by means
of correlation or matched filtering. However, as we will observe from the following
development, the presence of the carrier introduces an additional complication in the
demodulation.

The transmitted PAM signal in a signaling interval has the form

where net) is a bandpass noise process, which is represented as
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1 (
ne = ..;IE; Jo gT (t)ne(t) dt

1 (
ns = ..;IE; Jo ns(t)gT(t) dt
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r = Sm +n

= (v£'cos2rcmjM +nc , IE: sin2rcmjM +ns)
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signal
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(b)

Figure 7.40 Bandpass demodulation of digital PAM signal via (a) bandpass
correlation and (b) bandpass matched filtering.
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~

where, by definition

where net) is the additive bandpass Gaussian noise and Ame and Ams are the information­
bearing signal components that are related to the transmitted carrier phase by Equa­
tion (7.3.16).

The rec~ived si~al may be correlated with 'frJ (t) = IfgT(t) cos 2rcfet and
1/!2(t) = -IfgT(t) sm2rcfet . The outputs of the two correlators yield the two noise-
corrupted SIgnal components, which may be expressed as .

Output

(7.5.62)
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Baseband

correlator or
matched ftlter
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Received
signal

ret)

Figure 7.39 Demodulation of carrier-amplitude modulated signal. .

---,--------i~ X

r(t) = um(t) + n(t)

= [AmegT(t) + ne(t)] cos2rcfet - [AmsgT(t) + ns(t)J sin2rcfet

m = 0, 2, ... ,M - 1 (7.5.63)

7.5.5 Demodulation and Detection of Carrier-Phase
Modulated Signals

The received bandpass signal from an AWGN channel in a signaling interval 0 ::: t ::: T,
may be expressed as
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used to drive a PLL, as described in Section 5.2. A functional block diagram of the
receiver that employs a PLL for estimating the carrier phase is shown in Figure 7.39.

The Costas loop, also described in Section 5.2, is an alternative method for esti­
mating the carrier phase from the received signal ret). Recall from our discussion in
Section 5.2 that the PLL and the Costas loop yield phase estimates that are comparable
in quality in the presence of additive channel noise..

As an alternative to performing the correlation or matched filtering at baseband
as shown in Figure 7.39, we may perform crosscorrelation or matched filtering either
at bandpass or at some convenient intermediate frequency. In particular, a bandpass
correlator may be used to multiply the received signal r (t) by the amplitude-modulated
carrier gT(t) cos(2rcfet + ¢), where cos(2rcfet + ¢) is the output of the PLL. The
product signal is integrated over the signaling interval T, the output of the integrator is
sampled at t = T, and the sample is passed to the detector. If a matched filter instead
of a correlator is used, the filter impulse response is gT(T - t) cos[2rcfe(T - t) - ¢].
The functional block diagrams for these demodulators are shown in Figure 7040.

Optimum Detector. In the case of a perfect (noise-free) carrier-phase esti­
mate, </J = ¢, and the input to the detector is the signal plus noise term given by
Equation (7.5.60). As in the case of baseband PAM, for equiprobable messages, the
optimum detector bases its decision on the distance metrics

D(r, sm) = (r - sm)2, m = 1,2, ... , M (7.5.61)

or, equivalently, on the correlation metrics

C(r, sm) = 2rsm - s~
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(7.5.72)
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Figure 7.41 Demodulator for PSK signals.
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When the digital infonnation is transmitted via M -phase modulation of a carrier,

a PLL may be used to estimate the carrier-phase offset. For M = 2, the squaring PLL

and the Costas loop described in Section 5.2 are directly applicable.

For M > 2, the received signal may first be raised to the Mth power as shown in

Figure 7.42. Thus, if the received signal ret) has the form

and we pass ret) through an Mth power device, the output signal will contain harmonics

of the carrier fc. The harmonic that we wish to select is cos(2n Mfet + M if;) for

driving the PLL. We note that

Thus, the infonnation is removed from the Mth harmonic. The bandpass filter tuned

to .t1~e frequency Mfe produces the d~sir.ed frequency comyonent cos(2n Mfct + M if;)

dnvmg the PLL. The VCO output IS sm(2n Mfet + M ¢), so this output is divided

~ frequency by M to yield sin (2n fet +¢) and phase-shifted by n 12 to yield cos (2n fe t+
if;). The two quadrature-carrier components are then passed to the demodulator.

(7.5.67)

(7.5.68)

(7.5.69)

(7.5.70)
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C(r,sm)=r·sm, m=O,l, ... ,M-I
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E [n~] = E [n;] = _1_ rTrT
gT(t)gT(r)E (neCt)ne(r)] dt dr

2Eg )0)0

No faT 2= - gT(t)dt
lEg a

= No/2 (7.5.66)

and select the signal vector that results in the largest correlation.

Because all signals have equal energy, an equivalent detector metric for digital­

phase modulation is to compute the phase of the received signal vector r = (rj, r2)

Because the quadrature noise components neCt) and Il s (t) are zero mean and

uncorrelated [see the argument following Equation (4.6.4)]; it follows that E[ne] =

E[ns ] = 0 and E[nens] = O.
The variance of the noise components is

The optimum detector projects the received signal vector onto each of the M

possible transmitted signal vectors {8m } and selects the vector corresponding to the

largest projection; i.e., we compute the correlation metrics

and select the signal from the set {Sm} whose phase is closest to Be. In the follow­

ing section, we evaluate the probability of error based on the phase metric given by

Equation (7.5.68).

ret) = AmegT(t) cos(2nfe t + if;) - AmsgTCt) sin (2nfet + if;) + net)

where if; is the carrier-phase offset. This phase offset must be estimated at the receiver,

and the phase estimate must be used in the demodulation of the received signal. Hence,

the received signal must be correlated with the two orthogonal basis functions.

where¢ is the estimate of the carrier phase, as shown in Figure 7.41 for the case in

which gT (t) is a rectangular pulse.

Carrier-Phase Estimation. As previously indicated, in any carrier-modulation

system, the oscillators employed at the transmitter and the receiver are not phase-locked,

, in general. As a consequence, the received signal will be of the fonn
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obtain

-ret) cos(2Jrfet + ¢) sin em = -~[gT(t) cos 8m+ ne(t)] sinBm cos(¢ - ¢)

1 ~
+ 2'[gT(t) sinBm + ns(t)] sinBm sin(¢ - ¢)

+ double-frequency terms

-ret) sin(2Jrfet +¢)cosBm = ~[gT(t) cosBm +ne(t)] cosBm sin(¢ - ¢)
2

1 ~
+ 2'[gT(t) sin em +ns(t)] cosBm cos(¢ - ¢)

+ double-frequency terms

(7.5.73)
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where PL is the loop SNR and SML is the M-phase power loss. SML has been evaluated
by Lindsey and Simon (1973) for M = 4 and M = 8..

Another method for extracting a carrier-phase estimate ¢ from the received signal
for M-ary-phase modulation is the decision-feedback PLL (DFPLL), which is shown
in Figure 7.43. The received signal is demodulated by using two quadrature p~ase­

locked carriers to yield r = (rl' rz) at the sampling instants. The phase estimate 9 r =
tan-I rz/rl is computed at the detector and quantized to the nearest of the M possible
transmittedphases, which we denote as em. The two outputs ofthe quadrature multipliers
are delayed by one symbol interval T and multiplied by cos em and -sinem • Thus, we

We should note that the quadrature-phase carrier components generated as de­
scribed above contain phase ambiguities of multiples of 2Jr/ M that result from mul­
tiplying the carrier phase ¢ by M. Because M¢(mod 2Jr) is less than 2Jr, dividing
the resulting angle by M yields a phase estiIDate of I¢I < 2Jr/ M, when, in fact, the
true carrier phase may exceed this estimate by multiples of 2Jr/ M, i.e., by 2Jrk/ M, for
k = 1, 2, ... , M - 1. Such phase ambiguities can be overcome by differentially encod­
ing the data at the transmitter and differentially decoding at the detector, as described
below.

Just as in the case of the squaring PLL, the Mth power PLL operates in the
presence of noise that has been enhanced by the Mth power-law device. The variance
-of the phase error in the PLL resulting from the additive noise may be expressed in the
simple form



This error signal is the input to the loop filter that provides the control signal for the
VCO.

We observe that the two quadrature noise components in Equation (7.5.74) ap-
pear as additive terms and no term involves a product of two noise components as
in the output of the Mth power-law device. Consequently, there is no power loss re­
sulting from nonlinear operations on the received signal in the DFPLL. The M -phase
decision-feedback tracking loop also has a phase ambiguities of 2:rr k/ M , necessitating
the need for differentially encoding the information sequence prior to transmission and
differentially decoding the received sequence at the detector to recover the information.
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Figure 7.44 Block diagram of DPSK demodulator.
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phases of the detected signal over two consecutive intervals to extract the transmitted
information. Thus, phase ambiguities of 2:rr/ M are rendered irrelevant.

A di~erentially encoded p~ase-modulated signal also allows another type of
demodulatlOn that does not requITe the estimation of the carrier phase. Instead, the
phase of t~e rec~ived signal in any given signaling interval is compared to the phase
of the receIved sIgnal.from ~e preceding signaling interval. To elaborate, suppose that
we d~modulate th~ dIffer~ntlally encoded signal by multiplying r (t) with cos 2:rr fet
~d sm 2n: fet and mtegratmg the two products over the interval T. At the kth signaling
mterval, the demodulator output is

where ~k is the phase angle of the transmitted signal at the kth signaling interval, ¢ is
the carner phase, and nk = nke + j'nks is the noise vector. Similarly, the received signal
vector at the output of the demodulator in the preceding signaling interval is

The decision variable for the phase detector is the phase difference between these two
complex numbers. Equivalently, we can project rk onto rk-l and use the phase of the
resulting complex number; i.e.,

r"r;_1 = Cs ejWk-Ok-l) + j£;ejCOk-¢)nt_l + j£; e-jCo'.I-¢)nk + nkn~_l (7.5.77)

which, in the absence of noise, yields the phase difference ek - ek-l. Thus, the mean
valu~ ofrkr:_l is independent ofthe carrierphase. Differentially encoded PSK signaling
that IS demodulated and detected as described above is called differential PSK (DPSK).

. The demodulation and detection of DSPK using matched filters is illustrated in
FIgure 7.44. If the pulse gT (t) is rectangular, the matched filters may be replaced by
integrators, which are also called integrate-and-dump filters.

(7.5.74)
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. ~ 1 ~
e(t) = gT(t) sm(¢ - ¢) + -ne(t) sin(¢ ~ ¢ - em)

2
1 A+ 2ns(t) cos(¢ - ¢ - em)

+ double-frequency terms
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Differential-Phase Modulation and Demodulation. The performance of
ideal, coherent phase modulation/demodulation is closely attained in communication
systems that transmit a carrier signal along with the information signal. The carrier­
signal component, usually referred to as a pilot s.ignal, may be filtered from the received
signal and used to perform phase-coherent demodulation. However, when no separate
carrier signal is transmitted, the receiver must estimate the carrier phase from the
received signal. As indicated in the Section 7.5.5, the phase at the output of a PLL has
ambiguities of multiples of 2](/ M, necessitating the need to differentially encode the
data prior to modulation. This differential encoding allows us to decode the received
data at the detector in the presence of the phase ambiguities.

In differential encoding, the information is conveyed by phase shifts between any
two successive signal iIltervals. For example, in binary-phase modulation the informa­
tion bit 1 may be transmitted by shifting the phase of the carrier by 180° relative to
the previous carrier phase, while the information bit 0 is transmitted by a zero-phase
shift relative to the phase in the preceding signaling interval. In four-phase modula­
tion, the relative phase shifts between successive intervals are 0°, 90°, 180°, and 270°,
corresponding to the information bits 00,01,11,10, respectively. The generalization
of differential encoding for M > 4 is straightforward. The phase-modulated signals
resulting from this encoding process are called differentially encoded. The encoding is
performed by a relatively simple logic circuit preceding the modulator.

Demodulation and detection of the differentially encoded phase-modulated signal
may be performed as described in the preceding section using the output of a PLL to
perform the demodulation. The received signal phase 9 r = tan-1 r2/ rl a! the detector
is mapped into one of the M possible transmitted signal phases {em} that is closest to
9

r
• Following the detector is a relatively simple phase comparator that compares the

These two signals are added together to generate the error signal

394
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(7.5.80)

(7.5.82)

(7.5.81)

ret) = AmgT(t) cos(2rrfct + en + ¢) + net),

Optimum Receiver for Digitally Modu lated SignalsSection 7.5

to the detector.
The input to the detector consists of the two sampled components rl, r2, where

(Es :; £g/2)

rl = A me.;£;cos(¢ - ¢) + Ams.;£;sin(¢ - $) + nesin ¢ - ns cos if;
r2 = Ame.;£;sin(¢ - $) +A ms .;£;cos(¢ - if;) + ne sin $ - ns cos ¢

We observe that the effect of an imperfect phase estimate is twofold. First, the desired
signal components in rl and r2 are reduced in amplitude by the factor cos(¢J - ¢). In
tum, this reduces the SNR by the factor cos2 (¢ - $). Second, there is a leakage of
the quadrature signal components into the desired signal. This signal leakage, which
is scaled by sin(¢J - $), causes a significant performance degradation unless ¢ - ¢
is very small, This point serves to emphasize ithe importance of having an accurate
carrier-phase estimate in order to demodulate the QAM signal.

The optimum detector computes the distance metrics

D(r,sm) = Ilr - smll 2
, Tn = 1,2, ... , M

where en is the phase of the signal point and ¢ is the carrier phase. This signal is
demodulated by crosscorrelating ret) with '/11 (t) and 1/12 (t), which are given byEquation

and selects the signal corresponding to the smallest value of D(r, sm). If a correlation
metric is used in place of a distance metric, it is important to recognize that correlation
memcs must employ bias correction because the QAM signals are not equal energy
signals.

Carrier-Phase Estimation. As we have indicated above, the demodulation
of a QAM signal requires a carrier that is phase-Tocked to the phase of the received
carrier signal. Carrier-phase estimation for QAM can be accomplished in a number of
different ways depending on the signal-point constellation and the phase relationships
of the various signal points.

For example, let us consider the 8-point QAM signal constellation shown in
Figure 7.17(b). The signalpoints in this constella1ion have one oftwo possible amplitude
values and eight possible phases. The phases are spaced 45° apart. This phase symmetry
allows us to use a PLL driven by the output of an 8th power-law device that generates a
carrier component at 8fe, where fe is the carrier frequency. Thus, the method illustrated
in Figure 7.42 may be used in general for any QAM signal constellation that contains
signal points with phases that are multiples of some phase angle e, where Le = 3600

for some integer L. . .
Another method for extracting a carrier-phase estimate if; from the received M-ary

QAM signal is the DFPLL previously described in Section 7.5.5. The basic idea in the
DFPLL is to estimate the phase of the QAM signal in each signal interval and remove
the phase modulation from the carrier. The DFPLL may be used with any QAM signal,
irrespective of the phase relationships among the signal points.To be specific, let us
express the received QAM signal in the form

(7.5.79)
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Figure 7.45 Demodulation and detection of QAM signals.
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7.5.6 Demodulation and Detection of Quadrature Amplitude
Modulated Signals

Let us assume that a carrier-phase offset is introduced in the transmission of the signal
through the channel. In addition, the received signal is corrupted by additive Gaussial1
noise. Hence, ret) may be expressed as

ret) = AmegT(t) cos(2rrfet + ¢J) + AmsgT(t) sin(2rrfet + ¢J) + net) . (7.5.78)

Suppose that an estimate ¢ of the carrier phase is available at the demodulator.
Then, the received signal may be correlated with the two basis functions

If A

1h(t) = -gT(t) cos(2rrfet +¢J)
Eg

If A

¥r2(t) = -gT(t) sin(2rrfe t + ¢J)
£g

as illustrated in Figure 7.45, and the outputs of the correlators are sampled and passed
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perform phase-coherent demodulation and detection. As an alternative method, the
carrier phases may be ignored in the demodulation and detection of the FSK signals.
The latter is called noncoherent demodulation and detection.

In phase-coherent demodulation, the received signal ret) is correlated with each
of the M possible received signals cos(2rrfet+2rrm6.ft+¢m), m = 0,1, ... , M -1,
where {;Pm} are the carrier phase estimates. A block diagram illustrating this type of
demodulation is shown in Figure 7.46. It is interesting to note that when;Pm '# ¢m, m =
0, 1, ... , M -1 (imperfectphase estimates), the frequency separation required for signal
orthogonality at the demodulator is 1::,.f = liT (see Problem 7.51), which is twice the
minimum separation for orthogonality when ¢ = ;po

The requirement for estimating M carrier phases makes coherent demodulation
of FSK signals extremely complex and impractical, especially when the number of
signals is large. Therefore, we shall not consider coherent detection ofFSK signals.

Instead, we now consider a method for demodulation and detection that does not
require knowledge of the carrier phases. The demodulation may be accomplished as

(7.5.83)

(7.5.84)

(7.5.85)
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(7.5.79). The sampled values at the output of the correlators are

rl = Am.jE; cos (en + ¢ - $) +necos(en + ¢ - ¢) - ns sin(en + ¢ - ¢)

r2 = Am.jE; sin(en + ¢ - $) +ne sin(en + ¢ - $) - ns sin(en + ¢ - ¢)

Now suppose that the detector, based on rj and r2, has made the correct decision
on the transmitted signal point. Then we mUltiply rl by - sin en and r2 by cos en. Thus,
we obtain

398

- rj sin en =- Am -If; cos (en + ¢ - ¢) sin en +noise component

= Am A[-sinen cos en cos(¢ - ¢) + sin2 en sin(¢ - $)]

+ noise component

r2 cos en = Am -If; sin(en + ¢ - ¢) cos en + noise component

= Am A[sin en cos en cos(¢ -;p) + cos2 en sin(¢ - ¢)]

+ noise component

By adding these two terms we obtain an error signal e(t), given as

e(t) = r2 cos en - rj sin en
= Am A sin(¢ - ¢) + noise components

This error signal is now passed to the loop filter that drives the VCO. Thus, only
the phase of the QAM signal is used in obtaining an estimate of the carrier phase.
Consequently, the general block diagram for the DFPLL, given in Figure 7.43, also
applies to carrier-phase estimation for an M-ary QAM signal.

As in the case of digitally phase-modulated signals, the method described above
for carrier-phase recovery results inphase ambiguities. Tbis problem is solved generally
by differential encoding of the data sequence at the input to the modulator.

7.5.7 Demodulation and Detection
of Frequency-Modulated Signals

Let us assume that the FSK signals are transmitted through an additive wbite Gaussian
noise channel. Furthermore, we assume that each signal is delayed in the transmis­
sion through the channel. Consequently, the filtered received signal at the input to the
demodulator may be expressed as

~ 86ret) = VT cos(2rrfet + 2Jrm1::,.ft + ¢m) + net) (7.5. )

where ¢m denotes the phase shift of the mth signal (due to the transmission delay) and
net) represents the additive bandpass noise, which may be expressed as

net) = ne(t) cos 2rrfet - ns (t) sin 2rrfet (7.5.87)

The demodulation and detection of the M FSK signals may be accomplished by
one of two methods. One approach is to estimate the M carrier-phase shifts {¢m} and



where nke and nks denote the Gaussian noise components in the sampled outputs.
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(7.5.92)
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We observe that when k = m, the sampled values to the detector are

Tme =.Jt:; cos ¢m + nme

or, equivalently,

P(s11 r) = fr(r ISr)P(S1)
fr(r)

P(s21 r) = fr(r Isz)P(sz)
fr(r)

and, hence, the optimum detection rule may be expressed as

Optimum Detector for Binary FSK. In binary orthogonal FSK, the two pos­
terior probabilities are

Tke = nke, Tks = nks, k:l In (7.5.90)

In the following development, we assume that b..f = lIT, so that the signals are or­
thogonal.

It is easily shown (see Problem 7.52) that the 2M noise samples {nke} and {nks}
are zero-mean, mutually uncorrelated Gaussian random variables with equal variance
(J'2 = No/2. Consequently, the joint PDF for Tme and Tms conditioned on <Pm is

and for m =1= k, we have

Tm8 = .Jt:;sin <Pm + nm8

Furthermore, we observe that when k :I m, the signal components in the samples Tke
and Tks will vanish, independent of the values of the phase shift <Pk. provided that the
frequency separation between successive frequencies is ,6.f = 1/T. In such a case, the
other 2(M - 1) correlator outputs consist of noise only; i.e.,

f, (Tk Tk) = _1_e-(r;,+ri,l/20'2
rk e, s .2Jr(J'2

Given the 2M observed random variables {Tkc, Tks, k = 1, 2, ... , M}, the optimum
detector selects the signal that corresponds to the maximum ofthe posteriorprobabilities

P[sm was transmitted Ir] == P(sm Ir), m = 1,2, ... , M (7.5.93)

where r is the 2M dimensional vector with elements {Tkc, TkSl k = 1, 2, ... , M}. Let us
derive the form for the optimum noncoherent detector for the case of binary FSK. The
generalization to M -ary FSK is straightforward.
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Figure 7.47 Demodulation of M -ary FSK signals for noncoherent detection.
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shown in Figure 7.47. In this case there are two correlators per sign~lwavefo~,or a ~otal
of 2M correlators, in general. The received signal is correlated WIth the baSlS functIOns

(quadrature carriers) VJcos (2n:fet + 2n:mb..ft) and .ftsin(2n:fet + 2n:mb..ft) for
m = 0, 1, ... , M - 1. The 2M outputs of the correlators are sampled at the end of the
.signal interval and the 2M samples are passed to the detector. Thus, if the mth signal
is transmitted, the 2M samples at the detector may be expressed as

v'[ [
sin 2n: (k - m)b..fT cos2n:(k - m)b..fT -1 . A-. ] +E cos ¢ - Sill't'm nke

Tke = s 2n:(k _ m)b..fT m 2n:(k'- m)b..fT

[

COS 2n:(k - m)b..fT - 1 sin2n:(k - m)b..fT , A-. ] +
~ ~¢+ m_ ~

Tks = V G-s . 2n:(k _ m)b..fT m 2n:(k - m)b..fT
(7.5.88)
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From (7.5.97)-(7.5.99), we obtain the likelihood ratio A(r) in the fonn

10 (J&s(rtc + rtJ/(
2
) ;. P(S2)

A(r) = <--
10 (JEs(ric + r'is)/a2) s, P(Sl)

Section 7.5

Thus, the optimum detector computes the two envelopes r1 = J Ttc + rts and r2 =

Jric + ris and the corresponding values of the Bessel function Io(J Esr?/( 2) and

Io( J &srV(2) to form the likelihood ratio. We observe that this computation requires

knowledge ofthe noise variance a 2 and the signal energy Es . The likelihood ratio is then
compared with the threshold P(S2)/ P(Sl) to determine which signal was transmitted.

A significant simplification in the implementation ofthe optimum detector occurs
when the two signals are equally probable. In such a case, the threshold becomes unity
and, due to the monotonicity ofthe Bessel function, the optimum detector rule simplifies
to

Thus, the optimum detector bases its decision on the two envelopes r1 = J Ttc + rts

and r2 = Jric + ris and, hence, it is called an envelope detector.
We observe that the computation of the envelopes of the received signal samples

at the output of the demodulator renders the carrier signal phases {cPm} irrelevant in the

(7.5.99)

(7.5.98)

(7.5.97)

(7.5.102)

(7.5.101)

(7.5.100)

Chapter7Digital Transmission through Gaussian Noise Channel

1 121r ,(J&s(r~c+ r~s))_ e~(rll1l;cos<Plll+rlll.ssin<PIIl)la d¢m = 10
2n a a 2

But

The ratio ofPDFs in the left-hand side ofEquation (7.5.97) is the likelihood ratio,
which we denote as

where 10 (x) is the modified Bessel function of order zero. This function is a monoton­
ically increasing function of its argument as illustrated in Figure 7.48. Io(x) has the
power series expansion

where fr", (rmc• rms I cPm) and frk(rkc, Tks). m ;f k, are given by Equations (7.5.91) and
(7.5.92), respectively. Thus, the carrier phases cP1 and cP2 are eliminated by simply

averaging fr,,(rmc •rms IcPm)'
The uniform PDF for rPm represents the most ignorance regarding the phases of

the carriers. This is called the leastfavoTable PDF for cPm. With h" (cPm) = 1/2n, 0 ~

¢m < 2n, substituted into the integrals given in Equation (7.5.99), we obtain

The right-hand side ofEquation (7.5.97) is the ratio ofthe two prior probabilities, which
takes the value of unity when the two signals are equally probable.

The PDFs fr(r ISl) and fr(r I52) in the likelihood ratio may be expressed as

r21r
fr(r ISl) = fr, (r2c. r2s))o frl (rlc•rls I(1)1) f.", ((1>1) dcP1

r21r
fr(r IS2) = frl (r1c. T1S))0 fr,(T2c. r2s IcP2)f¢2(cP2) dcP2

where r is the four-dimensional vector r = (TIc. TIs. T2c, T2s)' The relation in Equa­
tion (7.5.96) simplifies to the detection rule

fr(r ISl) ;. P(S2)
<-­

fr(r IS2) s, P (Sl)
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Thus, the unknown carrier phases of the received signals are rendered irrelevant to the
decision as to which signal was transmitted. When all the M signals are equally likely
to be transmitted, the optimum detector selects the signal corresponding to the largest
envelope (or squared envelope). In the case of nonequally probable transmitted signals,
the optimum detector must compute the M posterior probabilities in Equation (7.5.93)
and then select the signal corresponding to the largest posterior probability.
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(7.6.2)

(7.6.3)

Figure 7.50 Signal points for antipodal
signals.o

-,J£;, 0
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In this section, we evaluate the performance of the detector in terms of the probability
of error when the additive noise is white and Gaussian. First, we consider binary
modulation and, then, M-ary types of modulation.

7.6.1 Probability of Error for Binary Modulation

Let us consider binary PAM baseband signals, where the two signal waveforms are
Sl (t) = gT(t) and sz(t) = - gT(t), where gT(t) is an arbitrary pulse which is nonzero
in the interval 0 ::::: t ::::: Tb and zero elsewhere.

Since Sj(t) = - sz(t), these signals are said to be antipodal. The energy in the
pulse gT(t) is equal to the energy per bit Gb. As in Section 7.2, PAM signals are rep­
resented geometrically as one-dimensional vectors. Hence, for binary PAM, the signal
points are Sj = ..fCb and S2 = -..Jtb. Figure 7.50 illustrates the two sigual points.

Let us assume that the two signals are equally likely and that signal Sj (t) was
transmitted. Then, the received signal from the (matched filter or correlation-type)
demodulator is

Figure 7.51 Conditional PDP's of two signals.

r = Sl + n = .;l;+ n (7.6.1)

where n represents the additive Gaussian noise component which has zero mean and
variance a; =No/2. In this case, the decision rule based on the correlation metric given
by Equation (7.5.44) compares r with the threshold zero-. IfT > 0, the decision is made
in favor of Sj (t) and if r < 0, the decision is made that S2 (t) was transmitted. Clearly,
the two conditional PDFsof rare

1fer lSI) = __e-(r-..[tbJ'/No
..jrrNo

fer !sz) = _l_e-(r+..[tbJ'/No
..jrrNo

These two conditional PDFs are shown in Figure 7.51.

7.6 PROBABILITY OF ERROR FOR SIGNAL DETECTION
IN ADDITIVE WHITE GAUSSIAN NOISE

(7.5.105)

Decision

rm = / r;c + r;s' m = 1, 2, ... , M

Digital Transmission through Gaussian Noise Channel Chapter 7

r--~X

Figure 7.49 Demodulation and square-law detection of binary FSK signals.

t
Sample
1= T

Received
signal
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decision as to which signal was transmitted. Equivalently, the decision may be based .
on the computation of the squared envelopes rf and ri, in which case the detector is
called a square-law detector. Figure 7.49 shows the block diagram of the demodulator
and the square-law detector. . ..

The generalization of the optimum demodulator and detector to M -ary orthog­
onal FSK signals is straightforward. As illustrated in Figure 7.47, the output of the
optimum demodulator at the sampling instant consists of the 2M vector components
(ric, rls, rZc, r2s, ... , rMc, rMs). Then, the optimum noncoherent detector computes the
M envelopes as
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(7.6.13)

(7.6.14)
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Figure 7.52 Signal points for
orthogonal signals.
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Next, let us evaluate the errOr probability for binary orthogonal signals. Recall
the binary PPM is an example of binary orthogonal signaling. In this case, the signal
vectors SI and S2 are two-dimensional, as shown in Figure 7.52, and may be expressed,
according to Equation (7.3.8), as

where Eb denotes the energy for each of the waveforms. Note that the distance between
these signal points is d12 =~.

To evaluate the probability of error, let us a8sumethat SI was transmitted. Then,
the received vector at the output of the demodulator is

We can now substitute for r into the correlation metrics given by Equation (7.5.44)
to obtain C(r, SI) and C(r,82)' Then the probability of error is the probability that
C(r, S2) > qr, 81)' Thus,

Since nl and n2 are zero-mean, statistically independent Gaussian random variables,
each with variance No/2, the random variable x = n2 - n1 is zero mean Gaussian with
variance No. Hence,

(7.6.8)

(7.6.7)

(7.6.6)

(7.6.10)

(7.6.5)

(7.6.4)
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( fdr).
Pb = Q V2N;

This expression illustrates the dependence of the error pr~bability on the distance
between the two signal points. It can be shown that EquatlOn (7.6.10) can be used
for computing the error probability of any binary communication system with two

equiprobable messages.

We should observe two important characteristics of this performance measure.
First, we note that the probability oferror depends only on the ratio EbI No and not on any
other detailed characteristics of the signals and the noise. Second, we note that 2EblNo
is also the output SNR from the matched filter (and correlation-type) demodulator. The
ratio EblNo is usually called the signal-to-noise ratio (SNR), or SNRlbit.

We also observe that the probability of error may be expressed in terms of the
distance between the two signals SI and Sz. From Figure 7.50, we observe that the two
signals are separated by the clistance d12 = 2.)£;. By substituting Eb = df2/ 4 in (7.6.9)

we obtain

where Q(x) is the Q-function defined previously in Section 5.1. Similarly, if we as­
sume that S2(t) was transmitted, r = -.JEi, + n and the probability that r > 0 is

also Pee IS2) = Q(j¥i). Since the signals SI (t) and S2(t) are equally likely to be

transmitted, the average probability of error is

1 1
Pb = iP(e lSI) + iP(e IS2)

Given that SI (t) was transmitted, the probability of error is simply the probability

that r < 0; i.e.,

406



where E
g

is the energy of the basic signal pulse gT(t). The amplitude values may be

expressed as .
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(7.6.25)

1412106 8
8NR/bit,dB
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Figure 7.53 Probability of error for binary signals.
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P
av

= cav = (M2
- 1) Eg

T 3 T

..The average pr~b~bility of error for M -ary PAM can be determined from the
declSlon rule that maXllDlzes the correlation metrics given by Equation (7.5.44). Equiv­
ale~tly, the detector compares the demodulator output r with a set of M - 1 threshold
which are placed at ~e ~dpoints.of successive amplitude levels, as shown in Fi;~
ure 7.54. Thus, a declSlon IS made ill favor of the amplitude level that is closest to r.

. ~quivalently, we may characterize these signals in terms of their average power whichu . . ,

(7.6.24)

(7.6.23)

(7.6.22)

(7.6.21)

(7.6.20)

(7.6.19)

(7.6.18)

Chapter 7

M
Eg ", 2

= M L....- (2m - 1 -,- M)
",=1

Eg M(M2 - 1)

M 3

= (M2

; l)cg

Sm =~Am, rri = 1,2, ... , M

Am = (2m - 1 - M), m = 1, 2, ... , M

Digital Transmission through Gaussian Noise Channel

If we compare the probability of error for binary antipodal signals with that for
binary orthogonal signals, we find that orthogonal signals require a factor of two more
energy to achieve the same error probability as antipodal signals. Since 101og10 2 =
3 dB, we say that orthogonal signals are 3-dB poorer than antipodal signals. The
difference of 3 dB is simply due to the distance between the two signal points, which
is dt2 = 2Eb for orthogonal signals, whereas dt2 = 4Cb for antipodal signals.

The error probability versus 20 logloEb/ No for these two types of signals is shown
in Figure 7.53. As observed from this figure, at any given error probability, the Eb/ No
required for orthogonal signals is 3-dB more than that for antipodal signals.

7.6.2 Probability of Error for M-ary PAM

In this section, we derive the probability of error for M-ary PAM transmitted over an
AWGN channel. Recall that baseband M-ary PAM signals are represented geometri­

cally as M one-dimensional signal points with values

where the distance between adjacent signal points is 2'[£;.
As previously indicated in Section 7.2, the PAM signals have different energies,

denoted as {Em}' The average energy is

Due to symmetry, the same error probability is obtained when we assume that S2 is
transmitted. Consequently, the average error probability for binary orthogonal signals

is

408



The error probability in Equation (7.6.30) can also be expressed in tenus of the average

transmitted power. From Equation (7.6.25), we note that

411

(7.6.33)

(7.6.35)

(7.6.36)

6Eav )
(M2 - l)Na

P 2(M - 1) (
M== Q

M

Probability of Error for Signal DetectionSection 7.6

or, equivalently,

where Eav == .PavT is the average energy.

~ plottmg the probability of a symbol error for M-ary signals such as M

PAM, It IS customary to use the average SNRlbit as th b . -ary

and k == 10g2 M, Equation (7.6.33) may be expressede
as

aSlC parameter. Since T =kTb

r = Am VC'gI2+n

= Sm +n

PM = 2(M - 1) Q ( 6(log2 M)Ebav )

M (M2 - l)Na
(7.6.34)

where Cbav == Pav Tb is the average bit energy and C'b I AT l'S the SNR/b'

Figur 755'n . av [Va average It

.th 1t-. 1 ustrates the probabIlity ofa symbol error as a function ofl 0 log E I tv, .

;r binar;a:;:o::~:~~os~~a~~~~::rv~;?t :rrespond.s :0 the error ~~o;:bili~

~or every factor of two increase in M. For large M ~eS=~n~t~=?y ove~ 4 dB

mcrease M by a factor oftwo approaches 6 dB. ' 1t requITed to

Bandpass PAM Signals. In this case, the input to the detector, as shown m'

Equation (7.5.60), is

where the Gaussian random variable n has mean Ern] = 0 and variance

a,; = E[n2 ]

(TfT
== Ja)o E[n(t)n(r)]1f/(t)1f/(r) dt dr

tv, rT
== --f)o 1f/2(t) dt = ~o

error i~0I10wingthe developmentfor baseband PAM signals, the probability of a symbol

(7.6.27)

(7.6.28)

(7.6.30)

(7.6.26)

(7.6.31)

(7.6.29)

(7.6.32)
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6Pav T )
(M2 -l)No

3
Eg == -2--PavT

M -1

r == Sm +n == ji;Am + n

PM = M;; 1P (Ir ~ sml > [i;)
M - 1 2 100

-:c'IN

=~ -JnNo.ft;e °dx

= M - 1_2_100

e-:c'j2 dx

M 5 -J2&,INo

= 2(MM- 1) Q ( ) ~: )

2(M -l)Q (
PM==--M--
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s,-signal point
'fi - thresholds

Figure 7.54 Placement of thresholds at midpoints of successive amplitude levels.

Si

•
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The placing of the thresholds as shown in Figure 7.54, helps in evaluating the

probability of error. We note that if the mth amplitude level is transmitted, the demod­

ulator output is

where the noise variable n has zero mean and variance a: == No/2. On the basis that all

amplitude levels are equally likely a priori, the average probability of a symbol error is

simply the probability that the noise variable n exceeds in magnitude one-half of the

distance between levels. However, when either one of the two outside levels ±(M - 1)

is transmitted, an error can occur in one direction only. Thus, we have

By substituting for Eg in Equation (7.6.30), we obtain the average probability of a

symbol error for PAM in terms of the average power as



Then, we relate the average transmitted energy to Eg • We have

Eau = PauT
M

= I: Em
m=l
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(7.6.42)

(7.6.43)

(7.6.44)

(7.6.45)

(7.6.46)

(7.6.47)
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Hence,

(' = 6Pav T ( 641)
'-'g M2 _ 1 7..

Substitution of Equation (7.6.41) into Equation (7.6.36) yields the desired form for the
probability of error for M -ary PAM; i.e.,

P = 2(M - 1) ( 6PavT)
M M Q . (M2 - l)No

So = (.;l;, 0)

and the received signal vector has components

rl =..;r; +nc

7.6.3 Probability of Error for Phase-Coherent PSK Modulation

In this section, we shall evaluate the probability of error for M cary phase modulation
in AWGN with the optimum demodulator and detector. The optimum detector based
on the phase metric given by Equation (7.5.68) will be used in this computation. It is
assumed that a perfect estimate of the received carrier phase is available. Consequently,
the performance that we derive below is for ideal phase-coherent modulation.

Let us consider the case in which the transmitted signal phase is B = 0, corre­
sponding to the signal uoCt). Hence, the transmitted signal vector is

This is exactly the same result as the probability of a symbol error for M-ary
PAM transmission over a baseband AWGN channel.

Because nc and ns are jointly Gaussian random variables, it follows that rl and r2
are jointly Gaussian random variables with E[rrJ =.,f£;, E[rzJ =°and CJ~ = CJ'; =
No/2 = CJr

2
• Consequently,

The detector metric is the phase Br = tan-1 rz!rj. The PDF of Br is obtained by a
change in variables from (rl, r2) to

V = Vr? +ri
- r2

Br =tan-1 --::
rl

This change in variables yields the joint PDF

v ? fC 2Ive (v, Br) = --2 exp{-(v- + £s - 2y Esv cos Br)/2crr }
, r 2n:CJ

r
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(7.6.51)

(7.6.52)

(7.6.53)

(7.6.54)

(7.6.55)
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When M = 4, we have in effect two binary-phase modulation signals in phase quadra­
ture. With a perfect estimate of the carrier phase, there is no crosstalk or interference
between the signals on the two quadrature carriers and, hence, the bit error probability
is identical to that in Equation (7.6,51). On the other hand, the symbol error probability
for M = 4 is determined by noting that

In general, the integral of fe, (B) does not reduce to a simple form and must be evaluated
numerically, except for M = 2 and M =4.

Forbinary-phase modulation, the two signals uo(t) and Uj (t) are antipodal and,
hence, the error probability is

,,:here Pc is the probability ofa correct decision for the 2-bit symbol. The result in Equa­
tIOn. (7.6.52) follows from the statistical independence of the noise on the quadrature
earners. Therefore, the symbol error probability for M = 4 is

For M > 4, the symbol errorprobability PM is obtained by numerically integrating
Equation (7.6.50). Figure 7.57 illustrates this error probability as a function of the
SNRJbitfor M = 2,4,8, 16, and 32. The graphs clearly illustrate the penalty in SNRJbit
as M increases beyond M = 4. For example, at PM = 1O-5,the difference between
M =4andM =8is approximately 4 dB, and the difference betweenM =8 andM = 16
is approximately 5 dB. For large values of M, doubling the number of phases requires
an additional 6 dB/bit to achieve the same performance.

An approximation to the error probability for large values of M and for large SNR
may be obtained by first approximating fe, (0). For [slNo » 1 and ler I ::s rc12, fe, (Br)

is well approximated as

By substituting for fe, (Br ) in Equation (7.6.50) and performing the change in variable

(7.6.49)

(7.6.50)

(7.6.48)

Chapter7

j
tr/M

PM = 1 - fe, (B) de
-triM

fe, (ar ) = lcc fV,e,(V, Or)dv

= ~e-P' sin' e, (CC ve-(V-..;rp; cos8,?/2 dv
2rc Jo

Digital Transmission through Gaussian Noise Channel

Integration of fv.e)v, Br ) over the range of v yields fe, (Br ), i.e.,

where for convenience, we have defined the symbol SNR as Ps = [siNo· Figure 7.56'
illustrates fe,CBr) for several values of the SNR parameter Ps when the transmitted'
phase is zero. Note that fe, (Br) becomes narrower and more peaked about Br = 0 as'
the SNR Ps increases. .

When uo(t) is transmitted, a decision erroris made if the noise causes the phase to
fall outside the range -rc1M ::s e r ::s TC1M. Hence, the probability of a symbol error is

414
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(7.6.61)
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The complication in determining the PDF of the phase is the term nknk_I' However,
at SNRs of practical interest, the tenn nknk-l is small relative to the dominant noise
term .[t;(nk +nk-I)' If we neglect the term nknk-I and we also normalize TkTk_1 by
dividing through by .[t;, the new set of decision metrics become .

x = .[t; +Re(nk + nk-I)

y = Im(nk + nk_l )

signal phases. When a Gray code is used in the mapping, two k-bit symbols correspond­
ing to adjacent signal phases differ in only a single bit. Because the most probable errors
due to noise result in the erroneous selection of an adjacent phase to the true phase,
most k-bit symbol errors contain only a single bit error. Hence, the equivalent bit-error
probability for M-ary-phase modulation is well approximated as

1
Pb R:: j/M (7.6.60)

The performance analysis given above applies to phase-coherent demodulation
with conventional (absolute) phase mapping of the information into signal phases. As
previously indicatea in Section 7.5.5, when phase ambiguities result in the estimation
of the carrier phase, the information symbols are differentially encoded at the transmit­
terand differentially decoded at the receiver. Coherent demodulation of differentially
encoded phase-modulated signals results in a higher probability of error than the error
probability derived for absolute-phase encoding. With differentially encoded signals,
an error in the detected phase due to noise will frequently result in decoding errors
over two consecutive signaling intervals. This is especially the case for error probabil­
ities below 10-1• Therefore, the probability of elTor for differentially encoded M-ary
phase-modulated signals is approximately twice the probability of error for M -ary­
phase modulation with absolute-phase encoding. However, a factor-of-2 increase in the
error probability translates into a relatively small loss in SNR, as can be seen from
Figure 7.57.

7.6.4 Probability of Error for DPSK

Let us now consider the evaluation of the error probability performance of a DPSK
demodulator and detector. The derivation of the exact value of the probability of error
for M -ary DPSK is extremely difficult, except for M = 2. The major difficulty is en­
countered in the determination of the PDF for the phase of the random variable TkTk_1
given by Equation (7.5.77). However, an approximation to the perfonnance of DPSK
is easily obtained, as we now demonstrate.

Without loss of generality, suppose the phase difference ek - (Jk-I = O. Fur­
thermore, the exponential factors e-jC9k-I-</J) and ejC8k -</J) in Equation (7.5.77) can be
absorbed into the Gaussian noise components nk-I and nk, (see Problem 4.29), with­
out changing their statistical properties. Therefore, TkTk_1 in Equation (7.5.77) can be
expressed as

(7.6.57)

(7.6.56)
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Figure 7.57 Probability of a symbol.
error for PSK signals.
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from e
r

to u = 2.jii; sin er , we find that

j rr/M f*ps (j _2Ps sm2 9r dep R:: 1 _ - cos r e r

M -rr/M n: .

R:: _2_100

e-u2/2 du
.fiji :.rr;;;sinrrIM

= 2Q ( fip; sin ~) (7.6.58)

= 2Q ( V2kpb sin ~) (7.6.59)

W ote that this approximation to the error proh-
where k =10g2 M and Ps = kpb· en h M 2 and M -4 we have

f M F xample w en = - ,
ability is good for all val~es 0 . orte bly' (a factor of 2 difference) with the
P -p -2Q( ~Pb) which compares avora

2 - 4 - v L.'!?, . . (7 651)
exact error probablhty.given by ;q~:onfor'M-~-phase modulation is rather tedious

The equiv~lentbit error pro tha ty. f k-bit symbols into the corresponding
to derive due to ItS dependence on e mappmg 0
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Figure 7.58 Probability of error for
binary PSK and DPSK.
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..j3A. Thus, dmin = 2A, and

Pav = H2G)A2+2~2] =A2 (7.6.66)

which is the same average power as the M = 4-phase signal constellation. Hence, for all
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* 1 * *Re(Tkrk_l) = "2(rVk-1 + rkrk-l)

Because the phase difference between the two successive signaling intervals is zero, an
error is made if Re(rkTk_l) is less than zero. The probability that rkrk_l + rkrk-l < 0
is a special case of a derivation, given in Appendix A, concerned with the probability
that a general quadratic form in complex-valued Gaussian random variables is less than
zero. The result for the error probability of binary DPSK is

1
P2 = _e-Pb

2

At this stage we have a problem that is identical to the one we solved previously
for phase-coherent demodulation and detection. The only difference is that the noise
variance is now twice as large as in the case of PSK. Thus, we conclude that the
performance of DPSK is 3-dB poorer than that for PSK. This result is relatively good
for M 2: 4, but it is pessimistic for M = 2 in the sense that the loss in binary DPSK
relative to binary PSK is less than 3 dB at large SNR. This is demonstrated next.

In binary DPSK, the two possible transmitted phase differences are zero and
IT radians. As a consequence, only the real part of rkrk_1 is needed for recovering the
information. We express the real part as

The variables x and y are uncorrelated Gaussian random variables with identical vari­
ances 0'; = No. The phase is

where Ph = £hlNo is the SNRfbit.
The graph of Equation (7.6.64) is shown in Figure 7.58. Also shown in this figure

is the probability of error for binary PSK. We observe that at error probabilities below
10-4, the difference in SNR between binary PSK and binary DPSK is less than 1 dB.

7.6.5 Probability of Error "for QAM

To determine theprobability oferror for QAM, we must specify the signal-point constel­
lation. We begin with QAM signal sets that have M = 4 points. Figure 7.59 illustrates
two 4-point signal sets. The first is a four-phase-modulated signal and the second is a
QAM signal with two amplitude levels, labeled Al and A2, and four phases. Because
the probability of error is doininated by the minimum distance between pairs of signal
points, let us impose the condition that dmin = 2A for both signal constellations and let
us evaluate the average transmitter power, based on the premise that all signal points
are equally probable. For the four-phase signal we have

For the two-a~plitude, four··phase QAM, we place the points on circles of radii A and
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Fignre 7.61 Circular 16-point QAM
signal constellation.M= 16
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The first two signal sets in Figure 7.60 contain signal points that fall on a rect­
angular grid and have Pa" = 3A2 • The third signal set requires an average transmitted
power Pav = 3.41A2

, and the fourth requires Pav = 2.36A2
. Therefore, the fourth

signal set requires approximately I-dB less power than the first two and 1.6-dB less
power than the third to achieve the same probability of error. This signal constellation
is known to be the best 8-point QAMconstellation because it requires the least power
for a given minimum distance between signal points.

For M :::: 16, there are many more possibilities for selecting the QAM signal points
in the two-dimensional space. For example, we may choose a circular multiamplitude
constellation for M = 16, as shown in Figure 7.61. In this case, the signal points at a
given amplitude level are phase rotated by lr/4 relative to the signal POi'1ts at adjacent
amplitude levels. This 16-QAM constellation is a generalization ofthe optimum 8-QAM
constellation. However, the circular 16-QAMconstellation is not the best 16-pointQAM
signal constellation for the AWGN channel.

Rectangular QAM signal constellations have the distinct advantage ofbeing easily
generated as two PAM signals impressed on phase-quadrature carriers. In addition,
they are easily demodulated as previously described. Although they are not the best
M -ary QAM signal constellations for M :::: 16, the average transmitted power required
to achieve a given minimum distance is only slightly greater than the average power
required for the best M -ary QAM signal constellation. For these reasons, rectangular
M-ary QAM signals are most frequently used in practice.

For rectangular signal constellations in which M = Zk where k is even, the QAM
signal constellation is equivalent to two PAM signals on quadrature carriers, each having
.,fM=Zk/2 signal points. Because the signals in the phase-quadrature components are
perfectly separated by coherent detection when ¢ =¢, the probability of error for QAM
is easily determined from the probability of error for PAM. Specifically, the probability

(7.6.67)
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(I +,13,0)

C=~3+2.J2

(C, C)

(d)

(e)

Figure 7.60 Four 8-point QAM signal constellations.

(b)

(a)
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(-3, 1)

(-3, -1)

M
1",1(2 2)

Pa" = M ~"2 Arne + Am.
m=]

where (arne, am.) are the coordinates of the signal points, nonnalized by A.

practical purposes, the error-rate perfonnance of the two signal sets is the same. In other
words, there is no advantage of the two-amplitude QAM signal set over M = 4-phase
modulation.

Next, let us consider M = 8 QAM. In this case, there are many possible signal
constellations. We shall consider the four signal constellations shown in Figure 7.60,
all of which consist of two amplitudes and have a minimum distance between signal
points of 2A. The coordinates (Arne, Am.) for each signal point, nonnalized by A, are
given in the figure. Assuming that the signal points are equally probable, the average
transmitted signal power is

420



where cavlNo is the average SNR/symbol. Therefore, the probability of a symbol errOr
for the M -ary QAM is

423

(7.6.74)
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Figure 7.62 Probability of a symbol error for QAM.
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Table 7.1 illustrates the SNR advantage of QAM over PSK for several values of M. For
example, we observe that 32-QAM has a 7-dB SNR advantage over 32-PSK.

7.6.6 Probability of Error for M-ary Orthogonal Signals

We recall that PPM is a modulation method that results in orthogonal signals whose
vector space representation is given by Equation (7.4.11). Note that all signals have
equally energy, denoted as £s.

For equal energy orthogonal signals, the optimum detector selects the signal
resulting in the largest crosscorrelation between the received vector r and each of the
M possible transmitted signal vectors {8m }, i.e.,

M

C(r, 8m ) = r· Sm = L rkSmb m = 1,2, ... , M
k=l

(7.6.72)

(7.6.70)

(7.6.69)

(7.6.68)
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We note that this result is exact for M = 2k when k is even. On the other hand, when
k is odd, there is no equivalent .JM-ary PAM system. This is no problem, however,
because it is rather easy to determine the error rate for a rectangular signal set. If we
employ the optimum detector that bases its decisions on the optimum distance metrics
given by Equation (7.5.41), it is relatively straightforward to show that the symbol error
probability is tightly upper-bounded as

PM < 1_[1 _2Q ( 3cav)] 2
- . (M -l)No

(
3kCbav )< 4Q (7.6.71)

- (M -l)No

for any k 2: 1, where cbavlNo is the average SNRlbit. The probability of a symbol error
is plotted in Figure 7.62 as a function of the average SNRlbit.

Itis interesting to compare theperformance ofQAM with that ofphase modulation
for any given signal size M, because both types of signals are two-dimensional. Recall
that for M -ary phase modulation, the probability of a symbol error is approximated as

where Ps is the SNRJsymbol. For M-ary QAM, we may use the expression in Equa­
tion (7.6.69). Because the error probability is dominated by the argument of the Q­
function, we may simply compare the arguments of Q,for the two signal formats. Thus,
the ratio of these two arguments is

3/(M-1)
r;]/.M = 2 (7.6.73)

2sin rrlM

For example, when M =4, we have r;]/.M = 1. Hence, 4-PSK and 4-QAM yield com­
parable performance for the same SNRJsymbol. On the other hand, when M > 4 we
find that r;]/.M > 1, so that M -ary QAM yields better performance than M-ary PSK.

where P.JM is the probability oferror ofa ..JM-ary PAM with one-half the average power
in each quadrature signal of the equivalent QAM system. By appropriately modifying
the probability of error for M-ary PAM, we obtain

P.,fM=2(1- ~)Q(VM~l~:)

of a correct decision for the M -ary QAM system is

Pc = (1 - P./Ml

422
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(7.6.81)

(7.6.82)

(7.6.83)

(7.6.85)

(7.6.84)
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These prob~biliti~s ~e i?entical for m =.2' 3, ... M and, hence, the joint probability
under conSIderation IS slIDply the result III Equation (7.6.80) raised to the (M - 1)
power. Thus, the probability of a correct decision is

Pc =1: [1- Q(Ifl)] M-I !r,(rl) dr,

and the probability of a k-bit symbol error is

PM = 1- Pc

probability factors into a product of M - 1 marginal probabilities of the form

P(n", < TIl rl) = J:~ !r"(xOl)dx", , m = 2,3, ... , M

1 1.)2ri/No
= -- e-x'/2 dx.j2ii -00 (7.6.80)

Furthermore, there are (~) ways in which n bits out of k may be in error. Hence,

the average number of bit errors per k-bit symbol is

k (n) PM 2
k

-
1

~ n k 2k _ 1 = k 2k _ 1PM

1 100

PM = -- {1- [1- Q(x)]M-I}e-(X-.)U,/No)'/2dx
.j2ii -00

The same expression for the probability of error is obtained when anyone of
the oth~T M - 1 signals is transmitted. Since all the M signals are equally likely, the
expressl~n for PM. given in Equation (7.6.83) is the average probability of a symbol
error. ThiS expressIOn can be evaluated numerically.

In comparing the performance of various digital modulation methods, it is desir­
able to have the probability of error expressed in terms of the SNRJbit, cblNo, instead
of the SNRlsymbol [siNo. With M = 2\ each symbol conveys k bits of information
and, hence, Es = kEb. Thus, Equation (7.6.83) may be expressed in terms of cblNo by
substituting for cs.

Sometimes, it is also desirable to convert the probability of a symbol 'error into
an equivalent probability of a binary digit error. For equiprobable orthogonal signals,
all symbol errors are equiprobable and occur with probability

PM PM

M-I=2k -1

Therefore,

(7.6.79)

(7.6.78)

(7.6.77)

(7.6.76)

(7.6.75)
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C(r, SI) =.[[;(.[[;+ nl)

C (r, S2) = .[[;n2

M 10 log lO 0l.M

8 1.65

16 4.20
32 7.02
64 9.95

TABLE 7.1 SNRADVANTAGEOF
M-ARY GAM OVER M-ARY PSK

Digital Transmission through Gaussian Noise Channel

Pc = 1: P(n2 < rl, n3 < rl, ... , nM < rl Irl)!rt (rl) drl

where P(n2. < rl, n3 < rl, ... nM < rll rl) denotes the joint probability that n2,
n3, ., . ,nM are all less than rl, conditioned on any given rl. Then this joint prob­
ability is averaged over all rl' Since the (rOl } are statistically independent, the joint

It is mathematically convenient to first derive the probability that the detector
makes a correct decision. This is the probability that rl is larger than each of the other
M - 1 correlator outputs n2, n3, ... ,nM. This proba~ility may be expressed as

+ ex) = _l_e-(Xl-.,fl;)'/No
Jrj I .)rrNo

and the PDFs of the other M - 1 correlator outputs are

+ (x ) - 1 e-x~,/No m - 23M
JTIII nt - JnN

o
,- -, , .... ,

Note that the scale factor.[[; may be eliminated from the correlator outputs by dividing
each output by ..;r;. Then, with this normalization, the PDF of the first correlator output

(rl = .[[; + nl) is

where nl, n2., ... ,nM are zero-mean, mutually statistically independent Gaussian ran­
dom variables with equal variance 0'; = No/2. In this case, the outputs from the bank

of M correlators are

To evaluate the probability of error, let us suppose that the signal SI is transmitted.
Then the received signal vector is

424



and the average bit-error probability is just the result in Equation (7.6.85) divided
by k, the number of bits/symbol. Thus,

2k- 1 PM
Pb = --PM ~ - k» 1 (7.6.86)

2k - 1 2 '

The graphs of the probability of a binary digit error as a :n:nction o~ the SNRlbit,
EblNo, are shown in Figure 7.63 for M = 2, 4,8,16,32,64. This figure~lustra~esthat
by increasing the number M of waveforms, one can reduce the SNRfblt requrred to
achieve a given probability of a bit error. For example, to achieve a Pb = 10-

5
, the

required SNRlbit is a little more than 12 dB for M = 2, b~t ~ M is ~creased to 64
signal waveforms (k = 6 bits/symbol), the required SNRlblt IS approxrrn~tely 6 dB.
Thus, a savings of over 6 dB (a factor of four reduction) is realized in transrmtter power
(or energy) required to achieve a Pb = 10-5 by increasing M from M = 2 to M = 64.
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(7.6.88)

(7.6.89)

(7.6.91)

PM < Me-E,/2No = 2ke-kEb/2No

PM < e-k(Eb /No-21n2)/2
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Thus,

As k -? 00, or equivalently, as M -? 00, the probability of error approaches zero expo­
nentially, provided that £blNo is greater than 2ln 2; i.e.,

£ •
...!!.. > 2ln 2 = 1.39 (1.42 dB) (7.6.90)
No

The simple upper-bound on the probability of error given by Equation (7.6.89)
implies that as long as SNR > 1.42 dB, we can achieve an arbitrarily low PM. However,
this union-bound is not a very tight upper-bound at a sufficiently low SNR due to the
fact that the upper-bound for the Q-function in Equation (7.6.88) is loose. In fact, by
more elaborate bounding techniques, it is shown in Section 9.4 that the upper-bound in
Equation (7.6.89) is sufficiently tight for £blNo < 4ln 2. For cblNo > 4ln 2, a tighter
upper~bound on PM is

What is the minimum required £blNo to achieve an arbitrarily small probability
of error as M -? oo? This question is answered next.

A Union Bound on the Probability of Error. Let us investigate the effect
of increasing M on the probability of error for orthogonal signals. To simplify the
mathematical development, we first derive an upper-bound on the probability of a
symbol error which is much simpler than the exact form given in Equation (7.6.83).

Recall that the probability of error for binary orthogonal signals is given by
Equation (7.6.17). Now, if we view the detector for M orthogonal signals as one
that makes M - 1 binary decisions between the correlator output C(r, SI) that con­
tains the signal and the other M - 1 corre1ator outputs C(r, 8m ), m =2,3, ... , M,
the probability of error is upper-bounded by the union bound of the M - 1 events.
That is, if E i represents the event that C(r, 8m ) > C(r, SI) for m # 1, then we have
PM = P(Ut=IEi)::: I::7=1 peE;). Hence,

PM::: (M -1)P2 = (M -l)Q(V£sINo) < MQ(V£sINo) (7.6.87)

This bound can be simplified further by upper-bounding Q(../£sl No) [see Equa­
tion (4.1.7)]. We have

Consequently, PM -? 0 as k -? 00, provided that

£b
- > In 2 = 0.693 (-1.6 dB) (7.6.92)
No

Hence -1.6 dB is the minimum required SNRlbit to achieve an arbitrarily small prob­
ability of error in the limit as k -? 00 (M -? (0). This minimum SNRfbit (-1.6 dB)
is called the Shannon limit for an additive white Gaussian noise channel.

Chapter 7

20 Figure 7.63 Probability ofbit error for
coherent detection of orthogonal signals.
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(7.6.95)

1 l r1
2 1 lrl /../N0i2 2P(lnm!<rl!r1>0)=.j e-x/N0dx= ~ e-x /2 dx

nNo -r, y2n -r,/../N0i2
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20 Figure 7.64 Probability of symbol error
for biorthogonal signals.
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7.6.8 Probability of Error for M-ary Simplex Signals

Next we consider the probability of error for 1\1 simplex signals. Recall from Sec­
tion 7.4.3 that simplex signals are a set of M equally correlated signals with mutual
crosscorrelation coefficient Ymn = -l/(M - 1). These signals have the same mini­
mum separation of .;JI; between adjacent signal points in M -dimensional space as
orthogonal signals. They achieve this mutual separation with a transmit.ted energy of

for M = 4 is greater than that for M = 2. This is due to the fact that we have plotted
the symbol error probability PM in Figure 7.64. If we plot the equivalent bit error
probability we would find that the graphs for M = 2 and M = 4 coincide. As in the
case of orthogonal signals, as M ~ 00 (or k ~ (0), the minimum required Ebl No to
achieve an arbitrarily small probability of error is -1.6 dB, the Shannon limit.
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M/2

C(r, sm) = r . Sm = 2:= rkSmb m = 1,2, ... , MI2
k=1

while the sign of this largest term is used to decide whether Sm (t) or -Sm (t) was
transmitted. According to this decision rule, the probability of a correct decision is
equal to the probability that rl = .;t;+n1 >. °and rl exceeds Irm I = Inm Ifor m = 2,
3, ... , M12. But,

Then, the probability of a correct decision is

[

fITC7'; ] !!!-l

1
00 1 lr,/vNO/~ 2

Pc = ~ e-
x2

/2 dx f(rl) drl
o y2rc -r,/.JN07'I

Upon ~ubstitutionfor f(rl), we obtain

[
~ ]M:-l

100 1 l v+y 2£,/No 2 2 2
Pc = -- e-x /2 dx e-v /2 dv (7.6.96)

-.jU,/No ..firr -(v+.jU,/No)

where we have used the PDF of rl given in Equation (7.6.77). Finally, the probability
of a symbol error PM = 1 - Pc.

Pc and, hence, PM may be evaluated numerically for different values of M from
(7.6.74). The graph shown in Figure 7.64 illustrates PM as a function of cblNo, where
Es = kEb, for M = 2,4,8, 16, and 32. We observe that this graph is similar to that
for orthogonal signals (see Figure 7.63). However, in this case, the probability of error

7.6.7 Probability of Error for M-ary Biorthogonal Signals

As previously indicated in Section 7.4.2, a set of M =2k biorthogonal signals are
constructed from M12 orthogonal signals by including the negatives of the orthogonal
signals. Thus, we achieve a reduction in the complexity of the demodulator for the
biorthogonal signals relative to that for the orthogonal signals, since the former is .
implemented with M12 crosscorrelators or matched filters, whereas the latter requires
M matched filters or crosscorrelators.

To evaluate the probability of error for the optimum detector, let us assume that
the signal SI (t) corresponding to the vector Sl = (..;p;;, 0, 0, ... , 0) was transmitted.
Then, the received signal vector is

where the {nm } are zero-mean, mutually statistically independent and identically dis­
tributed Gaussian random variables with variance (1; = No/2. The optimum detector
decides in favor of the signal corresponding to the largest in magnitude of the cross­
correlators
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(7.6.104)

(7.6.109)

(7.6.111)

(j sin 8 m I 2=a Rm
aRm cos 8 m

P(R2 < Ri IRl = x) = l' fR,(r2) dr2

= 1 _ e-x2(2

I
(j cos 8 m

IJI =
-(j Rm sin 8 m

Probability of Error for Signal Detection

Consequently,

Section 7.6

Clearly, rmc = (j Rmcos 8 mandrms = (j Rmsin 8 m.The Jacobian ofthis transformation
is

where

fRI61(RI, 8 1) = ~~ e-(R!+2£,fNoJ(210 (J~: Rl) (7.6.105)

>< _ Rm -R;,/2 _ 6!R,,,8,,, (Rm , 8 n,) - 2n e ,m - 2, 3, ... ,M (7..106)

Finally, by averaging fR",e", (Rm , .8m ) over 8 m , the factor of 2rr is (see Problem 4.31)
eliminated from Equations (7.6.105) and (7.6.106). Thus, we find that Rl has a Rice
probability distribution and Rm , m = 2, 3, ... ,M are each Rayleigh distributed.

The probability of a correct decision is simply the probability that R l > R2 and
RI > R3, ... and RI > RM. Hence,

Pc = P(R2 < RI, R3 < RI, '" , RM < R1)

=fa''''P(R2 < Rj, R3 < R1, ••• , RM < RI j RI =X)fRI (x) dx (7.6.107)

Because t.~e random variables Rm , m = 2, 3, ... , M are statistically i.i.d., the joint
probability in Equation (7.6.107) conditioned on R l factors into a product of M - 1
identical terms. Thus,

Pc = roo [P(R2 < Rl IRI = x)]M-I h (x) dx (7.6.108)
)0 .

The (M - l)st power of Equation (7.6.109) may be expressed as

[1- e-X'(2]M-I = ~(_l)n (M: 1) ne-nr2(2 (7.6.110)

n=O

Substitution of this result in Equation (7.6.108) and integration over x yields the prob­
ability of a correct decision as

M-I (M -1) 1Pc = .L:(-l)n __e-np,f(n+I)
n=O n n + 1

where Ps = £s I No is the SNR/symbol. Then, the probability of a symbol error which

(7.6.97)

(7.6.98)

(7.6.99)

(7.6.100)

(7.6.101)

(7.6.102)

(7.6.103)
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m = 1,2, ... ,M

rIc = .jE;COS <PI + nIc

rIs = .jE; sin <PI +nls

rmc = nmc , m = 2, 3, , M

rms = nms , m = 2, 3, , M

M
1010g(l- Ymn) = 10Iog-- dB

M-1
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where

[sCM - 1)1M, which is less than that required for orthogonal signals by a factor of
(M - 1)1M. Consequently, the probability of error for simplex signals is identical to
the probability of error for orthogonal signals, but this performance is achieved with a
savings of

inSNR.

7.6.9 Probability of Error for Noncoherent Detection of FSK

Let us consider M -ary orthogonal FSK signals that are detected noncoherently. We
assume that the M signals are equally probable a priori and that Sl (t) was transmitted
in the interval 0 :5 t :5 T.

The M -decision metrics at the detector are the M envelopes

and

The additive noise components {nmc } and {nms } are mutually statistically independent
zero-mean Gaussian variables with equal variance (j2 = No/2. Thus, the PDFs of the
random variables at the input to the detector are

1, (r r) = _1_ e-(r~c+r~,+£,)/2cr' 1 ( [s (r?c + r?s) )
r, !C, Is 2n(j2 a (j2

Let us make a change in variables in the joint PDFs given by Equations (7.6.101) and
(7.6.102). We define the normalized variables .



.w = Rbl2k = Rbl2logz M Hz (7.6.115)

If the PAM signal is transmitted at bandpass as a double-sideband suppressed
carrier signal, the required channel bandwidth is twice that for the baseband channel.
However, the bandwidth of the bandpass PAM signal can be reduced by a factor of
two by transmitting only one of the sidebands, either the upper or the lower sideband

2k- I

Pb = 2k _ 1PM (7.6.114)

which was established in Section 7.6.6. Figure 7.65 shows the bit-error probability as
function of the SNRlbit Pb for M = 2,4, 8, 16,32. Just as in the case of coherent
detection of M-ary orthogonal signals (see Section 7.6.6), we observe that for any
given bit-error probability, the SNRlbit decreases as M increases. It will be shown in
Chapter 9 that, in the limit as M ...... CXJ (or k = logz M ...... co), the probability of a
bit-error Pb can be made arbitrarily small provided that the SNRJbit is greater than the
Shannon limit of - 1.6 dB.
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Figure 7.65 Probability of a bit error for noncoherent detection of orthogonal FSK
signals.

where the number of signals for M -ary QAM, denoted as MQAM, is equal to the square
of the number MpAM of PAM signals.

of the bandpass signal. Thus, the required channel bandwidth of the single~sideband

bandpass PAM signal is exactly the same as the bandwidth of the baseband signal.
In the case of QAM, the channel bandwidth is (approximately) W = liT, but

since the information is carried on two quadrature carriers, T = 2klRb, where k is the
number of information bitslcarrier. Hence,
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(7.6.113)

(7.6.112)
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is PM = 1 - Pc, becomes

M-l ( ,
PM = I:C-1t+1 M -1) _l_e-nkPb/(n+I)

n=l n n + 1

where Pb = cblNo is the SNRlbit.
For binary FSK (M = 2), Equation (7.6.112) reduces to the simple form

1
Pz = - e-Pb / Z

2
We observe that the performance of noncoherent FSK is 3-dB worse than binary DPSK.

For M > 2, we may compute the probability of a bit error by making use of the
relationship

7.6.10 Comparison of Modulation Methods

The digital modulation methods described in this chapter can be compared in a number
of ways. For example, one can compare them on the basis of the SNR required to
achieve a specified probability of error. However, such a comparison would not be very
meaningful unless it were made on the basis of some constraint, such as a fixed data
rate of transmission.

Suppose that the bit rate Rb is fixed, and let us consider the channel bandwidth
required to transmit the various signals. If we employ M -ary PAM, where M = 2k , the
channel bandwidth required to transmit the signal is simply the bandwidth of the signal
pulse gy (t), which depends on its detailed characteristics. For our purposes, we assume
that gT(t) is a pulse of duration T and that its bandwidth W is approximately l/2T,
where T is the symbol interval. In one symbol interval we can transmit k information
bits, so T = klRb seconds. Hence, the channel bandwidth required to transmit the
M -ary PAM signal is
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W
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Figure 7.66 illustrates the graph of RblW (measure of bandwidth efficiency) ,:,ersus
(£b/No) (measure of power efficiency) for PAM, QAlvI, PSK, and orthogonal SIgnalS
for the case in which the symbol error probability is PM = 10-5. We observe that,
as discussed before, in the case of PAM, QAM, and PSK, increasing the number of
signal points M results in a higher bit rate to bandwidth ratio Rbi W. However, the cost
of achieving the higher data rate is an increase in the SNR!bit. Consequently, M-ary
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Figure 7.66 Comparison of several modulation methods at 10-5 symbol error

probability.

(7.6.118)

(7.6.119)
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For M -ary-phase modulation, the channel bandwidth required to transmit the
multiphase signals is W = liT, where T = klRb. Hence,

W = Rbi k = Rb/logz M (7.6.117)

Note that PAM, QAM, and PSK signals have the characteristic that, for a fixed bit rate
Rb, the channel bandwidth decreases as the number of signals M increases. This means
that with increasing M the system becomes more bandwidth efficient. On the other
hand examination of Figures 7.55, 7.57, and 7.62 shows that in all these systems, at
a given fbi No, increasing M increases the error probability and thus deteriorates the
performance. In other words, in these systems increasing M increases the bandwidth
efficiency and decreases the power efficiency. This is a direct consequence of the fact
that in these systems the dimensionality of the signal space N is one (for PAM) or two
(for PSK and QAM) and is independent of M.

Orthogonal signals have totally different bandwidth requirements. For example, if
we employ PPM signals, the symbol interval T is subdivided into M subintervals of du­
ration TIM and pulses of width TIM are transmitted in the corresponding subintervals.
Consequently, the channel bandwidth required to transmit the PPM signals is

W = MI2T = MI2(k/Rb) = MRb/2logzMHz

An identical result is obtained if tlleM orthogonal signals are constructed as M -ary­
FSK with minimum frequency separation of 1/2T for orthogonality. Biorthogonal and
simplex signals result in similar relationships as PPM (or-.b.ogonal). In the case of
biorthogonal signals, the required bandwidth is one-half of that for orthogonal signals.
From the· bandwidth relation for orthogonal signals, it is seen that for a fixed Rb,
increasing M increases the bandwidth proportional to M/ (2logz M). This shows that
in this case increasing M decreases the bandwidth efficiency of the system. On the other
hand, examination of Figures 7.63 and 7.64 shows that in these systems, for a fixed
Eb / No, increasing M improves the performance of the system and, thus, improves
the power efficiency of the system. It is also interesting to note that in orthog{mal,
biorthogonal, and simplex signaling schemes, the dimensionality of the space is not
fixed and increases with increasing M. .

From the above discussion, it is clear that the characteristics of PAM, PSK, and
QAM on one hand and orthogonal, biorthogonal, and simplex schemes on the other
hand are completely different and, therefore, their applications are also quite different.

A compact and meaningful comparison of these modulation methods is one that
is based on the normalized data rate Rb/W (bits per second per hertz of bandwidth)
versus the SNR!bit (£bINo) required to achieve a given error probability. For PAM and
orthogonal signals, we have



PAM, QAM, and PSK are appropriate for communication channels that are bandwidth
limited, where we desire a bit rate-to-bandwidth ratio RblW > 1, and where there is
sufficiently high SNR to support multiple signal amplitudes and phases. Telephone
channels are examples of such bandlirnited channels.

We have already observed that the cost of doubling the number of phases (in­
creasing the number of bits/symbol by one bit) in PSK approaches 6 dB (a factor of 4)
in additional transmitted power for large M. A similar comparison for QAM indicates
that the increase in transmitted power is approximately 3 dB/additional bit/symbol.
Table 7.2 gives the factor 10 log2(M - 1)/3, which represents the increase in average
power required to maintain a given level of performance for QAM as the number of
signal points in the rectangular constellation increases. Thus, we observe that QAM
(and PAM) is preferable to PSK for large signal constellation sizes.

In contrast to PAM, QAM, and PSK, M-ary orthogonal signals yield a bit rate­
to-bandwidth ratio of RblW ~ 1. As M increases, Rbi W decreases due to an increase
in the required channel bandwidth. However, the SNRlbit required to achieve a given
error probabil:ity (in this case, PM =10-5) decreases as M increases. Consequently,
M-ary orthogonal signals, as well as biorthogonal and simplex signals, are appropriate
for power-limited channels that have sufficiently large bandwidth to accommodate a
large number of signals. In this case, as M -+ 00, the error probability can be made as
small as desired, provided thatEblNo> 0.693 (-1.6 dB). This is therninimum SNRlbit
required to achieve reliable transmission in the limit as the channel bandwidth W -+ (X)

and the corresponding bit rate-to-bandwidth ratio Rbi W -+ O.

TABLE 7.2 QAM SIGNAL CONSTELLATIONS
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(7.7.1). ret) = as(t) +n(t)
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7.7.1 Regenerative Repeaters

The front end of each regenerative repeater consists of a demodulator/detector that
demodulates and detects the transmitted digital information sequence sent by the pre­
ceding repeater. Once detected, the sequence is passed to the transmitter side of the
repeater which maps the sequence into signal waveforms that are transmitted to the
next repeater. This type of repeater is called a regenerative repeater.

Since a noise-free signal is regenerated at each repeater, the additive noise does
notaccumulate. However, when errors occur in the detector of a repeater, the errors are
propagated forward to the following repeaters in the channel. To evaluate the effect of
errors on the performance of the overall system, suppose that the modulation is binary
PAM, so that the probability ofa bit error for one hop (signal transmission from one
repeater to the next repeater in the chain) is

channels, including wirelines and radio channels, are lossy. Hence, the signal is at­
tenuated as it travels through. the channel. The simple mathematical model for the
attenuation shown previously in Figure 5.18 may also be used for the purpose of digital
communication. Consequently, if the transmitted signal is set), the received signal is

Then, if the energy in the transmitted signal is Eb , the energy in the received
signal is a2Eb . Consequently, the received signal has an SNR a2Ebi No. As in the case

. of analog communication systems, the effect of signal attenuation in digital commu­
nication systems is to reduce the energy in the received signal and, thus, to render the
communication system more vulnerable to additive noise.

Recall that in analog communication systems, amplifiers called repeaters are used
to periodically boost the signal str<;ngth in transmission through the channel. However,
each amplifier also boosts the noise in the system. In contrast, digital communication
systems allow us to detect and regenerate a clean (noise-free) signal in a transmission

.channel. Such devices, called regenerative repeaters, are frequently used in wireline
and fiber optic communication channels.
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7.7 PERFORMANCE ANALYSIS FOR WIRELlNE AND RADIO
COMMUNICATION CHANNELS

In the transmission of digital signals through an AWGN channel, we have observed that
the performance of the communication system, ~easured in terms of the probability
of error, depends on the received SNR, E:blNo, where E:b is the transmitted energy/bit
and No/2 is the power-spectral density of the additive noise. Hence, the additive noise
ultimately limits the performance of the communication system.

In addition to the additive noise, another factor that affects the performance of a
communication system is channel attenuation. As indicated in Chapter 5, all physical

Since errors occur with low probability, we may ignore the probability that anyone bit
will be detected incorrectly more than once in transmission through a channel with K
repeaters: Consequently, the number of errors will increase linearly with the number
of regenerative repeaters in the channel and, therefore, the overall probability of error
may be approximated as

(7.7.2)

In contrast, the use of K analog repeaters in the channel reduces the received SNR



which yields approximately 11.3 dB. If analog repeaters are used, the cblNo obtained
from Equation (7.7.3) is

which yields an EblNo of 29.6 dB. Hence, the difference on the required SNR is about
18.3 dB, or approximately, 70 times the transmitter power of the digital communication
system.

(7.7.7)

(7.7.8)
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FTGT is usually called the effective isotropically radiated power (EIRP), which is
basically the radiated power relative to an isotropic antenna for which Gr = l.

A receiving antenna pointed in the direction ofthe radiated power gathers a portion
of the power that is proportional to its cross-sectional area. Hence, the received power
extracted by the antenna is expressed as

P - FrGTAR (774)
R - 4nd2 ..

where AR is the effective area of the antenna. The basic relationship between the
antenna gain and its effective area, obtained from basic electromagnetic theory, is

GR 'A2
2

A R = --m (7.7.5)
4n

where 'A is the wavelength of the transmitted signal.
Ifwe substitutefor AR from Equation (7.7.5) into Equation (7.7.4), we obtain the

expression for the received power as .

F - PTGTGR (776)
R - (4nd/'A)2 ..

The factor (4nd / 'A)2 = 9?s is the free-space path loss. Otherlosses, such as atmospheric
losses, that may be encountered in the transmission of the signal are accounted for
by introducing an additional loss factor 9?a. Therefore, the received power may be
expressed as

The effective area for an antenna generally depends on the wavelength 'A of the
radiated power and the physical dimension of the antenna. For example, a parabolic

or, equivalently,

PRldBW = PrldBW + GridB + GRldB - .:£sldB - 9?aldB

(7.7.3)
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10-5 = Q (J 2E
b

)
100No

10-
5

= 100Q ( fti)
10-

7
= Q ( fti)

by K and, hence, the bit-error probability is

Pb ~ Q (J~~o)
Clearly, for the same probability of error perfonnance, the use ofregenerative repeaters
results in a significant savings in transmitter power compared with analog repeaters.
Hence, in digital communication systems, regenerative repeaters are preferable. How­
ever, in wireline telephone channels that are used to transmit both analog and digital
signals, analog repeaters are generally employed.

Example 7.7.1
A binary digital communication system transmits data over a wireline channel" of length
1000 KIn. Repeaters are used every 10 KIn to offset the effect of channel attenuation.
Determine the EblNo that is required to achieve a probability of a bit error of 10-5 if
(1) analog repeaters are employed, and (2) regenerative repeaters are employed.

Solution The number of repeaters used in the system is K = 100. If regenerative re­
peaters are used, the EblNo obtained from Equation (7.7.2) is

7.7.2 Link Budget Analysis for Radio Channels

In the design ofradio communication systems that transmit over LOS microwave satel­
lite channels, we must also consider the effect of the antenna characteristics in deter­
mining the SNR at the receiver that is required to achieve a given level of perfonnance.
The system design procedure is described next. '

Suppose that a transmitting antenna radiates isotropically in free space at a power
level Pr watts, as shown in Figure 7.67. The power density at a distance d from the
antenna is Pr j4nd2 Wfm2 • If the transmitting antenna has directivity in a particular
direction, the power density in that direction is increased by a factor called the antenna
gain Gr. Then, the power density at a distanced is Pr Gr/4nd2 Wfm2

• The product



(dish) antenna of diameter D has an effective area

rrD2

AR = 4 77 (7.7.9)

where rrD 2/4 is the physical area and 17 is the illumination efficiency factor, which is
typically in the range 0.5 :::: 77 :::: 0.6. Hence, the antenna gain for a parabolic antenna of
diameter D is

As a second example, a horn antenna of physical area A has an efficiency factor
of 0.8, an effective area of AR = 0.8A, and a gain of

lOA
GR = J:2' horn antenna (7.7.11)

Another parameter that is related to the gain (directivity) of an antenna is its
beamwidth, denoted as 8 s and illustrated in Figure 7.68. Usually, the beamwidth
is measured as the -3-dB width of the antenna pattern. For example, the -3-dB
beamwidth of a parabolic antenna is approximately

8 s ~ 70A/D deg
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(7.7.12)
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We may carry the computation one step further by relating the EblNo required to
achieve a specified level of performance to PR . Since,

Eb TbPR 1 PR

No = No = Rb No

Section 7.7

PR = 2.5 X 10-11 W

or, equivalently,

it follows that

PRldB = 20 + 18 + 39 -195.6

= -118.6 dBW

so that Gr is inversely proportional to 8~. Hence, a decrease of the beamwidth by a
factor of two, which is obtained by doubling the diameter, increases the antenna gain
by a factor offour (6 dB).

Example 7.7.2
A satellite in geosynchronous orbit (36,000 kIn above the earth's surface) radiates 100 W of
power (20 dBW). The transmitting antenna has a gain of18 dB, so that the EIRP = 38 dBW.
The earth station employs a 3-meter parabolic antenna and the downlink is transmitting
ata frequency of 4 GHz. Determine the received power.

Solution The wavelength}.. = 0.075 m. Hence, the free-space path loss is

(4rrd)iesldB = 20 log T = 195.6 dB

Assuming TJ = 0.5, the antenna gain is 39 dB. Since no other losses are assumed,

(7.7.10)
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(7.7.13)

(7.7.14)

Beamwidth°B

Ca) Beamwidth

PR (Eb)--Rb -
No - No req

where (EblNO)req is the required SNRlbit to achieve the desired performance. The relation
in Equation (7.7.13) allows us to determine the bit rate Rb. We have

1010g1o Rb = (PR) - 1010g1o (~)
No dB 0 req

0 B 0 B
-2 2
(b) Antenna pattern

Figure 7.68 A narrow beam llIltenna
llIld its radiation pattern.

Example 7.7.3
If (Ebl NO)req = 10 dB, determine the bit rate for the satellite communication system
in Example 7.7.2. Assume that the receiver front-end has a noise temperature of 300 K,
which is typical for a receiver in the 4 GHz range.

Solution Since To = 290 K and Te = 10 K, it follows that

No = kT = 4.1 x 10-21 WfHz

or, equivalently, -203.9 dBWIHz. Then,

( PR) = -118.6+203.9
No dB

= 85.3 dBIHz



In a digital communication system, the output of the receiving filter yet) must be
sampled periodically at the symbol rate, at the precise sampling time instants tm =
mT + TO, where T is the symbol interval and TO is a nominal time delay that accounts
for the propagation time ofthe signal from the transmitter to the receiver. To perform this
periodic sampling, we require a clock signal at the receiver. The process of extracting
such a clock signal at the receiver is usually called symbol synchronization or timing
recovery.

Timing recovery is one of the most critical functions that is performed at the
receiver of a synchronous digital communication system. We should note that the
receiver must know not only the frequency (liT) at which the outputs of the matched
filters or correlators are sampled, but also where to take the samples within each symbol
interval. The choice of sampling instant within the symbol interval of duration T is
called the timing phase.

The best timing phase corresponds to the time instant within the symbol interval
where the output of the receiver filter is a maximum. In a practical communication
system, the receiver clock must be continuously adjusted in frequency (liT) and in
timing phase TO to compensate for frequency drifts between the oscillators used in the
transmitter and receiver clocks and, thus, to optimize the sampling time instants of the
matched filter or correlator outputs.

Symbol synchronization can be accomplished in one of several ways. In some
communication systems the transmitter and receiver clocks are synchronized to a mas­
ter clock, which provides a very precise timing signal. In this case, the receiver must
estimate and compensate for the relative time delay between the transmitted and re­
ceived signals. Such may be the case for radio communication systems that operate in
the very low frequency (VLF) band (below 30 kHz), where precise clock signals are
transmitted from a master radio station.

Another method for achieving symbol synchroniZation is for the transmitter to
simultaneously transmit the clock frequency liT or a multiple of liT along with
the information signaL The receiver may simply employ a narrowband filter tuned
to the transmitted clock frequency and, thus, extract the clock signal for sampling.
This approach has the advantage of being simple to implement. There are several
disadvantages, however. One is that the transmitter must allocate some of its available

7.8 SYMBOL SYNCHRONIZATION
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Figure 7.69 (a) Rectangular signal pulse
and (b) its matched filter output.
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power to the transmission of the clock signal. Another is that some small fraction of
the available channel bandwidth must be allocated for the transmission of the clock
signal. In spite of these disadvantages, this method is frequently used in telephone
transmission systems that employ large bandwidths to transmit the signals of many
users. In such a case, the transmission of a clock signal is shared in the demodulation
of the signals among the many users. Through this shared use of the clock signal, the
penalty in transmitter power and in bandwidth allocation is reduced proportionally by
the number of users.

A clock signal can also be extracted from the received data signaL There are anum­
ber of different methods that can be used at the receiver to achieve self-synchronization.
Below we consider four approaches to the problem of achieving symbol synchroniza­
tion from the received signal.

AI----~

set)

Matched filter output

Optimum sample

7.8.1 Early-Late Gate Synchronizers

One method for generating a symbol timing signal at the receiver exploits the symmetry
properties of the signal at the output of the matched filter or correlator. To describe this
method, let us consider the rectangular pulse s (t), O::s t ::s T, shown in Figure 7.69(a).
The output of the filter matched to sCt) attains its maximum value at time t = T, as
shown in Figure7.69(b). Thus, the output ofthe matched filter is the time autocorrelation
function of the pulse s (t). Of course, this statement holds for any arbitrary pulse shape,
so the approach that we describe applies in general to any signal pulse. Clearly, the
proper time to sample the output ofthe matched filter for a maximum output is at t = T;
i.e., at the peak of the correlation function.

Chapter 7Digital Transmission through Gaussian Noise Channel

or, equivalently,

Rb = 33.9 X 106 bps

Therefore, from Equation (7.7.14) we obtain

10 log10 Rb = 85.3 - 10

= 75.3

We conclude that this satellite channel can support a bit rate of 33.9 Mbps.
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In the presence of noise, the identification of the peak value of the signal is
generally difficult. Instead of sampling the signal at the peak, suppose we sample
early, at t = T - oT and late at t = T +oT. The absol~te values of the early sampl~s
ly[m(T - 5T)]1 and the late samples ly[m(T +oT)]1 will be smaller (on the average ill

the presence of noise) than the samples of the peak value ly(mT)l. Since the auto­
correlation function is even with respect to the optimum sampling time t = T, the
absolute values of the correlation function at t = T - oT and t = T + oT are equal.
Under this condition, the proper sampling time is the midpoint between t = T - aT and
t = T +aT. This condition forms the basis for the early-late gate symbol synchronizer.

Figure 7.70 illustrates the block diagram of an early-late gate synchronizer. In
this figure, correlators are used in place of the equivalent matched filters. The two
correlators integrate over the symbol interval T, but one correlator starts integrating oT
early relative to the estimated optimum sampling time and the other integrator starts
integrating aT late relative to the estimated optimum sampling time. An error signal
is formed by taking the difference between the absolute values of the two correlator
outputs. To smooth the noise corrupting the signal samples, the error signal ~s pa~sed
through a lowpass filter. If the timing is off relative to the optimum sampling hme,
the average error signal at the output of the lowpass filter is nonzero, and the clock
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(7.8.1)
n=-oo

00

vet) = L a~gT(t - nT)
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where {an} is the data sequence and T is the symbol interval. To be specific, we assume
that v (t) is a PAM baseband signal and the data sequence {an} is a zero-mean, stationary
sequence with statistically Li.d. elements. Therefore, the signal vet) has zero mean; i.e.,
E [v (t)] = O. Furthermore, as illustrated in the next chapter, the autocorrelation function
of vet) is periodic in T and, hence, vet) is a cyclostationary process.

7.8.2 Minimum Mean-Square-Error Method

Another approach to the problem of timing recovery from the received signal is based
on the minimization of the mean-square-error (MSE) between the samples at the output
of the receiver filter and the desired symbols. We assume that the baseband signal at
the transmitter is of the form .

signal is either retarded or advanced, depending on the sign of the error. Thus, the
smoothed error signal is used to drive a voltage-controlled oscillator (YCO), whose
output is the desired clock signal that is used for sampling. The output of the VCO is
also used as a clock signal for a symbol waveform generator that puts out the same
basic pulse waveform as that of the transmitting filter. This pulse waveform is advanced
and delayed and then fed to the two correlators, as shown in Figure 7.70. Note that if
the signal pulses are rectangular, there is no need for a signal pulse generator within
the tracking loop.

We observe that the early-late gate synchronizer is basically a closed-loop control
system whose bandwidth is relatively narrow compared to the symbol rate liT. The
bandwidth of the loop determines the quality of the timing estimate. A narr()wband
loop provides more averaging over the additive noise and, thus, improves the quality
of the estimated sampling instants, provided that the channel propagation delay is
constant and the clock oscillator at the transmitter is not drifting with time (drifting
very slowly with time). On the other hand, if the channel propagation delay is changing
with time and, or, the transmitter clock is also drifting with time, then the bandwidth of
the loop must be increased to provide for faster 1racking of time variations in symbol
timing. This increases the noise in the loop and degrades the quality of the timing
estimate.

In the tracking mode, the two correlators are affected by adjacent symbols. How­
ever, if the sequence of information symbols has zero mean, as is the case for PM! and
some other signal modulations, the contribution to the output of the correlators from
adjacent symbols averages out to zero in the lowpass filter.

An equivalent realization of the early-late gate synchronizer that is somewhat
easier to implement is shown in Figure 7.71. In this case, the clock from the VCO is
advanced and delayed by oT, and these clock signals are used to sample the outputs of
the two correlators.
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Figure 7.70 Block diagram of early-late gate synchronizer.
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(7.8.6)

(7.8.5)

Sampler
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MSE expression. Hence, the MSE is redefined as

Figure 7.72 Timing recovery based on minimization of MSE.

The minimum of (MSE) with respect to the timing phase ro is found by differen­
tiating Equation (7.8.5) with respect to ro. Thus, we obtain the necessary condition

Sampler

An interpretation of the necessary condition in Equation (7.8.6) is that the optimum
sampling time corresponds to t..~e condition that the error signal [Ym(rO) - am] is un­
correlated with the derivative dYm(ro)/dro. Since the detector output is used in the
formation of the error signal [Ym (ro) -am], this timing phase-estimation method is said
to be decision-directed.

Figure 7.72 illustrates an implementation of the system that is based on the condi­
tion given in Equation (7.8.6). Note that the summation operation is implemented as a
lowpass filter, which averages a number of symbols. The averaging time is roughly
equal to the reciprocal of the bandwidth of the filter. The filter output drives the

. voltage-controlled oscillator (YeO), which provides the best MSE estimate of the
timing phase ro.

(7.8.2)

(7.8.4)

(7.8.3)
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Figure 7.71 Block diagram of early-late gate 'synchronizer-an alternative form.
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The received signal at the output of the matched filter at the receiver may be
expressed as

where x(t) = gr(t) * gR(t), gR(t) is the impulse response of the receiver filter, vet)
represents the noise at the output of the'receiver filter and ro (TO < T) represents the
timing phase.

The MSE between the output of the receiver filter and the desired symbol at the
mth symbol interval is defined as

where

Since the desired symbol am is not known apriori at the receiver, we may use the output
of the detector, denoted as am, for the mth symbol; i.e., we substitute am for am in the
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(7.8.10)

(7.8.11)
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with respect to rOo Thus, we obtain

d.l\.2(rO) _ 2'" ( )dym(ro) - 0
- L.- Ym ro -

dro m dro

The condition for the optimum ro given by Equation (7.8.10) may be satisfied by
the implementation shown in Figure 7.74. In tlris case, there is no need to know the
data sequence {am}. Hence, the method is nondecision-directed.

7.8.4 Spectral-Line Methods

Since the signal component at the output of the receiver filter is periodic with period T,
we can recover a clock signal with frequency II T by filtering out a signal component at
f = II T. We observe, however, that E[y(t)] = 0 because E(an ) = O. Therefore, y(t)
cannot be used directly to generate a frequency component at f = 1IT. On the other
hand, we may perfonn a nonlinear operation on y(t) to generate power at f = liT
and its harmonics.

Let us consider a square-law nonlinearity. If we square the signal y(t) given by
Equation (7.8.2) and take the expected value with respect to the data sequence (an}, we
obtain .

E[l(t)] = E [~~ anamx(t - mT - ro)x(t - nT - ro)] + noise component

where er; = E[a;J. Since E[y2(t)] > 0, we may use y2(t) to generate the desired
frequency component.

(7.8.9)

(7.8.8)

(7.8.7)
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.l\.2(rO) = L y~(ro)
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Figure 7.73 Decision-directed:ML timing recovery method for baseband PAM.

m

where Ym (ro) is the sampled output of the receiving filter given by Equation (7.8.4).
From a mathematical viewpoint, the likelihoodfunction can be shown to be proportional
to the probability of the received signal (vector) conditioned on a known transmitted
signal. Physically, .I\.(ro) is simply the output of the matched filter or correlator at the
receiver averaged over a number of symbols.

A necessary condition for ro to be the JYlL estimate is that

d.l\.(ro) = L am dYm(ro) = 0
dro m dro

This result suggests the implementation of the tracking loop shown in Figure 7.73. We
observe that the product of the detector output am with dYm(ro)ldro is averaged by a
lowpass filter that drives the Yeo. Since the detector output is used in the estimation
method, the estimate r is decision-directed.

As an alternative to the use of the output symbols from the detector, we may
use a nondecision-directed method that does not require knowledge of the infonnation
symbols. This method is based on averaging over the statistics of the symbols. For
example, we may square the output of the receiving filter and maximize the function
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7.8.3 Maximum-Likelihood Methods

In the JYlL criterion, the optimum symbol timing is obtained by maximizing the likeli­
hoodfunction.



Figure 7.76 Dlustration of the slope of
the sinusoid at the zero crossing as a
function of the amplitude.
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The additive noise that corrupts the signal will generally cause fluctuations in
the zero crossings of the desired signal. The effect of the fluctuations will depend on
the amplitude CI of the mean timing sinusoidal signal given by Equation (7.8.14). We
note that the signal amplitude CI is proportional to the slope of the timing signal in
the vicinity of the zero crossing as shown in Figure 7.76. Therefore, the larger the
amplitude CI, the larger will be the slope and, consequently, the timing errors due to
the noise will be smaller. From Equation (7.8.13) we observe that CI depends on the
amount of spectral overlap of X (f) and X (1 IT - f). Thus, CI depends on the amount
by which the bandwidth of X(f) exceeds the Nyquist bandwidth 112T; i.e., CI depends
on the excess bandwidth of the signal, which is defined as the band of frequencies of
the signal X(f) beyond f = l/2T. If the excess bandwidth is zero, i.e., X(f) = 0,
for If I > 112T, then CI = 0, and this method fails to provide a timing signal. If the
excess bandwidth is large, say al2T where a = 1/2 or 1, the timing signal amplitude
will be sufficiently large to yield relatively accurate symbol timing estimates.

7.8.5 Symbol Synchronization' for Carrier-Modulated Signals

The symbol-timing synchronization methods described in Section 7.8.4 for baseband
signals apply as well to bandpass signals. Because any carrier-modulated signal can be
converted to a baseband signal by a simple frequency translation, symbol timing can
be recovered from the received signal after frequency conversion to baseband.

For QAM signals the spectral-line methods described in Section 7.8.4 have proved
to be particularly suitable for timing recovery. Figure 7.77 illustrates a spectral-line
method which is based on filtering out a signal component at the frequency l/2T
and. squaring the filter output to generate a sinusoidal signal at the desired symbol
rate 1IT. Because the demodulation of the QAM signal is accomplished as described
above, by multiplication of the input signal with the two quadrature-carrier signals
1h (t) and 1/r2(t), the in-phase and quadrature signal components at the outputs of the
two correlators are used as the inputs to the two bandpass filters tuned to l/2T. The

(7.8.13)

(7.8.15)
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Figure 7.75 Symbol timing based on
spectral-line method.
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Let us use the Poisson Sum Formula on the signal component (see Problem 2.23)
to express Equation (7.8.11) in the form of a Fourier series. Hence,

2 .

(]'; L X2 (t - nT - TO) = i L cmei2rrmCt-r:o)/T (7.8.12)
n m

where

By design, we assume that the transmitted signal spectrum is confined to frequencies
below liT. Hence, X(f) = 0 for Ifi > liT and, consequently, there are only three
nonzero terms (m = 0, ±1) in (7.8.12). Therefore, the square of the signal component
contains a de component and a component at the frequency liT.

The above development suggests that we square the signal yet) at the output of
the receiving filter and filter y2(t) with a narrowband filter B(f) tuned to the symbol
rate liT. If we set the filterresponse B(lIT) = 1, then

(]'2. (]'2 2rr
....E.- Re [CI eJ2rr (t-r:o)/Tj = ---!!.- Cl cos - (t - TO) (7.8.14)
T . T· T

so that the timing signal is a sinusoid with a phase of - 2rr TOiT, assuming that X (f)
is real. We may use alternate zero crossings of the timing signal as an indication of the
correct sampling times. However, the alternate zero crossings of the signal given by
Equation (7.8.14) occur at

or, equivalently, at

T
t = kT + TO + '4 (7.8.16)

which is offset in time by T 14 relative to the desired zero crossings. In a practical
system the timing offset can be easily compensated either by relatively simple clock
circuitry or by designing the bandpass filter B(f) to have a rr12 phase shift at f = 1/T.
Figure 7.75 illustrates this method for generating a timing signal at the receiver.



7.9 FURTHER READING

two filter outputs are squared (rectified), su=ed, and then filtered by a narrowband
filter tuned to the clock frequency liT. Thus, we generate a sinusoidal signal that is
the appropriate clock signal for sampling the outputs of the correlators to recover the
information.

In many modem co=unication systems, the received signal is processed (de­
modulated) digitally after it has been sampled at the Nyquist rate or faster. In such a
case, symbol timing and carrier phase are recovered by signal-processing operations
performed on the signal samples. Thus, a PLL for carrier recovery is implemented as
a digital PLL and the clock recovery loop of a type described in this section is also
implemented as a digital loop. Timing recovery methods based on sampled signalshave
been described and analyzed by Mueller and Muller (1976).
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x(t) = sin(ntI4)

{

-1, O<t<1

x(t) = 1, 1 9 ~ 3
-1, 3~t~4

where

Sm(t) = smVr(t), m = 1,2, , .. , M

O~t~T

Sm = [i;Am, m = 1,2, ... , M
The signals are equally probable with amplitudes that are symmetric about zero
and are uniformly spaced with distance d between adjacent amplitudes as shown
in Figure 7.1l.

7.2 Show that the correlation coefficient of two adjacent signal points corresponding
to the vertices of an N-dimensional hypercube with its center at the origin is
given by

7.1 Determine the average energy of a set of M PAM signals of the form

and their Euclidean distance is

N-2
y=-­

N

d = 2JEs iN

7.3 Consider the three waveforms Vrn(t) shown in Figure P-7.3.

1. Show that these waveforms are orthonormal.

2. Express the waveform x (t) as a weighted linear combination of Vrn (t), n =
1,2,3, if

and determine the weighting coefficients.

7.4 Use the orthonormal waveforms in Problem P-7.3 to approximate the function

Problems

Symbol synchronization for carrier-modulated signals is a topic that has been
treated thorougWy and analyzed in many journal articles. Of particular importance are
the journal papers by Lyon (1975a,b) that treat timing recovery for QAM signals and
the paper by Mueller and Muller (1976) that describes symbol timing methods based
on digital processing of signal samples.

PROBLEMS
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Figure 7.77 Block diagram of timing recovery method for QAM.
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The geometrical representation of digital signals as vectors was first used by Kotelnikov
(1947), and by Shannon (1948) in his classic papers. This approach was popularized
by Wozencraft and Jacobs (1965). Today this approach to signal analysis and design is
widely used. Similar treatments to that given in the text may be found in most books
on digital communications.

The matched filter was introducedby North (1943), who showed that it maximized
the SNR. Analysis of various binary and M-ary modulation signals in AWGN were
performed in the two decades following Shannon's work. Treatments similar to that
given in this chapter may be found in most books on digital co=unications.

A number of books and tutorial papers have been published on the topic of time
synchronization. Books that cover both carrier-phase recovery and time synchronization
have been written by Stiffler (1971), Lindsey (1972), and Lindsey and Simon (1973),
Meyr and Ascheid (1992), and Mengali and D'Andrea '(1997). The tutorial paper by
Franks (1980) presents a very readable introduction to this topic.
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Show that the M signal waveform {s~ (t)} have equal energy, given by

&' = (M -l)E:IM

-2

7.6 Determine a set of orthonormal functions for the four signals shown in Fig­
ure P-7.6.

7.7 Consider a set of M orthogonal signal waveforms Sm (t), 1 :::: m :::: M, 0:::: t :::: T,
all of which have the same energy &. Define a new set of M wavefo=s as

ProblemsChapter 7

4

4

o

1'2 f----'---------,

2

Figure P·7.3

4

o

3

X(t) = Len1/Jn (t)
n=!

1
2

2
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1. Determine the expansion coefficients {en} that minimize the mean-square
approximation error

2. Determine the residual mean square error Emin·,

o

over the interval 0 :::: t :::: 4 by the linear.combination

2

7.5 Consider the four waveforms shown in Figure P-7.5.

1. Determine the dimensionality of the waveforms and a set ofbasis functions.

2. Use the basis functions to represent the four waveforms by vectors 81, 82,

83,84·

3. Determine the minimum distance between any pair of vectors.
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1. Determine the optimum detector for an AWGN charmel and the optimum
threshold, assuming that the signals are equally probable.

2. Determine the probability of error as a function of the SNR. How does
on-off signaling compare with antipodal signaling?

Prove that E(njnz) = O.

7.9 A binary digital communication system employs the signals

so(t) =0, O::::t::::T

- Sj(t) =A, O::::t::::T

for transmitting the information. This is called on-offsignaling. The demodulator
crosscorrelates the received signal ret) with Sl{t) and samples the output of the
correlator at t = T.

and are equally correlated, with correlation coefficient

1 loT I I 1
Ymn = c" SOl (t)sn (t) dt = ----

" 0 M-1
7.8 Suppose that two signal waveforms Sj (t) and S2 (t) are orthogonal over the in­

terval (0, T). A sample function n(t)- of a zero-mean, white noise process is
crosscorrelated with Sj (t), and S2(t), to yield

nj = iT Sj (t)n(t) dt

n2 = iT S2(t)n(t) dt
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1. Sketch the impulse response of the filter matched to set).

2. Sketch the output of the matched filter to the input s(t).

Figure P-7.14

oL-----'----'2--....L.------->-

set)

A

Problems

where set) is shown in Figure P-7.14 and net) is AWGN with power-spectral
density No/2 WfHz.

r(t) = set) + net)

7.10 A bi,nary PAM communication system employs rectangular pulses of duration Tb

and amplitudes ±A to transmit digital information at a rate Rb = 105 bps. If the
power-spectral density of the additive Gaussian noise is No/2, where No = lO-z
WfHz, determine the value of A that is required to achieve a probability of error
Ph = 10-6•

7.11 In a binary PAM system for which the two signals occur with unequal probabilities
(p and 1 - p), the optimum detector is specified by Equation (7.5.54).

1. Determine the average probability of error as a function of (Chi No) and p.

2. Evalu8tetheprobabilityoferrorforp = 0.3andp = 0.5, withcblNo = 10.

7.12 A binary PAM communication system is used to transmit data over an AWGN
channel. The prior probabilities for the bits are P(am = 1) = 1/3 and P(am =
-1) = 2/3.

1. Determine the optimum threshold at the detector.

2. Determine the average probability of error.

7.13 Binary antipodal signals are used to transmit information over an AWGN channel.
The prior probabilities for the two input symbols (bits) are 1/3 and 2/3.

1. Determine the optimum maximum-likelihood decision rule for the detector.

2. Determine the average probability of error as a function of [hiNo.

7.14 The received signal in a binary communication system that employs antipodal
signals is

Chapter 7
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o::::;t::::; T

otherwise

0::::; t::::; t
t::::;t ::::;T
otherwise

(b)

2f----.

Ol----+---+I--~
~ IT t·

1...-_---'-1-

(e)

T
2

Figure P·7.18

o

(a)

1. What is the dimensionality of the signal space?

2. Find an appropriate basis for the signal space (Hint: You can find the basis
without using the Gram-Schmidt procedure).

3. Draw the signal constellation for this problem.

4. Derive and sketch the optimal decision regions Rj, R2, and R3.

5. Which of the three messages is more vulnerable to errors and why? In other
words which of P(Error ISi transmitted), i =1,2,3 is larger?

Problems

7.19 Three messages m1, m2, and m3 are to be transmitted over an AWGN channel
with noise power-spectral density l!f. The messages are

Chapter 7

r«Tt = kT+r

R

Figure P-7.17

Cr 9
o-----........~~.......---<o
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r{t) =SJ (t)+n(t) .l -'- f.'Cl dto

3. Determine the variance the noise of the output of the matched filter at t = 3.

4. Determine the probability of error as a function of A and No.

7.15 A matched filter has the frequency response

1- e-j2rrfT

H(j) = j2nj

1. Determine the impulse response h(t) corresponding to H(j).

2. Determine the signal waveform to which the filter characteristic is matched.

7.16 Prove that when a sinc pulse gT (t) is passed through its matched filter, the output
is the same sinc pulse.

7.17 The demodulation of the binary antipodal signals

Sj(t) = -S2(t) = {[?i-, O::::;t::::;T
0, otherwise

can be accomplished by use of a single integrator, as shown in Figure P-7.17,
which is sampled periodically at t = kT, k = 0, ±l, ±2, .... The additive noise
is zero-mean Gaussian with power-spectral density of l!f WlHz.
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1. Determine the output SNR of the demodulator at t = T.

2. If the ideal integrator is replaced by the RC filter shown in Figure P-7.17,
determine the output SNR as a function of the time constant RC.

3. Determine the value of RC that maximizes the output SNR.

7.18 Sketch the impulse response of the filter matched to the pulses shown in Figure
P-7.18. Also determine and sketch the outputs of each of the matched filters.
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A three-level PAM system is used to transmit the output of a memoryless ternary
source whose rate is 2000 symbols/sec. The signal constellation is shown in
Figure P-7.25. Determine the input to the detector, the optimum threshold that
minimizes the average probability of error, and the average probability of error.

7.26 Consider a biorthogonal signal set with M = 8 signal points. Determine a union
bound for the probability of a symbol error as a function of E.blNo. The signal
points are equally likely a priori.

7.25

Problems

7.24 A Manchester encoder maps an information 1 into 10 and a 0 into 01. The signal
waveforms corresponding to· the Manchester code are shown in Figure P-7.24.
Determine the probability of error if the two signals are equally probable.

Digital Transmission through Gaussian Noise Channel460

7.20 In this chapter we showed that an optimal demodulator can be realized as:

• A correlation-type demodulator

• A matched-filter type demodulator

where in both cases 1/fj (t.), 1 ::: j ::: N, were used for correlating r (t), or
ing the matched filters. Show that an optimal demodulator for a general
communication system can also be designed based on correlating ret) with Sj

1::: i ::: M, or designing filters that are matched to Sj (t)'s, 1:::: i :::: M. Pre,('i." ..]v

describe the structure of such demodulators by giving their block diagram and
relevant design parameters, and compare their complexity with the complexity
the demodulators obtained in the text.

7.21 In a binary antipodal signalling scheme the signals are given by

{

2At 0 < t < I.
T - - 2

SI(t)""-S2(t)"" 2A(1-t) f::::t::::T

0, otherwise

The channel is AWGN and Sn (f) = ~. The two signals have prior probabilities
PI andp2 "" 1- Pl'

1. Determine the structure of the optimal receiver.

2. Determine an expression for the error probability.

3. Plot error probability as a function of PI for 0 ::: PI ::: 1.

7.22 In an additive white Gaussian noise channel with noise power-spectral density of
Eft, two equiprobable messages are transmitted by

{

M O<t<T
Sl (t) "" T' --

0, otherwise

{
A(l- t ) O:::t:::T

~W= .
0, otherwIse

1. Determine the structure of the optimal receiver.

2. Determine the probability of error.

7.23 Consider a signal detector with an input

r "" ±A+n

where +A and -A occur with equal probability and the noise variable n is
characterized by the (Laplacian) pdf shown in Figure P-7.23.

1. Determine the probability of error as a function of the parameters A and u.

2. Determine the "SNR" required to achieve an error probability of 10-5. How
does the SNR compare with the result for a Gaussian PDF?

;'.
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set) = ~Cjp(t -nTJ
k=J

463Problems

1. Let Ci denote the ith row of an n x n Hadamard matrix as defined above.
Show that the waveforms constructed as

n

Si(t) = ~CjkP(t - kTe) , i = 1,2, ... , n
k=J

are orthogonal, where pet) is an arbitrary pulse confined to the time interval
O:S:t:s:Tc •

2. Show that the matched filters (or crosscorrelators) for the n waveforms
{Sj(t)} can be realized by a single filter (or correlator) matched to the pulse
p (t) followed by a set of n crosscorrelators using the code words {Cj}.

7.32 The discrete sequence

device, therefore, observes TJ and T2 and based on this observation has to decide
which message was transmitted. What decision rule should be adopted by the
decision device for an optimal decision?

7.31 A Hadamard matrix is defined as a matrix whose elements are ±1 and its row
vectors are pairwise orthogonal. In the case when n is a power of 2, an n x n
Hadamard matrix is constructed by means of the recursion

Tk = VE;Ck + nk, k = 1, 2, ... , n

represents the output sequence of samples from a demodulator, where Ck
±1 are elements of one of two possible codewords, Cj = (1,1, ... ,1] and C2 =
(1,1, ... ,1, -1, ... , -1]. The codeword C2 has w elements which are +1 and
n - w elements which are -1, where w is some positive integer. The noise
sequence {nd is white Gaussian with variance CJ2.

1. What is the optimum maximum-likelihood detector for the two possible
transmitted signals?

2. Determine the probability error as a function of the parameter (CJ 2 , Eb , w).

3. What is the value of w that miniJnizes the error probability?

7.33 A baseband digital communication system employs the signals shown in Fig­
ure P-7.33(a) for transJnission of two equiprobable messages. Itis assumed the
communication problem studied here is a "one shot" communication problem,
that is, the above messages are transmitted just once and no transmission takes
place afterwards. The channel has no attenuation (0: = 1) and the noise is AWG

Chapter 7

Decision
device

Figure P-7.30
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r(t)

7.27 Consider an M-ary digital communication system where M = 2N
, and N is the

dimension of the signal space. Suppose that the M signal vectors lie on the
vertices of a hypercube that is centered at the origin, as illustrated in Figure 7.29.
Determine the average probability of a symbol error as a function of EsI No where
Es is the energy/symbol, No/2 is the power-spectral density of the AWGN, and
all signal points are equally probable.

7.28 Consider the signal waveform

{
I 0:S:t:s:1

SJ (t) = 0, otherwise

and S2 (t) = SJ (t - 1). It is intended to implement the receiver using a correlation
type structure, but due to imperfections in the design of the correlators, the struc­
ture shown in Figure P-7.30 has been implemented. The imperfection appears in
the integrator in the upper branch where instead of I; we have Its. The decision
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where pet) is a rectangular pulse of unit amplitude and duration Te. The {cd may
be viewed as a code vector C = [cJ, C2, ••• , cn], where the elements Cj = ±1.
Show that the filter matched to the waveform S (t) may be realized as a cascade of
a filter matched to p (t) followed by a discrete-time filter matched to the vector c.
Determine the value of the output of the matched filter at the sampling instant
t = nTe •

7.29 A speech signal is sampled at a rate of 8 kHz, logarithmically compressed and
encoded into a PCM format using 8 bits/sample. The PCM data is transmitted
through an AWGN baseband channel via M-level PAlv1. Detennine the bandwidth
required for transJnission when (a) M = 4, (b) M = 8, and (c) M = 16.

7.30 Two equiprobable messages are transmitted via an additive white Gaussian noise
channel with noise power-spectral density of l!f = 1. The messages are transmit­
ted by the following two signals



7.34 Suppose that binary PSK is used for transmitting information over an AWGN with
power-spectral density of No/2 = 10-10 Willi. The transmitted signal energy is
E:b = A2T12, where T is the bit interval and A is the signal amplitude. Determine
the signal amplitude required to achieve an error probability of 10-6 , if the data
rate is (a) 10 kbps, (b) 100 kbps, (c) 1 Mbps.

465Problems

K
G(s) = -1-­+ [IS

1
G(s) =-;;:;

s +'\12

1. Determine the closed-loop transfer function H (s) and indicate if the loop
is stable.

2. Determine the damping factor and the natural frequency of the loop.

7.39 Consider the PLL for estimating the carrier phase of a signal in which the loop
filter is specified as

7.35 Consider the signal

{
~tcos2rcfet' O~t~T

uCt) = .
0, otherwIse

1. Determine the impulse response of the matched filter for the signal.

2. Determine the output of the matched filter at t = T.

3. Suppose the signal u(t) is passed through a correlator which correlates the
input u(t) with u(t). Determine the value of the correlator output att = T.
Compare your result with that in part (2).

7.36 A carrier component is transmitted on the quadrature carrier in a communication
system that transmits information via binary PSK. Hence, the received signal has
the form

vet) = ±Mcos (2rcfet + 4» + -I'fPc sin(2nfet +¢) + net)

where 4> is the carrier phase and net) is AWGN. The unmodulated carrier com­
ponent is used as a pilot signal at the receiver to estimate the carrier phase.

1. Sketch ablock diagram of the receiver, including the carrier-phase estimator.

2. lllustrate mathematically the operations involved in the estimation of the
carrier-phase 4>.

3. Express the probability of error for the detection of the binary PSK signal
as a function of the total transmitted power PT = Ps + Pe. What is the loss
in performance due to the allocation of a portion of the transmitted power
to the pilot signal? Evaluate the loss for PelPr = O.l.

7.37 In the demodulation of a binary PSK signal received in white Gaussian noise, a
phase-locked loop is used to estimate the carrier-phase 4>.

1. Determine the effect of a phase error 4> - (p on the probability of error.

2. What is the loss in SNR if the phase error 4> - (p = 45°?

7.38 Suppose that the loop filter [see Equation (5.2.4)] for a PLL has the transfer
function

TT
2

o

A------,---...,

(b)

(a)

Figure P-7.33

AWGN

T
2

o

Al-----,
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with power-spectral density !!to
1. Find an appropriate orthonormal basis for the representation of the signals.

2. In a block diagram, give the precise specifications of the optimal receiver
using matched filters. Label the block diagram carefully. .

3. Find the error probability of the optimal receiver.

4. Show that the optimal receiver can be implemented by using just one filter
[see block diagram shown in Figure P-7.33(b)]. What are the characteristics
of the matched filter and the sampler and decision device? .

5. Now assume the channel is not ideal, but has an impulse response of c(t) ::::
oCt) + ~o(t - t)· Using the same matched filter you used in the previous
part, design an optimal receiver.

6. Assuming that the channel impulse response is c(t) = oCt) +ao(t - t),
where a is a random variable unifomliy distributed on [0, 1], and using the •...
same matched filter, design the optimal receiver.
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Problems

between two adjacent points in the two constellations is d. From this result, de­
termine the additional transmitted energy required in the 8-PSK signal to achieve
the same error probability as the four-phase signal at high SNR, where the prob­
ability of error is determined by errors in selecting adjacent points.

7.43 Consider the two 8-point QAM signal constellation shown in Figure P-7.43. The
minimum distance between adjacent points is 2A. Determine the average trans­
mitted power for each constellation assuming that the signal points are equally
pmbable. Which constellation is more power efficient?

7.44 The 16-QAM signal constellation shown in Figure P-7.44 is an international stan­
dard for telephone-line modems (called V.29). Determine the optimum decision
boundaries for the detector, assuming that the SNR is sufficiently high so that
errors only occur between adjacent points.

7.45 Specify a Gray code for the 16-QAM V.29 signal constellation shown in Prob­
lem 7.44.

7.46 ConsIder the octal signal-point constellations in Figure P-7.46.

1. The nearest neighbor signal points in the 8-QAM signal constellation are
separated in distance py A units. Determine the radii a and b of the inner
and outer circles.

2. The adjacent signal points in the 8-PSK are separated by a distance of A
units. Determine the radius r of the circle.

3. Determine the average transmitter powers for the two signal constellations
and compare the two powers. What is the relative power advantage of one
constellation over the other? (Assume that all signal points are equally
probable).

7.47 Consider a digital communication system that transmits information via QAM
over a voice-band telephone channel at a rate 2400 symbols/second. The additive
noise is assumed to be white and Gaussian.
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Figure P·7.41

7.42 Consider the four-phase and eight-phase signal constellations shown ~ Fig­
ure P-7.42. Determine the radii r1 and rz of the circles, such that the distance

7.41 The loop filter G(s) in a PLL is implemented with the active fi~ter shown in
Figure P-7.41. Determine the system function G (~) ~d express the lime constants
"1 and '7:2 [see Equation (5.2.4)] in terms of the CITcmt parameters.

1. Determine the closed-loop transfer function H(s) and its gain at f = O.

2. For what range of value of '1 and K is the loop stable?

7.40 The loop filter G(s) in a PLL is implemented by the circuit s~own in Fig­
ure P-7.40. Determine the system function G(s) and express the tllne constants
'1 and '2 [see Equation (5.2.4)] in terms of the circuit parameters.
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469Problems

7.48 Consider the 8-point QAM signal constellation shown in Figure P-7.46.

1. Is itpossible to assign three data bits to each point ofthe signal constellation
such that nearest (adjacent) points differ in only one bit position?

2. Determine the symbol rate if the desired bit rate is 90 Mbps.

3. Compare the SNR required for the 8-point QAM modulation with that of
an 8-point PSK modulation having the same error probability.

4. Which signal constellation, 8-point QAM or 8-point PSK, is more immune
to phase errors? Explain the reason for your answer.

7.49 In Section 7.4.1 it was shown that the minimum frequency separation for orthog­
onality of binary FSK signals with coherent detection is t:.f = :Jr. However a
lower error probability is possible with coherent detection of FSK if t:.f is in­
creased beyond A. Show thilt the minimum value of t:.f is 0·i15 and determine
the probability of error for this choice of Af.

7.50 The lowpass equivalent signal waveforms for three signal sets are shown in Fig­
ure P-7.50. Each set may be used to transmit one of four equally probable mes­
sages over an additive white Gaussian noise channel with noise power-spectral
density~..

1. Classify the signal waveforms in set I, set n, and set ill. In other words,
state the category or class to which each signal set belongs.

2. What is the average transmitted energy for each signal set?

3. For signal set I, specify the average probability of error if the signals are
detected coherently.

4. For signal set II, give a union bound on the probability of a symbol error if
the detection is performed (a) coherently and (b) noncoherently.

5. Is it possible to use noncoherent detection on signal set ill? Explain.

6. Which signal set or signal sets would you select if you wished to achieve a
bit rate to bandwidth (~) ratio of at least 2. Explain your answer.

7.51 Consider the phase-coherent demodulator for M -ary FSK signals as shown in
Figure 7.45.

1. Assume that the signal

ru;
uo(t) = VTcos2TCfct, 0 ~ t ~ T

was transmitted and determine the output of the M - 1 correlators at t = T,
corresponding to the signals Um(t), m. = I, 2, ... , M - 1, when if;m=1= rpm.

2. Show that the minimum frequency separation required for the signal or­
thogonality at the demodulator when ¢m =1= rpm is t:.f = t·

7.52 In the demodulation and noncoherent detection of M -ary FSK signals, as
illustrated in Figure 7.47, show that the 2M noise samples given in Equations
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I

1. Determine the [hi No required to achieve an error probability of 10-
5

at

4800 bps.
2. Repeat (1) for a bit rate of 9600 bps.

3. Repeat (1) for a bit rate of 19,200 bps.

4. What conclusions do you reach from these results.
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1. Sketch a block diagram of the receiver (demodulator and detector) that
employs noncoherent (envelope) detection.

2. Determine the probability density functions for the two possible decision
variables at the detector corresponding to the two possible received signals.

3. Derive the probability of error for the detector.

7.54 Digital infonnation is to be transmitted by carrier modulation through an additive
Gaussian noise channel with a bandwidth of 100 kHz and No = 10-10 WfHz.
Determine the maximum rate that can be transmitted through the channel for four­
phase PSK, binary FSK,and four-frequency orthogonal FSK which is detected
noncoherently.

7.55 Consider a transmission line channel that employs n - 1 regenerative repeaters
plus the terminal receiver in. the transmission of binary infonnation. We assume
that the probability of error at the detector of each receiver is p and that errors
among repeaters are statistically independent.

1. Show that the binary error probability at the terminal receiver is

1. Determine the gains of the transinitting and receiving antennas.

2. Determine the EIRP of the transmitted signal.

3. Determine the signal power from the receiving antenna.

2. Ifp = 10-6 and n = 100, determine an approximate value of Pn .

7.56 A digital communication system consists of a transmission line with 100 digital
(regenerative) repeaters. Binary antipodal signals are used for transmitting the
infonnation. If the overall end-to-end error probability is 10-6, determine the
probability of error for each repeater and the required [blNo to achieve this
performance in AWGN.

7.57 A radio transmitter has a power output of PT = 1 watt at a frequency of
109 Hz (1 GHz). The transmitting and receiving antennas are parabolic dishes
with diameter D = 3 meters.

1. Determine the antenna gains.

2. Determine the EIRP for transmitter.

3. The distance (free space) between the transmitting and receiving antennas
is ZO km. Determine the signal power at the output of the receiving antenna
indBm.

7.58 A radio communication system transmits at a power level of 0.1 watt at 1 GHz.
The transmitting and receiving antennas are parabolic, each having a diameter of
one meter. The receiver is located 30 km from the transmitter.

01---1----1.-'---'-_
2 3 4 t

01---'--2-'---

r(t) = net),

V
ZEb

r(t) = - cos(Znfct + ¢) + net),
Tb

where ¢ is the carrier phase and net) is AWGN.

(7.5.88) and (7.5.89) are zero-mean, mutually independent Gaussian random vari­
ables with equal variance (]"2 = ~o.

In on-off keying of a carrier-modulated signal, the two possible signals are

The corresponding received signals are

A

01---'---1...­
2

Digital Transmission through Gaussian Noise Channel

Setl

,.(~~ "(~~ '~~ "(~~
1 2 t o 1 2 t o 1 2 3 t o 1 2 3 4 t

Set II

"~)f. "~~ '(')~ "(')~A
f2f2 f2
o 1 2 3 4 to 1 2 t o 1 2 t o 1 2 3 t

-A -A -A -A
f2 f2 f2 f2

SetID

Figure P.7.50
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Figure P·7.64

If the desired SNRlbit (£blNo) was 6 dB, determine the data rate that could have
been supported by the communication link.

7.64 Show that the early-late gate synchronizer illustrated in Figure 7.70 is a close
approximation to the timing recovery system illustrated in Figure P-7.64.

7.65 Based on a ML criterion, determine a carrier-phase estimation method for binary
on-off keying modulation.
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G=10dB
F=5dB

7.62 A satellite in geosynchronous orbit is used as a regenerative repeater in a digital
communication system. Let us consider the satellite-to-earth link in which the.
satellite antenna has a gain of 6 dB and the earth-station antenna has a gain
of 50 dB. The downlink is operated at a center frequency of 4 GHz, and the'
signal bandwidth is 1MHz. If the required (£hl No) for reliable communication is
15 dB, determine the transmitted power for ftle satellite downlink. It is assumed
that No = 4.1 X 10-21 WIHz.

7.63 One of the Mariner spacecrafts that traveled to the planet Mercury sent its data '.
to earth through a distance of 1.6 x 1011 m. The transmitting antenna had a gain
of 27 dB and operated at a frequency f = 2.3 GHz. The transmitter power was'
17 W. The earth station employed parabolic antenna with a 64-m diameter and an;:
efficiency of 0.55. The receiver had an effective noise temperature of Te = 15 K..

7.59 A satellite in synchronous orbit is used to communicate with an earth station at·
a distance of 4 x 107 m. The satellite has an antenna with a gain of 15 dB and a
transmitter power of3 W. The earth station uses a 10 m parabolic antenna with an
efficiency of 0.6. The frequency band is at f = 10 GHz. Determine the received
power level at the output of the receiver antenna. .

7.60 A spacecraft in space located 108 meters from the earth is sending data at a rate
of R bps. The frequency band is centered at 2 GHz and the transmitted power
is 10 W. The earth station uses a parabolic antenna, 50 m in diameter, and the
spacecraft has an antenna with a gain of 10 dB. The noise temperature of the
receiver front end is T = 300 K.

1. Determine the received power level.

2. If the desired chiNo = 10 dB, determine the maximum bit rate that the
spacecraft can transmit.

7.61 Consider the front-end of the receiver shown in the block diagram in Fig-··
ure P-7.61. The received signal power at the input to the first amplifier is -113
dBm, and the received noise power-spectral density is -175 dBmIHz. The band­
pass filter has a bandwidth of 10 MHz, and gains and noise figures are as shown.
Determine the SNR Psi Pn at the input to the demodulator.
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where GT(f) is the spectrum (Fourier transform) of the signal gT (t) and H (f) is the
spectrum of h(t). Thus, the channel alters or distorts the transmitted signal gT (t).

Let us assume that the signal at the output of the channel is corrupted by AWGN.
Then, the signal at the input to the demodulator is of the form h(t) + net), where net)
denotes the AWGN. Recall from the preceding chapter that in the presence of AWGN,
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(8.1.3)

f

f

H(f) = C(f)GT(f)

Figure 8.1 Magnitude and' phase
,responses of bandlimited channel.

El(f)

IC(f)1
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If the channel is a baseband channel that is bandlimited to Be Hz, then C(f) = 0 for
Ifl > Be· Any frequency components at the input to the channel that are higher than
Be Hz will not be passed by the channel. For this reason, we consider the design of
signals for transmission through the channel that are bandlimited to W =Be Hz, as
shown in Figure 8.1. Henceforth, W will denote the bandwidth limitation of the signal
and the channel.

Now, suppose that the input to a bandlimited channel is a signal waveform gT(t).
Then, the response of the channel is the convolution of gT(t) with e(t); i.e.,

h(t) =I: e(T)gT(t - T) dT = e(t) * gT(t) (8.1.2)

or, when expressed in the frequency domain, we have

In the preceding chapter, we considered digital communication over an AWGN channel
and evaluated the probability of error performance of the optimum receiver for several
different types of baseband and carrier-modulation methods. In this chapter, we treat
digital communication over a channel that is modeled as a linear filter with a bandwidth
limitation. Bancllimited channels most frequently encountered in practice are telephone
channels, microwave LOS radio channels, satellite channels, and underwater acoustic
channels.

In general, a linear filter channel imposes more stringent requirements on the
design of modulation signals. Specifically, the transmitted signals must be designed
to satisfy the bandwidth constraint imposed by the channel. The bandwidth constraint
generally precludes the use ofrectangular pulses at the output ofthe modulator. Instead,
the transmitted signals must~e shaped to restrict their bandwidth to that available on the
channel. The design of bandlimited signals is one of the topics treated in this chapter.

We will see that a linear filter channel distorts the transmitted signal. The channel
distortion results in intersymbol interference at the output of the demodulator and leads
to an increase in the probability oferror at the detector. Devices ormethods for correcting
or undoing the channel distortion, called channel equalizers, are then described.

Digital Transmission through
Bandlimited AWGN Channels

8.1 DIGITAL TRANSMISSION THROUGH BANDLlMITED CHANNELS

A bandlimited channel such as a telephone wireline is characterized as a linear filter
with impulse response cCt) and frequency response C(f), where

C(f) = 1: e(t)e-i2rr!t dt (8.1.1)
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(8.1.4)

(8.1.5)

(8.1.6)
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where to is some nominal time delay at which we sample the filter output.
The signal component at the output of the matched filter at the sampling instant

t = to is

Hence, the noise power at the output of the matched filter has a variance

which is the energy in the channel output h(t). The noise component at the output of
the matched filter has a zero mean and a power-spectral density

a demodulator that employs a filter which is matched to the signal h(t) maximizes the
SNR at its output. Therefore, let us pass the received signal h(t) + nCt) through a filter
that has a frequency response

(8.1.7)

f1 2 3 4
T T T T

o

H(f) = C(f)GT(f)

= {GT(f), If I :::: W
0, otherwise

(.c)

Figure 8.2 The signal pulse in (b) is transmitted through the ideal bandlimited
channel shown in (a). The spectrum of gT (t) is shown in (c).

Solution This problem is most easily solved in the frequency domain. First, the spectrum
of the signal pulse is

GT(f) = T sinnfT e-jrr!T
2 nfT(1 - j2T2)

T sincfT _. IT= e Jrr
2 (1 - j2T2)

The spectrum IGT (f) f is shown in Figure 8.2(c). Hence,

(8.1.8)

Example 8.1.1
The signal pulse gTCt), defined as

is transmitted through abaseband channel withfrequency-response characteristic as shown
in Figure 8.2(a). The signal pulse is illustrated in Figure 8.2(b). The channel output is
corrupted by AWGN with power-spectral density No/2. Determine the matched filter to
the received signal and the output SNR.

The SNR at the output of the matched filter is

This is the result for the SNR at the output of the matched filter that was obtained in the
Chapter 7 except that the received signal energy Eh has replaced the transmitted signal
energy [So Compared to the previous result, the major difference in this development
is that the filter impulse response is matched to the received signal h (t) instead of the
transmitted signal. Note that the implementation of the matched filter at the receiver
requires that h(t) or, equivalently, the channel impulse response c(t) must be known to
the receiver.
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(8.1.9)

(8.1.10)

(8.1.11)

(8.1.12)

00

vet) = L angT(t - nT)
n=-oo

n=-co

'00

r(t) = :L anh(t - nT) + net)

00

yet) = L anx(t - nT) + vet)
n=-oo

Figure 8.3 Block diagram of digital PAM system.

00

y(mT) = :L anx(mT - nT) + v(mT)
n=-co
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First we consider digital communications by means of M-ary PAM. Hence, the
input binary data sequence is subdivided into k-bit symbols and each symbol is mapped
into a corresponding amplitude level that amplitude modulates the output of the trans­
mitting filter. The baseband signal at the output of the transmitting filter (the input to
the channel) may be expressed as

where T = klRb is the symbol interval (liT = Rbik is the symbol rate), Rb is the bit
rate, and {an} is a sequence of amplitude levels corresponding to the sequence of k-bit
blocks of information bits.

The channel output, which is the received signal at the demodulator, may be
expressed as

where h(t) is the impulse response of the cascade of the transmitting filter and the
channel; i.e., h(t) = e(t) * gT(t), e(t) is the impulse response of the channel, and nCt)
represents the AWGN.

The received signal is passed through a linear receiving filter with impulse re­
sponse gR (t) and frequency response GR(f). IfgR (t) is matched to h (t), then its output
SNR is a maximum at the proper sampling instant. The output of the receiving filter
may be expressed as

where x(t) = h(t) * gR(t) = gT(t) * e(t) * gR (t) and vet) = net) * gR(t) denotes the
additive noise at the output of the receiving filter.

To recover the information symbols {an}, the output of the receiving filter is
sampled periodically, every T seconds. Thus, the sampler produces

Digital Transmission through Bandlimited AWGN Channels

Hence, the output SNR is

2 No l W

er" = 2: ·
-w

Then, the signal component at the output of the filter matched to H (f) is

£h = 1>GT(f)!2df

__l_jW (sinnfT)2 d
- (2n)2 -w PO - pT2)2 f

T jWT sin2 net= -- det
(2n)2 -WT a2 (1 - ( 2)2

The variance of the noise component is
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8.1.1 Digital PAM Transmission through Bandlimited
Baseband Channels

Let us consider the baseband PAM communication system illustrated by the functional
block diagram in Figure 8.3. The system consists of a transmitting filter having an
impulse response gT(t), the linear filter channel with AWGN, a receiving filter with "
impulse response gR (t), a sampler that periodically samples the output of the receiving
filter, and a symbol detector. The sampler requires the extraction ofa timing signal from
the received signal as described in Section 7.8. This timing signal serves as a clock that
specifies the appropriate time instants for sampling the output of the receiving filter.



or, equivalently,

u(t) = ve(t) cos 2rrfet + vs(t) sin2rrfet
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(8.1.17)

(8.1.18)

(8.1.20)

(8.1.21)

(8.1.22)
n=-oo

00

wet) =Re[r(t)ej2rrfct]

n=-oo

00

= 2:= (ane - jans)gy(t - nT)
n=-co

00

= 2:= angT(t - nT)

00

vet) == 2:= angy(t - nT)
n=-co

00

ve(t) = 2:= anegy(t-nT)
n=-oo

00

vs(t) = 2:= ansgT(t - nT)
n;;;:;-oo

ret) = 2:= anh(t - nT) + net)
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where

where the sequence {an = ane - jans} is now a complex-valued sequence representing
the signal points from the QAM signal constellation. The corresponding bandpass QAM
signal u(t) may also be represented as

u(t) =Re[v(t)e j2rr!c'] (8.1.19)

and {ancJ and {ans } are the two sequences of amplitudes carried on the two quadrature
carriers. A more compact mathematical representation of the baseband signal is the
equivalent complex-valued baseband signal

vet) = ve(t) - jvs(t)

where ret) is the equivalent lowpass (baseband) signal, which may be expressed as

In a sinIilar manner, we can represent a digital carrier-phase modulated signal as
in Equation (8.1.19), where the equivalent baseband signal is

and the sequence {an} takes the valuefromthe set ofpossible (phase) values {e - j2rrmlM ,

m =0,1, ... , M -I}. Thus, all three carrier-modulated signals, PAM, QAM, andPSK
. can berepresented as in Equations (8.1.19) and (8.1.20), where the orily difference is
in the values taken by the transmitted sequence {an}.

The signal vet) given by Equation (8.1.20) is called the equivalent lowpass signal.
In the case of QAM and PSK, this equivalent lowpass signal is a baseband signal which
is complex-valued because the information-bearing sequence {an} is complex-valued.
In the case of PAM, v (t) is a real-valued baseband signal.

WheJ;l transmitted through the bandpass channel, the received bandpass signal
may be represented as

Digital Transmission through Bandlimited AWGN Channels480

wherexm = x(mT), Vm = v(mT), andm = 0, ±l, ±2, .. ,. Atiming signal exu:actled
from the received s~gnal as described in Section 7.8 is used as a clock for sampling
received signal.

The first term on the right-hand side (RHS) of Equation (8.1.13) is the
symbol am, scaled by the gain parameter xo. When the receiving filter is matched
received signal hCt), the scale factor is

xo= L:h2(t)dt = L:IH(f)!2df

= jW IGy(f)12IC(f)12 df == £h
-w

as indicated by the development of Equations (8.1.4) and (8.1.5). The second
on the RHS of Equation (8.1.13) represents the effect of the other symbols at
sampling instantt =mT, called the intersymbol interference (lSI). In gen~ral,lSI causes
a degradation in.the performance of the digital communication system. Fmally,
term, Vm , that represents the additive noise, is a zero-mean Gaussian random
with variance (J2 = NoEh/2, previously given by Equation (8.1.7).

By appro;riate design of the transmitting and receiving filters, it is possible
satisfy the condition Xn = 0 for n =j:. 0, so that the lSI term vani~hes. In ~s. case,
only term that can cause errors in the received digital sequence IS the add1uve
The design of transmitting and receiving filters is considered in Section 8.3.

8.1.2 Digital Transmission through Bandlimited
Bandpass Channels

The development 'given in Section 8.1.1 for baseband PAM is easily extended to
modulation via PAM, QAM, and PSK. In a carrier-amplitude modulated signal,
baseband PAM given by vet) in Equation (8.1.9) modulates the carrier, so that
transmitted signal u(t) is simply

u(t) = vet) cos 2rrfet

Thus, the baseband signal vet) is shifted in frequency by fe. .
A QAM signal is a bandpass signal which, in its simplest form: may be v1ew~d as

two amplitude-modulated carrier signals in phase quadrature. That IS, the QAM SIgnal
may be expressed as

00

Ym = 2:= anxm- n + Vm .
n=-oo

= xoam+ 2:= anxm- n + Vm

n;"m



8.2 THE POWER SPECTRUM OF DIGITALLY MODULATED SIGNALS

First, we will derive the power spectrum of a baseband signal and, then, we consider
the power spectrum of the bandpass signal.
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(8.2.1)

(8.2.2)

(8.2.4)

(8.2.6)

n=-oo

n=-oo

00

= rna E gT(t - nT)

n=-co

00

vet) = E angT(t - nT)

00

E gT(t - nT)gT(t + r - nT - mT)
n=-oo
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00 00

Rv(t + r, t) = E E Ra(rn - n)gT(t - nT)gT(t + r - rnT)
n=-com=-co

Section 8.2

00

E[V(t)] = E E[an]gT(t - nT)

00 00,

= E Ra(rn) E gT(t - nT)gTCt + r - nT - mT) (8.2.5)

8.2.1 The Power Spectrum of the Baseband Signal

As shown above, the equivalent baseband transmitted signal for a digital PAM, PSK,
or QAM signal is represented in the general form as ,

m=-oo n=-oo

n=-oom=-oo

where {an} is the sequence of values selected from either a PAM, QAM, or PSK signal
con7teIIation corresponding to the information symbols from the source, and gT(t) is
the Impulse response of the transmitting filter. Since the information sequence {an} is
random, vet) is a sample function of a random process Vet). In this section we evaluate
the power-density spectrum of Vet). Our approach is to derive the autocorrelation
function of V (t) and then to determine its Fourier transform.

First, the mean value of V (i) is

00 00

Rv(t +r, t) = E[V*(t)V(t+ r)] = E E E[a~am]gT(t -nT)gT(t+ r -rnT)

where rna is the mean value of the random sequence {an}. Note that although rna is
a constant, the term 2=n gTCt - nT) is a periodic function with period T. Hence, the
mean value of Vet) is periodic with period T.

The autocorrelation function of V (t) is

(8.2.3)

In general, we assume that the information sequence {an} is wide-sense stationary with
autocorrelation sequence

Ra(n) = E[a;an+m]

Hence, Equation (8.2.3) may be expressed as

We observe that the second summation in Equation (8.2.5), namely

(8.1.23)
00

yet) = E anx(t - nT) + vet)
n=-oo
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sin 2Trfct

cos 2Trfct

Figure 8.4 Conversion of the bandpass received signal to baseband.

Received
signal
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which is identical to the form given by Equation (8.1.11) for the real baseband signal.
Consequently, the signal design problem for bandpass signals is basicaIIy the same as
that described in Section 8.1.1 for baseband signals.

In Section 8.3, we consider the design of bandlimited transmitting and receiving "
filters that either eliminate lSI orcontrol lSI. However, first we wiII determine the power­
spectral density ofthe transmitted digital signal. Thus, we will establish the relationship
between the spectral characteristics of the transmitted signal and the channel bandwidth
requirements.

and where, as in the case of baseband transmission, h(t) is the impulse response of'
the cascade of the transmitting filter and the channel; i.e., h(t) = c(t) * gT(t), where
c(t) is the impulse response of the equivalent lowpass channel and net) represents the
additive Gaussian noise expressed as an equivalent lowpass (baseband) noise.

The received bandpass signal can be converted to a baseband signal by multiplying'
wet) with the quadrature carrier signals cos2rrfct and sin2rrfct and eIiminatingthe
double frequency terms by passing the two quadrature components through separate'
lowpass filters, as shown in Figure 8.4. Each one ofthe lowpass filters is assumed to have
an impulse response gR(t). Hence, we can represent the two quadrature components
at the outputs of these Iowpass filters as an equivalent complex-valued signal of the
form
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(8.2.12)

(8.2.14)

(8.2.13)

(8.2.16)

. (8.2.15)

00

Sa(f) = L Ra(m)e-j27r/mT
m=-co

00

. Sa(f) = 0'; + m~ L e-j27rjmT
m=-oo

The Power Spectrum of Digitally Modulated Signals

where Sa (f) is the power spectrum of the information sequence {an}, defined as

Section 8.2

Substitution of this expression into Sv(f) given by Equation (8.2.11) yields the desired
result for the power-spectral density of the transmitted signal V (t) when the sequence

where 0'; = E(a~) - m~ is the variance of an information symbol. By substituting for
Ra(m) into (8.2.12), we obtain the power-spectral density

The term involving the summation on the RHS of Equation (8.2.15) is periodic with
period 1IT. It may be viewed as the exponential Fourier series of a periodic train of im­
pulses where each impulse has an area 1I T (see Table 2.1). Therefore, Equation (8.2.15)
can be expressed as

and GT(f) is the spectrum of the transmitting filter. IGT(f) 1
2 is the Fourier transform

of Rg(r).
The result in Equation (8.2.11) illustrates the dependence of the power-spectral

density Sy (f) of the transmitted signal on (1) the spectral characteristics GT(f) of the
transmitting filter and (2) the spectral characteristics Sa (f) of the information sequence
{an}. Both GT(f) and Sa (f) can be designed to control the shape and form of the power
spectral density of the transmitted signal.

Whereas the dependence of Sy (f) on GT (f) is easily understood, the effect of
the autocorrelation properties of the information sequence {an} is more subtle. First, we
observe that for an arbitrary autocorrelation Ra(m), the corresponding power-spectral
density Sa (f) is periodic in frequency with period liT. In fact, we note that Sa(f),
given by Equation (8.2.12), has the form of an exponential Fourier series with {Ra(m)}
as the Fourier coefficients. Consequently, the autocorrelation sequence {Ra(m)} is
simply

1
1/ 2T

Ra(m) = T Sa (f)ej21rjmT df
-1/2T

Second, let us consider the case in which the information symbols in the sequence
{an} are mutually uncorrelated. Then,

(8.2.11)

(8.2.10)
1 00

Ry(r) = T L Ra(m)Rg(r - mY)
m=-OO

1 2
= TSa(f)IGT(f)[

1 00 l co
= - L Ra(m) Rg(r - mT)e- j21r/'C dr

T m=-co -co
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With this definition, the average autocorrelation function of V (t) becomes

Ry(t + T + r, t + T) = Ry(t + r, t)

1 co l co

= - L Ra(m) gTCt)gT(t +r - mT) dt
T m=-co -00 •

l
co '

Sy(f) = -co R y (-r)e- j21r
/'C dr

We observe that the expression for Rv (r) in Equation (8.2.10) has the form of a
convolution sum. Hence the Fourier transform of Equation (8.2.10) becomes

We interpret the integral in Equation (8.2.8) as the time-autocorrelation function of .
gT(t) and define it as [see Equation (2.3.1)]

Rg(r) =1: gT (t)gT (t + r) dt

Therefore, the random process V (t) has a periodic mean and a periodic aut.oc()rr(~lation.

Such a random process is cyclostationary (see Definition 4.2.7).
The power-spectral density of a cyclostationary process can be determined

first averaging the autocorrelation function RvCt +r, t) over a single period T
computing the Fourier transform of the average autocorrelation function (see' nmll~~,
to Theorem 4.3.1). Thus, we have

1 IT
/
2

Ry(-r) =- RvCt +r, t) dt
T -T/2

00 00 1 IT/2= L Ra(m) L - gT(t-nT)gT(t+-r-nT-mT)dt
m=-oo n=-oo T -T/2

00 co 1 l-nT+T/2
= L Ra(m) L - gT(t)gT(t + r - mT) dt

m=-CO n=-oo T -nT-T/2
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is periodic with period T. Consequently, the autocorrelation function Rv(t + r,
periodic in the variable t; i.e.,

:;,
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(b)
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o

{

2 m =0
= 1 m =±1

0, otherwise
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Figure 8.5 A rectangular pulse grit) and its energy density spectrum IGr (j)12•

The {bnl are assumed to be uncorrelated binary valued (±1) random variables, each having
a zero mean and a unit variance. Determine the power-spectral density of the transmitted
signal.

Solution The autocorrelation function of the sequence {an} is

Section 8.2

Example 8.2.2 illustrates the spectral shaping that can be achieved by operations
performed on the input information sequence.

Example 8.2.2
Consider a binary sequence {bn ), from which we form the symbols

(8.2.18)

Digital Transmission through Bandlimited AWGN Channels486

Sy(f) = 1'GT(f)1
2 + ;~ m~JGT (~) 1

20 (I -~)
The expression for the power-spectral density of the transmitted signal given by­

Equation (8.2.17) is purposely separated into two terms to emphasize the two different
types of spectral components. The first term o-;IGT(f) [2/ T is the continuous spectrum
and its shape depends of GT (f). The second term in Equation (8.2.17) consists of
discrete frequency components spaced 1/T apart in frequency. Each spectral line has a
power that is proportional to IGT(f) f evaluated at 1 = rn/T. We note that the discrete
frequency components can be eliminated by selecting the information symbol sequence
{an} to have zero mean. This condition is usually imposed in digital-modulation methods
because discrete spectral lines are considered to be undesirable. To be specific, the mean
m a in digital PAM, PSK, or QAM signals is easily forced to be zero by selecting the
signal constellation points to be symmetrically positioned in the complex plane relative
to the origin. Under the condition that rna = 0, we have

CJ; 2
Sy(f) = y'GT(f)1

Sv(f) = CJ;A
2TC~;~TY + A2m~o(f)

= 0-;A2Tsinc2(fT) + A2m~o(f)

Hence,

IGT(f)!2 = (ATi (Si:;~T)2

= (AT)2 sinc2 (fT)

This spectrum is illustrated in Figure S.5(b). We note that it contains nulls at multiples of
l/T in frequency and that it decays inversely as the square of the frequency variable. As a
consequence of the spectral nulls in GT (f), all but one of the discrete spectral components
in Equation (S.2.17) vanish. Thus, upon substitution for [GTC!) f into Equation (8.2.17),
we obtain the result

of information symbols is uncorrelated; Le.,

Thus, the system designer can control the spectral characteristics of the transmitted
digital PAM signal. The fonowing example illustrates the spectral shaping resulting
from gT(t).

Example 8.2.1
Determine the power-spectral density in Equation (S_2.17), when gT(t) is the rectangular
pulse shown in Figure 8.5(a).

Solution The Fourier-transform of gT (t) is

GT(f) = ATsinn:jT e- jrrjT
n:jT
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(8.2.23)

(8.2.22)

(8.2.20)

(8.2.21)

_ 1 _
RU(7:) = 2Rv(7:)cos2Jrfe7:

00

Sa(f) = 2: Ra(m)e-j2rrjmT
m=-oo

1
Suet) = 4[Sv(f - fe) + Sv(f + fe)]

The Power Spectrum of Digitally Modulated Signals

as

where the second term involving the double frequency term averages to zero for each
period of cos 4:rcfet.

The Fourier transform of Ru(t) yields the power spectrum of the bandpass signal

By expressing the product of the two cosine functions in terms of the cosine of the
difference plus the sum of the two angles, we obtain

Although the derivation that resulted in Equation (8.2.23) was carried out for a bandpass
PAM signal, the same expression applies to QAM and PSK. The three bandpass signals
differ only in the autocorreiation Ra (m) of the sequence {an} and, hence, in the power
spectrum Sa (f) of {an}'

Ru(t + 7:, t) = E[U(t)U(t + 7:)]

= E[V(t) Vet + 7:)] cos 2:rcfet cos 2Jrfe(t + 7:)

= RvCt + 7:, t) cos 2Jrfet cos 2JrfeCt + r)

u(t) == vct) cos2Jrfet

where Sa (f) is the power spectrum of the information sequence {an}, defined as

The relationship between the power spectrum of the baseband signal to the power
spectrum of the bandpass signal is relatively simple. Let us consider the bandpass PAM
signal as an example. The autocorrelation function of the bandpass signal

1
Ru(t + 7:, t) = 2Rv(t + 7:, t)[cos2Jrfer + cos2:rcfe(2t + 7:)]

Then, the average of Ru(t + 7:, t) over a single period T yields

and Ra(m) is the autocorrelation of the information sequence (an); i.e.

Section 8.2

is
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I

1 0 1 f
2T 2T

(a)

S.(f)

(b)
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Figure 8.6 Power-density spectra for (a) !nforrnation sequence and (b) PAM

modulated signal.

Hence, the power-spectral density of the input sequence is

Sa (f) = 2(1 + cos 2:rcfT)

=4cos2 :rcfT

and the corresponding power spectrum for the modulated signal is, from Equation (8.2.l?),

4
Sv(f) = -IGr(f)12cos2:rcfT

T
Figure 8.6 illustrates the power-density spectrum Sa(f) of the input sequence, and the
corresponding Sv (f) when Gr (f) is the spectrum of the rectangular pulse.

As demonstrated in the example, the transmitted signal spectrum can be shaped
by having a correlated sequence {an} as the input to the modulator.

8.2.2 The Power Spectrum of a Carrier-Modulated Signal

In Section 8.2.1, we showed that the power spectrum of the equivalent baseband signal
vet) given by Equation (8.2.1) for PAM, QAM, and PSK is

Sv(f) = ~Sa(f)IGT(f)12 (8.2.19)
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Figure 8.7 Eye patterns. (a) Examples of eye patterns for bL,1.ary and quaternary
amplitude-shift keying (or PAM) and (b) Effect of lSI on eye opening.

Section 8.3

of its resemblance to the human eye. Examples of two eye patterns, one for binary PAM
and the other for quaternary (M = 4) PAM, are illustrated in Figure 8.7(a).

The effect of lSI is to cause the eye to close, thereby reducing the margin for
additive noise to cause errors. Figure 8.7(b) illustrates the effect ofISI in reducing the
opening of the eye. Note that lSI distorts the position of the zero crossings and causes
a reduction in the eye opening. As a consequence, the system is more sensitive to a
synchronization error and exhibits a smaller margin against additive noise.

Below we consider the problem of signal design under two conditions, namely,
(1) that there is no lSI at the sampling instants and (2) that a controlled amount of lSI
is allowed.

(8.3.5)

(8.3.4)

(8.3.3)

Chapter 8 .

Y11l = xoam +Z anXm - n + Vm

,,#m

y(mT) = x (O)am + Z anx(mT - nT) + v(mT)
n;6m

Digital Transmission through Bandlimited AWGN Channels

where h(t) = e(t) * gT(t), e(t) is the impulse response of the channel, gT(t) is the ,
impulse response of the transmitting filter, and n(t) is a sample function of an additive,
white Gaussian noise process.

In this section, we consider the problem of designing a bandlimited transmitting ..
filter. The design will be done first under the condition that there is no channel distortion. .
Later, we consider the problem offilter design when the channel distorts the transmitted
signal. Since H (f) = C (f)GT (f), the condition for distortion-free transmission is that
the frequency response characteristic C(f) of the channel have a constant magnitude
and a linear phase over the bandwidth of the transmitted signal; i.e.,

{
Co e-j2:rr!to If I :::: w

C(f) = -'
0, If I > W

Recall from Section 8.1.1 that the output of the transmitting filter in a digital PAM or
PSK or QAM communication system may be expressed as

ret) = Z anh(t - nT) + net)
n=-(X)

00

vet) = Z angT(t - nT)
n=-co

00

and the output of the channel, which is the received signal at the demodulator, may be
expressed as

where W is the available channel bandwidth, to represents an arbitrary finite delay,
which we set to zero for convenience, and Co is a constant gain faCtor which we set
to unity for convenience. Thus, under the condition that the channel is distortion-free,
H(f) = GT(f) for IfI :::: Wand zero for IfI > W. Consequently, the matched filter
has a frequency response H* (f) = GT(f) and its output at the periodic sampling times
t = mT has the form

or, more simply,
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where x(t) = gT(t) * gR(t) and vet) is the output response of the matched filter to the
input AWGN process net).

The middle term on the RHS of Equation (8.3.5) represents the lSI. The amount
of lSI and noise that is present in the received signal can be viewed on an oscilloscope.
Specifically, we may display the received signal on the vertical input with the horizontal
sweep rate set at 11 T. The resulting oscilloscope display is called an eyepattern because

8.3 SIGNAL DESIGN FOR BANDLlMITED CHANNELS



Ym = x(O)am + E x(mT - nT)an + v(mT)
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(8.3.12)

(8.3.13)

(8.3.14)

(8.3.15)

l!I

(8.3.17)

(8.3.18)

(8.3.19)
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00 j(2m+IJ/2T
x(nT) = L X (f)ej2rrjnT df

m=-oo (2m-1)/2T

of liT. Thus, we obtain

== £ l l/2T
X (f + '!!..) ej2rrfnT df

m=-oo -1/2T T

= l l/2T
[ £ X (f + '!!..)] ej2rrfnT df

-1/2T m=-oo T

j
l / 2T

= Z(f)ej2rrfnT df
-1/2T

where we have defined Z (f) by

Z(f) == mf;oo X (.I + ¥)

00

Z(f) = E znej2rrnfT
n=-oo

where

Obviously, Z (f) is a periodic function with period 1., and therefore it can be expanded
in terms of its Fourier series coefficients {Zn} as T .

I

Zn = T I: Z (f) e-j2rrnfT df
. 2T

Comparing Equations (8.3.15) and (8.3.12) we obtain

{
T n == 0

Zn = 0, n =1= 0

which, when substituted into Equation (8.3.14), yields

Z(f) == T

ZIl == Tx(-nT) (8.3.16)

Therefore, the necessary and sufficient conditions for Equation (8.3.8) to be satisfied
is that

or, equivalently,

mf;oo X (f + ¥) == T

This concludes the proof of the theorem.

n=O

n#O

Digital Transmission through Bandlimited AWGN Channels

x(nT) = g:
is that its Fourier transform X (f) satisfy

tThe choice of x (0) is equivalent to the choice of a constant gain factor in the receiving filter. This
constant gain factor has no effect on the overall system performance since it scales both the signal and the
noise.

Proof In general, xU) is the inverse Fourier transform of X (f). Hence,

xU) =I: X(f)ej2rrjt df

At the sampling instants t = nT, this relation becomes

x(nT) =I: X (f)ej2rrfnT df

Let us break up the integral in Equation (8.3.11) into integrals covering the finite range

00

n=-cc
ni'm

To remove the effect ofISI, it is necessary and sufficient that x(mT - nT) == 0
for n # m and x (0) # 0, where without loss of generality we can assume x (0) = 1.t
This means that the overall communication system has to be designed such that

{
1 n = 0

x(nT) = 0: n # 0
In this section, we derive the necessary and sufficient condition for X (f) in order for
x (t) to satisfy the above relation. This condition is mown as the Nyquist pulse-shaping
criterion or Nyquist condition for zero lSI and is stated in the following theorem.

Theorem 8.3.1 [Nyquist]. A necessary and sufficient condition for x(t) to •..
satisfy

8.3.1 Design of Bandlimited Signals for Zero
lSI-The Nyquist Criterion

As indicated above, in a general digital communication system that transmits througl{
a bandlimited channel, the Fourier transform of the signal at the output of the receiving
filter is given by X (f) = GT(f)C(f)GR(f) where GT(f) and GR(f) denote the
transmitter and receiver filters frequency responses .and C(f) denotes the frequency
response ofthe channel. We have also seen that the output ofthe receiving filter, sampled i
at t = mT is given by
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(8.3.22)

(8.3.23)

0:::: IfI :::: (1 - a)/2T

1-" < IfI < 1+"
2T- -2T

IfI > lir"

1 -W _J..+w J..-w W 1
T T T T

Figure 8.10 Plot of Z(f) for the case T > 1/2W.

Signal Design for Bandlimited Channels

{

T'

Xrc(f) = t [1 + cos 7<; (If I - 12y")] ,

0,

Section 8.3

x(t), the sampling time must also be shifted to mT + to. A second difficulty with
this pulse shape is that its rate of convergence to zero is slow. The tails of x(t)
decay as 1It, consequently, a small mistiming error in sampling the output of the
matched filter at the demodulator results in an infinite series of lSI components.
Such a series is not absolutely surnrnable because of the II t rate of decay of the
pulse and, hence, the sum of the resulting lSI does not converge.

3. For T > 2~, Z (f) consists of overlapping replications of X (f) separated by
~, as shown in Figure 8.10. In this case, there exist numerous choices for X (f),
such that Z (f) =- T.

A particular pulse spectrum, for the T > 2~ case, that has desirable spectral properties
and has been widely used in practice is the raised cosine spectrum. The raised cosine
frequency characteristic is given as (see Problem 8.11)

where a is called the rollofffactor, which takes values in the range 0 :::: a :::: 1. The
bandwidth occupied by the signal beyond the Nyquist frequency 2~ is called the excess
bandwidth and is usually expressed as a percentage ofthe Nyquist frequency. For exam­
ple, when a = i, the excess bandwidth is 50%, and when a = 1 the excess bandwidth
is 100%. The pulse x(t) having the raised cosine spectrum is

sin TCt IT cos(natIT)
x (t) = ----'-,-- -,--~=-=--=-=­

ntlT 1-4a2t21T2

. cos(natIT)
= smc(tIT) ? 2 2

1 - 4a-t IT

Note that x(t) is normalized so that x(O) = 1. Figure 8.11 illustrates the raised cosine
spectral characteristics and the corresponding pulses for a = 0, 1/2, 1. We note that

(8.3.20)

Chapter 8

1
Tw=i.­

2T

Ifl<W
otherwise

o

X(f) = {~

Figure 8.8 Plot of Z (f) for the case T < 2lv.

Figure 8.9 Plot of Z (f) for the case T = 2lv.

1
T

1
T
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or, X (f) = TIT (2"" ), which results in

x(t) = sine (~ ) (8.3.21)

This means that the smallest value of T for which transmission with zero lSI is
possible is T = 2~ and for this value, x (t) has to be a sine function. The difficulty
with this choice of xCt) is that it is noncausal and therefore nonrealizable. To
make it realizable, usually a delayed version of it; Le., sinc(T) is used and to is
chosen such that for t < 0, we have sinc(T) ~ O. Of course with this choice of

494

Now, suppose that the channel has a bandwidth of W. Then C(f) =- 0 for
If I > Wand consequently, X(f) = 0 for if I> w. We distinguish three cases:

1. T < 2~, or equivalently, t > 2W. Since Z (f) = 2:::;:':-00 X (f + -f) consists of
nonoverlapping replicas of X(f), separated by t as shown in Figure 8.8, there
is no choice for X (f) to ensure Z (f) == T in this case, and there is no way that
we can design a system with no lSI.

2. T = 2~' or equivalently, t = 2W (the Nyquist rate). In this case, the replications
of X (f), separated by t, are about to overlap as shown in Figure 8.9. It is clear
that in this case there exists only one X (f) that results in Z (f) = T, namely,



In this case, if the receiver filter is matched to the transmitter filter we have Xrc (f) =
GT(f)GR(f) = IGT(fW Ideally,

GT(f) = vIXrc(f)\ e-j2Jrjto . (8.3.25)

and GR(f) = Gy(f), where to is some nominal delay that is required to ass~re. p~ysic~
realizability of the filter. Thus, the overall raised cosine spectral charactenstlc IS split
evenly between the transmitting filter and the receiving ~lter..v:re should alS? ~ote that
an additional delay is necessary to ensure the physical realizability ofthe receIVmg filter.

fora =0, the pulse reduces toxCt) =sinc(tIT), and the symbol rate liT =2W. When
a = 1, the symbol rate is 1IT = W. In general, the tails of x (t) decay as 1I t 3

for a > 0.
Consequently, amistiming error in sampling leads to a series ofintersymbol interference
components that converges to a finite value. . ..,

Due to the smooth characteristics of the raised cosme spectrum, It IS posSIble
to design practical filters for the transmitter and the receiver that appr?~ate ~e
overall desired frequency response. In the special case where the channel IS Ideal With

C(f) = I1(2~)' we have
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(8.3.28)

(8.3.29)

(8.3.26)

(8.3.30)

(8.3.27)

Ifl<W
otherwise

[fl<W
otherwise

n = 0, 1

otherwise

n ~ 0,-1

otherwise
Zn = {T

0,

x(t) = sinc(2Wt) + sinc(2Wt - 1)

{

I [ _ '!!1..]
X(f) = 2W 1 + e ] w ,

0,

{

1.e-j5!P cos (,",j)= W 2W '

0,
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Therefore, x(t) is given by

This pulse is called a duobinary signal pulse. It is illustrated, along with its
magnitude spectrum in Figure 8.12. We note that the spectrum decays to zero smoothly,
which means that physically realizable filters can be designed that approxinIate this
spectrum very closely. Thus, a symbol rate of 2W is achieved.

tIt is convenient to deal with samples of ;:(1) that are normalized to unity for n = 0, 1.

{
I,

x(nT) = 0,

Now, using Equation (8.3.16), we obtain

which when substituted into Equation (8.3.14) yields

Z(f) = T + T e- j2JrjT

8.3.2 Design of Bandlimited Signals with (Controlled
lSI-Partial Response Signals

As we have observed from our discussion of signal design for zero lSI, it is necessary
to reduce the symbol rate liT below the Nyquist rate of 2W symbols/sec in order
to realize practical transmitting and receiving filters. On the other hand, suppose we
choose to relax the condition of zero lSI and, thus, achieve a symbol transmission rate
of 2W symbols/sec. By allowing for a controlled amount of lSI, we can achieve this
symbol rate.

We have already seen in that the condition of zero lSI is x (nT) =°for n ¥ 0.
However, suppose that we design the bandlimited signal to have controlled lSI at one
time instant. This means that we allow one additional nonzero value in the samples
{x(nT)}. The lSI that we introduce is deterministic or "controlled" and, hence, it can
be taken into account at the receiver, as discussed next.

One special case that leads to (approximately) physically realizable transmitting
and receiving filters is specified by the samplest

As in the preceding section, it is impossible to satisfy the above equation for T < 2~'

However, for T = 2~' we obtain

(8.3.24)

Chapter

f

C!1)

(a)

XU)

;:(1)

Xrc(f) = GT(f)GR(f)

Figure 8.11 Pulses having a raised cosine spectrum.
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Another special case that leads to (approximately) physically realizable transmit­
ting and receiving filters is specified by the" samples
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(8.3:35)

Figure 8.13 Time domain and
frequency domain characteristics
of a modified duobinary signal.

W f

(b)

(a)

xU)

Probability of Error in Detection of Digital PAM

Ix(n!

-W

Section 8.4

In general, the class of bandlimited signals pulses that have the fo=

x(t) = ~ x (~) sin2JTW(t - nj2W)
L.. 2W 2 W( (8.3.34)

n=-oo : Jr t - nj2W)

and their corresponding spectra

{

I '\'00 ( n) -jnrrf/W If I W
X(f) = 2W un=_ooX 2W e , .:::

0, If I > W

are called partial response signals when controlled lSI is purposely introduced by
selecting two or more nonzero samples from the set {x(nj2W)}. The resultmg signal
pulses allow us to transmit info=ation symbols at the Nyquist rate of 2W symbols
per second. The detection of the received symbols in the presence of controlled lSI is
described in Sections 8.4 and 8.5.

In this section we evaluate the perfo=ance of the receiver for demodulating and de­
tecting an M -ary PAM signal in the presence of additive, white Gaussian noise at its
input. First, we consider the case in which the transmitter and receiver filters GT (f)
and GR(f) are designed for zero lSI. Then, we consider the case in which GT(f)
and GR(f) are designed such that x(t) = gT(t) * gR(t) is either a duobinary signal

8.4 PROBABILITY OF ERROR IN DETECTION OF DIGITAL PAM

(8.3.33)

(8.3.31)

(8.3.32)

n =-1
n=l
otherwise

Figure 8.12 Time domain and
frequency-domain characteristics
of a duobionary signal.f-W

1 'TTf- cos­
W 2W

T=-l...­
2W

{

I,

xC~)=x(nT)= -~:

l/W

IX(f)1

x(t)
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W

The corresponding pulse x(t) is given as

x(t) = sinc(t + T)jT - sinc(t - T)jT

and its spectrum is

{

...L ejrrf/W - e-jrrf/W = 1. sin '!l. !f! .::: W
X(f) = 2W W W'

o . Ifl>W

This pulse and its magnitude spectrum are illustrated in Figure 8.13. It is called a
modified duobinary signal pulse. It is interesting tO,note that the spectrum of this signal.
has a zero at f = 0, making it suitable for transmission over a channel that does not
pass dc.

One can obtain other interesting and physically realizable filter characteristics,
as shown by Kretzmer (1966) and Lucky et al. (1968), by selecting different values for
the samples (x(nj2W)} and more than two nonzero samples. However, as we select
more nonzero samples, the problem of unraveling the controlled lSI becomes more
cumbersome and impractical.
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1'1 the absence of lSI, the received signal sample at the output of the receiving matched
filter has the form
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(8.4.6)

(8.4.8)

= (2pm - 1) + (2pm-1 - 1)

= 2(Pm + Pm-l - 1)

Probability of Error in Detection of Digital PAMSection 8.4

8.4.2 Symbo[-by-Symbol Detection of Data
with Controlled [51

where {am} is the transmitted sequence of amplitudes and {vm } is a sequence of additive
Gaussian noise samples. Let us ignore the noise for the moment and consider the binary
case where am = ±1 with equal probability. Then, bm takes on one of three possible
values, namely, bm = -2, 0, 2 with corresponding probabilities 1/4,1/2,1/4. If am-l

is the detected symbol from the (m -1)st signaling interval, its effect on bm , the received
signal in the mth signaling interval, can be eliminated by subtraction, thus allowing am
to be detected. This process can be repeated sequentially for every received symbol.

The major problem with this procedure is that errors arising from the additive
noise tend to propagate. For example, ifam-l is in error, its effect on bm is not eliminated
but, in fact, it is reinforced by the incorrect subtraction. Consequently, the detection of
am is also likely to be in error.

Errorpropagation can be avoided by precoding the data at the transmitter instead of
eliminating the controlled lSI by subtraction at the receiver. The precoding is performed
on the binary data sequence prior to modulation. From the data sequence {dn } of l's
and O's that is to be transmitted, a new sequence {Pn}, called the precoded sequence is
generated. For the duobinary signal, the precoded sequence is defined as

Pm = dme Pm-I, m = 1,2,... (8.4.7)

where the symbol e denotes modulo-2 subtraction. t Then, we set am = -1 if Pm = 0
and am = 1 if Pm = 1; i.e., am = 2pm - 1.

The noise-free samples at the output of the receiving filter are given as

t Although this is identical to modulo-2 addition, it is convenient to view the precoding operation for
duobinary in terms of modulo-2 subtraction.

1'1 this section we describe a symbol-by-symbol method for detecting the information
symbols at the demodulator when the received signal contains controlled lSI. This
symbol detection method is relatively easy to implement. A second method, based on
the maximum-likelihood criterion for detecting a sequence of symbols, is described in
Section 8.5.2. This second method millimizes the probability of error but is a little more
complex to implement. In particular, we consider the detection of the duobinary and the
modified duobinary partial response signals. In both cases, we assume that the desired
spectral characteristic X (f) for the partial response signal is split evenly between the
transmitting and receiving filters; i.e., IGy(f)1 = IGR(f)1 = IX(f)1 1/ 2 .

For the duobinary signal pulse, x(nT) = 1, for n = 0, 1 and zero otherwise.
Hence, the samples at the output of the receiving filter have the form
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or a modified duobinary signal. Although our focus in this section is the perfonnance
evaluation of PAM, our treatment can be generalized to two-dimensional modulations ­
such as PSK and QAM, and multi<limensional signals. '

8.4.1 Probability of Error for Detection of Digital PAM
with Zero 151

where

PM = 2(M - 1) Q [ 6(log2 M)Ebav ]

M (M2 -l)No

This is exactly the form for the probability of error of M-ary PAM derived previously in
Section 7.6.2. In the treatment of PAM given in this chapter we imposed the additional
constraint that the transmitted signal is bandlimited to the bandwidth allocated for the
channeL Consequently, the transmitted signal pu1sys were designed to be bandlimited
and to have zero lSI.

1'1 contrast, no bandwidth constraint was imposed on the PAM signals considered ­
in Section 7.6.2. Nevertheless, the receivers (demodulators and detectors) in both cases
are optimum (matched filters) for the corresponding transmitted signals. Consequently,
no loss in error-rate performance results from the bandwidth constraint when the signal
pulse is designed for zero lSI and the channel does not distort the transmitted signal.

Xo = jW IGy(f)!2 df = Eg
-w

and Vm is the additive Gaussian noise which has zero mean and variance

cr; = EgNo/2

1'1 general, am takes one of M possible equally spaced amplitude values with
equal probability. Given a particular amplitude level, the problem is to determine the
probability of error.

The problem of evaluating 6e probability of error for digital PAM in a bandlim- .
ited, additive white Gaussian noise channel, in the absence of lSI, is identical to the -­
evaluation of the error probability for M -aiy PAM as given in Section 7.6.2. The final
result that is obtained from the derivation. is

P = 2(M -1) [~2Eg]
M M Q No

But Eg = 3Eav /(M2 - 1), Eav = k Ebav is the average energy per symbol and Ebav is
the average energyfbit. Hence,



Since d
m

= Pm EB pm-I, it follows that the data sequence dm is obtained from bm by

using the relation

(8.4.15)

bm = am +am-I

=2[Pm + Pm-I - (M - 1)]
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TABLE 8.2 FOUR-LEVEL TRANSMISSION WITH DUOBINARY PULSES

Data 0 0 3 2 0 3 3 2 0
sequence d"

0

Precoded 0 0 0 2 3 3 2 3 2 2
sequence P"

Transmitted -3 -3 -3 -1 3 3 -1 -1 -1 3
sequence an

Received -6 -6 -4 0 4 6 2 0 0 -2 2 4 2
sequence b"

Decoded 0 0 3 2 0 3 3 2 0 1
sequence d"

0

Hence;

In the absence of noise, the samples at the output of the receiving filter may be
expressed as

bm
Pm + Pm-I = ""2 + (M - 1) (8.4.16)

Since dm = Pm + Pm-I (mod M), it fonows that

bm
dm = ""2 + (M - 1) (mod M) (8.4.17)

An example illustrating multilevel precoding and decoding is given in Table 8.2.
In th~ pres~nceof noise, the received signal-pIus-noise is quantized to the nearest

of the possIble sIgnal levels and the rule given above is used on the quantized values to
recover the data sequence.

In the case of the modified duobinary pulse, the controlled lSI is specified by
the values x (nj2W) =-1, for n = 1, x(nj2W) = 1 for n =-1, and zero otherwise.
Consequently, the noise-free sampled output from the receiving filter is given as

bm = am - am-2 (8.4.18)

where the M -level sequence {an} is obtained bymappin0' aprecoded sequence according
to the relation Equation (8.2.43) and '"

Pm = dm EB Pm-2 (mod M) (8.4.19)

From these relations, it is. easy to show that the detection rule for recovering the data
sequence {dm} from (bm} 1ll the absence of noise is

bm
dm = ""2 (mod M) (8.4.20)

As demonstrated above, the precoding of the data at the transmitter makes it
possible to detec~ the received data on a symbol-by-symbol basis without having to
look back at preVIOusly detected symbols. Thus, error propagation is avoided.

(8.4.14)

(8.4.12)m = 1,2, ...

Pm = dme Pm-I (mod M)

where the possible values of the sequence {dm} are 0, 1, 2, ... , M - 1.

am = 2pm - (M-1)

where {Pm} is the precoded sequence that is obtained from an M-level data sequence

{dm } according to the relation

which has 2M - 1 possible equally spaced levels. The amplitude levels are determined

from the relation

bm
dm = ""2 +1 (mod 2)

Consequently, if bm= ::1::2, dm =aand if bm = 0, dm = 1. An example that illustrates'
the precoding and decoding operations is ,given in Table 8.1. In the presence of additive
noise the sampled outputs from the receiving filter are given by Equation (8.4.6). In
this case Ym = bm+ Vm is compared with the two thresholds set at +1 and -1. The'
data sequence {dn} is obtained according to the detection rule

_ {1, if -1 < Ym < 1
dm - 0, iflYml2: 1

The extension from binary PAM to multilevel PAM signaling using the duobinary
pulses is straightforward. In this case the M -level amplitude sequence {am} results in a

(noise-free) sequence

TABLE 8.1 BINARY SIGNALING WITH DUOBINARY PULSES

Data 0 0 0 0 0 0 0

sequence d"
Precoded 0 0 0 0 0 0

sequence P"
Transmitted -1 -1 -1 -1 -1 1 -1

sequence a"
Received 0 0 0 2 0 -2 -2 0 2 2 2 0 0 2

sequence b"
Decoded 0 0 0 0 0 0 0

sequence d"

Consequently,

bm
Pm + pm-I = ""2 + 1
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The partial-response function X(f) is divided equally between the transmitting and
receiving filters. Hence, the receiving filter is matched to the transmitted pulse, and the
cascade of the two filters results in the frequency characteristic
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(8.4.26)

(8.4.24)

m = 0, ±1, ±2, ... , ±(M - 1) (8.4.25)

Ym = am - am-2 + Vm

=bm + Vm

Probability of Error in Detection of Digital PAM

M-Iml
PCb = 2md) = M2 '

0': = ~o i:IGR(f)12df

No lw
= - IX(f)[ df = 2Noln:

2 -w

for both the duobinary and the modified duobinary signals. Hence, an upper bound on
the symbol probability of error is

where b denotes the noise-free received level and 2d is the distance between any two
adjacent received signal levels.

The channel corrupts the signal tra.l1smitted through it by the addition of white
Gaussian noise with zero-mean and power-spectral density No/2.

We assume that a symbol error is committed whenever the magnitude of the
additive noise exceeds the distance d. This assumption neglects the rare event that a
large noise component with magnitude exceeding d may result in a received signal level
that yields a correct symbol decision. The noise component Vm is zero-mean, Gaussian
with variance

M-2

PM < L P(ly - 2mdl >d [b = 2md)P(b = 2md)
m=-(M-2)

+2P(y + 2(M - l)d > d Ib = -2(M - l)d)P(b = -2(M - l)d)

= Pc/yl > d Ib = 0) [2~ PCb = 2md) - PCb = 0) - PCb = -2(M -l)d)]

= (1 - ~2) P(IYI > d Ib = 0) (8.4.27)

For binary transmission, let am = ±d, where 2d is the distance between signal lev­
e1s. Then, the corresponding values of bm are (2d, 0, -2d). For M-ary PAM signal
transmission, where am =±d, ±3d, ... , ±(M - l)d, the received signal levels are
bm = 0, ±2d, ±4d, ... , ±2(M-l)d.Hence, the number ofreceived levels is 2M -1.

The input transmitted symbols {am} are assumed to be equally probable. Then, for
duobinary and modified duobinary signals, it is easily demonstrated that, in the absence
of noise, the received output levels have a (triangular) probability mass function of the
form

Section 8.4

where Vm is the additive noise component. Similarly, the output of the matched filter
for the modified duobinary signal is

Output

(8.4.23)

(8.4.22)

(8.4.21)

Detector
Receiving

filter
G;(fJ

AWGN
n (I)

Ym = am + am-l + Vm

= bm +vm

n=-oo

co

vet) = L angr(t - nT)
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Transmitting
Precoder filter

(Pn) GTCf)

Figure 8.14 Block diagram of modulator and demodulalvr for partial response
signals.

M-level

The matched filter output is sampled at t = nT = nl2W and the samples are fed to
the decoder. For the duobinary signal, the output of the matched filter at the sampling
instant may be expressed as

Symbol-by-Symbol Detector. At the transmitter, the M-Ievel data sequence
{dn } is precoded as described previously. The precoder output is mapped into one of M
possible amplitude levels. Then the transmitting filter with frequency response Gr(f)
has an output

The symbol-by-symbol detection rule described above is not the optimum de- .
tection scheme for partial response signals. Nevertheless, symbol-by-symbol detection
is relatively simple to implement and is used in many practical applications involv­
ing duobinary and modified duobinary pulse signals. Its performance is evaluated
Section 8.4.3.
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8.4.3 Probability of Error for Detection of Partial
Response Signals

In this section we determine the probability of error for detection of digital M -ary PAM
signaling using duobinary and modified duobinary pulses. The channel is assumed to
be an ideal bandlimited channel with additive white Gaussian noise. The model for the
communications system is shown in Figure 8.14.

We consider the symbol-by-symbol detector. The performance of the optimum
ML sequence detector is described in Section 8.5.3.



2 3rr PauT (8.4.32)
d = 4(M2 -1)

By substituting the value ofd2 from Equation (8.4.32) into Equation (8.4.29), we obtain
the upper-bound for the symbol error probability as

~-----
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In our treatment of signal design for bandlimited channels in Section 8.3, we observed
that we can shape the spectrum of the transmitted signal by introducing memory in
the modulation. The two examples cited in that section are the duobinary and modified
duobinary partial response signals. In essence, the spectrum shaping obtained with
these partial response signals may be viewed as resulting from the memory introduced
in the transmitted sequence ofsymbols; i.e., the sequence ofsymbols are correlated and,
as a consequence, the power spectrum of the transmitted symbol sequence is colored
(nonwhite). '

Signal dependence among signals transmitted in different signal intervals is gen­
erally accomplished by encoding the data at the input to the modulator by means of a
modulation code. Such a codegenerally places restrictions on the sequence of symbols
into the modulator and, thus, introduces memory in the transmitted signal. In this sec­
tion, we consider modulation signals with memory and characterize them in terms of
their spectral characteristics and their performance in an additive white Gaussian noise
channel. We confine our treatment to baseband signals. The generalization to bandpass
signals is relatively straightforward, as we have already observed in our treatment of
the spectral characteristics of digitally modulated signals.

Signal dependence among signals transmitted in different signal intervals can
also result from intersymbol interference introduced by channel distortion. The mem­
ory imposed by the channel on the received signals requires that the detector at the
receiver must be designed to estimate the received information symbols by observing
and processing the received signal over a time duration that encompasses the channel
memory. Signal detectors that function in this manner are generally called equalizers
and are treated in Section 8.6.

(rr/4)2 or 2.1 dB. This loss in SNR is due to the fact that the detector for the partial
response signals makes decisions on a symbol-by-symbol basis, thus, ignoring the
inherent memory contained in the received signal at the input to the detector.

To observe the memory in the received sequence, let us look at the noise-free
received sequence for binary transmission given in Table 8.1. The sequence {bm } is
0, -2,0,2,0, -2, 0, 2, 2, .... We note that it is not possible to have a transition from
-2 to +2 or from +2 to -2 in one symbol interval. For example, if the signal level at the
input to the detector is -2, the next signal level can be either -2 or O. Similarly, if the
signal level at a given sampling instant is 2, the signal level in the following time instant
can be either 2 or 0. In other words, it is not possible to encounter a transition from-2
to 2 or vice versa between two successive received samples from the matched filter.
However, a symbol-by-symbol detector does not exploit this constraint or inherent
memory in the received sequence. In Section 8.5.3, we derive the performance of
the ML sequence detector that exploits the inherent memory in the modulation and,
consequently, regains a large part of the 2.1-dB loss suffered by the symbol-by-symbol
detector.

8.5 DIGITALLY MODULATED SIGNALS WITH MEMORY

(8.4.28)

Chapter 8Digital Transmission through Bandlimited AWGN Channels

Therefore,

The scale factor d in Equation (8.4.29) can be eliminated by expressi~g d ~n'
terms of the average power transmitted into the channel. For the M-ary PAM slgnal ill .

which the transmitted levels are equally probable, the average power at the output of

the transmitting filter is

Pau = E(a~) jW IGT(f)12d!
T -w

= E(a~) jW IX(f)ld! = -±-E(a;)
T -w rrT

where E(a~) is the mean square value of the M signal levels, which is

d2(M2 - 1)
E (a;) = 3

Therefore, the average probability of a symbol error is upper-bounded as

But
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Figure 8.15 Block diagram of magnetic storage read/write system.

509Digitally Modulated Signals with Memory

A I
I I I I I
I I I I I
I I I I I

I
I
I

A I~I I
I I I I
I I I I

I 0 I 1 I 1 0 0 0 I 1 I
I I I I

Figure 8.16 NRZ and NRZI signals.

Figure 8.17 Readback pulse in
magnetic recording system.
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where Tso is defined as the width of the pulse at its 50% amplitude level, as shown in
Figure 8.17. Similarly, the readback signal for a negative transition (A to -A) is the
pulse - pet). The value of Tso is determined by the characteristics of the medium and
the read/write heads. .

Now, suppose we write a positive transition followed by a negative transition,
and let us vary the time interval between the two transitions, which we denote as n
(the bit time interval). Figure 8.18 illustrates the readback signal pulses, which are
obtained by a superposition of pet) with - PCt - Tb)' The parameter, f::" = Tso/Tb, is
defined as the nonnalized density. The closer the bit transitions (Tb small), the larger
will be the value of the normalized density and, hence, the larger will be the packing
density. We notice that as f::" is increased, the peak amplitudes of the readback signal

I 1\
/ \

/ \
/ \
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I 1\

I \
1/ \.

7 f"..-...
~ --.
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o
PCt) = 1+ (2t /TSO)2
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Write

Storage
-+ current driver f---+ J--- medium f-

(modulator)
head (channel)

Output -E--- Data t-- Readback
data demodulator head
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8.5.1 Modulation Codes and Modulation Signals
with Memory

Modulation codes are usually employed in magnetic recording, in optical recording, and .
in digital communications over cable systems to achieve spectral shaping of the mod­
ulated signal that matches the passband characteristics of the channel. Let us consider
magnetic recording as an example.

In magnetic recording, we encounter two basic problems. One problem is con­
cerned with the packing density that is used to write the data on the magnetic medium
(disk or tape). Of course, we would like to write as many bits as possible on a single
track. However, there is a limit as to how close successive bits in a sequence are stored,
and this limit is imposed by the medium. Let us explore this problem further.

Figure 8.15 illustrates a block diagram of the magnetic recording system. The
binary data sequence to be stored is used to generate a write current. This current may .
be viewed as the output of the "modulator." The two most commonly used methods to ..
map the data sequence into the write current wavefonn are the so-called NRZ (non- ..
return-to-zero) and NRZl (non-return-to-zero-inverse) methods. These two waveforms
are illustrated in Figure 8.16. We note that NRZ is identical to binary PAM in which'
the infonnation bit 1 is represented by a rectangular pulse of amplitude A and the';
infonnation bit 0 is represented by a rectangular pulse of amplitude -A. In contrast, ..
the NRZl signal wavefonn is different from NRZ in that transitions from one amplitude
level to another (A to -A or -A to A), occur only when the infonnation bit is a 1. No:­
transition occurs when the information bit is a 0; i.e., the amplitude level remains the .'
same as the previous signal level. The positive amplitude pulse results in magnetizing.'
the medium on one (direction) polarity and the negative pulse magnetizes the medium
in the opposite (direction) polarity. .

Since the input data sequence is basically random with equally probable 1's and i

D's, whether we use NRZ or NRZI, we will encounter level transitions for A to -A .'
or -A to A with probability 1/2 for every data bit. The readback signal for a positive
transition (-A to A) is a pulse that is well modeled mathematically as

1
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(8.5.3)

(8.5.2)

o

i:::d+l

j=i+l

otherwise

dil = 1,

dU = 1,

dU ~ 0,

o

Digitally Modulateq Signals with Memory

Figure 8.19 .Finite-state sequential machine for a (d, K )-coded sequence.
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Example 8.5.1
Determine the state transition matrix for a (d, K) = (1,3) code.

Solution The (1, 3) code has four states. From Figure 8.19 we obtain its state transition
matrix which is

placing d zeros between successive 1's is to spread the transitions farther apart, thus,
reducing the overlap in the channel response due to successive transitions. By setting an
upper limit K on the runlength of O's ensures that transitions occur frequently enough so
that symbol timing information can be recovered from the received modulated signal.
Runlength-limited codes are usualIy called (d, /C) codes.t

The (d, K )-code sequence constraints may be represented by a finite-state sequen­
tial machine with K + 1 states, denoted as ai, 1 ::::: i ::::: K + 1, as shown in Figure 8.19.
We observe that an output data bit 0 takes the sequence from state ai to Cl"i+I, i ::::: K. The
output data bit 1 takes the sequence to state aI. The output bit from the encoder may
be a 1 only when the sequence is in state Cl"i, d + 1 ::::: i ::::: K + 1. When the sequence is
in state Cl"K+1, the output bit is always 1.

The finite-state sequential machine may also be represented by a state transition
matrix, denoted as D, which is a square (K +1) X (K + 1) matrix with elements dU'
where

tRunlength-lirnited codes are usually called (d, k) codes, where k is the maximum runlength of
zeros. We have substituted the Greek letter K for k, to avoid confusion with our previous use of k.

An important parameter ofany (d, K) code is the number of sequences ofacertain
length, say n, which satisfy the (d, K) constraints. As n is allowed to increase, the num­
ber of sequences N(n) which satisfy the (d, K) constraint also increases. The number
of information bits that can be uniquely represented with N (n) code sequences is

k = LIog2 N(n)J

432

Pulse response

-1-2

Figure 8.18 Readbacksignal response to a pulse.
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are reduced and are also shifted in time from the desired time instants. In other words,
the pulses interfere with one another, thus, limiting the density with which we can
write. This problem serves as a motivation to design modulation codes that take the'
original data sequence and transform (encode) it into another sequence that results rna
write waveform in which amplitude transitions are spaced further apart. For example,
if we use NRZI, the encoded sequence into the modulator must contain one or more
O's between l's.

The second problem encountered in magnetic recording is the need to avoid (or
minimize) having a dc content in the modulated signal (the write current), due to the
frequency-response characteristics of the readback system and associated electronics. '
This requirement also arises in digital communication over cable channels. This prob->
lem can also be overcome by altering (encoding) the data sequence into the modulator. '
A class of codes that satisfy these objectives are the modulation codes described below.,

Runlength-Limited Codes. Codes that have a restriction on the numberof '
consecutive l's or O's in a sequence are generally called runlength-limited codes. These
codes are generally described by two parameters, say d and K, where d denotes the
minimum number ofO's between l's in a sequence, and K denotes the maximum number
of O's between two l's in a sequence. When used with NRZI modulation, the effectof



TABLE 8.3 CAPACITY C(d, K) VERSUS RUNLENGTH PARAMETERS d AND K

Example 8.5.2
Determine the capacity of a (d, IC) = (1,3) code.

Solution Using the state-transition matrix given in Example 8.5.1 for the (1,3)
we have

The maximum real root of this polynomial is found to be )'max = 1.4656. Therefore, the
capacity C(I, 3) =10g2 Amax = 0.5515:

The capacities of (d, K) codes for 0::: d ::: 6 and 2::: k ::: 15, are given in Table
8.3. We observe that C(d, K) < 112for d ?: 3, and any value of K. The most commonly
used codes for magnetic recording employ ad::: 2, hence, their rate Rc is at least 1/2.
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00000
00001
00010
00100
00101
01000
01001
01010

Output coded sequeuce

000
001
010
all
100
101
110
111

Input data bits
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Now, let us turn our attention to the construction ofsome runlength-limited codes.
In general, (d, K) codes can be constructed either as fixed-length codes or variable­
length codes. In a fixed-length code, each bit or block of k bits, is encoded into a block
ofn >k bits.

In principle, the construction of a fixed-length code is straightforward. For a given
block length n, we may select the subset of the 2n codewords that satisfy the specified
runlength constraints. From this subset, we eliminate codewords that do not satisfy the
runlength constraints when concatenated. Thus, we obtain a set of codewords that satis­
fies the constraints and can be used in the mapping of the input data bits to the encoder.
The encoding and decoding operations can be performed by use of a look-up table.

Example 8.5.3
Construct a d = 0, IC = 2 code of length n = 3, and determine its efficiency.

Solution' By listing all the codewords, we find that the following five codewords satisfy
the (0, 2) constraint: (0 1 0), (0 1 1), (1 0 1), (11 0), (1 1 1). We may select any four of
these codewords and use them to encode the pairs of data bits (00,01,10, 11). Thus, we
have a rate k/n = 2/3 code that satisfies the (0, 2) constraint.

The fixed-length code in this example is not very efficient. The capacity of a (0, 2)
code is C(O, 2) = 0.8791, so that this code has an efficiency of

. Rc 2/3
effiCIency = --- =-- = 0.76

C(d, IC) 0.8791

Surely, better (0, 2) codes can be constructed by increasing the block length n.

In the following example, we place no restriction on the maximum runlength
zeros.

Example 8.5.4
Construct a d = 1, K = 00 code of length n = 5.

Solution In this case, we are pl~cing no constraint on the number of consecutive zeros.
To construct the code we select from the set of 32 possible codewords, the ones that satisfy
the d = 1 constraint. There are eight such codewords, which implies that we can encode
three information bits with each codeword. The code is given in Table 8.4. Note that the
first bit of each codeword is a 0, whereas the last bit may be either 0 or 1. Consequently,
the d = 1 constraint is satisfied when these coclewords are concatenated. This code has

TABLE 8.4 FIXED LENGTH d =1, K =00 CODE

Digital Transmission through Bandlimited AWGN Channels

[

-A 1 0
1 -A 1

det(D - AI) = det 1 O-A

1 0 0

=A4 -)...2- A -I=0

where LxJ denotes the largest integer contained in x. The maximum code rate is
Rc = kin.

The capacity of a (d, K) code is defined as

C(d, K) = lim ~ log2 N(n)
n-+oo n

Clearly, C(d, K) is the maximum possible rate that can be achieved with the (d,
constraints. Shannon (1948) showed that the capacity is given as

C(d, K) = log2Amax

where Amax is the largest real eigenvalue of the state transition matrix D.
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k d=O d=l d=2 d=3 d=4 d=5 d=6

2 .8791 .4057
3 .9468 .5515 .2878

};
4 .9752 .6174 .4057 .2232
5 .9881 .6509 .4650 .3218 .1823

.:.~ 6 .9942 .6690 .4979 .3746 .2269 .15421;

il 7 .9971 .6793 .5174 .4057 .3142 .2281 .1335
~,'i 8 .9986 .6853 .5293 .4251 .3432 .2709 .1993
~; 9 .9993 .6888 .5369 .4376 .3620 .2979 .2382
~li". 10 .9996 .6909 .5418 .4460 ' .3746 .3158 .2633
t~l

~.! 11 .9998 .6922 .5450 .4516 .3833 .3285 .2804
['J 12 .9999 .6930 .5471 .4555 .3894 .3369 .2924
fA 12 .9999 .6935 .5485 .4583 .3937 .3432 .3011'21

14 .9999 .6938 .5495 .4602 .3968 .3478 .3074
15 .9999 .6939 .5501 .4615 .3991 .3513 .3122
00 1.000 .6942 .5515 .4650 .4057 .3620 .3282
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Figure 8.20 State diagrams for d = 1.
K = 3 (Miller) code.

Figure 8.21 Trellis for d = 1, K = 3
(Miller) code.
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TABLE 8.6 ENCODER FOR (1, 3)
MILLER CODE

o xO
1 01

Input data bits Output coded sequence
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1101
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Another code that has been widely used in magnetic recording is the rate 1/2,
(d; K) = (1, 3) code given in Table 8.6. We observe that when the information bit is a
0, the first output bit is either 1, if the previous input bit was 0, or a 0, if the previous
input bit was a 1. When the information bit is a 1, the encoder output is 01. Decoding of
this code is simple. The first bit of the two-bit block is redundant and may be discarded.
The second bit is the information bit. This code is usually called the Miller code. We
observe that this is a state-dependent code which is described by the state diagram
shown in Figure 8.20. There are two states labeled Sl and S2 with transitions as shown
in the figure. When the encoder is a state Sl, an input bit 1 results in the encoder staying
in state Sl and outputs 01. This is denoted as 1/01. If the input bit is a athe encoder
enters state S2 and outputs 00. This is denoted as 0/00. Similarly, if the encoder is in
state S2, an input bit 0 causes no transition and the encoder output is 10. On the other
hand, if the input bit is a 1, the encoder enters state Sl and outputs 01.

Trellis Representation of State-Dependent (d, K) Codes. The state dia­
gram provides a relatively compact representation of a state-dependent code. Another
way to describe such codes that have memory is by means of a graph called a trellis.
A trellis is a graph that illustrates the state transitions as a function of time. It consists
of a set of nodes representing the s.tates that characterize the memory in the code at
different instants in time and interconnections between pairs of nodes that indicate the
transitions between successive instants of time. For example, Figure 8.21 shows the
trellis for the d = 1, K = 3 Miller code whose state diagram is shown in Figure 8.20.

1000
0100
000100
001000
100100
00100100
00001000

10
11
011
010
000
0011
0010
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a rate Rc = 3/5. When compared with the capacity e(l, (0) = 0.6942, obtained from
Table 8.3, the code efficiency is 0.864, which is quite acceptable.

The code construction method described in the two examples above prodUces'
fixed-length (d, K) codes that are state independent. By "state independent," we mean
that fixed-length codewords can be concatenated without violating the Cd, K) con­
straints. In general, fixed-length, state-independent (d, K) codes require large block
lengths, except in cases such as those in the examples above, where d is small. Simpler
(shorter-length) codes are generally possible by allowing for state-dependence and for­
variable-length codewords. Next, we consider codes for which both input blocks to the'
encoder and the output blocks may have variable length. In order for the codewords to
be uniquely decodable at the receiver, the variable-length code should satisfy the prefix'
condition, previously described in Chapter 6.

Example 8.5.5
Construct a simple variable-length d = 0, K = 2 code.

Solution A very simple uniquely decodable (0, 2) code is the following:

0-+01
10 --+ 10
11--+11

The code in the above example has a fixed output block size but a variable input '_.
block size. In general, both the input and output blocks may be variable. The following_,
example illustrates the latter case. ..

Example 8.5.6
Construct a (2, 7) variable block size code.

Solution The solution to this code construction is certainly not unique nor is it trivial.
We picked this example because the (2, 7) code has been widely used by IBM in many
of its disk storage systems. The code is listed in Table 8.5. We observe that the input data··
blocks of2, 3, and 4 bits are mapped into output data blocks of4, 6, and 8 bits, respectively.
Hence, the code rate is Rc = 1/2. Since this is the code rate for all codewords, the code
is called afixed-rate code. This code has an efficiency of 0.5/0.5174 = 0.966. Note that
this code satisfies the prefix condition.

514
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Figure 8.23 State diagram for NRZI
signal.

Figure 8.24 The trellis for an NRZI
signal.
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code with precoding. A similar combination can be performed with the corre~ponding

trellises. The following example illustrates the approach for the (1,3) Miller code
followed by NRZI modulation.

Example 8.5.7
Determine the state diagram ofthe combined (1,3) Miller code followed by the precoding
inherent in NRZI modulation.

Solution Since the (1, 3) Miller code has two states and the precoder has two states, the
state diagram for the combined encoder has four states, which we denote as (SM, SN) =
(crj, Sj), (crj, S2), (cr2, Sj), (cr2, sz), where SM = {crt, crz} represents the two states of the
l\1illercode and SN = {Sj, sz} represents the two states of the precoderfor NRZI. For each
data input bit into the Miller encoder we obtain two output bits which are then precoded
to yield two precoded output bits. The resulting state diagram is shown in Figure 8.25,
where the first bit denotes the information bit into the Miller encoder and the next two bits
represent the corresponding output of the precoder.

The trellis diagram for the Miller precoded sequence may be obtained directly
from the combined state diagram or from a combination of the trellises of the two codes.
The result of this combination is the four-state trellis, one stage of which is shown in
Figure 8.26.

Figure 8.22 Method for generating an
NRZI signal using precoding.

~ NRZ LNRZII modulator i u

--

r

signal
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The Mapping of Coded Bits Into Signal Waveforms. . The output sequenc .
from a (d, K) encoder is mapped by the modulator into signal waveforms for trans':
mission over the channel. If the binary digit 1 is mapped into a rectangular pulse of
amplitude A and the binary digit 0 is mapped into a rectangular pulse of amplitude - A}
the result is a (d, K)-coded NRZ modulated signal. We note that the duration of
rectangular pulses is Te = ReiRb = ReTb, where Rb is the information (bit) rate into
the encoder, Tb is the corresponding (uncoded) bit interval, and Re is the code rate fo~

the (d, K) code.
'Wben the (d, K) code is a state-independent fixed-length code with code rate

Re =kin, we may consider each n-bitblock as generating one signal waveform of du~·

ration nTe.Thus, we have M = 2k signal waveforms, one for each ofthe 2k possible k-bit
data blocks. These coded waveforms have the general form given by Equations (7.4.22)
and (7.4.23). In this case, there is no dependence between the transmission ofsuccessive
waveforms.

In contrast to the situation considered above, where the (d, K) code is state inde-·,
pendent and NRZ modulation is used for transmission of the coded bits, the modulation·
signal is no longer memoryless when NRZl is used and, or, the (d, K) code is state de-.
pendent. Let us first consider the effect of mapping the coded bits into an NRZI signal
waveform.

An NRZI modulated signal is itself state dependent. The signal-amplitude level'
is changed from its current value (±A) only when the bit to be transmitted is a 1. It·
is interesting to note that the NRZI signal may be viewed as an NRZ signal preceded·,
by another encoding operation, called precoding, of the binary sequence, as shown in .
Figure 8.22. The precoding operation is described mathematically by the relation

Pk = dk EB Pk-l

where {dd is the binary sequence into the precoder, {pd is the output binary sequence
from the precoder, and EB denotes modulo-2 addition. This type of encoding is called
differential encoding, and is characterized by the state diagram shown in Figure 8.23(a).
Then, the sequence {pd is transmitted by NRZ. Thus, when Pk = 1, the modulator
output is a rectangular pulse of amplitude A and when Pk = 0, the modulator output is
a rectangular pulse of amplitude - A. 'Wben the signal waveforms are superimposed on·
the state diagram of Figure 8.23(a), we obtain the corresponding state diagram shown ::
in Figure 8.23(b). .

It is apparent from the state diagram that differential encoding or precoding as
described above introduces memory in the modulated signal. As in the case of state-·
dependent (d, K) codes, a trellis diagram may be used to illustrate the time dependence
of the modulated signal. The trellis diagram for the NRZI signal is shown in Figure 8.24.
'Wben the output of a state-dependent (d, K) encoder is followed by an NRZI modulator,
we may simply combine the two state diagrams into a single state diagram for the (d, K)

:!
i
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Figure 8.28 State diagram fer the Miller-preceded signal and sampie waveform.
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diagram for the Miller-precoded sequence we may substitute the signal waveforms
from the modulator in place of the encoder output bits. This state diagram is illustrated
in Figure 8.28, where thefour states are simply designated as Si, 1~ i ~ 4. The resulting
modulated signal has also been called delay modulation.

Modulated signals with memory such as NRZI and Miller codedlNRZI (delay
modulation) are generally characterized by a K -state Markov chain with stationary
state probabilities {Pi, i = 1, 2, ... , K}. Associated with each transition is a signal
waveform Sj(t), j =1,2, ... , K. Thus, the transition probability Pij denotes the
probability that signal waveform Sj (t) is transmitted in a given signaling interval after
the transmission of the signal waveform Si (t) in the previous signaling interval. The
transition probabilities may be arranged in matrix form as

Chapter

Figure 8.25 State diagram of the Miller
code followed by the precoder.

Figure 8.26 One stage of trellis diagram
for the Miller code followed by the
precoder.

Figure 8.27 Signal waveforms for
Miller-precoded pairs of bits.

State(SM' SN)

(0-1' sl)
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It is interesting to note that the four signal waveforms obtained by mapping each .
pair of bits of the Miller-precoded sequence into an NRZ signal are biorthogonal. In
particular, the pair of bits 11 map into the waveform Sl (t) and the bits 01 map into
the waveform S2(t), shown in Figure 8.27. Then, the encoded bits 00 map into -Sl (t)
and the bits 10 map into -S2(t). Since Sl (t) and S2(t) are orthogonal, the set offoU!
waveforms constitute a biorthogonal set of M = 4 waveforms. Hence, in the state

(0-2' S2)

sI (t) . s2(t)

A A

0 2Tc 0 2Tc

-A
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(8.5.11)

(8.5.10)
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where nk is a zero-mean Gaussian random variable with variance cr; = No/2. Conse­
quently, the conditional PDFs for the two possible transmitted signals are

J(rk lSI) = __I_e-(rk-..;r,)2!2a,~
.,fijicrn

J(rk IS2) = __I_e-(rk+..;r,)2!2(J,~
.,fijicrn

Now, suppose we observe the sequence of matched-filter outputs rI, r2, ... , rK.
Since the channel noise is assumed to be white and Gaussian, and 1/f (t - iT), 1/f (t - j T)
fori of j areorthogonal,itfollowsthatE(nknj) = 0, k of j.Hence, the noise sequence
nl, n2, ... , nk is also white. Consequently, for any given transmitted sequence s(m), the

. degree of freedom. This added degree of freedom allows us to use the merging bits to
minimize the low-frequency content of the modulated signal. Since the merging bits
carry no audio signal information, they are discarded in the readback process prior to
decoding.

A measure of the low-frequency content of a digital modulated signal is the
running digital sum (RDS), which is the difference between the total zeros and the total
ones in the coded sequence accumulated from the beginning of the disc. In addition
to satisfying the (d, K) constraints, the three merging bits are selected so as to bring
the RDS as close to zero as possible. Thus, the three merging bits are instrumental in
reducing the low-frequency content below 20 kHz by an additional factor of 10 (in
power).

In addition to the coded information bits and merging bits, additional bits are
added for control and display (C & D), synchronization bits, and parity bits. The data
bits, control bits, parity bits, and synchronization bits are arranged in a frame structure,
consisting of 588 bits/frame. The frame structure is illustrated in Figure 8.29.

8.5.2 The Maximum-Likelihood Sequence Detector

When the signal has no memory, the symbol-by-symbol detector described in Sec­
tion 7.5 is optimum in the sense of minimizing the probability of a symbol error.
On the other hand, when the transmitted signal has memory; i.e., the signals trans­
mitted in successive symbol intervals are interdependent, the optimum detector bases
its decisions on observation of a sequence of received signals over successive signal
intervals.

Consider as an example the NRZI signal described in Section 8.5.1. Its memory is
characterized by the trellis shown in Figure 8.24. The signal transmitted in each signal
interval is binary PAM. Hence, there are two possible transmitted signals corresponding
to the signal points SI = -S2 = .jE/,., where Cb is the energylbit. As shown in Section 7.5,
the output of the matched-filter or correlation-type demodulator for binary PAM in the
kth signal interval may be expressed as

Chapter 8

0 I 0 I
2 2

0 0 I I

p= 2: 2: (8.5.9)I I 0 02: 2
I 0 I 02: 2:
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where P is the transition probability matrix. The transition probability matrix is easily'.:
obtained from the state diagram and the corresponding probabilities of occurrence of .
the input bits (or, equivalently, the stationary state probabilities {Pi}).

For the NRZI signal with equal state probabilities PI = P2 = 1/2 and state
diagram shown in Figure 8.23, the transition probability matrix is

P = Un (8.5.8)

Similarly, the transition probability matrix for the Miller-coded NRZI modulated signal
with equally likely symbols (Pl = P2 = P3 = P4 = 1/4) is

As we shall see later, in Section 8.5.4, the transition probability matrix is useful·
in determining the power-spectral density of a modulated signal with memory.

Modulation Code for the Compact Disc System. In the design of a mod­
ulation code for the compact disc system, several factors had to be considered. One
constraint is that the maximum runlength ofzeros must be sufficiently small to allow the
system to synchronize from the readback·signal. To satisfy this constraint, K = 10 was
chosen. A second factor is the frequency content of the modulated signal below 20 kHz.
In a CD system, the servo-control systems that keep the laser beam on a specified track
and the focusing circuits are controlled by signals in the frequency range 0-20 kHz. To
avoid interference with these control signals, the modulated information signal must
fall above this frequency range. The runlength-limited code that was implemented for
this purpose is a (d, K) = (2, 10) code that results in a coded information-bearing signal
that occupies the frequency range 20 kHz to 1.5 MHz.

The d = 2, K = 10 code selected is a fixed-length code that encodes eight infor­
mation bits into 14 coded bits and is cailedEFM (eight-to-fourteen modulation). Since
each audio signal sample is quantized to 16 bits, a 16-bit sample is divided into two
8-bit bytes and encoded. By enumerating all the 14-bit codewords, one can show that
there are 267 distinct codewords that satisfy the (d, K) constraints. Of these, 256 code­
words are selected to form the code. However, the (d, K) constraints are not satisfied
when the codewords are concatenated (merged in a sequence). To remedy this problem,
three additional bits are added to the 14, called "merging" bits. The three merging bits
serve two purposes. First of all, if the d-ci:mstraint is not satisfied in concatenation,
we choose O's for the merging bits. On the other hand, if the K-constraint is being
violated due to concatenation, we select one of the bits as 1. Since two bits are suf­
ficient to accomplish these goals, the third merging bit may be viewed as an added
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(8.5.12)

Figure 8.30 Trellis for NRZI signal
with initial state 51.
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0/0

011t
t=2T

0/0

011t
t= T

Dighally Modulated Signals with Memory

010

Section 8.5

joint PDF of rl, r2, ... , rK may be expressed as a product of K marginal PDFs; i.e.,

K

ph ,r2, ... ,rK IsCm)) = II p (rk Is~m))
k=l

= (~ ) Kexp [_ t h - sr))2/2(/;,]
y 27tCJn k=l

where either Sk = ...(th or Sk = -...(th. Then, given the received sequence rj, r2, ... , rK
at the output of the matched-filter or correlation-type demodulator, the detector deter­
mines the sequence s(m) = {sim), sim), ... , sr)} that maximizes the conditional PDF
p(rj, T2, ... , rK Is(m)). Such a detector is called the maximum-likelihood (ML) se­
quence detector.

By taking the logarithm of Equation (8.5.12) and neglecting the terms tha~ are
independent of (rl, rz, ... , rK) we find that an equivalentML sequence detector selects
the sequence sCm) that minimizes the Euclidean distance metric

K

D(r, sCm)) = E h - s~m))2 (8.5.13)
k=l

In searching through the trellis for the sequence that minimizes the Euclidean
distance D(r, sCm)), it may appear that we must compute the distance D(r, sCm)) for
every possible path (sequence). For the NRZI example given above, which employs
binary modulation, the total number of paths is 2K , where K is the number of outputs
obtained from the demodulator. However, this is not the case. We may reduce the
number of sequences in the trellis search by using the Viterbi algorithm to eliminate
sequences as new data is received from the demodulator.

The Viterbi algorithm is a sequential trellis search algorithm for performing ML
sequence detection. It is described in more detail in Chapter 9 as a decoding algorithm
for channel-coded systems. We describe it below in the context of the NRZI signal. We
assume that the search process begins initially at state Sj. The corresponding trellis is
shown in Figure 8.30. At time t = T, we receive rl = sim) + n, from the demodulator

1

1 frame

+

33 daca symbols

j

24 audio symbols

6 sampling periods
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+ 27 sync bits
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..,L J----,i-

10000000000 I 0000000000 I
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2xTmu...;====~:::.-
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4 symbols of 8 bits

100001001000100000010010010010000 I
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I (

Figure 8.29 Frame structure of data in a compact disc. The infonnation is divided
into frames; the figure gives one frame of the successive bit streams. There are six
sampling periods for one frame, each sampling period giving 32 bits (16 for each of
the two audio channels). These 32 bits are divided to make four symbols in the
"audio bit stream" BI. In the "data bit stream," B2 eight parity symbols and one
C & D symbol have been added to the 24 audio symbols. To scatter possible errors,
the symbols of different frames in B I are interleaved, so that the audio signals in one
frame of B2 originate from different frames in B I • The modulation translated the
eight data bits of a symbol of B2 into fourteen channel bits, to which three 'merging
bits' are added (B3)' The frames are marked with a synchronization signal of the
form illustrated (bottom right); the final result is the "channel bit stream" (Bi ) USed
for writing on the master disc, in such a way that each 1 indicates a pit edge (D).
(From paper by Heemskerk and Schouhamer Immink, 1982.)
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8.5.3 Maximum-Likelihood Sequence Detection of Partial
Response Signals

It is 'clear from our previous discussion that partial response waveforms are signaL
waveforms with memory. This memory is conveniently represented by a trellis. Fo
example, the trellis for the duobinary partial response signal for binary data transmissiop
is illustrated in Figure 8.31. For binary modulation, this trellis contains two states,

This process is continued as each new signal sample is received from the demodl:':::
lator. Thus, the Viterbi algorithm computes two metrics for the two signal paths enterin'?
a node at each stage of the trellis search and eliminates one of the two paths at eaCl.
node. The two survivor paths are then extended forward to the next stage. Therefore"­
the number of paths searched in the trellis is reduced by a factor of two at each stage ,,-

It is relatively easy to generalize the trellis search performed by the Viterbi algo;:..
rithm for M -ary modulation. For example, delay modulation employs M = 4 signaL
and is characterized by the four-state trellis shown in Figure 8.26. We observe th~c­

each state has two signal paths entering and two signal paths leaving each node. Th.,..
memory of the signal is L = 1. Hence, the Viterbi algorithm will have four survivor,
at each stage and their corresponding metrics. Two metrics corresponding to fue tw'"
entering pafus are computed at each node and one of the two signal paths entering til"""
node is eliminated at each state of fue trellis. Thus, the Viterbi algorithm minimizes the.
number of trellis paths searched in performing ML sequence detection. .

From the description of the Viterbi algorithm given above, it is unclear as to hoY'"
decisions are made on the individual detected information symbols given the survivin,\"
sequences. If we have advanced to some stage, say K, where K » L, in fue trellis an"
we compare the surviving sequences, we will find that, with probability approachin:
one, all surviving sequences will be identical in bit (or symbol) positions K - SIr
and less. In a practical implementation of the Viterbi algorithm, decisions on eac!)..
information bit (or symbol) are forced after a delay of 5L bits (or symbols) and, henCe,
the surviving sequences are truncated to the 5L most recent bits (or symbols). Thus, ,,­
variable delay in bit or symbol detection is avoided. The loss in performance resultinp
from fue suboptimum detection procedure is negligible if the delay is at least 5L.

Example 8.5.8
Describe the decision rule for detecting the data sequence in an NRZI signal with a Vitert .
algorithm having a ~elay of 5L bits.

Solution The trellis for the NRZI signal is shown in Figure 8.30. In this case L ~

1, hence the delay in bit detection is set to 5 bits. Hence, at t = 6T, we will hav~

two surviving sequences, one for each of the two states, and the corresponding met'
rics Jl.6(b j , b2, b3 , b4 , bs, b6)and Jl.6(b'i' b~, b~, b~, b;, b~). At this stage, with probability
nearly equal to one the bit bi will be the same as b;; i.e., both surviving sequences will hav,­
a co=on first branch. If bi t= b;, we may select the bit (bi or b;) corresponding to th
smaller of the two metrics. Then the first bit is dropped from the two surviving sequences,
AU = 7T, the two metrics Jl.7(bz, b3 , b4 , bs, b6, b7) and Jl.7(b~, b~, b~, b;, b~, b;) will b_
used to deteIDIine the decision on bit b2 . This process continues at each stage of the searc}'
through the trellis for the mininIum distance sequence, Thus the detection delay is fixed
at 5 bits.

(8.5.14)

(8.5.15)

(8.5.16)

(8.5.17)
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I-L2(0, 0) = h +.JEb)2 + h + .,ftb)z

I-L2(I, 1) = (rl _.JEb)2 + (r2 +.,ftb)z

by using the o~tputs rl .and rz from the demodulator. The Viterbi algorithm compares
these two me~cs and dIscards the path having the larger (greater distance) metric. The
o~e~ pa~ WIth the lower metric is saved and is called the survivor at t = 2T. The
elrrnlllatlO~ of one of the two paths may. be done without compromising the optimality
of the tre~s search, because any extensIOn of the path with the larger distance beyond
t = 2T WIll always have a larger metric than the survivor that is extended along the
same path beyond t = 2T.

, Simi1~ly, for the two paths entering node S2 at t = 2T, we compute the two
Euclidean distance metrics .

and at t = 2T we receive r2 = s~m) + n2. Since the signal memory is one bit, which'
we denote as L =.1: we observe that the trellis reaches its regular (steady-state) f011ll
after the first tranSItion. Thus, upon receipt of rz at t = 2T (and thereafter) we observ'
that .there are two signal paths entering each of the two nodes and two 'signal path:
lea~lllg e~ch node. The two paths entering node SI at t = 2T correspond to the infor-,
mation bIts (0,0) and .(1, 1) or, equivalently, to the signal points (-.,ftb, -.jEb) and
(~, -0)' re~pectlvely.The two paths entering node S2 at t = 2T correspond to
the informatIon bIts (0, 1) and (1, 0) or, equivalently, to the signal points (_.jEb, .jE[,)
and (.,ftb, ../tb), respectively. ,

. For the two paths entering node 31, we compute the two Euclidean distance'
metncs

J1z(O, 1) = (rr + .,ftb)z + (rz _.Jtb)2

I-L2(1,0) = (rr _.JEb)2 + (rz - .JEb)2

by u~ing the outP.uts rl and r2 from the demodulator. The two metrics are compared and
the s~gnalpath WIth the larger metric is eliminated. Thus, at t = 2T, we are left with two
survI~orpaths, one at node SI and the other at node Sz, and their corresponding metrics.
The SIgnal paths. at nodes SI and S2 are then extended along the two survivor paths.

Upon receIpt of r3 at t = 3T, we compute the metrics of the two paths entering
state SI. Suppose ~e survivors at t = 2T are the paths (0,0) at SI and (0,1) at S2.
Then, the two memcs for the paths entering SI at t = 3T are

I-L3(0,0, 1) = I-L2(0, 0) + h _.JEb)2

I-L3 (0, 1, 0) = I-L2 (0, 1) + (r3 - .JEb)z

Thes.e two metrics are compared and the path with the larger (distance) metric is
ehllllnated.

I-L3(0, 0, 0) = I-Lz(O, 0) + h +.JEb)2

I-L3(0, 1, 1) = I-L2(0, 1) + h + .,ftb)2

!hese two ~etrics are compared and thy path with the larger (distance) metric is elim­
mated: SUllllarly, the metrics for the two paths entering S2 at t = 3T are
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(8.5.21)

(8.5.22)
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where
L

bm = LXkam-k
k=O

and Xk == x (kT) are the sampled values of the partial response signal waveform. In this
case, the metric computations at each node of the trellis have the form

fJ.m(am) == fJ.m-1 (am-I) + (Ym - tXkam-k) 2 (8.5.23)
k=O

where fJ.m(am) are the metrics at time t == mT, fJ.m-l(am-l) are the metrics at time
t == (m - l)T and the second term on the right-hand side of Equation (8.5.23) are the
new increments to the metrics based on the new received samples Ym'

As previously indicated in Section 8.5.2, ML sequence detection introduces a
variable delay in detecting each transmitted information symbol. In practice, the variable

The search through the trellis for the minimum distance path may be performed
sequentially by use of the Viterbi algorithm. Let us consider the duobinary signal
waveform with binary modulation and suppose that we begin at the initial state with ao ==
1. Then upon receiving YI == al + ao + VI at time t == T and Y2 == a2 + al + V2 at time
t == 2T, we have four candidate paths, corresponding to (aI, a2) == (1,1), (-1, 1),
(1, -1) and (-1, -1). The first two candidate paths merge at state 1 at t == 2T, For
the two paths merging at state 1, we compute the metrics pd1, 1) and fJ.z (-1, 1) and
select the more probable path. A similar computation IS performed at state -1 for the
two sequences (l, -1) and (-1, -1). Thus, one of the two sequences at each node is
saved and the other is discarded. The trellis search continues upon receipt of the signal
sample Y3 at time t == 3T, by extending the two surviving paths from time t == 2T.

The metric computations are complicated by the correlation of the noise samples
at the output ofthe matched:fiIter for the partial response signal. For example, in the case
ofthe duobinary signal waveform;the correlation of the noise sequence {vm } is over two
successive signal samples. Hence, Vm and vm+k are correlated for k = 1 and uncorrelated
for k > 1. In general, a partial response signal waveform with memory L will result
in a correlated noise sequence at the output of the matched filter, which satisfies the
condition E(vmvm+k) == 0 for k > L. Ungerboeck (1974) described a sequential trellis
search (Viterbi) algorithm for correlated noise (see Problem 8.26). '

Some simplification in the metric computations results if we ignore the noise
correlation by assuming that E (vmVm+k) == 0 for k > O. Then, by assumption the co­
variance matrix C == IT;I where IT; == E(v~) and I in the N x N identity matrix. In this
case, Equation (8,5.20) simplifies to

aN == arg rnin[(YN - bN)'(YN - bN)]
aN

Chapter'

Figure 8.31 Trellis for duobinary Parti
response signal.
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corresponding to the two possible input values of am; i.e., am == ±1. Each branch in,
the trellis is labeled by two numbers. The first number on the left is the new data bit; ,
i.e., am+1 == ±1. This number determines the transition to the new state. The number"
on the right is the received signal level.

The duobinary signal has a memory oflength L == 1. Hence, for binary modulation
the trellis has S, == 2L states. In general, for M -ary modulation, the number of trellis
states is ML .

The optimum ML sequence detector selects the most probable path through the
trellis upon observing the received data sequence {Ym} at the sampling instants t == '
mT, m == 1, 2, .... In general, each node in the trellis will have M incoming paths and'
M ,corresponding metrics. One out of the M incoming paths is selected as the most'
probable, based on the values of the metrics and the other M - 1 paths and their metrics,
~re discarded. The surviving path at each node is then extended to M new paths, one
for each 'of the M possible input symbols, and the search process continues. This is
basically the Viterbi algorithm for performing the trellis search.

For the class of partial response signals, the received sequence {Ym, 1 ::::: m ::: N}
is generally described statistically by the joint, PDF f (YN IaN), where YN == (YI,
)Z, ..• , YNY and aN == (aI, az, ... , aN)t and N > L.When the additive noise is zero­
mean Gaussian, f(YN IaN) is a multivariate Gaussian PDF; i.e.,

f(YN IaN) == 1 e-~(yN-bN)lc-J(YN-bN) (8.5.18)
(2n N/Z)ldet(C)Il/z "

wherebN == (b l , bz, ... , bN )' is the mean ofthevectorYN and Cis theN x N covariance
matrix of YN. Then, the maximum-likelihood sequence detector selects the sequence
through the trellis that maximizes the PDp f (YN IaN).

The computations for finding the most probable sequence through the trellis is
simplified by taking the natural logarithms of f (yN IaN). Thus,

In f(YN IaN) == - N In(2n) - ~ In Idet(C)I-'CYN - bN)tC-I(YN - b N)/2 (8.5.19)
2 2

Given the received sequence {Ym}, the data sequence {am} that maximizes In f(YN IaN)
is identical to the sequence {am} that minimizes (YN - bN)'C-I(YN - bN); i.e.,

aN == arg min(YN - bN),c-I(YN - bN) (8.5.20)
aN



We select the path with the smaller metric as the survivor at state -1. This process continues
upon receipt of additional data at t = kT, k = 4, 5, ....

Error Probability of the Maximum-Likelihood Sequence Detector. In
general, the computation of the exact probability of error is extremely difficult. Instead,
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(8.5.30)

(8.5.29)

(8.5.24)

(8.5.28)

(8.5.25)

(8.5.27)

(8.5.26)

P2 = P(VI + V2 < -2d)

P2 = P['u2(-1, 1) < 'u2(1, 1)]

-1 [Yl - 2d]'u2(1, 1) = [Yl - 2d Y2 - 2d]C Y2 _ 2d

Digitally Modulated Signals with Memory

From Equation (8.4.32) we have (with M = 2) the expression for d 2 as

d2 = rr PauT = rr£b
4 4

Section 8.5

P2 = P(z < -2d) = Q (~~) = Q (V~2)

By substituting Yl = 2d + VI and Y2 = 2d + V2 into Equations (8.5.24) and (8.5.26)
we find that

where the covariance matrix C is given by (see Problem 8.30)

C = 2:0 [~ t]
For the path (aI, a2) = (-1, 1), the corresponding metric is

'u2(-1, 1) = [Yl Y2]C
I [~:]

The probability of a path error event is simply the probability that the metric 'u2(-1, 1)
is smaller than the metric 'u2(1, 1); i.e.,

Since VI and V2 are zero-mean (correlated) Gaussian variables, their sum is also zero­
mean Gaussian. The variance ofthe sumz = VI +V2 is simply a} = 16No/3rr. Therefore,

we shall determine an approximation to the probability of error, which is based on
comparing the metrics of two paths which merge at a node and which are separated by
the smallest Euclidean distance of all other paths. Our derivation is performed for the
duobinary partial response signal waveform.

Let us consider the trellis for the duobinary partial response signal shown in
Figure 8.31. We assume that we start in state 1 at t = 0 and that the first two transmitted
symbols are at = 1 and a2 = 1. Then, att = T we receive Yl =2d +VI and att = 2T
we receive Y2 = 2d + V2. An error is made at state 1 if the path (a1, a2) = (-1, 1) is
more probable than the path (aI, a2) = (1, 1), given the received values of Yl and Y2.
This path error event is the dominant path error event and, hence, it serves as a good
approximation to the probability of error for the :M:L sequence detector.

We recall that the metric for the path (ai, a2) = (1, 1) is
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delay in avoided by truncating the surviving sequences to Nt most recent symbo
where Nt» 5L, thus achieving a fixed delay. In case the M L surviving sequences
time t = mT disagree on the symbol am-N" the symbol in the most probable surviv'
sequence may be chosen. The loss in performance resulting from this truncatiou
negligible if Nt > 5L.

Example 8.5.9
For the duobinary partial response signal, express the metric computations performed
t = 2T and t = 3T, based on the received signal samples Ym = bm+ Vmfor m = 1,2,
where the noise correlation is ignored.

Solution The metrics are generally given by Equation (8.5.23). Upon receipt of YI and
Y2 and with ao = 1, the metrics for the two paths merging at state 1 are "

,Uz(1, 1) = (YI - 2i + (yz - 2)z

'u2(-1, 1) = yf + yi

If'uz(1,1) < ,Uz(-1, 1) we select the path (1, 1) as the more probable and discard (-1, 1).
Otherwise, we select the path (-1, 1) and discard the path (1, 1). The path with the smaller
metric is called the survivor and the sequence (ai, az) and the corresponding metric are'.
saved.

A similar computation is performed at state -1 for the sequences (1, -1) and'
(-1, -1). Then, we have '

'u2(l, -1) = (Yl - 2)z + yi

,Uz(-l,-l) =yf+(Yz+2i

We compare the metrics 'uz(1, -1) and ,Uz(-1, -1) and select the sequence with the
smaller metric.

Upon receipt of Y3 at t = 3T, we consider the extensions of the survivor paths.
Suppose that the two survivor paths are (ai, az) = (1, 1) and (ai, a2) = (1, -1). Then"at
state 1 (aU = 3T) we have the two merging paths (aI, az, a3) = (1, 1, 1) and (1, -1, 1).
Their corresponding metrics are

'u3(1, 1, 1) = iLz(l, 1) + (Y3 - 2)z

iL3(1, -1,1) =,Uz(l, -1) + y~

We compare the metrics for these two merging paths and select the path with the smaller
metric as the survivor.

Similarly, at state -1 (au = 3T), we have the two merging paths (1, 1, -1) and
(1, -1, -1), and their corresponding metrics

iL3(1, 1, -1) = iLz(l, 1) +y~

iLz (1 , -1, -1) = iL2(r, -1) + (Y3 + 2)2

lj



The term pij(n) denotes the probability that a signal Sj(t) is transmitted n signaling
intervals after the transmission of Si (t). Hence, {Pij (n)} are the transition probabilities
in the transition probability matrix pn. Note that when n = 1, pn == P, which is the
matrix given by Equation (8.5.7).
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(8.5.34)

(8.5.35)

1 0 1]o ~ i
i 0 0
o ~ 0

p= [~
5:
1
2:

IG T (f)[2 = (AT)2 (S~;;T)2

= (AT)2 sinc2 (IT)

Digitally Modulated Signals with Memory

S(I) = (2pT~ 1)2 nt= rGT (j) ro(I - j)
+4P(l; p) I GT(f) 1 2

where for a rectangular pulse of amplitude A,

We note that pn = P for all n > 1. Hence, with K = 2 states and gT (t) = Sj (t) = -S2 (t),
we obtain

We observe that when P = 1/2 (equally probable signals) the impulse spectrum vanishes
and S (f) reduces to

We observe that the power spectrum of the NRZI signal for equally probable signals
is identical to the expression in·(8.2.18), which applies to an uncorrelated sequence {an}
into the modulator. Hence, we conclude that the simple precoding operation in NRZI does
not result in a correlated sequence.

The state probabilities are Pi = 1/4, for i = l, 2, 3, 4. Powers of P are easily obtained
by use of the relation (see Problem 8.8)

4 1
PI' = -:;j:'Y

p= UiJ

Section 8.5

Example 8.5.10
Determine the power-spectral density of the NRZI signal.

Solution The NRZI signal is characterized by the transition probability matrix

Example 8.5.11
Determine the power spectral density of the delay modulated (Miller encoded) signal
described in Section 8.5.1.

Solution The transition probability matrix of a delay modulated signal is· [see Equa­
tion (8.5.9)]

(8.5.33)
00 .

Pij(f) = LPij(n)e-j2rrnfT

n=1
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Hence, the probability of the path error event is

First, we note that this path error event results in one bit-error in the sequence of
two bits. Hence, the bit-error probability is P2/2. Second, there is a reduction in SNR
of 1010g(1.5n2 /16) = -0.34 dB relative to the case of no intersymbol interference....
This small SNR degradation is apparently the penalty incurred in exchange for the
bandwidth efficiency of the partial response signal. Finally, we observe that the ML
sequence detector has gained back 1.76 dB of the 2.1 dB degradation inherent in the
symbol-by-symbol detector.

(
1.5n2 (2Gb))P2=Q ----

16 No

8.5.4 The Power Spectrum of Digital Signals with Memory

In Section 8.5.1, we demonstrated that state-dependent modulation codes resulted in
modulated signals with memory. Such signals were described by Markov chains which
are basically graphs that include the possible "states" of the modulator with correspond- .
ing state probabilities {pd, and state transitions with corresponding state transition .
probabilities {pd.

The power-spectral density of digitally modulated signals that are characterized
by Markov chains may be derived by following the basic procedure given in Section 8.2.
Thus, we may determine the autocorrelation function and then evaluate its Fourier trans­
form to obtain the power-spectral density. For signals that are generated by a Markov
chain with transition probability matrix P, as generally given by Equation (8.5.7),
the power-spectral density of the modulated signal may be expressed in the general
form

S(n = }2 n~JtPiSi (f)r8 (1 - f) + ~ t pi/S;(f) 1

2

+~Re[tt PiS[*(f)Sj (f)Pij(f)] (8.5.32)

where K is the number of states of the modulator, Si (f) is the Fourier transform
of the signal wavefonn siCt), S!(f) is the Fourier transform of s!Ct), where s!(t) =
Si (t) - 'Lf=! PkSk(t), and Pij (f) is the Fourier transform of the discrete-time sequence
Pij (n), defined as



where, is the signal correlation matrix with elements
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S(f)= ;2 (taiPifJ;:JGT(f)120(f-f)

1 [M M M ]+y; BPiO-Pi)af-2'ff;PiPjaiaj IGT(f)1
2

(8.5.41)

If we compare Equation (8.2.17) with Equation (8.5.41), we find that these expressions
are identical, where the mean and variance of the information sequence is

M

rna = LaiPi
i=l
M M M (8.5.42)

0-; = LPiO- pi)af - 2 L L PiPjaiaj
i=1 i=1 j=1

i<j

We observe that our previous result for the power-spectral density of memoryless
PAM modulation given by Equation (8.2.17) is a special case of the expression in
Equation (8.5.40). Specifically, if we have K = M signals which are amplitude-scaled
versions of a basic pulse gT(t); i.e;, Sm (t) = amgT(t), where am is the signal amplitude,
then Sm (f) = am GT (f) and Equation (8.5.40) becomes

channels which use flux-sensing heads for writing on and reading off a disk. Also shown
for comparison in Figure 8.32 is the power-spectral density of the modulated signal
generated by a (d, K) = (2,7) code followed by NRZI. The (2,7) runlength-limited
code, previously given in Table 8.5, is also widely used in magnetic recording channels.

When there is no memory in the modulation method, the signal waveform trans­
mitted in each signaling interval is independent ofthe waveforms transmitted in previous
signaling intervals. The power-spectral density of the resulting signal may still be ex­
pressed in theform ofEquation (8.5.32) if the transition probability matrix is replaced by

p =[~~ ;~ ::: ;~] (8.5.39)

PI P2 PK

and we impose the condition that pn = P for all n > 1, as a consequence of the
memoryless modulation. Under these conditions, the expression for S(n given Equa­
tion (8.5.32) reduces to the simpler form

S(f) = ;2 nf;oo I~PiSi (~) r0(f - ~) + ~ ~Pi(1- paISi(f)!2

. 2 K K

- y; L L PiPj Re[Si(f)Sj(f)] (8.5.40)
i=} j=1

i<j

Figure 8.32 Power-spectral density
(one-sided) of Miller code (delay
modulation), and NRZJNRZI baseband
signals.

Delay modulation
(Miller code)
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Yij = T 0 si(t)sj(t)dt

and thefour sign\lls lSi (t), i = 1,2,3, 4} are shown in Figure 8.27, where S3 (t) =
and S4(t) = -Sl (t). It is easily seen that

(2, 7) RLL code
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Consequently, powers of P can be generated from the relation

pk+4, = _~pk" k ~ 1

With the aid of these relations, the power spectral density of the delay modulated signal'
is obtained from Equation (8.5.32). It may be expressed in the form

1
S(n = 2(rrfT)2(17 + 8 cos 8rrfT) [23 - 2cosrrfT - 22 cos 2rrfT

-12cos 3rrfT + 5 cos4rrfT + 12cos 5rrfT + 2cos 6rrfT

- 8 cos 7rrfT + 2cos 8rrfT)]

The power-spectral densities of the NRZI and the delay modulated signal are
shown in Figure 8.32. We observe that the NRZI signal has a lowpass power spectrum
with a peak of f = O. On the otherhand, the delay modulated signal has very little power ",
in the vicinity of f = O. It also has a relatively narrow power-spectral density. These'
two characteristics make it particularly suitable for use in magnetic recording storage

'-:-l; •,
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Figure 8.33 Effect of channel distortion
in (a) channel input and (b) channel
output.(b)
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resulting pulse suffers from lSI. Consequently, a sequence of successive pulses would
be smeared into one another and the peaks of the pulses would no longer be distin­
guishable due to the lSI.

Next, we consider two problems. First, we consider the design of transmitting and
receiving filters in the presence of channel distortion when the channel characteristics
are known. Second, we consider the design of special filters, called channel equalizers,
that automatically and adaptively correct for the channel distortion when the channel
characteristics; Le., IC(f) I and LGc(f), are unknown.

8.6.1 Design of Transmitting and Receiving Filters
for a Known Channel

In this section, we assume that the channel frequency response characteristic C (f)
is known and consider the problem of designing a transmitting filter and a receiving
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GT(f)C(f)GR(f) = Xrc(f) (8.6.1)

where Xrc (f) denotes the Fourier transform of an appropriate raised cosine pUlse.~,j
whose parameters depend on the channel bandwidth W and the transmission interval' :
T. Obviously, there are an infinite number of transmitter-receiver filter pairs that satisfy
the above condition. In this section, we are concerned with the design of a digital
communication system that suppresses lSI in a channel with distortion. We first present
a brief coverage of various types of channel distortion and then we consider the design J.
,of transmitter and receiver filters.

We distinguish two types of distortion. Amplitude distOrtion results when the":
amplitude characteristic IC (f) ris not constant for If I :::: W. The second type of distor- '
tion, .called phase distortion, results when the phase characteristic Gc (f) is nonlinear
in frequency.

Another view of phase distortion is obtained by considering the derivative of
Gc(f). Thus, we define the envelope delay characteristic as (see Problems 2.57 and
8040)

In Section 8.3.1 we described a signal design criterion that results in zero lSI at the'
output of the receiving filter. Recall that a signal pulse x(t) will satisfy the condition
of zero lSI at the sampling instants t =nT, n = ± 1, ±2, ... , if its spectrum X (j) '.
satisfies the condition given by Equation (8.3.9). From this condition we concluded"',
that for lSI free transmission over a channel, the transmitter-receiver filters and the '
channel transfer function must satisfy

Therefore Equation (8.5.40) is the more general form for the power-spectral density of
memoryless modulated signals, since it applies to signals that may have different PUlse:
shapes.

r(f) = -~ dGc(f) (8.6.2)
2:rr df

When Gc(f) is linear in f, the envelope delay is constant for all frequencies. In this
case, all frequencies in the transmitted signal pass through the channel with the same
fixed-time delay. In such a case, there is no phase distortion. However, when Gc(f) ,
is nonlinear, the envelope delay r (f) varies with frequency and the various frequency
components in the input signal undergo differentdelays in passing through the channel.
In such a case we say that the transmitted signal has suffered from delay distortion.

Both amplitude and delaydistortion cause intersymbol interference in the received
signal. For example, let us assume that we have designed a pulse with a raised cosine
spectrum that has zero lSI at the sampling instants. An example of such a pulse is illus- ,
trated in Figure8.33(a). When the pulse is passed through a channel filter with constant
amplitude IC (f) I= 1 for If I< Wand a quadratic phase characteristic (linear envelope
delay), the·received pulse at the output of the channel is shown in Figure 8.33(b). Note
that the periodic zero crossings have been shifted by the delay distortion, so that the
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(8.6.12)

(8.6.13)

(8.6.14)

(8.6.15)

Ifl:sW
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is

and, hence,

We note that the term,

2. No JOO 2 No jW No
O"v = - IGR(f)/ df = - Xrc(f) df = -

2 -00. 2 -w 2

The average transmitted power is

p = E (a~) 100

g2 (t) dt = d
2 jW Xrc(f) df

. av T' -00 T T -w IC(f)12

In the presence of additive white Gaussian noise, the filter at the receiver is designed
to be matched to the received signal pulse. Hence, its frequency response

GR(f) = lXrc(f) e-j2njt, (8.6.11)

where tr is an appropriate delay.
Let us compute the SNR d2 / a} for these filter characteristics. The noise variance

where to is a suitable delay to ensure causality. Then, the cascade of the transmit filter
and the channel results in the frequency response

GT(f)C(f) = lXrc(f) e-j2rrjto (8.6.10)

'. W

1010 1 Xrc(f) df 6
glo -w IC(f)1 2 (8.6.1 )

with IC(f) I ::s 1 for If I ::s W, represents the loss in performance in dB of the commu­
nication system due to channel distortion. When the channel is ideal, IC (f) I = 1 for
If I ::s Wand, hence, there is no performance loss. We also note that this loss is entirely
due to amplitude distortion in the channel, because the phase distortion has been totally
compensated by the transmit filter.

Example 8.6.1
Determine the magnitude of the transmitting and receiving filter characteristics for a binary
cOInmunication system that transmits data at a rate of 4800 bits/sec over a channel with
frequency (magnitude) response

where W = 4800 Hz. The additive noise is zero-mean, white, Gaussian with spectral
density No/2 = 10-15 WIHz.

d2= P T [jW Xrc(f) df ]-l
av -W IC(f)12

Therefore, the SNR d2 /0"; is given as

d
2

_ 2PavT [jW Xrc(f) d ]-1
0"; - No -w jC(fW f

(8.6.9)

(8.6.6)

(8.6.5)
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Receiving To detector
filter

GR(f)

Noise
net)

Channel
C(f)

G (f) = .;x;;m e-j2njto
T C(f)

Transmitting
filter

GT(f)

Figure 8.34 System configuration for design of GT (j) and GR (f).
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Input data

where Sn (f) is the spectral density of the noise process net).
For simplicity, we consider binary PAM transmission. Then, the sampled output

of the matched filter is

where xo is normalized to unity, am = ±d, and Vmrepresents the noise term which is
zerO-mean Gaussian with variance

0"; =i: Sn(f)IG R(f)1 2 df (8.6.7)

Consequently, the probability of error is

P2 = ~ (X; e-
y2

/ 2 dy = Q ( ~ (8.6.8)
..;2rr Jd/a. . V~)

Now, suppose that we select the filter at the transmitter to have the frequency
response

filter that maximize the SNR at the output of the receiving filter and results in zero lSI.
Figure 8.34 illustrates the overall system under consideration. . .

For the signal component, we must satisfy the condition

GT(f)C(f)GR(f) = Xrc(f)e-jrrjto, If I ::s W (8.6.3)

where Xrc (f) is the desired raised cosine spectrum that yields zero lSI at the sampling
instants, and to is a time delay which is necessary to ensure the physical realizability
of the transmitter and receiver filters.

The noise at the output of the receiving :filter may be expressed as

vet) = i: net - r)gR(r) dr (8.6.4)

where net) is the input to the filter. The noise n-(t) is assumed to be zero-mean Gaussian.
Hence, vet) is zero-mean Gaussian, with a power-spectral density
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.JXrc(f) e-j27f/to, IJI:::: w
GT(f) == .

0, If I > W

and the receiving filter, with frequency response GR (f), to be matched to GT (f).

Therefore,
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(8.6.19)

(8.6.18)
n=-co

co

yet) = 2: anx(t - nT) + vct)
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Then, due to channel distortion, the output of the receiving filter is

00

Ym = 2: anxm - n + Vm
n=-oo

where x(t) = gTCt) * cct) * gRCt). The filter output may be sampled periodically to
produce the sequence

L,

Output = .2:xkam-k
k= -L l

Figure 8.35 Equivalent discrete-time channel filter.

+00

= xQam + 2: anxm - n + Vm
71=-00
n#m

where Xn =x(nT), n =0, ±1, ±2, .... The middle term on the right-hand side of
Equation (8.6.19) represents the lSI.

In any practical system, it is reasonable to assume that the lSI affects a finite
number of symbols. Hence, we may assume that XII = 0 for n < - L 1 and n > L 2 , where
L 1 and L2 are finite, positive integers. Consequently, the lSI observed at the output of
the receiving filter may be viewed as being generated by passing the data sequence {am}
through an FIR filter with coefficients {xn, -L1 :s. n :s. L2}, as shown in Figure 8.35. This
filter is called the equivalent discrete-time channel filter. Since its input is the discrete
information sequence (binary. or M -ary), the output of the discrete-time channel filter
may be characterized as the output of a, finite-state machine corrupted by additive
Gaussian noise. Hence, the noise-free output of the filter is described by a trellis having
M L states where L = L 1 + L 2•

(8.6.17)

If I :::: 4800Hz

[II:::: 4800Hz

T'
XI·e(f) = -[1 + cos(nTI/!)]

2

2(n l/l )= Teas 9600

[ ( /)2] nlll
T. 1 + W cos 9600'IGr(f)I=
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nlJI
IGR(f)1 = .ffcos 9600'

and [Gr(f)1 = IGR(f)1 =0 for IfI > 4800 Hz

Then,

Solution Since 'w = liT =4800 we use a signal pulse with a raised cosine spectrum"
and ct = 1. Thus,

8.6.2 Channel Equalization

In the precedingsection, we described the design oftransmitting an~r~ceiving filters for,
digital PAM transmission when the frequency response charactensncs of .the .channel:,
are known. Our objective was to design these filters for zero I~I at th~ samplmg mstan:s. .,;
This design methodology is appropriate when the channel IS precIsely known and ItS.
characteristics do not change with time. . .

Inpractice we often encounter channelswhose frequency response.ch.aractensncs
are either unknown or change with time. For example, in data transmISSIOn over the
dial-up telephone network, the communication channel will be different e~ery.time we
dial a number because the channel route will be different. Once a connectIOn IS made,
however the ~hannel will be time7invariant for a relatively long period of time. This
is an ex~ple of a channel whose characteristics are unkno~n a priori. .Examples of
time-varying channels are radio channels, such as ionosphenc propagatIOn cha~n~ls.
These channels are characterized by time-varying frequency response charactensncs.
These types of channels are examples where the optimization of the transmitting and "
receiving filters, as described in Section 8.6.1, is not possible.,

Under these circumstances, we may design the transmitting filter to have a square-
root raised cosine frequency response; i.e.,
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, (2 1)= "3 - n2 No

G R (f) is matched to GT (f) and they are designed so that their product satisfies
Equation (8.6.17), IGE (f) I must compensate for the channel distortion. Hence, the
equalizer frequency response must equal the inverse of the channel response; i.e.,

, 11.
GE(f) == -- == __ e-;EJc(f) IfI < W (8.6.20)

C(f) IC(f)I' -

where IGE(f)1 == l/IC(f)1 and the equalizer phase characteristic 8E(f) == -8c(f).
In this case, the equalizer is said to be the inverse channelfilter ta the channel response.

We note that the inverse channel filter C\)mpletely eliminates lSI caused by the
channel. Since it forces the lSI to be zero at the sampling times t == nT, the equalizer
is called a zero-forcing equalizer. Hence, the input to the detector is of the form

Ym == am + 1Jm

where 1Jm is the noise component, which is zero-mean Gaussian with a variance

0';; == L: Sn(f)IGR (f)1
2 IG E (f)1 2 df

= l w
Sn (f)IXrc(f) I df

-w IC(f)12 (8.6.21)

where Sn(f) is the power-spectral density of the noise. When the noise is white,
Sn (f) = No/2 and the variance becomes

172== No jW IXrc(f)I df
v 2 -w IC(f)12 (8.6.22)

In general, the noise variance at the output of the zero-forcing equalizer is higher
than the noise variance at the output of the optimum receiving filter rGR (f) I given by
Equation (8.6.12) for the case in which the channel is known.

Example 8.6.2

The channel given in Example 8.6.1 is equalized by a zero-forcing equalizer. Assuming
that the transmitting and receiving filters satisfy Equation (8.6.17), determine the value
of the noise variance at the sampling instants and the probability of error.

Solution When the noise is white, the variance of the noise at the output of the zero­
forcing equalizer (input to the detector) is given by Equation (8.6.22). Hence, .

0'2 = No jW IXrc(f) I df
v 2 -w IC(f)12

== TNol W [1 + (L)2] cos2 nl/l dl
2 -w W 2W

== No t (l +x2)cos2 nx dx
~ 2,

Receiving
filter

GR(f)

Noise
net)

Channel
C(f)
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Transmitting
mter

GT (!)

Figure 8.36 Block diagram of a system with an equalizer.

Input data
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Linear Equalizers. To compensate for the channel distortion, we may employ
a linear filter with adjustable parameters. The filter parameters are adjusted on the
basis of measurements of the channel characteristics. These adjustable filters are called
channel equalizers or, simply, equalizers.

On channels whose frequency-response characteristics are unknown, but time­
invariant, we may measure the channel characteristics, adjust the parameters of the'
equalizer, and once adjusted, the parameters remain fixed during the transmission of
data. Such equalizers are calledpreset equalizers. On the other hand, adaptive equalizers
update their parameters on a periodic basis during the transmission of data. ,

First, we consider the design characteristics for a linear equalizer from a frequency
domain viewpoint. Figure 8.36 shows a block diagram of a system that employs a linear ,"
filter as a channel equalizer.

The demodulator consists of a receiving filter with frequency response G R(f) in
cascade with a channel equalizing filter that has a frequency response GE (f). Since "

Maximum-Likelihood Sequence Detection. The optimum detector for
information sequence (am} based on the observation of the received sequence {Ym},
given by Equation (8.6.19), is a ML sequence detector. The detector is akin to the MI..
sequence detector described in the context of detecting partial response signals which
have controlled lSI. The Viterbi algorithm provides a method for searching through
the trellis for the ML signal path. To accomplish this search, the equivalent channel
filter coefficients {xn } must be known or measured by some method. At each stage of
the trellis search, there are M L surviving sequences with M L corresponding Euclidean"
distance path metrics. '

Due to the exponential increase in the computational complexity of the Viterbi
algorithm with the span (length L) ofthe lSI, this type ofdetection is practical only when "
M and L are small. For example in mobile cellular telephone systems which employ
digital transmission of speech signals, M is usually selected to be small; e.g., M == 2 "
or 4, and 2 :5 L :5 5. In this case, the ML sequence detector may be implemented with
reasonable complexity. However, when M and L are large, the ML sequence detector:
becomes impractical. In such a case other more practical but suboptimum methods are
used to detect the information sequence {am} in the presence of lSI. Nevertheless, the
performance of the ML sequence detector for a channel with lSI serves as a benchmark
for comparing its performance with that of suboptimum methods. Two suboptimum
methods are described below.

"f
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(8.6.23)

(8.6.24)

(8.6.25)

(8.6.26)

(8.6.27)
m=O

m = ±1,±2, ... ,±N

m = 0, ±1, ... , ±N

N

q(t) = L cnxCt - nr)
n=-N
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N {I
q(mT) = n~N cnx(mT - nr) = 0:

Section 8.6

II=-N

and the corresponding frequency response is

N

GE(f) = L cn e-j 2:Jr!lIr

n=-N

are aliased into frequencies below 1/T. In this case, the equalizer compensates for the
aliased channel-distorted signal.

On the other hand, when the time delay r between adjacent taps is selected such
that l/r ~ 2W > l/T, no aliasing occurs and, hence, the inverse channel equalizer
compensates for the true channel distortion. Since r < T, the channel equalizer is said
to have fractionally spaced taps and it is called a fractionally spaced equalizer. In
practice, r is often selected as r = T /2. Notice that, in this case, the sampling rate at
the output of the filter G R (f) is ~.

The impulse response of the FIR equalizer is

N

gE(t) = L cno(t - nr)

. The zero-forcing condition can now be applied to the samples of q (t) taken at
tunes t = m T. These samples are ,

N

q(mT) = L cnx(mT - nr),

where {cn } are the (2N + 1) equalizer coefficients, and N is chosen sufficiently large
so that the equalizer spans the length of the lSI; i.e., 2N + 1 ~ L. Since X (f) =
GT(f)C(f)GR(f) and x(t) is the signal pulse corresponding to X (f), then the equal­
ized output signal pulse is

Since there are 2N + 1 equalizer coefficients, we can control only 2N + 1 sampled
values of q(t). Specifically, we may force the conditions

which may be expressed in matrix form as Xc = q, where X is a (2N + 1) x (2N + 1)
matrix with elements {x(mT - nT)}, C is the (2N + 1) coefficient vector and q is the
(2N + 1) column vector with one nonzero element. Thus, we obtain a set of 2N + 1
linear equations for the coefficients of the zero-forcing equalizer.

We should emphasize that the FIR zero-forcing equalizer does not completely
eliminate lSI because it has a finite length. However, as N is increased the residual lSI
can be reduced and in the limit as N -+ 00, the lSI is completely eliminated.

Equalized
output

Chapter

Algorithm for tap
gain adjustment

Figure 8.37 Linear transversal filter.
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The coefficient vector C and the vector q are given as

Example 8.6.3
Consider achannel distortedpulse x (t), at the inputto the equalizer, given by the expression

1
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(8.6.31)

(8.6.32)

(8.6.35)

(8.6.34)

k = 0, ±1, 2, ... , ±N

N

z(t) = I:: cny(t - nr)
n=-N

N

z(mT) = I:: cny(mT - nr)
n=-N

,Ry(n - k) = E[y(mT - nr)y(mT - kr)J

RAy(k) = E[y(mT - kr)amJ

System Design in the Presence of Channel Distortion

N

I:: cnRy(n- k) = RYA(k),
n=-N

Section 8.6

where the correlations are defined as

MSE =E[z(mT) - amJ2

=E ltN clly(mT - nr) _ am]

2

N N N

I:: I:: CIlCkRy(n - k) - 2 I:: CkRAy(k) + E (a;,) (8.6.33)
Il=-Nk=-N k=-N

To elaborate, let us consider the noise-corrupted output of the FIR equalizer
which is .

and the expectation is taken with respect to the random infonnation sequence {am} and
the additive noise.

The MMSE solution is obtained by differentiating Equation (8.6.33) with respect
to the equalizer coefficients {en}. Thus, we obtain the necessary conditions for the
MMSEas

where yet) is the input to the equalizer, given by Equation (8.6.18). The output is
sampled at times t = mT. Thus, we obtain

These are (2N + 1) linear equations for the equalizer coefficients. In contrast to the
zero-forcing solution described previously, these equations depend on the statistical
properties (the autocorrelation) ofthe noise as well~ the lSI through the autocorrelation
Ry(n). .

In practice, we would not nonnally know the autocorrelation Ry(n) and the
crosscorrelation RAy(n). However, these correlation sequences can be estimated by

The desired response sample at the output of the equalizer at t = mT is the
transmitted symbol am' The error is defined as the difference between am and z(mT).
Then, the mean-square-error (MSE) between the actual output sample z(mT) and the
desired values am is

(8.6.30)

(8.6.29)

(8.6.28)

1 1 1 1 1
"5 iO 17 26 37
1 1 1 1 1

'2 "5 iO 17

X= 1, 1 1 1 1
5 '2 '2 "5
1 1 1 1 117 iO "5 '2
1 1 1 1 1

37 26 17 TQ "5
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,~[~}~m
Then, the linear equations Xc = q can be solved by inverting the matrix X. Thus, we
obtain

2 {I m = 0
q(mT) = I:: cnx(mT - nT12) = 0: m = ±1, ±2

n=-2

xU) = (21)2
1+ T

where liT is the symbol rate. The pulse is sampled at the rate 21T and equalized by a
zero-forcing equalizer. Determine the coefficients of a five-tap zero-forcing equalizer.

Solution According to Equation (8.6.27), the zero-forcing equalizer must satisfy the
equations

The matrix X with elements x(mT - nT12) is given as

[

-2.214.9
Copt = X-1q =. -3

4.9
-2.2

One drawback to the zero-forcing equalizer is that it ignores the presence of ad­
ditive noise. As a consequence, its use may result in significant noise enhancement.
This is easily seen by noting that in a frequency range where C (f) is small, the channel ..
equalizer GE (f) = 1/ C (f) compensates by placing a large gain in that frequency
range. Consequently, the noise in that frequency range is greatly. enhanced. AT: a:tema­
tive is to relax the zero lSI condition and select the channel equalizer charactenstlc such
that the combined power in the residual lSI and the additive noise at the outp~t ?f the
equalizer is minimized. A channel equalizer that is optimized based on the ffillllffium
mean-square-error (MMSE) criterion accomplishes the desired goal.
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where ek denotes the difference between the desired output from the equalizer at the kth
time instant and the actual output z(kT), and Yk denotes the column vector of2N + 1

547

(8.6.42)
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Figure 8.38 Example of convergence characteristics of a gradient algorithm.
(From Introduction to Adaptive Arrays, by R.A. Monzigo and T.W. Miller; @l980
by John Wiley & Sons. Reprinted with permission of the publisher.)

Section 8.6

gradient vector gk converges toward zero; i.e., gk --+ 0 as k --+ 00, and the coefficient
vector Ck --+ Copt as illustrated in Figure 8.38 based on two-dimensional optimization. In
general, convergence of the equalizer tap coefficients to Copt cannot be attained in a finite
number of iterations with the steepest-descent method. However, the optimum solution
Copt can be approached as closely as desired in a few hundred iterations. In digital
communication systems that employ channel equalizers, each iteration corresponds to
a time interval for sending one symbol and, hence, a few hundred iterations to achieve
convergence to Copt corresponds to a fraction of a second.

Adaptive channel equalization is requi.red for channels whose characteristics
change with time. In such a case, the lSI varies with time. The channel equalizer
must track such time variations in :the channel response and adapt its coefficients to
reduce the lSI. In the context of the above discussion, the optimum coefficient vector
Copt varies with time due to time variations in the matrix B and, for the case of the MSE
criterion, time variations in the vector d. Under these conditions, the iterative method
described above can be modified to use estimates of the gradient components. Thus,
the algorithm for adjusting the equalizer tap coefficients m2Y be expressed as

Ck+l = Ck - l>.gk . (8.6.41)

where gk denotes an estimate of the gradient vector gk and Ck denotes the estimate of
the tap coefficient vector.

In the case of the MSE criterion, the gradient vector gk given by Equation (8.6.39)
may also be expressed as (see Problem 8.46).

gk = -E(ekYk)

An estimate gk of the gradient vector at the kth iteration is computed as

gk = -ekYk

Digital Transmission through Bandlimited AWGN Channels546
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(8.6.45)

Figure 8.40 Initial convergence
characteristics of the LMS algorithm with
different step sizes. (From Digital Signal
Processing by J. G. Proakis and D. G.
Manolakis; ©1988, Macmillan. Reprinted
with permission of the publisher.)

500400200 300
Number of iterations
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100

where ak is the output of the detector. In general, decision errors at the output of
the detector occur infrequently and, consequently, such errors have little effect on the
performance of the tracking algorithm given by Equation (8.6.44).

A rule of thumb for selecting the step-size parameter so as to ensure convergence
and good tracking capabilities in slowly varying channels is

1
6. = (8.6.46)

5(2N + l)PR

where PR denotes the received signal-pIus-noise power, which can be estimated from
the received signal.

The convergence characteristics of the stochastic gradient algorithm in Equation
(8.6.44) is illustrated in Figure 8.40. These graphs were obtained from a computer
simulation of an II-tap adaptive equalizer operating a channel with a rather modest
amount otISI. The input signal-pIus-noise power PR wasnorrnalized to unity. The rule
of thumb given in Equation (8.6.46) for selecting the step size gives 6. = 0.018. The
effect of making 6. too large is illustrated by the large jumps in MSE as shown for
6. = 0.115. As 6. is decreased, the convergence is slowed somewhat, but a lower MSE
is achieved, indicating that the es~ated coefficients are closer to Copt.

Section 8.6

Initially, the adaptive equalizer is trained by the transmission of a known pseudo­
random sequence {am} over the channel. At the demodulator, the equalizer employs
the known sequence to adjust its coefficients. Upon initial adjustment, the adaptive
equalizer switches from a training mode to a decision-directed mode, in which case the
decisions at the output of the detector are sufficiently reliable so that the error signal
is formed by computing the difference between the detector output and the equalizer
output; i.e.,

10-3 L-__L-_--J__--'__--'__--'_

o
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ek = ak - Zk

where Zk =z(kT) is the equalizer output given by Equation (8.6.32) andak is the desire'
symbol. Hence, by substituting Equation (8.6.42) into Equation (8.6.41), we obtain th
adaptive algorithm for optimizing the tap coefficients (based on the MSE criterion) as

Ck+l = Ck + 6.ekYk

Since an estimate of the gradient vector is used in Equation (8.6.44) the algorithm is
called a stochastic gradient algorithm. Itis also known as the LMS algorithm. o ••• 0

A block diagram of an adaptive equalizer that adapts its tap coefficients according
to Equation (8.6.44) is illustrated in Figure 8.39. Note that the difference betweenthe
desired output ak and the actual output Zk from the equalizer is used to form the ~rro(

signal ek. This error is scaled by the step-size parameter 6., and the scaled error SlgIl

6.ek multiplies the received signal values {y (kT - n r)} at the 2N+1 taps. The products
6.eky(kT - nr) at the (2N + 1) taps are then added to the previous values of the tap.
coefficients to obtain the updated tap coefficients, according to Equation (8.6.44). This
computation is repeated for each received symbol. Thus, the equalizer coefficients are'
updated at the symbol rate.

Figure 8.39 Linear adaptive equalizer based on the MSE criterion.

received signal values contained in the equalizer at time instant k. The error signal e
is expressed as
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(8.6.47)

Figure 8.42 Two channels with lSI.

Channel A

NI N2

Zm = I>ny(mT - nr) - LbnZim- n
n=1 n=1
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Channel B
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not occur in the case of Channel A. Consequently, a linear equalizer will introduce
a large gain in its frequency response to compensate for the channel null. Thus the
noise in Channel B will .be enhanc~d much more than in Channel A. This implies' that
the performance of the lmear equalIzer for Channel B will be significantly poorer than
that for Channel A. This fact is borne out by the computer simulation results for the
perfo~an~e?f~e linear ~qualizerfor the twochannels,as shown in Figure 8.44. Hence,
the basIc IImltatIon of a lmear equalizer is that it performs poorly on channels having
~pectra1 nulls. Such channels are often encountered in radio communications such as
IOnospheric transmission at frequencies below 30 MHz and mobile radio chann'els, such
as those used for cellular radio communications.

A.d~cision-f~e~backequalizer (DFE) is a nonlinear equalizer that employs previ­
ous deCISIons toelimmate the lSI caused by previously detected symbols on the current
symbol to be ~etected. A simple block diagram for a DFE is shown in Figure 8.45.
The DFE consls~s of two filters. The first filter is called a feedforward filter and it is
~ene~ally. a fractlonally spaced FIR filter with adjustable tap coefficients. This filter is
I~entIcal m form to the linear equalizer described above. Its input is the received filtered
SIgnal y(t). The second filter is afeedbackfilter. It is implemented as an FIR filter with
symbol-spaced taps having adjustable coefficients. Its input is the set of previously
detected symbols. The output of the feedback filter is subtracted from the output of the
feedforward filter to form the input to the detector. Thus, we have

Figure 8Al An adaptive zero-forcing equalizer.

Digital Transmission through Bandlimited AWGN Channels

Decision-Feedback Equalizer. The linear filter equalizers described above
are very effective on channels, such as wireline telephone channels, where the lSI is
not severe. The severity of the lSI is directly related to the spectral characteristics and
not necessarily to the time span of the lSI. For example, consider the lSI resulting from
two channels which are illustrated in Figure 8.42. The time span for the lSI in Channel
A is 5 symbol intervals on each side of the desireg signal component, which has a value
of 0.72. On the other hand, the time span for the lSI in Channel B is one symbol interval
on each side of the desired signal component, which has a value of 0.815. The energy
of the total response is normalized to unity for both channels. .

In spite of the· shorter lSI span, Channel B results in more severe lSI. This is
evidenced in the frequency response characteristics of these channels, which are shown
in Figure 8.43. We observe that Channel B has a spectral null (the frequency response
C(f) = afor some frequencies in the band 1f I :::: W) at f = 1/2T, whereas this does

Although we have described in some detail the operation of an adaptive equalizer .
which is optimized on the basis of the MSE criterion, the operation of an adaptive
equalizer based on the zero-forcing method is very similar. The major difference lies i
in the method for estimating the gradient vectors gk at each iteration. A block diagram .
of an adaptive zero-forcing equalizer is shown in Figure 8.41. For more details on the
tap coefficient update method for a zero-forcing equalizer, the reader is referred to the .
papers by Lucky (1965, 1966); and the texts by Lucky, Salz, and Weldon (1968); and

Proakis (2001).

550

""7'"

-r



553

35302515 20

SNR,dB

Figure 8.45 Block diagram of DFE.

Figure 8.44 Error-rate perfonnance of linear MSE equali.zer.
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What makes the DFE nonlinear is the nonlinear characteristic of the detector which
provides the input to the feedback filter..

The tap coefficients of the feedforward and feedback filters are selected to opti­
mize some desired performance measure. For mathematical simplicity, the MSE cri­
terion is usually applied and a stochastic gradient algorithm is commonly used to
implement an adaptive DFE. Figure 8.46 illustrates the block diagram of an adaptive
DFE whose tap coefficients are adjusted by means of the LMS stochastic gradient algo­
rithm. Figure 8.47 illustrates the probability of error performance of the DFE, obtained
by computer simulation, for binary PAM transmission over Channel B. The gain in
performance relative to that of a linear equalizer is clearly evident.

We should mention that decision errors from the detector that are fed to the
feedback filter have a small effect on the performance of the DFE. In general, a small
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Figure 8.43 Amplitude spectra for (a) channel A shown in Figure 8.42(a) and
(b) channel B shown in Figure 8.42(b).

fl3 -12.00
<i
]
:a
~ -18.00

fl3 -12.00
.g
B:.a
~ -18.00

where {en} and {bn} are the adjustable coefficients of the feedforward and feedback.
filters, respectively, am - n , n = 1,2, ... , N2 are the previously detected symbols, Nr is'
the length of the feedforward filter and N2 is the length of the feedback filter. Based
on the input Zm, the detector determines which of the possible transmitted symbols is
closest in distance to the input signal Zm. Thus, it makes its decision and outputs am'
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Figure 8.47 Performance of DFE with and without error propagation.
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Figure 8.46 Adaptive DFE.

loss in performance of one to two dB is possible at error rates b~low 10-2, but the

decision errors in the feedback filters are not catastrophic.

Although the DFEoutperforms a linear equalizer; it is not the optimum equalizer'

from the viewpoint of minimizing the probability of error. As indicated previously, the"

optimum detector in a digital communication system in the presence of lSI is a MLi

symbol sequence detector. It is particularly 'appropriate for channels with severe lSI,.

when the lSI spans only a few signals. For example Figure 8.48 illustrates the error:

probability performance of the Viterbi algorithm for a binary PAM signal transmitted>

through channel B (see Figure 8.42). For purposes of comparison, we also illustrate the;

probability of.error for a decision feedback equalizer. Both results were obtained by

computer simulation: We observe that the performance of the ML sequence detector is "

about 4.5-dB better than that of the DFE at an error probability of 10-4 • Hence, this is

one example where the ML sequence detector provides a significant performance gain.

on a channel which has a relatively short lSI span., . "

In conclusion, we mention that adaptive equalizers are widely used in high-'

speed digital communication systems for telephone channels. High-speed telephone,

line modems (bit rate above 2400 bps) generally include an adaptive equalizer thatis.,

implemented as an FIR filter with coefficients that are adjusted based on the MMSE·

criterion. Depending on the data speed, the equalizer typically spans between 20 and;

70 symbols. The LMS algorithm given by Equation (8.6.44) is usually employed for

the adjustment of the equalizer coefficients adaptively.

~-
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8.7.1 An OFDM System Implemented via the FFT Algorithm

In this section, we describe an OFDM system in which QAM is used for data transmis­
sion on each of the subcarriers and the FFT algorithm is used in the implementation of
the modulator and demodulator.

The basic block diagram of the OFDM is illustrated in Figure 8.50. A serial-to­
parallel buffer subdivides the information sequence into frames of Bf bits. The Bf
bits in each frame are parsed into K groups, where the ith group is assigned hi bits.

where fk - h = Til T, n = I, 2, ... , independent of the values of the phases <Pk and
<Pj' In this case, we have orthogonal frequency-division multiplexing (OFDM).

With an OFDM system having K subchannels, the symbol rate on each subcarrier
is reduced by a factor of K relative to the symbol rate on a single carrier system
that employs the entire bandwidth W and transmits data at the same rate as OFDM.
Hence, the symbol interval in the OFDM system is T == KT., where T. is the symbol
interval in the single-carrier system. By selecting K to be sufficiently large, the symbol
interval T can be made significantly larger than the time duration of the channel-time
dispersion. Thus, intersymbol interference can be made arbitrarily small by selection
of K. In other words, each subchannel appears to have a fixed frequency response
C(ik), k = 0,1, ... , K - 1.

As long as we maintain time synchronization among the subcarriers, OFDM
allows us to transmit a different number of bits/symbol on each subcarrier. Hence,
subcarriers that yield a higher SNR due to a lower attenuation can be modulated
to carry more bits/symbol than subchannels that yield a lower SNR (high attenua­
tion). For example, QAM with different constellation sizes may be used in an OFDM
system. .

The modulator and demodulator in an OFDM system can be implemented by .
use of it parallel bank of filters based on the discrete Fourier transform (DFT). When
the number of subchannels is large, say K > 25, the modulator and demodulator in
an OFDM system are efficiently implemented by use of the fast Fourier transform
algorithm (FFT) to compute the DFT. Next, we describe an OFDM system in which
the modUlator and demodulator are implemented based on the DFT.

A major problem with the multicarrier modulation in general and OFDM system
in particular is the high peak-to-average power ratio (PAR) that is inherent in the
transmitted signal. Large signitl peaks occur in the transmitted signal when the signals
in the K subchannels add constructively in phase. Such large signal peaks may saturate
the power amplifier at the transmitter and, thus, cause intennodulation distortion in the
transmitted signal. Intermodulation distortion can be reduced and, generally, avoided by
reducing the power in the transmitted signal and, thus, operating the poweramplifier at
the transmitter in the linear range. Such a powerreduction results in inefficient operation
of the OFDM system. .

A variety of methods have been devised to reduce PAR in multicarrier systems.
A relatively simple method is to insert different phase shifts in each of the subcarriers,
where the phase shifts are selected pseudorandomly, orby means of some algorithm,
to reduce the PAR. Additional methods are cited in the references cited in Section 8.8.
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Figure 8.49 Subdivision of the channel bandwidth W into narrowband

subchannels of equal width !of.
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8.7 MULTICARRIER MODULATION AND OFDM

In the preceding sections, we considered digital transmission through nonide~channels .••
and observed that such channels cause intersymbol interfer~ncewhe~ the reClp~ocalof
the system rate is significantly smaller than the time disperSIon (d.ura~on of the Iffipulse /.
response) of the nonideal channel. In such a case, a channel equall.zer IS employed at the .
receiver to compensate for the channel distortion. ¥the. channel IS a bandpass channel
with a specified bandwidth, the information-beanng SIgnal may be generated at the
baseband and then translated in frequency to the passband of the channel. Thu~, the
information-bearing signal is transmitted on a single carrier, We als~ observe~that mter­
symbol interference usually results in some perfo~ance d~gradat1on, even In the ~ase

h th opt1In' urn detector is used to recover the informatIon symbols at the receIver.were e· .' .
An alternative approach to the design of a bandwi~~-efficlent c~mmumcatIon

system in the presence of channel distortion is to subdIVIde the available c?annel
bandwidth into a number of equal-bandwidth subchannels, where the bandwld~.of
each subchannel is sufficiently narrow so that the frequency response chara~tens.tIcs.
of the subchannels are nearly ideal. Such a subdivision of the overall bandWIdth mto.
smaller subchannels is illustrated in Figure 8.49. Thus, we create K = W / 6.f s.ubchan-

1 where different information symbols can be transmitted simultaneously m the K ..•..
ne s, f d' . . ult' 1
subchannels. Consequently, the data is transmitted by requency- lVlSIOn m lp ex-··

ing (FDM). . '
With each subchannel, we aSSOCIate a carner

Xk(t) = sin2rrfkt, - k = 0, 1, ... , K - 1

where ik is the mid-frequency in the kth subchannel. B,Y selecting th~ symbol rate ~/T.
on each of the subchannels to be equal to the separatIOn ~f of adjacent sUbcam~rs, .
the subcarriers are orthogonal over the symbol interval T, mdependent of the relative

phase relationship between subcarriers; i.e.,

lT sin(2rrfkt + cPk) sin(2rrfjt + rPj) dt = 0

! .
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(8.7.8)

(8.7.9)

O:::t:::T

rCt) = x(t) * c(t) + net)

Multicarrier Modulation and OFDMSection 8.7

may be expressed as

1 N-I

x(t) = -- '" X' ej2rrkt/T.,[NLJ k ,
k=O

where T is the signal durationandxn = x(nTIN), n = 0, 1, ... , N -1. Thesubcarrier
frequencie~ are A = kiT, k = 0, 1, ... , K - 1. The signal samples {xn } generated
by computmg the IDFT are passed through a digital-to-analog CD/A) converter where
output, ideally, is the OFDM signal waveform x (t). '

With x(t) as the input to the channel, the channel output at the receiver may be
expressed as '

where c (t) is the impulse response of the channel and * denotes convolution. Since the
bandwidth f;.f of each subchannel is selected to be very small relative to the overall
channel ~andwidth W = K ~f, the symbol duration T = II f;.f is large compared to
~e duratIon of the channel Impulse response. To be specific, suppose that the channel
Impulse re~p~nse spans m. + 1 signal samples, where m« N. A simple way to com­
pletely aVOId mtersymbol mterference (lSI) is to insert a time guard of duration mTI N
bet,,:,een transmission ofsuccessive data blocks. This allows the response of the channel
to die out before the next block of K symbols are transmitted.

An alte~ativemethod to avoid lSI is to append a so-called cyclic prefix to each
block of N SIgnal samples {xn , 0::: n ::: N - I}. The cyclic prefix for the block of
samples c?ns,ists ofthe samples xN -m, X N-m+1, ... , X N-1. These samples are appended
to the begmmng of the block, thus, creating a signal sequence of length N + m samples
whic~ may be ind~xed from n = -m to n = N - 1, where the first m sample~
constItute the cyclIc prefix. Then, if the sample values of the channel response are
{en,.O ::: ~ ::: m}, the. convolution 'of {cn} with {xn, -m ::: n ::: N - I} produce the
receIved SIgnal {rn}. Smce the lSI in any pair of successive signal transmission blocks
affec.ts the first m signal samples, we discard the first m samples of (rn) and demodulate
the SIgnal based on the received signal samples {rn, 0::: n ::: N - I}.

If we view the channel characteristics in the frequency domain, the channel fre­
quency response at the subcarrier frequencies !k = kiT is

Ck = C C~k) =t cne-j2rrnk/N, k= 0,1, ... , N -1 (8.7.10)
n=O

Since thelSI is eliminated by the use of either the cyclic prefix or the time guard band,
the demodulated sequence of symbols may be expressed as

Xk=CkX~+TJk, k=O,I, ... ,N-l (8.7.11)

:vhere {X~~ is th: output of the N -point DFT computed by the demodulator and (TJk}
IS the addItIve nOIse corrupting the signal.

As illustrated in Figure 8.50, the received signal is demodulated by computing
the DFT of the received signal after it has been passed through an analog-to-digital

Remove
cyclic

prefIx and
serial-to­
parallel
convert

n = 0,1, ... , N - 1

Add cyclic
prefIx and
parallel-to-

serial convert

Ca) Transmitter

Multicarrier
modulator

Cinverse DFT)
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Parallel-
Output to-

bits serial
converter

Input Serial-to­
~ parallel
data buffer

558

Hence,

Figure 8.50 Block diagram of a multicarrier OFDM digital communication system.

We may view the multicarner modulator as generating K independent QAM
subchannels, where the symbol rate for each subchannel is 1I T and the signal in
each subchannel has a distinct QAM constellation. Hence, the number of signal points
for the ith subchannel is Mi = 2b;. Let us denote the complex-valued signal points
corresponding the infonnation signals on the K subchannels by Xb k = 0, 1, ... , ,
K - 1. These infonnation symbols {Xk} represent the values of the discrete Fourier:
transfonn (DFT) of a multicarrier OFDM signal x(t), where the modulation on each
subcarrieris QAM. Sincex(t) must be areal-valued signal, its N -point DFT {Xd must:
satisfy the symmetry property XN - k = X'k. Therefore, we create N = 2K symbols"
from K infonnation symbol1\ by defining

XN-k = X;, k = 1,2, ... ,K-l

Xb = Re(Xo)

X K = rm(Xo)

Note that the infonnation symbol Xo is split into two parts, both of which are real. If
we denote the new sequence of symbols as {X~, k = 0,1, ... , N - I}, the N-point
inverse DFT (IDFT) yields the real-valued seq\lence

N-I
__1_ "'X'ej2rrnk/N

Xn - .IN LJ k
k=O '

, , ,

where 1/.JN is simply a scale factor. This sequence (xn , 0::: n ::: N-l} c?rrespo~ds'
to samples of the muHicarrier OFDM signal x (t), consisting of K subcamers, which·

,-

i .... ·

r

M• I

~'

~,



8.1 In Example 8.1.1, the ideal channel of bandwidth W limits the transmitted signal

energy that passes through the channel. The received signal energy as a function

of the channel bandwidth is

. ' T l WT sin2 :rr0!
["eW)=--. dO!

(2:rr)2 -WT a 2(1 - ( 2)2

where a = fT.'

1. Evaluate (:immerically) [heW) for W = J.. 1 11 1. 2,5 1. and plot OJ,(W)

as a function of W. 2T' T' T ' T' T ' T' -T~

2. Detennine the vaJ~e of [" O,\:,) in the limit as W -+ 00. For the computation

you may use the tlIDe-domam relation

561

1
+00

lim [heW) = g~(t) dt
W-+oo -00

8.2 In a binary PAM system, the input to the detector is

Problems

intersymbol interferen~e, was proposed and analyzed by Forney (1972) and Omura

(1971). A comprehensIve treatment of adaptive equalization algorithms is given in the

book by Proakis (2001).

There is a larg~ amount of literature on mu1ticarrier digital communication sys­

tems. One ofth~ ~arlIest sys~en:rs, ~escribe~by Doeltz et al' (1957) and called Kineplex,

was used fo: dIg~tal transIDlsslOn m the high-frequency radio band. Other early work

on the multicarner system design is described in the papers by Chang (1966) and

. Saltzberg (1967). The use of DFT for modulation and demodulation of multicarrier

OFDM.sys~ems was proposed by Weinstein and Ebert (1971). More recent references

o~ applicatlons of OFDM in practical systems are the papers by Chow et aJ. (1995) and

Bmg.ham (1990). The recent book by Bahai and SaJtzberg (999) provides a compre­

henSIVe treatment of OFDM.

The problem.of PAR reduction in multicarrier systems has been investigated by

many people. The mterested reader may refer to the papers by Boyd (1986) Popovic

0.991), Jones et aJ. (1994), Wilkinson and Jones (995), Wulich (996), Tellado and

CIOffi (998), and Tarokh and Jafarkhani (2000).

w~ere a~ =±1
2
is the ~esired signal, n m is a zero-mean Gaussian random variable

WIth vanance O'n ' and 1m represents the lSI due to channel distortion. The lSI term

is a. random variable which takes the values _!. 0 1. with probabilities 1. 1. 1
'. ' 2" 2 4' 2' 4'

respe~tIve1y.Determme the average probability of error as a function of 0';.
8.3 In a bl~ary PAM system, the clock that specifies the sampling of the correlator

output IS offset from the optimum sampling time by 10%.

'PROBLEMS
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where T is the symbol duration, Pk is the average transmitted power allocated to the,

kth subchannel, \Ck12 is the squared magnitude of the frequency response of the ktq

subchannel, and O-;k is the corresponding noise variance. In sUbcha~elswith high
SNR we transmit more bits/symbol by using a larger QAMconstellation compared t,

sUbchannels with low SNR. Thus, the bit rate on each subchannel can be optimize,

in such a way that the error-rate performance among the subchannels is equalized.to

satisfy the desired specifications. - , ' . .'

Multicarrier OFDM using QAM modulation on each of the subcarners as d~.

scribed above has been implemented for a variety of applications, including high-speed,

transmission over telephone lines, such as digital subscriber lines. This type of multi:!

carrier OFDM modulation has also been called discrete-multitane (DMT)madulation:

Multicarrier OFDM is also used in digital audio broadcasting in Europe and other parts ,

of the world and in digital cellular co=unication systems. '

(AID) converter. As in the case of the OFDM modulator, the DFT computation at

demodulator is performed efficiently by use of the FFr algorithm.

In order to recover the information symbols from the values of the compu '

DFT, it is necessary to estimate and compensate for the channel factors {Ck}.Th

channel measurement can be accomplished by initially transmitting either a know

modulated sequence on each of the subcarriers or, simply, transmitting the unmodulate~

subcarriers. If the channel characteristics vary slowly with time, the time variationscari

be tracked by using the decisions at the output of the detector in a decision-directe4

manner. Thus, the multicarrier OFDM system can be made to operate adaptively. The

transmission rate on each of the subcarriers can be optimized by properly allocating'

the average transmitted power and the number of bits that are transmitted by each.

subcarrier. The SNR per subchannel may be defined as

8.8 FURTHER READING

The pioneering work on signal design for bandwidth-~onstrained c~~els was done

by Nyquist (1928). The use of binary partial response SIgnalS was ongmally proposed

in the paper by Lender (1963) and was later gener~ed by ~etzrr:-er (1966). The

problem of optimum transmitter and receiver filter desIgn was Investlgated by Gerst.

and Diamond (1961), Tufts (1965), Smith (1965), and Berger and Tufts (1967). •

Adaptive equalization for digital communication was ~ntrodu~ed ?y Lucky (1~65,

1966). Widrow (1966) devised the LMS algorithm for adaptlvely ad]ustlng the equalizer

coefficients. '

The Viterbi algorithm was devised by Viterbi (1967) for the purpose of decoding

co~volutional codes, whiCh are described in Chapter 9. Its use as the:ML sequence

detector for partial response signals and, more generally, for symbols corrupted by
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TI2 T

Figure P-8.5

o
-1

+1

n

v(t)= Lang(t -nT)

get)

1. Find the power-spectral density of sct).

2. Assume that it is desirable to have a null in the power spectrum at f = t. To
this end we use aprecoding scheme by introducing bn = an +kan_j, where
k is some constant, and then transmit the {bn } sequence using the same get).
Is it possible to choose k to produce a frequency null at f = t? If yes what
is the appropriate value and what is the resulting power spectrum?

3. Now assume we want to have nulls at all multiples of fo = 2~' Is it pos­
sible to have these nulls with an appropriate choice of k in the previous
part? If not what kind of precoding do you suggest to result in the desired
nulls?

where an takes on one of the four possible values ±)ij with equal probability.

The sequence of information symbols {an} is statistically independent.

8.6 The two signal waveforms for binary PSK signal transmission with discontinuous
phase are

so(t) = V2~b cos [211' (f - t:,,{) t + eo], °~ t ~ T

Sl (t) = V2~b cos [211' (f + t:,,{) t + eI ], °~ t :::::: T

where!:"f = liT « fe, and eo ande l are uniformly distributed random variables
on the interval (0,211'). The signals so(t) and SI (t) are equally probable:

1. Determine the power-spectral density of the FSK signal.

2. Show that the power-spectral density decays as 1/f2 for f » fe.

8.7 Consider a four-phase PSK signal that is represented by the equivalent lowpass
signal.

Problems

2T t

(b)

o

A f---'---,

Figure P-8.4

T

(a)

o

A

get)

Digital Transmission through Bandlimited AWGN Channels

where get) is shown in Figure P-8.5.

00

set) = ~ ang(t - nT)
n=-oo

1. Find the power-spectral density of X(t).

2. If gl(t) [shown in Figure P-8.4(b)] is used instead of get), how would th;
power spectrum in part 1 change? '

3. In part 2, assume we want to have a null in the spectrum at f = 4~' This
is done by a precoding of the form bn = an + Clan-I. Find a that provides
the desired null. <1. .a

4. Is it possible to employ a precoding of the form bn = an +L;~l aian_ifor
some finite N such that the final power spectrum will be identical to zero foi"
3~ ~ If I ~ 2~? If yes, how? If no, why? (Hint: use properties of analytic
functions.)

+00
X(t) = L ang(t - nT)

n=-oo

1. If the signal pulse used is rectangular, determine the loss in SNR due to
mistiming.

2. Determine the amount of intersymbol interference introduced by the lIlis
iming and determine its effect on performance.

8.4 The elements of the sequence {an}~~oo are independent binary random variable
taking values of ±1 with equal probability. This data sequence is used to modulat
the basic pulse get) shown in Figure P-8.4(a). The modulated signal is

8.5 The information sequence {an}~-oo is a sequence of i.i.d. random variables each .'
taking values +1 and -1 with equal probability.This sequence is to be transmitted;
at baseband by a biphase coding scheme di:~scribed by

562



holds and, hence,

-----'!

565

Carrier
crt)

Figure P·S.16

Filter with
raised-cosine

spectrum
get)

+-an /JCt - nT)

Problems

3. Determine the transmitted power at each repeater to achieve the desired
Eb/No, where No = 4.1 X 10-21 WIHz.

8.11 Sh~w that a pUls~ hav~g the raised cosine spectrum given by Equation (8.3.22)
satisfies the Nyqrnst cnterion given by Equation (8.3.9) for any value ofthe roll-off
factora. .

8.12 Sh?w that for any value of a the raised cosine spectrumgiven by Equation (8.3.22)
satisfies . .. .

reo
J~eo Xrc(f)df = 1

(~t: Use the fact that Xrc(f) satisfies the Nyquist criterion given by Equa-
lion (8.3.9). .

8.13 Theorem 8.3.1 gives th~ necessary and sufficient condition for the spectrum X (f)
of the pulse x(t) that yIelds zero lSI. Prove that for any pulse that is bandlinllted
to IfI < l/T, the zero lSI condition is satisfied ifRe[X (f)] , for f > 0, consists
of a recta~gular fun.ction plus an arbitrary odd function about f = 1/2T and
Im[X (f)] IS any arbItrary even function about f = 1/2T.

8.14 A voice-band telephone channel has a passband characteristic in the frequency
range 300 < f < 3000 Hz.

1. Select a symbol rate and a power efficient constellation size to achieve
9600 bits/sec signal transmission.

2. If a square-root raised cosine pulse is used for the transmitter pulse gT (t),
select the roll-off ~a~tor. Assume that the channel has an ideal frequency
response charactenstlc.

8.15 Design an M -ary PAM system that transmits digital information over an ideal
. channel with bandwid.th W ~ 2400 Hz. The bit rate is 14,400 bits/sec. Specify

the n~mber ,of translDltted pomts, the number of received signal points using a
dU~~illary slg~al puIs:, a~d the required Eb ~o ac~eve an en'or probability of
10 . The addIlive nOIse IS zero-mean GaUSSIan WIth a power-spectral density
1O-4 WlHz.

8.16 A binary PAM signal is generated by exciting a raised cosine roll-off nIter with
a 50% roll-off factor and is then DSB-SC amplitude modulated on a sinusoidal
carrier as illustrated in Figure P-8.l6. The bit rate is 2400 bits/sec.

2. Repeat part 1 when

Digital Transmission through Bandlimited AWGN Channels

1. Determine and sketch the power-spectral density of vet) when

{
A 0 < t < T

get) = 0: other~se

H(f) = {Ol,+ a cos2Ttf to, jaj < I, 1fl ~ W
otherwise

where W is channel bandwidth. An input signal s(t) whose spectrum is bandlim-:
ited to W Hz is passed through the channel.

1. Show that
a

yet) = set) +i[SCt - to) + set + to)]

Thus, the channel produces a pair of echoes.

2. Suppose the received signal yet) is passed through a filter matched to sct)·
Determine the output of the matched filter at t = kT, k = 0, ±1, ±2,: .. ,

where T is the symbol duration.

3. What is the lSI pattern resulting from the channel if to = T? ..

8.10 A wireline channel of length 1000 kID is used to transmit data by means o~
binary PAM. Regenerative repeaters are spaced at 50-kID apart along the system.
Each segment of the channel has an ideal (constant) frequency response over ~e
frequency band 0 ~ f ~ 1200, and an attenuation of 1 dBlkm. The channel nOlSe

is AWGN.

1. What is the highest bit rate that can be transmitted without lSI?

2. Determine the required Eb / No to achieve a bit error of P2 =10-
7

for each

repeater.

1pk+4, = __pk" k 2: I
4

8.9 The frequency-response characteristic of a lowpass channel can be approximated··

by

{

A sin ~, 0 ~ t ~ T
get) = 2o, otherwise

3. Compare the spectra obtained in parts 1 and 2 in terms ofthe 3-dB barldw'idtll
and the bandwidth to the first spectral null.

8.8 Starting with the definition of the transition probability matrix for delay modulac·
tion given in Example 8.5.11, demonstrate that the relation .

4 1
P, = -=(y
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n=O
n=l
n=2
otherwise

{

2'

x(nT) = ~1,
0,

Problems

shaping, use a raised cosine frequency-response characteristic. Sketch a
block diagram of the system and describe their functional operation.

2. Repeat part 1 if the bit rate R = 4800 bits/sec.

8.21 A 4 KHz bandpass channel is to be used for transmission of data at a rate of
9600 bits/sec. If No/2 = 10-10 WfHz is the spectral density of the additive, zero­
mean Gaussian noise in the channel, design a QAM modulation and determine
the average power that achieves a bit-error probability of 10-6

. Use a signal pulse
with a raised cosine spectrum having a roll-off factor of at least 50%.

8.22 Consider the transmission of data via PAM over a voice-band telephone channel
that has a bandwidth of 3000 Hz. Show how the symbol rate varies as a function
of the excess bandwidth. In particular, determine the symbol rate for excess
bandwidths of 25%, 33%, 50%, 67%, 75%, and 100%.

8.23 The binary sequence 10010110010 is the input to the precoder whose output is
used to modulate a duobinary transmitting filter. Construct a table as in Table 8.2
showing the precoded sequence, the transmitted amplitude levels, the received
signal levels and the decoded sequence.

8.24 Repeat the Problem 8.23 for a modified duobinary signal pulse.

8.25 A precoder for a partial response signal fails to work if the desired partial res­
ponse at n = 0 is zero modulo M. For example, consider the desired response for
M=2: .

n n m

Show why this response cannot be precoded.

8.26 In the case of correlated noise, the relation in the Viterbi algorithm may be ex­
pressed in general as [Ungerboek, (1974)J

where Xn=x(nT) is the sampled signal output of the matched filter, {an} is the
data sequence, and {rn} is the received signal sequence at the output ofthe matched
filter. Determine the metric for the duobinary signal.

8.27 Sketch and label the trellis for a duobinary signal waveform used in conjunction
with the precoding given by Equation (8.4.7).Repeat this for the modified duobi­
nary signal waveform with the precoder given by Equation (8.4.19). Comment
on any similarities and differences.

8.28 Consider the use of a (square-root) raised cosine signal pulse with a roll-off factor
of unity for transmission of binary PAM over an ideal bandlimited channel that

ML__--'
T
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(t) = set) + n(t) Prewhitening fit) =set) + net) Filter
-?,filter matched

net) is Hp(/) to set) Samp
colored noise at! =

1. Determine the spectrum of the modulated binary PAM signal and sketch it··
2. Draw the block diagram illustrating the optimum demodulator/detector foi

the received signal which is equal to the transmitted signal plus additive,"
white Gaussian noise.

8.17 When the additive noise at the input to the modulator is colored, the filter matched
to the signal no longer maximizes the output SNR. In such a case we may consider:
the use of a prefilter that "whitens" the colored noise. The prefilter is followed by"
a filter matched to the prefiltered signal. Towards this end, consider the configu-:
ration shown in Figure P-8.l7.

1. Determine the frequency-response characteristic of the prefilter that whitens .
the noise.

2. Determine the frequency-response characteristic ofthe filter matched to s(t) ...

3. Consider the prefilter and the matched filter as a single "generalized matched"
filter." What is the frequency-response characteristic of this filter? '

4. Determine the SNR at the input to the detector.

Figure P-8.l7
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8.18- A voice-band telephone channel passes the frequencies in the band from 300
to 3300 Hz. It is desired to design a modem that transmits at a symbol rate
of 2400 symbols/sec, with the objective of achieving 9600 bits/sec~ Select an .
appropriate QAM signal constellation; carrier frequency, and the roll-off factor .
of a pulse with a raised cosine spectrum that utilizes the entire frequency band.
Sketch the spectrum of the transmitted signal pulse and indicate the important
frequenCies. . ._

8.19 Determine the bit rate that can be transmitted through a 4 KHz voice-band \
telephone (bandpass) channel if the following modulation methods are used::
(1) binary PSK, (2) four-phase PSK, (3) 8-point QAM, (4) binary orthogonal,.
FSK, with noncoherent detection, (5) orthogonal four-FSK with noncoherent de- .
tection, and (6) orthogonal 8-FSK with noncoherent detection. For parts 1-3,
assume that the transmitter pulse shape has' a raised cosine spectrum with a 50%;
roll-off. .

8.20 An ideal voice-band teleplione line channel has a bandpass frequency-response
characteristic spanning the frequency range 600-3000 Hz.

1. Design an M = 4 PSK (quadrature PSK or QPSK) system for transmitting._
data at a rate of2400 bits/sec and a carrier frequency Ie = 1800. For spectral-

...,.. ,
'1 I'
1:

'1
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Code

IBIT
3B2T
4B3T
6B4T

k n

1 1
3 2
4 3
6 4

we obtain the table shown below.

Problems

Determine,the efficiency of these codes by computing the ratio of the rate of the
code in bits/symbol divided by logz3. Note that IBIT is the AMI code.

8.36 This problem deals with the capacity of two (d, K) codes.

1. Determine the capacity ofa (d, K) code that has the following state transition
matrix:

D = [~ ~]
2. Repeat (step 1) when D is given as

D = [~ i]

Figure P-8.38

o

3. Commenton the differences between parts 1 and 2.

8.37 A simplified model of the telegraph code consists of two symbols (Blahut, 1990).
A dot consists of one time unit of line closure followed by one time unit of line
open. A dash consists of three units of line closure followed by one time unit of
line open.

1. Ifwe view this code as a constrained code with symbols of equal duration,
give the constraints.

2. Determine the state transition matrix.

3. Determine the capacity.

8.38 Determine the state transition matrix for the runlength-constrained code described
by the state diagram shown in Figure P-8.38. Sketch the corresponding trellis.

co

vct) = 2.::: akgrCt - kTb)
k=-co
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passes the pulse without distortion. Thus, the transmitted signal is

where the signal interval Tb = T /2. Thus, the symbol rate is double
no lSI.

1. Determine the lSI values at the output of a matched-filter demodulator.

2. Sketch the trellis for the ML sequence detector and label the states.

8.29 A binary antipodal signal is transmitted over a nonideal bandlimited channel, ,
which introduces lSI over two adjacent symbols. For an isolated transmitted signal',~

pulse set), the (noise-free) output of the demodulator is ...ftb at t = T, -JEb/4'
at t = 2T, at zero for t = kT, k > 2, where Cb is the signal energy and T is the '
signaling interval.

1. Determine the average probability of error assuming that the two signals:
are equally probable and the additive noise is white and Gaussian.

2. By plotting the error probability obtained in part 1 and that for the case of •.
no lSI, determine the relative difference in SNR of the error probability of ",
10~. '

8.30 Show that the covariance matrix C for the noise at the output of the matched filter
for the duobinary pulse is given by Equation (8.5.25).

8.31 As indicated in Section 8.5.1, the running digital sum (RDS) is defined as the ,
difference between the total number of accumulated zeros and the total number, "
of accumulated ones in a sequence. If the RDS is limited to the range

-2~RDS ~ 2

determine the state transition matrix and the capacity of the corresponding code.

8.32 Determine the capacity of a (0, 1) runlength-limited code. Compare its capacity ,
with that of a (1, 00) code and explain the relationship.

8.33 A ternary signal format is designed for a channel that does not pass dc. The binary
input information sequence is transmitted by mapping a 1 into either a positive
pulse or a negativepulse, and a zero is transmitted by the absence of a pulse. Hence,
for the transmission of 1's, the polarity of the pulses alternate. This is called an
AMI (alternate mark inversion) code. Determin~ the capacity of the code.

8.34 Give an alternative description of the AMI,code described in Problem 8.33 using
the RDS with the constraint that the RDS can take only the values 0 and +1.

8.35 (kEnT codes) From Problem 8.33 we note that the AMI code is a "pseudotemary"
code in that it transmits one bitlsymbol using a ternary alphabet, which has the
capacity of log23 = 1.58 bits. Such a code does not provide sufficient ~pectral

shaping. Better spectral shaping is achieved by the class ofblock codes desIgnated,
as kEnT, where k denotes the number of information bits and n denotes the
number of ternary symbols/block. By selecting the largest k possible for each n, "
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Figure P-8.39

8.39 Determine the transition matrix for the (2, 7) runlength~limited code specified by

the state diagram shown in Figure P-8.39.

8,40 Determine the frequency response characteristics for the RC circuit shown in

Figure P-8.40. Also determine the expression for the envelope delay.

k=O
k=±1
k=±2
otherwise

. {f:b,
l

co

s(t)s(t - kT) dt = 0.9Eb ,

-co Ql~,

0,
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gk = -E[ekYk]

where the error ek = ak - Zk, and the estimate of g ..
k, I.e.,

8.44 Binary PAM is used to tr 't . £: . '

channel Wh . ansn:-r m ormation over an unequalized linear filter

. en a = 1 IS transmItted the noise-free output of the demodulator is

{

0.3, m = 1

x - 0.9, m = 0
m - 0.3, m =-1

0, otherwise

1. Design a three-tap zero-forcing linear equalizer so that the output is

q _{I, m = 0
m - 0, m = ±1

2. Detennine q for m - ±2 ±3 b .
equalizer wifu the h- '1' .' Yconvolvmg the impulse response of the

c anne response.

8.45 ~~~~s~::s:~~:~~~~~;:~::)i~ralisdedcosinefrspectrum through a channel

p e output om the demodulator:

-0.5, k =-2

0.1, k=-1

Xk = 1, k = 0
-0.2, k = 1
0.05, k = 2

0, otherwise

1. Determine the tap coeffi . nt f fur .

zero-forCing criterion. Cle s 0 a ee-tap lmear equalizer based on the

2. For the coefficients determined in part 1 determi th

l~tszer for :rret~ase of the isolated pulse. Thus, dete~n:~~~~:i~~~~~i:ld­
span mIme.

8.46 .Show that the gradient vector in the minimization of the MSE b

as'
may e expressed

gk = -ekYk

satisfies the condition that E[gd = gk.

8.47 A n~nideal bandlirnited channel introduces lSI over three successive

i:~s;-:e;iri:sponse of the matched filter demodulator sampled atri:'~:~~;

R
0 "M I

0

Input OutputIe
0

0

Figure P-8.40
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1
C(f) = '. f

1+J z400

If I :::: 2400, and C(f) = 0, otherwise. The additive noise is zero-mean, white

Gaussian with power-spectral density !If WlHz. Determine the (magnitude) fre­

quency response characteristic of the optimum transrnittingand receiving filters.

"

~
1 2 3 4 5 6 7 8.

1 1 1 1 1,1

8,41 Consider the RC lowpass filter shown in Figure P-8.40 where r = RC = 10-6•

1. Determine and sketch the envelope (group) delay of the filter as a function

of frequency (see Problem 2.57). .

2. Suppose that the input to the filter is a lowpass signal ofbandwidth 6.f = 1

kHz. Determine the effect of the RC filter on this signal.

8.42 A microwave radio channel has a frequency response

C(f) = 1+O.3cos2nfT

Determine the frequency-response' characteristic for the optimum transmitting

and receiving filters that yield zero lSI at a rate of liT symbols/sec and have a . '

50%-excess bandwidth. Assume that the additive noise spectrum is fiat.

8.43 M = 4 PAM modulation is used for transmitting at a bit rate of 9600 bits/sec on

a channel having a frequency response

If;
:(.

,,:!;;;.~.!.



ret) = set) +as(t - T) + n(t)

573

s(t) = Re [~ang(t - nT) e j21tI,']

1. Show that set) can be e{\:pressed as

is 1I Tb and the ratio of TsoI Tb = ~ is the normalized density of the recording.
Suppose the pulse is equalized to the partial-response values

{

I, n==-l,I
x (nT) = 2, n == 0

0, otherwise

and a~ is a phase rotated symbol; Le., a~ == anej2rrj,nT.

2. Using filters with responses q(t) and q(t), sketch the block diagram of the
modulator and demodulator implementation that does not require the mixer
to translate the signal to bandpass at the modulator and to baseband at the
demodulator.

Q(t) == q(t) + jq(t)

q(t) == get) cos2nfct

q(t) == get) sin2nfet

where x(t) represents the equalized pulse shape.

1. Determine the spectrum X (f) of the bandlimited equalized pulse.

2. Determine the possible output levels at the detector, assuming that succes­
sive transitions can occur at the rate 11 Tb.

3. Determine the error-rate performance of the symbol-by-symbol detector
for this signal assuming that the additive noise is zero-mean Gaussian with
variance (j

2.

Problems

8.52 Sketch the trellis for the Viterbi detector of the equalized signal in Problem 8.51
and label all the states. Also, determine the minimum Euclidean distance between
merging paths.

8.53 (Carrierless QAM or PSK Modem) Consider the transmission ofa QAM or M-ary
PSK (M :::: 4) signal at a carrier frequency fe, where the carrier is comparable to
the bandwidth of the baseband signal. The bandpass signal may be represented
as

k = 0, 1
otherwise

1
p(t) = (2')2

1+ Tso

Digital Transmission through Bandlimited AWGN Channels

1. Determine the tap coefficients of a three-tap linear equalizer that equalizes
the channel (received signal) response to an equivalent partial response'
(duobinary) signal

a linear equalizer is used to equalize the pulse to a partial response. The parameter
Tso is defined as the width of the pulse at the 50%-amplitude level. The bit rate

where set) is the transmitted signal, Cl is the attenuation (a < 1) of the secondary
path and net) is AWGN.

1. Determine the output of the demodulator at t = T and t = 2T that employes
a filter matched to s (t).

2. Determine the probability of error for a symbol-by-symbol detector if the
transmitted signal is binary antipodal and the detector ignores the lSI.

3. What is the error-rate performance of a simple (one·tap) (DFE) that esti­
mates a and removes the lSI? Sketch the detector structure that employs a
DFE.

8.50 Repeat Problem 8.48 using the MMSE as the criterion for optimizing the tap
coefficients. Assume that the noise power spectrum is 0.1 WfHz.

8.51 In a magnetic recording channel, where the readback pulse resulting from a pos­
itive transition in the write current has the form (see Figure 8.17).

2. Suppose that the linear equalizer in part 1 is followed by a Viterbi sequence .
detector for the partial response signal. Giv~ an estimate of the error proba­
bility if the additive noise is white and Gaussian, with power-spectral density .
No/2 WfHz.

8.48 Determine the tap weight coefficients of a three-tap zero-forcing equalizer if the
lSI spans three symbols and is characterized by the values x(O) = 1,x(-I) ==
0.3, xCI) == 0.2. Also determine the residual lSI at the output ofthe equalizer for
the optimum tap coefficients.

8.49 In LOS microwave radio transmission, the signal arrives at the receiver via two
propagation paths, the direct path and a delayed path that occurs due to signal
reflection from surrounding terrain. Suppose that the received signal has the form
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n = 0,1, ... , N - 1Hn(z) = ,1 - ej2trnjNZ-l

and sampling the filter outputs at n = N.

Problems

8.55 Show that the sequence {Xn , 0 :s n :s N - I} given by Equation (8.7.7) corre­
sponds to the samples of x(t) given by Equation (8.7.8). Also, prove that x(t)
given by Equation (8.7.6) is a real-valued signal.

8.56 Show that the IDFf of a sequence {Xk, O:s k :s N - I}, can be computed by
passing the sequence {Xk} through a parallel bank of N linear discrete-time filters
with system functions

Chapter

)---- To transmitter

Serial
to

parallel
converter

Digital Transmission through BandHmited AWGN Channels

Input

Data

L: q(t)q(t) dt = 0

and that the system can be used to transmit two dimensional signals, e.g.,
PSKandQAM.

2. Under what conditions is this CAP modem identical to the carrierless
QAMlPSK modem treated in Problem.8-53?

q(t) = get) cos 2nfct

q(t) = get) sin2nfct

and get) is a pulse that has a square-root raised cosine spectral characteristic.

1. Show that

8.54 (Carrierless amplitude or phase (CAP) modulation) In some practical applicatio
in wireline data transmission, the bandwidth of the signal to be transmitted is
comparable to the carrier frequency. In such systems, it is possible to elirninat~.

the step of mixing the baseband signal with the carrier component. Instead, the
bandpass signal can besynthesized directly, by embedding the carrier componeni
in the realization of the shaping filter. Thus, the modem is realized as shown in :
the block diagram in Figure P-8.54, where the shaping filters have the impulse'·
responses

574

(a) Modulator

Received

Signal

+
Sample

att = kT

Detector"
and

parallel
to serial

converter

Output

Data

(b) Demodulator

Figure P-8.54 CAP modem.
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(9.1.2)

(9.1.1)

Figure 9.1 A discrete channel.

n

p(y Ix) = IT P(Yi IXi)
i=1

E = P(II 0) = P(O 11) = Q ( Ifi)

p(ylx)

ay
Output alphabet

Modeling of Communication Channels

~

Input alphabet

Section 9.1

complexinput-output relation in a communication channel. Due to the presence of
.fading and noise, the input-output relation in a communication channel is, generally, a
stochastic relation. . ,.

Channels encountered in practice are generally wavefonn channels that accept
(continuous-time) waveforms as their inputs and produce waveforms as their outputs.
Because the bandwidth of any practical channel is limited, by using the sampling
theorem, a waveform channel becomes equivalent to a discrete-time channel. In a
discrete-time channel both input and output are discrete-time signals.

In a discrete-time channel, if the values that the input and output variables can take
are finite, or countablyinfinite, the channel is called a discrete channel. An example of a
discrete channel is a binary-input binary-output channel. In general, a discrete channel
is defined by ge, the input alphabet, cry, the output alphabet, and p (y Ix) the conditional
PMF of the output sequence given the input sequence. A schematic representation of a
discrete channel is given in Figure 9.1. In general, the output Yi does not only depend
on the input at the same time Xi but also on the previous inputs (channels with lSI, see
Chapter 8), or even previous and future inputs (in storage channels). Therefore, a channel
can have memory. However, if a discrete channel does not have memory, it is called a
discrete-memoryless channel, and for such a channel, for any y E cryn and x E gen, we have

All channel models that we will discuss in this chapter are memoryless.
A special case of a discrete-memoryless channel is the binary-symmetric channel.

Figure 9.2 shows a binary-symmetric channel. In a binary-symmetric channel, E

P(O 11) = P(ll 0) is called the crossover probability.

Example 9.1.1

Let us assume that we are dealing with an additive white Gaussian noise channel with
binary antipodal signaling. We have already seen in chapter 7 that, in such a channel, the
error probability of a 1 being detected as 0 or a 0 being detected as 1 is given by

9

As defined in Chapter 1, a communication channel is any medium over which informa-.
tion can be transmitted or in which information canbe stored. Coaxial cable, ionospheric
propagation, free space, fiber optic cables, and magnetic and optical disks are exam­
ples of communication channels. What is common among all these is that they accept
signals at their inputs and deliver signals at their outputs at a later time (storage case)
or at another location (transmission case). Therefore, each communication channel is
characterized by a relation between its input and output. In this sense a communication
channel is a system.

There are many factors that cause the output of a communication channel to be ...
different from its input. Among these factors are attenuation, nonlinearities, bandwidth
limitations, multipath propagation, and noise. All these factors contribute to a usually

The goal of any communication system is to transmit infonnation from an information
source to a destination via a communication channel. A communications engineer
usually has very little control over these three components. The engineer's role is to
design transmitters and receivers that send the source output over the channel to the .
destination with high fidelity (low distortion, that can be error probability or any other .
distortion measure, as discussed in Chapter 6). The mathematical model for information
sources together with a quantitative measure ofinfonnation werepresented in Chapter6. . ;:
In this chapter, we study the other important component of a communication system;
i.e., the communication channel. We also introduce the concept of coding for protection
of messages against channel errors.

Channel Capacity and Coding
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where cr2 denotes the variance of the noise.

579Channel CapacitySection 9.2

"":::"__---r--.=.b

Figure 9.4 An example of a discrete
channel.

.r----l_--_--:==-d

We have already seen in Chapter 6, that H (X) defines a fundamental limit on the rate at
which a disc::rete source can be encoded without errors in its reconstruction, and R(D)
gives a fundamental rate for reproduction of the source output with distortion less than
or equal to D. A similar "fundamental limit" exists also for information transmission
over communication channels.

Of course, the main objective when transmitting information over any communi­
cation channel is reliability, which is measured by the probability of correct reception
at the receiver. Due to the presence of noise, at first glance it seems that the error
probability is always bounded away from zero by some positive number. However, a
fundamental result of information theory is that reliable transmission (that is transmis­
sion with error probability less any given value) is possible even over noisy channels as
long as the transmission rate is less than some number called the channel capacity. This
remarkable result, first shown by Shannon (1948), is known as the noisy channel-coding
theorem. What the noisy channel coding theorem says is that the basic limitation that
noise causes in a communication channel is not on the reliability of communication,
but on the speed ofcommunication.

Figure 9.4 shows a discrete-memoryless channel with four inputs and outputs.
If the receiver receives a it does not know whether an a or a d was transmitted; if it
receives a b it does not know whether an a or a b was transmitted, etc.; therefore, there
always exists a possibility of error. But if the transmitter and the receiver agree that
the transmitter only uses letters a and c, then there exists no ambiguity. In this case, if
the receiver receives a or b it knows that an a was transmitted; and if it receives a c or
d it knows that a c was transmitted. This means that the two symbols a and c can be
transmitted over this channel with no error; i.e., we are able to avoid errors by using
only a subset of the possible inputs to the channel. Admittedly, using a smaller subset
of possible inputs reduces the number of possible inputs, but this is the price that must
be paid for reliable communication. This is the essence of the noisy channel-coding
theorem; i.e., using only those inputs whose corresponding possible outputs are disjoint.

9.2 CHANNEL CAPACITY

Figure 9.3 Additive white Gaussian
noise channel with power constraint.

Figure 9.2 The binary-symmetric
channel.

o

Channel Capacity and Coding

P(O I0) = l-e

POll) = l-e

o

P(O r1) = e

~
.

___x_-l +. y=x+z,
ffe=~ >

where No is the noise power-spectral density and Eb denotes the energy content of each .
of the antipodal signals representing 0 and 1. This discrete channel is an example of a
binary sy=etric channeL

n

Input power constraint *2:, x? ,;; P
i= 1

1 _-~
fCy Ix) := --e 2.'

-l2rrcr2

where Z denotes the channel noise, which is assumed to be Gaussian with mean equal
to 0 and variance equal to PN. It is further assumed that inputs to this channel satisfy
some power constraint. Fbr e~ample, for large n, input blocks of length n satisfy

1 "_ '\"x2 < PL..- ! -
n ;=1

The most important continuous alphabet channel is the discrete-time additive
white Gaussian noise channel with an input power constraint. In this channel both ge
and ay are the set of real numbers, and the input-output relation is given by

y=x+z

where P is some fixed power constraint. This channel model is s~own in Figure 9.3.

Example 9.1.2
In an AWGN channel with binary antipodal signaling, the input is either -/Eb or -..Jti,.
The output is the sum of the input and the Gaussian noise. Therefore, for this binary-input,
continuous-output channel we have ge = {±-/Eb) and ay = JR and
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581

Figure 9.6 Schematic representation of
aBSC.

Total number of highly
probable elements = 2nH(Y)

Channel Capacity

!!en = (0. I}" qyn = (0, lin

Number of elements = 2nHb{,j

(with high probability)

Section 9.2

and the transmission rate/channel use is
10gM

R = -- = H(Y) - Hb(E) (9.2.3)
n

Figure 9.6 gives a schematic representation of this case.
In the relation R =H (Y) - Hb (E), E depends on the channel and we cannot con­

trol it. However, the probability distribution of the random variable Y depends both on
the input distribution p (x) and the channel properties characterized by E. To maximize
the transmission rate over the channel, one has to choose p(x) that maximizes H(Y).lf
X is chosen to be a uniformly distributed random variable; i.e., P (X = 0) = P (X = 1) =
0.5, so will be Y and H (Y) will be maximized. The maximum value of H (Y) is 1 8,Ild,
therefore, we obtain

It can be proved that the above rate is the maximum rate at which reliable transmission
over the BSC is possible. By reliable transmission we mean that the error probability
can be made to tend to 0 as the block length n tends to infinity. A plot of the channel
capacity in this case is given in Fi~re 9.7. It is interesting to note that the cases € = 0
and E = 1 both result in C = 1. This means that a channel that always flips the input
is as good as the channel that jransmits the input with no errors. The worst case, of
course, happens when the channel flips the input with probability 1/2.

The maximum rate at which one can communicate over a discrete-memoryless
channel and still make the error probability approach 0 as the code block length in­
creases, is called the channel capacity and is denoted by C. The noisy channel-coding
theorem stated next gives the capacity of a general discrete-memoryless channel.

Theorem 9.2.1 [Noisy Channel-Coding Theorem]. The capacity of a discrete­
memoryless channel is given by

C = max/eX; Y) (9.2.5)
p(x)

where I (X; Y) is the mutual information between the channel input X and the output Y,
previously defined in Chapter 6. If the transmission rate R is less than C, then f~~ ~y

8> athere exists a code with block length n large enough whose error probability IS

less than 8. If R > C, the error probability of any code with any block length is bounded
away from O. Ii

(9.2.1)

(9.2.2)

Chapter 9

Figure 9.5 nth extension of a binary
symmetric channel.

Channel Capacity and Coding

'lYn = (0, l}n

P(y Ix) =.IT P(Yi Ix;)
,~l

x: A binary sequence of length n.
y: A binary sequence of length n.

!!en = (0, lin
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The chosen inputs should be in some sense "far apart" such that their "images" under
the channel operation are nonoverlapping (or have negligible overlaps).

Looking at the binary symmetric channel and trying to apply the same approach
as above, we observe that there is no way that one can have nonoverlapping outputs.
In fact, this is the case with most channels. In order to be able to use the results of the
above argument for the binary symmetric channel, one has to apply it not to the channel
itself, but to the extension channel. The nth extension of a channel with input and output
alphabets ge and O)J and conditional probabilities p(y Ix) is a charmel with input and
output alphabets gen and O)Jn and conditional probability p(y Ix) = TI7=1 P(Yi IXi)' The
nth extension of a binary symmetric channel takes binary blocks oflength n as its input
and its output. This channel is shown in Figure 9.5. By the law of large numbers as
discussed in Chapter 4, for n large enough, if a binary sequence oflength n is transmitted
over the channel, the output will disagree with the input with high probability at nE,
positions. The number of possible sequences that disagree with a sequence of length n
at nE positions is given by

Using Stirling's approximation n! ~ nne-n.j2n:n, we obtain

where Hb (E) = -E logz E- (1 - E) logz(1- E) is the binary entropy function as defined
in Chapter 6. This means that, for any input block, there exist roughly 2nHb (€) highly
probable corresponding outputs. On the other hand, the total number ofhighly probable
output sequences is roughly ZItH(Y). The maximum number of input sequences that
produce almost nonoverlapping output sequences, therefore, is at most equal to

2nH(Y)
M = __ = Zn(H(Y)-Hb (€))

2nHb (€)
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(9.2.7)

(9.2.6)

(9.2.8)

(9.2.9)

(9.2.10)

y=x+z

Channel CapacitySection 9.2

H(YIX = a) = H(YjX = b) = H(Y IX =c) = 1.5

Then, because P(X =a) + P(X = b) + P(X = c) = 1,

H(YIX) = 1.5

From the channel input-output relation it is seen that for all the three case X = a, X = b,
and X = c, Y is a temary random variable with probabilities 0.25, 0.25, andO.S. Therefore,

To maximize leX; Y), it remains to maximize H(Y), which is maximized when Y is
an equiprobable random variable. But it is not clear if there exists an input distribution
that results in a uniform distribution on the output. However,in this special case (due
to the symmetry of the channel) a uniform input distribution results in a uniform output
distribution and for this distribution

H(Y) = log 3 = 1.585

and

leX; Y) = H(Y) -1.5

where Z is a zero-mean Gaussian random variable with variance PH, and for n large
enough, an input power constraint of the form

1 n

- L-x; ~ P
n ;=1

This means that the capacity of this channel is given by

C = 1.585 - 1.5 = .085 bits/transmission

9.2.1 Gaussian Channel Capacity

A discrete-time Gaussian channel with input power constraint is characterized by the
input-output relation

applies to any input sequence oflength n. For blocks oflength n at the input, the output,
and the noise, we have

or

y=x+z

If n is large, by the law of large numbers, we have

1 n 1 n

- L-zf = - L-(Yi - x;)2 ~ PH
n ;=1 n ;=1

. This means that, with probability approaching one (as n increases), y will be located in
an n-dimensional sphere (hypersphere) ofradius .jnPH and centered at x. On the other

€

Figure 9.8 The DMC of Example 9.2.1.

y

Figure 9.7 The capacity of a BSC.
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leX; f) = H(f) - H(f IX)

H(fIX) = P(X =a)H(fIX =a) +P(X = b)H(YIX = b)

+P(X = c)H(Y IX = c)

But
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. -

This theorem is -one of the fundamental results in information theory and gives a
fundamental limit on the possibility of reliable communication over a noisy channel..
According to this theorem,regardless of all ot."ler properties, any communication chan- _
nel is characterized by a number called capacity that determines how much information
can be transmitted over it. Therefore, to' compare two channels from an information
transmission point of view, it is enough to compare their capacities.

Example 9.2.1
Find the capacity of the channel shown in Figure 9.8.

Solution We have to find the input distribution that maximizes leX; f). We have'

T,

-!

T;-

"...-". ,
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(9.2.14) .

Channel Capacity

messages that can be reliably transmitted over this channel is equal to

M = Kn(n(PN + ~))~ .
Kn(nPN)'i

= (PNp:P)~

= (1 +~r

Section 9.2

Therefore, the capacity of a discrete-time additive white Gaussian noise channel with
input power constraint P is given by

1
C =-logM

n

C = 3000 log(l +7943) "'" 38,867 bits/sec

= ~ .~ log (1 +~)
. n 2 PN

= ~ log (1 + :N) (9.2.15)

When dealing with a continuous-time, bandlimited, additive white Gaussian noise
channel with noise power-spectral density ~, input power constraint P, and band­
width W, one can sample at the Nyquist rate and obtain a discrete-time channel. The
power/sample will be P and the noise power/sample will be

j+W No .
PN = -df=WNo

-w 2

Substituting these results in Equation (9.2.15), we obtain

C = ~ log (1 +~) bits/transmission (9.2.16)
2 NoW

If we multiply this result by the number of transmissions/sec, which is 2W, we obtain
the channel capacity in bits/sec

C = Wlog (1+~) bits/sec (9.2.17)
NoW

This is the celebrated Shannon's formula for the capacity of an additive white Gaussian
noise channel.

Example 9.2.2

Find the capacity ofa telephone channel with bandwidth W =3000 Hz, and SNR of39 dB.

Solution The SNR of 39 dB is equivalent to 7943. Using Shannon's relation we have

Chapter

n-dimensional
hypersphere

radius =~n(P+PN)

Channel Capacity and Coding

where R denotes the radius and Kn is independent of R, we see that the number of

Figure 9.9 The output sequences of a Gaussian channel with power constraint.

This implies that the output sequences (again, asymptotically and with high probability)
will be inside an n-dimensional hypersphere of radius .In(P + PN) and centered,at
the origin. Figure 9.9 shows the sequences in the output space. The question now is:,
How many x sequences can we transmit over this channel such that the hypersphe~es

corresponding to these sequences do not overlap in the output space? Obviously if this ,
condition is satisfied, then the input sequences can be decoded reliably. An equivah:nt"
question is: how many hyperspheres of radius .JnPN can we pack in a hyperspheri
of radius .In(PN + P)? The answer is roughly the" ratio of the volumes of the two
hyperspheres. If we denote the volume of an n-dimensional hypersphere by

or

hand, due to the power constraint of Pon the input and the independence of the inp
and noise, the output power is the sum of the input power and the noise power, i.e., "
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(9.3.5)

(9.3.6)

Figure 9.10 Plot of channel capacity
versus bandwidth.

Bounds on CommunicationSection 9.3

r=RIW

Figure 9.11 Spectral bit rate versus SNRJbit in an optimal system.

or, equivalently,

Eb 2r - 1
->--
No r

This relation is plotted in Figure 9.11.
The curve defined by

1.2

0.2

0.6

0.4

1.6

1.44
1.4

~
0.. 0.8

6
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.c = W log (1 +~)
NoW

From this result, the basic factors that determine the channel capacity are the channel •.
bandwidth W, the noise power spectrum No and the signal power P. There exists a .
trade-offbetween P and W in the sense that one can compensate for the other. Increasing
the input signal power obviously increases the channel capacity, because when one has
more power to spend, one can choose a larger number of input levels that are far apart
and, therefore, more information bits/transmission are possible. However, the increase
in capacity as a function of power is logarithmic and slow. This is because if one is
transmitting with a certain number of input levels that are 15. apart to allow a certain ..•.
level of immunity agamst noise, and wants to increase the number of input levels,dne .'
has to introduce new levels with amplitUdes higher than the existing levels, and this
requires a lot of power. This fact notwithstanding, the capacity of the channel can be
increased to any value by increasing the input power.

The effect of the channel bandwidth, however, is quite different. Increasing W
has two contrasting effects. On one hand, on a higher bandwidth channel one can
transmit more samples/sec and, therefore, increase the transmission rate. On the other"
hand, a higher bandwidth means higher input noise to the receiver and this reduces its .•...
performance. This is seen from the two W's that appear in the relation that describes the
channel capacity. To see the effect of increasing the bandwidth, we let the bandwidth
W tend to infinity and using L'Hospital's rule we obtain

P P
lim C = -loge = 1.44-

W->co No No'

This means that, contrary to the power case, by increasing the bandwidth alone one can
not increase the capacity to any desired value. Figure 9.10 shows C plotted versus W.

In any practical communication system, we must have R < C. Ifan AWGN chan­
nel is employed we have

From the previous section, the capacity of an additive white Gaussian noise channel is
given by

R < WIOg(I+~)
NoW.

By dividing both sides by W and defining r = ~, the spectral bit rate, we obtain

r < log (1 + ~).
NoW

If Eb is the energy per bit, then Eb = ~. By substitUting in the previous relation, we
obtam

9.3 BOUNDS ON COMMUNICATION

-.'
!
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H(Uj < C

R(D) < C
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(9.3.11)

(9.3.12)

If I < Ws
otherwiseSx(f) = {~'

l1T
/
2

d(u(t), vet)) = lim - [u(t) - v(t)p dt
T-+oo T -T/2

Bounds on CommunicationSection 9.3

Solution The bandwidth of the source is 10,000 Hz, and it therefore can be sampled at
a rate of 20,000 samples/sec. The power of the source is

Px = 1:Sx(f) df = 20,000

The variance of each sample is given by

(12 = 20,000

and the rate distortion function for D < 20,000 is given by

1 (12 1· 20,000
R(D) = zlog D = zlog n- bits/sample

which is equivalent to

and with distortion measure

.. . 20,000
R(D) = 1O,000log-- bits/sec

D
Since the capacity ofthe channelin question, derived in Example 9.2.2, is 38,867 bits/sec,
we can derive the least possible distortion by solving

38867 = 10 000 log 20,000, , D

for D, which results inD = 1352.

In general, it can be shown that the rate-distortion function for a waveform
Gaussian source with power-spectral density

is given by

R (D) = { Ws log e~w,) D < 2AWs
0, D 2: 2AW

s
. (9.3.13)

If this source is to be transmitted via an additive white Gaussian noise channel with
bandwidth We, power P, and noise-spectral density No, the minimum achievable dis­
tortion is obtained by solving the equation

We log (1 + N:We) = Ws log C~Ws ) (9.3.14)

From this equation, we obtain

D = 2AWs (1 +~)-~ (9.3.15)
No We

Channel Capacity and Coding

These two relations define fundamental limits on the transmission of information. In .
both cases, we have assumed .that for each 'source output one transmission over the,
channel is possible.

Example 9.3.1
A zero-mean Gaussian source with power-spectral density

Sx(f) = II (20,~00)
is to be transmitted via a telephone channel described in Example 9.2.2. What is the
minimum distortion achievable if mean-squared distortion is used?

Cb
- > 0.693
No

In Figure 9.11, when r« 1, we are dealing with a case where bandwidth is large and the.
main concern is limitation on power. This case is usually referred to as the power-limited
case. Signaling schemes, with high dimensionality, such as orthogonal, biorthogonal,
and simplex are frequently used in these cases. The case where r » 1, happens when
the bandwidth of the channel is small, and therefore is referred to as the bandwidth­
limited case. Low dimensional signaling schemes with crowded constellations, e.g.,'
256-QAM, are implemented in these cases.

In Chapter 6, we introduced the fundamental limits that exist in coding of infor~
mation sources. These fundamental limits are expressed in terms of the entropy of the'
source, the rate-distortion function assoeiated with the source, and the corresponding'
distortion measure. Entropy gives a lower bound on the rate of the codes that are capable'
of reproducing the source with no error, and the rate-distortion function gives a lower
bound on the rate of the codes capable of reproducing the source with distortion D. If '.
we want to transmit a source U reliably via a channel with capacity C, we require that

If transmission with a maximum distortion equal to D is desired, then the condition is

divides the plane into two regions. In one region (below the curve), reliable cornmu
cation is possible and in another region (above the curve), reliable communication
not possible. The perlormance of any communication system can be denoted by a po'
in this plane and the closer the point is to this curve, the closer is the perlormance 0

the system to an optimal system. From this curve, it is seen that (as r tends to 0),

Cb = ln2 = 0.693 '" -1.6 dB
No

is an absolute minimum for reliable communication. In other words, for reliable coni~:
munication, we must have .
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(9.3.19)

(9.3.20)

(9.3.23)

(9.3.24)

(9.3.25)

2 !!'<.
Xmax 24W, - I

D total = --w- + PbD,. ---
3 x 4W; 3

Coding for Reliable CommunicationSection 9.4

We note that

SNR= 3X2
( ~

x~ 4-w, + 4Pb)

The value of Pb, of course, depends on the modulation scheme employed to transmit

the outputs of the PCM system. If binary antipodal signaling is employed, then

and ifbinary orthogonal signaling: with coherent detection is used, then

2xmax Xmax
D,. = -- = - (9 3 21)

2" 2v- 1 ..

Substituting for /:::,., and assuming4V » 1; the expression for D total simplifies to

x;'ax .!!'r.
Dlctal ~ -3-(4- W

' + 4Pb) (9.3.22)

The signal-to-noise (distortion) ratio at the receiving end is, therefore,

are the only possible errors, one obtains the following expression for the transmission

distortion

From the expression for the SNR, it is seen that for small Pb, the SNR grows almost

exponentially with tif,-, the bandWidth-expansion factor, and in this sense, a PCM system

uses the available bandwidth efficiently. Recall from Section 5.3, that another frequently

used system that trades bandwidth for noise immunity is an PM system. However, the

SNR ~f an FM system is a quadratic function of the bandwidth-expansion factor [see

EquatIon (5.3.26)] and, therefore, an PM system is not as bandwidth efficient as a PCM

system.

.4 CODING FOR RELIABLE COMMUNICATION

In Chapter 1, it was shown that both in baseband and carrier-modulation schemes, the

error probability is a function of the distance between the points in the signal constel­

lation. In fact, for binary equiprobable signals the error probability can be expressed as

Channel Capacity and Coding590

.!!'r.

SQNR = 2AWs = (1 +~) w,

D No We

The important conclusion is that in an optimal system, the final signal-to-noise (cll
tortion) ratio increases exponentially with the bandwidth expansion factor. This is

criterion by which we can compare the performance of various waveform transrnissi,

systems.

9.3.1 Transmission of Analog Sources by PCM

We have seen in Chapter 6 that PCM is one of the most commonly used schemer

transmission of analog data. Here, we find the performance characteristics of a P

system when transmitting data over a noisy channel, and compare the results with

of an optimal system. ;.•.. ;

We have already seen in Section 6.6, that in a PCM system the quantization no i

(distortion) is given by

It is seen that, in an optimal system, distortion decreases exponentially as {f increa·

The ratio ~' is called the bandwidth-expansion factor. We can also find th~ SQNR
, .

X2

E[X2]=~
3 x 4v

where X max denotes the maximum input amplitude and v is the number of bitsIsamp··

If the source bandwidth is Ws , then the sampling frequency in an optimal syst

is fs =2Ws, and the bit rate is R =2vWs . Assuming that the binary data is dire.

transmitted over the channel, the minimum channel bandwidth that can accomrnodli

this bit rate (Nyquist criterion, see Chapter 8) is

R
We = - = vWs

2

Therefore, the quantization noise can be expressed as

_? x2

E[X-]=~
3x4W;

Now if the output of a PCM system is transmitted over a noisy channel with err
probability Pb, some bits will be received in error and another type of distortioll,

to transmission, will also be introduced. This distortion will be independent froJll

quantization distortion and since the quantization error is zero mean, the total distort!

will be the sum of these distortions (see Section 4.3.2). To simplify the calcula.~8Il

the transmission distortion, we assume that Pb is small enough such that in a b16c1e

length v, either no error or one error can occur. This one error can occur at any of

locations and, therefore, its contribution to the total distortion varies accordingly. If
error occurs in the least significant bit, it results in a change of /:::,. in the output level;.'

happens in the next bit, it results in 2/:::,. change in the output; and if it occurs at tlieIll

significant bit, it causes a level change equal to 2v- 1 D,. at the output. Assuming.th

~I;,.
~i

iZl
".«1.
~1

~j
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(9.4.5)

(9.4.6)

(9.4.7)

(9.4.8)

(9.4.10)

(904.11)

(9.4.13)

(9.4.14)

. (9.4.12)

(1- Q(u»M-I ::: 1 - (M - l)Q(u)

PM = i: [1 - (1 - Q(u»M-l]f(u - a) du

Yo = .J2InM = V2ln2log2 M = .J2kIn2

Coding for Reliable Communication

Defining

and

.Section 9.4

we have

1- (1- Q(u»M-l .::s (M -l)Q(u) < MQ(u) < Me~u'/2 (9.4.9)

where in the last step we have 'used the well-known bound on Q(x) introduced in
Section 4.1. This bound is basically the union bound, which we will use for large SNRs
(large u). For small SNRs, we use the obvious bound

Using the inequality nx + (1 - x)n::: 1, which holds for all 0 < x < 1 and n > 1 t we
obtain - - - ,

1 - (1 - Q(u»M:-l .::s 1

Substituting these bounds into Equation (9.4.7), we obtain

l
YO . co

PM < f(u-:-a)du+M.{ e-u'/2f(u-a)du=Pl +MP2
-00 J~

where Yo can be any arbitrary number. To obtain the tightest bound, we differentiate
the right-hand side of Equation (9.4.11) with respect to Yo and set the derivative equal
to O. Thus, we obtain

or

from which we have

. and, therefore,

ITo see this; define g(x) = nx + (1 ~ x)". then g(O) =' 1 and g'(x) = ;, - n(1 - x)"-l But for
o :::; x :::; 1. we have 0 :::; 1 - x :::; 1 and, therefore. (l - x),,-I :::; 1. for all n 2: 1. This means that, for
o::: x ::: I, g' (x) 2: 0 and, therefore, g(x) is an increasing function in this interval. This, in tum means
g(x) 2: 1£0rO:::x::: 1 andn 2: 1. .
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On the other hand, we have seen that in the binary case, with coherent demodulati
antipodal signaling perfonns best and has a Euclidean distance d12 = 2-./tb. There~

where d12 is the Euclidean distance between SI (t) and S2(t), given by

From the above, it is seen that to decrease the error probability, one has to increase".
signal energy. Increasing the signal energy can be done in two ways, either increasi
the transmitter power, or increasing the transmission duration. Increasing the transmi
power is not always feasible because each transmitter has a limitation on its aver
power. Increasing the transmission duration, in turn, decreases the transmission
and, therefore, it seems that the only way to make the error probability vanish is to
the transmission rate vanish. In fact, this was the communication engineers' viewp'
in the pre-Shannon era.

We have also seen in Chapter 7 that, by employing orthogonal signals, one
achieve reliable transmission at nonzero rate, as long as ~o > 2In 2. Here, wes
that i: > In 2 is sufficient to achieve reliable transmission. Note that this is thes
condition which guarantees reliable transmission over an additive white Gaussian II
channel when the bandwidth goes to infinity (see Figure 9.11 and Equation (9.3.7».

9.4.1 A Tight Bound on Error Probability
of Orthogonal Signals

To find a tighter bound on the error probability of orthogonal signals compared to.'::
one obtained in Chapter 7, we use another bounding technique. The problem witl1
union bound employed in Chapter 7 is that it is not tight for small SNRs. To compen
for this we use two bounds, one for large SNRs, which is essentially the union bo .,
and another bound for small SNRs. . .

In Chapter 7, it was shown that the message-error probability for orthog?
signals is given by .

[
( fif)s 2]1 co u- -'-

M-l No
PM = ~1 [1 - (1 - Q(u» ] exp - du

~~ ~ 2 .

dt2 = I:[SI (t) - s2(t)f dt

[see Equation (7.6.10)]



Yo=.J2kln2
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(9.4.23)

(9.4.24)

(9.4.25)

(9.4.26)

(9.4.28)

(9.4.27)

(9.4.29)

(9.4.30)

(9.4.31)
o ::5 R ::5 ~Coo

~Coo ::5 R ::5 Coo

0::5 R ::5 ~Coo

~Coo ::5 R ::5 Coo

k= RT

P
E:b =­

R
1

R = -logM
T
P

Coo = -ln2
No

E* {!Coo - R,
(R) = (.;c; - ./Rl,

Coding for Reliable Communication

and

Section 9.4

we obtain

we obtain the final result

{

2e-~C£b/No-2ln2) a < 1n M < -!.L
, - - 4No

PM < 2e-k(.J£b/No-.jfj12)' -!.L < lnM < £.
, 4No - No

The first bound coincides with the union bound derived in Chapter 7. The second bound
is better than the union bound for large values of M (smaller -it.). This bound shows
that the condition for reliable communications is -ft > In 2 rather than ft > 2ln 2
derived in Chapter 7. We can also express these boJnds in terms of the tra'nsmission
rate and the channel capacity. By using the relations

or, equivalently,

where

The function E*(R) is called the channel reliability function and is plotted in
Figure 9.12.

9.4.2 The Promise of Coding

From the above discussion, it is seen that orthogonal signals are capable of achieving
the capacity at nonvanishing rates. However, the price paid for this is quite high. To
achieve this performance, we have to let k -+ 00, or T -+ 00. On the other hand, the
number of orthogonal signals is given by M = 2k = 2RT. If one wants, for instance, to
employ PPM signaling, this means that the time duration T has to be divided into 2RT

O::5Yo::5~

~ ::5 Yo ::5 a

o ::5 Yo ::5 ~

~::5Yo::5a
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{

-a'/4 -(YO-02

p < e e ,
2 - , _a2/4e ,

Substituting the derived bounds on PI and P2 in Equation (9.4.11) and using M =
we obtain

{

e-(-a-Yo)2/2 + eY5/2e-a2/4;

PM < e-Ca- Yo )2/2 + eY5/2e-a' /4-Cyo-a/2)2 ,

For 0::5 Yo ::5 ~, we have

e-Ca-yo)2/2 + eY5/2e-a2/4 = eY5/2-a2/4 [1 + e-(yo-~)2J ::5 2eY5 /2- a'/4

The next step is to find bounds on PI and P2 , and, therefore, on PM. For PI, we ha

PI = jYO feu --a) du = jyo-a f(x) dx = {'Xl f(x) dx = Q(a - Yo)
-00 -00 la-yo

By using bounds on Q, we obtain

P < !e-Ca- yo)'/2 < e-Ca - Yo )2j2 for Yo ::5 a1_
2

To bound P2 we have

1
00 ,

P2= e-u
/
2f(u-a)du

Yo

= [00 e-'? x _1_e-Cu-a)2/2 du
JyO .fbi

, 100
1 (a)2 --a /4 - u-- d= e - --e - , u

Yo .fbi

-a2/4 1 100
1 - -:<2/2 d

= e .Ji v'2(YO-~) .fbie X

= ~e-a2/4Q [.Ji (YO -~)]

Using the fact that for all x, Q(x) ::5 1, and that for x 2: 0, we have Q(x) ::5 !e-X2j
we obtain

and for ~ ::5 Yo ::5 a, the two exponents in Equation (9.4.19) are the same. Using
the bound simplifies to

{

2eY5/2-a2/4 _

PM < 2e-Ca- yo )2 /2,

Now, using the relations

-- ,

"':!".
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(9.4.38)

(9.4.39)

(9.4.40)

(9.4.41)

(9.4.42)

SI = -IE (+1, +1, +1)

S2 = -Ji (+1, -I, -1)

S3 = -Ji (-I, -I, +1)

84 = -Ji (-I, +1, -1)

Coding for Reliable Communication

signals is given by

Figure 9.14 Code words on the vertices
of a cube.

2 P
dmin = 4Eb = 4:R (9.4.32)

Now let us assume that, instead of transmitting an M = 4-PSK signal (which is two
dimensional), three orthonormal signals are employed to transmit the same two bits. For
example, we can assume that the orthonormal signals are given by 1fr(t), 1fr(t - T), and
1fr(t - 2T) where 1fr(t) is equal to zero outside the interval [0, T] and

iT 1fr2(t) dt = 1 (9.4.33)

Let us assume that instead of the 4-PSK signals we transmit the following four signals

81 (t) = -IE (+1fr(t) + 1fr(t - T) + 1fr(t - 2T» (9.4.34)

8Z(t) = -IE (+1fr(t) -1fr(t - T) -1fr(t - 2T» (9.4.35)

83(t) = -IE (-1fr(t) -1fr(t - T) + 1fr(t - 2T)' (9.4.36)

84(t) = -IE (-1fr(t) + 1fr(t - T) -1fr(t - 2T» (9.4.37)

or, equivalently, in vector notation

The corresponding constellation is shown in the three-dimensional space in Figure 9.14.
It is seen that with this choice of code words, each code word differs from any other code
word at two components. Therefore, the Euclidean distance between any two signals is
given by .

To find E in terms of P, we note that in a time interval of T, two bits are transmitted.

Section 9.4

Figure9.13 Signal cOIlstellatlon·for
4-PSK.

R Figure 9.12 The reliability tun.ctie'n fe
AWGN challUel. with infinite bandwidth.

Channel Capacity and Coding

,,,,,,,,
\

\

tThis exponential increase in bandwidth requirement is a characteristic of all orthogonal sign
schemes and not a peculiar property of the PPM signaling employed here. It can be shown that the n
of the orthogonal signals that are "almost" bandlimited to abandwidth of Wand "almost" time-limited
duration T is ZWT. Therefore, an exponential increase in M of the form M = ZRT requires an exponen
increase in W.

slots each of duration zIT' This, in turn, means that the width of the pulses approac
zero exponentially and, therefore, the bandwidth required to transmit them incre
exponentially as well.t Now the question is: does there exist a way to transmit mess
reliably over a noisy channel at a positive rate without an exponential increase in
bandwidth? The answer is positive and the tool to achieve this goal is coding.
following example clarifies the point. .

Example 9.4.1
In a digital communication system, the transmitter power is P and the rate of the so
is R. The system employs a M = 4-PSK signaling where a pair of information bits
mapped into any of the four signals shown in the constellation depicted in Figure 9.
It is readily seen that Eb = i, and the minimum Euclidean distance between any

596
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(9.4.49)

(9.4.50)

(9.4.51)

(9.4.52)

(9.4.53)

(9.4.54)

(dlW = L (± 2.J£.)2 = 4dne
l<l<n
l:~isj

Coding for Reliable CommunicationSection 9.4

where in the last step, we have used the bound on the Q function introduced in Sec­
tion 4.1. Now noting that the energy content of each code word is nE, and this has to
be equal to P T, we have

(ffi-d
H e)P'<MQ ~.

" - 2No

Now if we assume SI is transmitted, and use the union bound (see Chapter 7), we have

This means that the minimum Euclidean distance can be expressed in terms of the
minimum Hamming distance as

possible. This makes the Euclidean distance between them large and, thus, reduces the
error probability.

Let us assume that we have chosen 2k vertices of the hypercube as the code words
and each code word differs from another code word in at least d~ components. This
parameter is called the minimum Hamming distance of the code and will be defined
more precisely in Section 9.5. The relation between Euclidean distance and Hamming
distance is very simple. If the sequences SI and s j differ in dV locations, then their
Euclidean distance d~ is related to dV by

PT RT k
£ = - = -.-£b = -Eb = RcEb

n n n

where we have used the rela'tion £b = ~. Hence,

P < M e-d~;nR'&bINo
e - 2

(the index i has been deleted because the bound is independent of i). Ifno coding were
employed, that is if we used all the vertices of a k-dimensional hypercube rather than
2k vertices of an n-dimensional hypercube, we would have the following union bound
on the error probability

Channel Capacity and Coding

2 2 P
E = -Eb =--

3 3 R

and

Therefore,

Thus,

598

n

2 16 P
dij = 3" Ii. for i =I j

Comparing this with the minimum distance in the 4-PSK signal, we observe that
minimum-distance squared has increased by a factor of

d'/j ¥f 4
dfpsK = 4~ ="3

Because the error probability is a decreasing function of the minimum Euclidean distan
we have reduce(i the error probability by employing this new scheme. In fact, it can
said that the resulting reduction in error probability is equivalent to the reduction in e
probability due to an increase in power by a factor of ~. This, in tum is equivalent t
1.25-dB power gain. This power gain, of course, has not been obtained for free. It is
that with this signaling scheme in a time duration of ~, which is the time duration
transmit two bits, we have to transmit three signals. Therefore the width of these sign
is reduced by a factor of ~, and the bandwidth required to transmit them is increased
a factor of ~. A second problem with this scheme is that, obviously, it is more elabora
and requires a more complex decoding scheme.

The above exercise basically describes what a coding scheme does. Coding resui
in a lower error probability (which is equivalent to a higher effective SNR) at the prit·
of increasing the bandwidth and the complexity of the system. It should be mentione
here that, although employing coding increases the bandwidth,t this increase is no
exponential, as was the case with orthogonal signaling. . ..

In a general signaling scheme with coded waveforms, sequences oflengthk = RT
of the source outputs are mapped into sequences oflength n of the form .

Sl = .J£. (±1, ±1, ... , ±1)
, v I

These points are located on the vertices of a hypercube of edge length 2../£. The rati

k
Rc =-

n
is defined to be the code rate. There exist a total of 2n vertices of an n-dimension
hypercube of which we have to choose M = 2k as code words. Obviously, one hi
to select these 2k vertices in such a way that they are as far apart from each other

tThere exist ;;oding-modulation schemes that increase the Euclidean distance between code wor
but do not increase the bandwidth. These schemes will be treated in Section 9.9.

.......
• OJ

-""'7'
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(9.4.59)

Figure 9.15 A convolutional encoder.

Linear Block CodesSection 9.5

previous contents of the shift register that constitute its state. The quantity

mc=L

is defined as the constraint length of the convolutional code and the number of states of
the convolutional code are equal to 2(L-l)ko . The rate ofa convolutional code is defined as

ko
~=- ~A~

no

The main difference between block codes and convolutional codes is the existence of
memory in convolutional codes.

tProm now on we will deal with binary codes unless otherwise specified.

9.5 LINEAR BLOCK CODES

An (n, k) block codet is completely defined by M = i' binary sequences oflength n
called code words. A code C consists of M code words Cj for 1 ::: i ::: 2k •

C = {CI, Cz,··., CM}

where each Cj is a sequence oflength n with components equal to 0 or 1.

Definition 9.5.1. A blockcode is linear if any linear combination of two code
words is also a code word. In the binary case this requires that ifCj and Cj are code words
then Cj EB Cj is also a code word, where EB denotes component-wise modulo-2 addition.

With this definition, it is readily seen that a linear block code is a k-dimensional
subspace of an n-dimensional space. It is also obvious that the all zero sequence 0 is a
code word ofany linear block code since it can be written as Ci EB Cj for any code word Cj.

Note that according to the above definition linearity of a code only depends on the code
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Gcoding =d~Rc

which is called the asymptotic-coding gain, or simply, the coding gain. As seen her
the coding gain is a function of two main code parameters, the minimum Hammill
distance and the code rate. Note that in general, Re < 1 andd~ ::: 1 and, therefore, .....
coding gain can be greater or less than one.t It turns out that there exist many cod
that can provide good coding gains. The relation defining the coding gain once ag.·
emphasizes that for a given n and k the best code is the code that can provide the high~st

minimum Hamming distance.
To study the bandwidth requirements of coding, we observe that when no codu{g

is used, the width of the pulses employed to transmit one bit is given by

1
Tb= R

After using coding, in the same time duration that k pulses were transmitted, we must
now transmit n pulses, which means that the duration of each pulse is reduced
factor of ~ = Re . Therefore, the bandwidth-expansion ratio is given by

B= Wcoding =~=:::
W no coding Re k

Thus, the bandwidth has increased linearly. It can be proved that in an AWGN channel,
there exists a sequence of codes with parameters (nj, kj) with fixed rate (~ = Rc '.

independent of i) satisfying

Re = ~ < ~ log (1 +~)
n 2 NoW

where ~ logO + Itw) is the capacity of the channel in bits/transmission,+for which
the error probabilitY goes to zero as nj becomes larger and larger. Obviously, for such
a scheme, the bandwidth expands by a modest factor and does not, as in orthogonal
signaling, grow exponentially.

In this chapter, we study two major types of codes, block codes, and cOlrVolutional·'
codes. Block codes are codes that have already been described. In a block code, the
information sequence is broken into blocks of length k and each block is mapped into
channel inputs of length n. This mapping is independent from the previous blocks; i.e., '
there exists no memory from one block to another block In convolutional codes, there.':
exists a shift register of length koL as shown in Figure 9.15. The information bits enter <
the shift register ko bits at a time and then no bits which are linear combinations of::
various shift register bits are transmitted over the channel. These no bits depend not
only on the recent kobits that just entered the shift register, but also on the (L - l)ko.

tAlthough in a very bad code design we can even have d~in = 0, we will ignore such cases.

lRecall that the capacity of this channel in bits/sec is W log(l + N;w),

Comparing the two bounds, one concludes that coding has resulted in a power g
equivalent to

;~ .



tFrom now On Hamming distance is denoted by d and Euclidean distance is denoted by dE.
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(9.5.7)

(9.5.8)

(9.5.4)

(9.5.5)

(9.5.6)

[
10100]

G= 01111

C=xG

1
9l] 19nG~ ~2 = g;1
gk gkl

Linear Block Codes

It is seen that for the info=ation sequence (x I, X2), the code word is given by

(CI, C2, C3, C4, CS) = (Xl, X2)G

Section 9.5

Generator and Parity Check Matrices. In an (n, k) linear block code let
the code word corresponding to the information sequences el = (1000 ... 0), e2 =
(0100 ... 0), e3= (0010 ... 0), ... , ek = (0000 ... l)bedenotedbygl, g2, g3,.", gk,
respectively, where each of the gi sequences is a binary sequence of length n. Now, any
information sequence x = (XI, X2, X3, ••• , Xk) can be written as

k

x = I:xiei (9.5.3)
i=l

and, therefore, the corresponding code word will be

k

e = I:X;gi
;=1

If we define the generator matrix for this code as

The{)rem 9.5.1. In any linear code, dmm = WrrlliJ..

Proof If e is a code word, then w(c) = d(c, 0). Also if C; and Cj are code worct's
so is e = Ci EEl Cj and, moreover, d(c;, Cj) = wee). This implies that, in a linear code
corresponding to any weight of a code word, there exists a Hamming distance between
two code words, and corresponding to any Hamming distance there exists a weight of
a code word. In particular, it shows that drrlliJ. = WrrlliJ.. !II

then, we can write

This shows that any linear combination of the rows of the generator matrix is a code
word. The generator matrix for any linear block code is a k x n matrix of rank k
(because by definition the dimension of the subspace is k). The generator matrix of a
code completely describes the code. When the generator matrix is given, the structure
of an encoder is quite simple.

Example 9.5.2
Find the generator matrix for ihe first code given in Example 9.5.1.

Solution We have to find the code words corresponding to information sequences (10)
and (01). These are (10100) and (01111), respectively. Therefore,

Chann~1 Capacity and Coding

the special property is not satisfied. HO'ovever, in both cases the code is linear.

Now we define some of the basic parameters that characterize a code.

Definition 9.5.2. The Hamming distance between two code words Ci and Cj
is the number of components at which the two code words differ, and is denoted by _;
d(Ci, Cj).t ..

Definition 9..5.3. The Hamming weight, or simply the weight of a code word c;
is the number of nonzero components of the code word and is denoted by W(Ci)' .:

Definition 9.5.4. The minimum distance of a code is the minimum Hamming
distance between any two different code words; i.e.,

drrlliJ. = mind(Ci, Cj)·
Cj,Cj

i'fj ,

Definition 9.5.5. The minimum weight of a code is the minimum of the weights
of the code words except the all-zero code word.

WrrlliJ. = min W(Ci) .
c;=j:.O

the special property mentioned above is satisfied as well. If the mapping is given by

00 -+ 10100

01 -+ 01111

TO -+ 00000

11 -+ 11011

words and not on the way that the information sequences (messages) are mapped to
code words. However, it is natural to assume that if the information sequence Xl (0
length k) is mapped into the code word Cl (oflength n) and the information sequenc
X2 is mapped into C2, then Xl EEl X2 is mapped into Cl EEl C2. From now on we will assulll
that the linear codes that we study possess this specialproperty.·

Example 9.5.1
A (5,2) code is defined by

C = {OOOOO, 10100, 01111, H011}

It is very easy to verify that this code is linear. If the mapping between the informatioIi
sequences and code words is given by

00 -+ 00000

01 -+ 01111

10 -+ 10100

11 -+ 11011

602
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(9.5.14)

[ 111
10°]H = 01 010

01 001

[
10100]

G =. 01111

I = [6~]

p = [i~~]

pI = [~n

Linear Block Codes

Noting that in the binary case _pI =pI, we conclude that

and, therefore,

Section 9.5

the parity check matrix has the following form

Note that in the binary case _pt = pt.

Example 9.5.3

Find the parity check matrix for the code given in Example 9.5.1.

Solution Here

__.~_. d"_~ ;...p

'--

Hamming Codes. Hammi,ng codes are a class of linear block codes with
n = zm - 1, k = zm - m - 1 and dmin = 3, for some integer m :::: 2. As we will
see in Section 9.5.1, with this minimum distance, these codes are capable of providing
error-correction capabilities for single errors. The parity check matrix for these codes
has a very simple structure. It consists of all binary sequences of length m except the
all zero sequence. The rate of these codes is given by

zm-m-1
Rc = (9.5.15)

2m -1

which is close to 1 for large values ofm. Therefore, Hamming codes are high-rate codes
with relatively small minimum distance (drnin =3). We will see later that the minimum
distance of a code is closely related to its error-correcting capabilities. Therefore, Ham­
ming codes have limited error-correcting capability.

Example 9.5.4

Find the parity check matrix and the generator matrix of a (7,4) Hamming code in the
systematic form.

Solution In this case m =3 and, therefore, H consists ofall binary sequences of length 3
except the all zero sequence. We generate the parity check matrix in the systematic

l:::::i:::::k

k+l:::i:::n

Channel Capacity and Coding

CI = Xl

or

GHt=O

G=[lk I P]

In'the special case of a systematic code, where

where all summations are modulo-2.
By definition a linear block code C is a k-dimensionallinear subspace of the'

n-dimensional space. From linear algebra, we know that if we take all sequences of­
length n that are orthogonal to all vectors of this k-dimensionallinear subspace, the
result will be an (n - k)-dimensionallinear subspace called the orthogonal complement
of the k-dimensional subspace. This (n - k )-dimensional subspace naturally defines an
(n, n - k) linear code which is known as the dual of the original (n, k) code C. The
dual code is denoted by CT. Obviously the code words of the original code C and the
dual code CT are orthogonal to each other. In particular, if we denote the generator'
matrix of the dual code by H, which is an (n - k) x n matrix, then any code word of
the original code is orthogonal to all rows of H; i.e.,

cHt = 0 for all c E C

The matrix H, which is the generator matrix of the dual code CT , is called the parity
check matrix of the original code C. Since all rows of the generator matrix are code
words, we conclude that

G= [lk I P]

where lk denotes a k x k identity matrix and P is a k x (n - k) binary matrix. In ~•.
systematic code, we have

The above code has the property that the code word corresponding to each informatio
sequence starts with a replica of the information sequence itself followed by some extra.
bits. Such a code is called a systematic code and the extra bits following the information;
sequence in the code word are called the parity check bits. A necessary and sufficient
condition for a code to be systematic is that the generator matrix be in the form».,

604.J.
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(9.5.19)Pe=Q (~)
-/2No
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we obtain

". {Q( 'f!!i.f\,
P (J receIved [i sent) = VN;) for orthogonal signaling

( P;;U) (9.5.20)
Q V~, for antipodal signaling

Since dij ?: dmin , and since Q(x) is a decreasing function of x, we conclude that

{
Q(~

P(j received I i sent) = V~), for orthogonal signaling

(
~ (9.5.21)

, Q V~) , for antipodal signaling

Now using the union bound (see Chapter 7), we obtain

P (errorl i sent) .:::: { (M - 1) Q(J~ ), for orthogonal signaling

( ( fii::E) (9.5.22)
M - 1)Q V~ , for antipodal signaling

and assuming equiprobab1e messages, we finally conclude that

P
e

< { (M - 1) Q ( j ~ ), for orthogonal signaling

- (M - 1) Q ( j2dp{ ), for antipodal signaling (9.5.23)

Th~se are bounds ?n ~e error probability of a coded communication system when

opti:nal d~modulation IS employed. By optimal demodulation, we mean passing the

receIved sIgn~l ret) through a bank of matched filters to obtain the received vector r

and then ~ding the closest point in the constellation to r in the Euclidean distanc~

sense. This type of decoding that involves finding the minimum Euclidean distance is

called soft-decision decoding, and requires real number computation.

Example 9.5.5

Compare the perf0rrr:ance of an uncoded data transmission system with the perfonnance

of a coded s~st:m usmg the (7, 4) Hamming code given in EXanJple 9.5.4 when applied

to the transr:n.sslOn ~f a binary source with rate R = 104 bits/sec. The channel is assumed

to be an additive w~te ?aussian noise channel, the received power is 1 fl-Wand the noise

power-spectral denSIty IS !f! = 10-11 • The modulation scheme is binary PSK.

orthogonal signaling, where 1/f1 (t) and 1/f2 (t) are orthogonal, the equivalent relation is

E 2 iT
(dij ) = L [1/f1 (t) -1/fZ(t)]2 dt = 2dV£ (9.5.18)

I<k<n 0
k:C;k1cjk

Now, using the general relation

11 0]011101
111

Channel Capacity and Coding

H=[i~'6iI6~~1]011100

[

1 0 0 0
o 1 0 0

G= 0 0 1 0
o 0 0 1

and the generator matrix is obtained to be

fonnas

606

9.5.1 Decoding and Performance of Linear Block Codes

The main purpose ofusing coding in communication systems is to increase the Euclide '

distance between the transmitted signals and, hence, to reduce the error probability at

given transmitted power. This was shown by an example in the previous section. Refe '

ring to Figure 9.14, we see that this goal is achieved by choosing the code words to be

as far apart on the vertices of the cube as possible. This means that a good measure fcir

comparing the performance of two codes is the Hamming distance between code wordS.

Keeping track of all distances between any two code words is difficult, and in rna

cases impossible. Therefore, the comparison between various codes is usually do

based on the minimum distance of the code, which for linear codes is equal to the min"

imum weight. -From this, it follows that for a given n and,k, a code with a larger dmin (6

Wmin), usually performs better compared with a code with a smaller minimum distance:

Soft-Decision Decoding. ,In Chapters 7 and 8 we have seen that the optimum,'

signal-detection scheme on an additive white Gaussian noise channel is detection based

on minimizing the Euclidean distance between the received signal and the transmitted

signal. This means that, after receiving the output of the channel and passing it through

the matched filters, we choose one oithe message signals thai is closest to the received

signal in the Euclidean distance sense. In using coded wavefonns the situation is the,'

same. Assuming we are employing binary PSK for transmission of the coded message,.

a code word Ci = (Cil, CiZ, ..• , Cin) is mapped into the sequence Si (t) = L:~=l lfr;kCt -:'

(k - 1)T), where

, {1/f(t), Cik = 1
1/fik(t) = -1/f(t), Cik = 0

and 1/f(t) is a signal of duration T and energy £,which is equal to zero outside the

interval [0, T). Now, the Euclidean distance between two arbitrary signal wavefonns is,

(dJ7)z = ~ (± 2.1£)Z = 4dV£
l<k<n

k:c7k1cjk

This gives a simple relation between the Euclidean and the Hamming distance when
i
,

a binary PSK signaling scheme (or any antipodal signalirig scheme) is employed. For

:~l i,
'aj
i;1., j
'" I

-< I
'M- -I
" !

Tlii

lrt.<!
I

~"f'
ll:l
wEI
""":';~l'

r~~~~t
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e2(n-kL 1 Ell eM Figure 9.16 The standard array.

linear Block CodesSection 9.5

There are three basic steps involved in hard-decision decoding. First, we perform
demodulation by passing the received ret) through the matched filters and sampling
the output to obtain the r vector. Second, we compare the components of r with the
thresholds and quantize each component to one of the two levels to obtain the y vector.
Finally, we perform decoding by finding the code word that is closest to y in the
Hamming distance sense. In this section, we present a systematic approach to perform
hard-decision decoding.

First we will define the notion of a standard array. Let the code words of the code
in question be denoted by CI, C2, ... , CM, where each of the code words is oflength n
and M = 2k, and let CI denote the all~zero code word. A standard array is a 2n- k x 2k

array whose elements are binary sequences of length n and is generated by writing
all the code words in a row starting with the all zero code word. This constitutes the
first row of the standard array. To write the second row, we look among all the binary
sequences of length n that are not in the first row of the array. Choose one of these
code words that has the minimum weight and call it el. Write it undert Cl and write
el E9 Ci under Ci for 2 ~ i ~ M. The third row of the array is completed in a similar
way. From the binary n-tuples that have not been used in the first two rows, we choose
one with minimum weight and call it e2. Then, the elements of the third row become
Cj E9 e2. This process is continued ul).til no binary n-tuples remain to start a new row.
Figure 9.16 shows the standard array generated as explained above. Each row of the
standard array is called a coset and the first element of each coset (e/, in general) is
called the coset leader.

The standard array has the following important properties .

tNote that Cj Ell ej '= ej, since Cj = (0, 0, ... ,0).

Theorem 9.5.2. All elements of the standard array are distinct.

Proof Let us assume two elements of the standard array are equal. This can
. happen in two ways.

1. The two equal elements belong to the same coset. In this case we have ej E9 Cz =
et E9 Cj, from which we conclude Ci = Cj which is impossible.

2. The two equal elements belong to two different cosets. Here we have et E9 Ci =
ek E9 Cj for I =/= k, which means et = ek E9 (Ci E9 Cj). By linearity of the code
Ci E9 Cj is also a code word; let us call it Cm• Therefore, et = ek E9 Cm and, hence,
et and ek belong to the same coset, which is impossible since by assumption
k=/=l. III

2P 10-'But RNo = lO'xIO-JI = 10 and, therefore,

The error probability for four bits will be

Perror in 4 bits = 1 - (1 - Pb)4 "" 3.1 X 10-3

2. If coding is employed, we have dmin = 3, and

E Eb P 4 20
- = Rc - = Rc-- = - x 5 = ­
No No RNo 7 7

Therefore, the message error probability is given by

Pe ::: (M - I)Q ( J2d;on
E

) = 15Q (~) = 15Q(4.14) "" 2.6 x 10-4

It is seen that, using this simple code decreases the error probability by a factor of 12...
Of course, the price that has been paid is an increase in the bandwidth required fo{.
transmission of the messages. This bandwidth expB!lsion ratio is given by .

Wcoded '= ~ = ~ = 1.75
Wuncoded Rc 4

Po = Q(.JiO) = Q(3.16) "" 7.86 x 10-4

Channel Capacity and Coding

Solution
1. Ifno coding is employed, we have

Hard-Decision Decoding. A simpler and more frequently used decoding:1
scheme is to make hard binary decisions on the components of the J;eceived vector r, .
and then to find the code word that is closest to it in the Hamming distance sense. The
following example clarifies the distinction between soft and hard decisions.

Example9.5.6.
A (3,1) code consists of the two code words 000 and 111. The code words are transmitted:
using binary PSK modulation with E = 1. The received vector (the sampled outputs of the ­
matched filters) is r = (.5, .5, -3). If soft decision is employed, we have to compare the
Euclidean distance between r and the two constellation points (1, 1, 1) and (-1, -1, -1)
and choose the smaller one. We have (dE(r, (1, 1, 1»2 = .52 + .52 + 42 = 16.5 and
(dE(r, (-1, -1, _1»2 = 1.52 + 1.52 + (_2)2 = 8.5 and, therefore, a soft-decision
decoder would decode r as (-1, -1, -1) or, equivalently, (0,0,0). However, if hardc
decision decoding is employed, r is first component-wise detected as 1 or 0. This requires
a comparison of the components of r with the zero threshold. The resulting vector y is.
therefore y = (1, 1,0). Now, we have to compare y with the (1, 1, 1) and (0,0,0) and
find the closer one in the Hamming distance sense. The result is, of course, (1, 1, 1). As ..
seen in this example, the results ofsoft-decision decoding and hard-decision decoding can
be quite different. Of course, soft-decision decoding is the optimal detection method and
achieves a lower probability of error. .

608
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(9.5.30)

(9.5.28)

(9.5.29)

(9.5.31)

(9.5.32)

Ci = Y EEl ez

Linear Block CodesSection 9.5

Therefore; the procedure for hard-decision decoding can be summarized as follows

1. Find r, the vector representation of the received signal.

2. Compare each component of r to the optimal threshold (usually 0) and make a
binary decision on it to obtain the binary vector y.

3. Find s = yHt the syndrome ofy.

4. Find the coset corresponding to s by using the standard array.

5. Find the coset leader e and decode y as C = YEEl·e.

Because in this decoding scheme the difference between the vector y and the decoded
vector c is e, the binary n-tuple e is frequently referred to as the error pattern. This
means that the coset leaders constitute the set ofall correctable error patterns.

To obtain error bounds in hqrd-decision decoding we note that, since a decision is
made on each individual bit, the error probability for each bit for antipodal signaling is

and for orthogonal signaling, is to

but Ck EEl ez belongs to the same coset that Ybelongs to. Therefore, to minimize d (Y, Cj),
we have to find the minimum weight element in the coset to which Y belongs. By
construction of the standard array, this element is the coset leader; i.e., we choose
Ck = 0 and therefore Cj = Cz. This means that Yis decoded into Ci by finding

the standard array and find the coset corresponding to s. Let us assume that the coset
leader corresponding to this coset is ez. Because Ybelongs to this coset, it is of the form
ez EB Cz for some i. The Hamming distance of y from any code word Cj is, therefore,

Because the code is linear, Cz EEl Cj = Ck for some 1 ::: k ::: M. This means that,

The channel between the input code word C and the output of the hard limiter y is a
binary-input binary-output channel that can be modeled by a binary-symmetric channel
with crossover probability Pb. Because the code is linear the distance between any two
code words Cz and Cj is equal to the distance between the all zero code word 0 and
the code word Cj EB Cj = Ck. Thus, without loss' of generality, we can assume that the
all-zero code word is transmitted. If0 is transmitted, the error probability, by the union
bound, cannot exceed (M - 1) times the probability of decoding the code word that is
closest to 0 in the Hamming distance sense. For this code word, denoted by c, which is

Channel Capacity and Coding

[
1 0 1 0 0]

G= 0 I 1 1 1

Using the construction explained above, we obtain the standard array

00000 01111 10100 11011 syndrome = 000
10000 11111 00100 01011 syndrome = 100
01000 00111 11100 10011 syndrome = 111
00010 01101 10110 11001 syndrome = 010
00001 01110 10101 11010 syndrome = 001
11000 10111 01100 000,11 syndrome = 011
10010 11101 00110 01001 syndrome = 110
10001 11110 00101 01010 syndrome = 101

, Assuming that the received vector r has been component-wise compared ,,:ith;~

threshold and the resulting binary vector is y, we have to find the code word WhICh IS,
at minimum Hamming distance from y. First, we find in which coset y is located. To:
do this, we find the syndrome of Yby calculating s = yHt

• After finding s, we refer to.

[
1 1 I 0 0]

H= 0 1 0 1 0
, 0 1 0 0 1

and the parity check matrix corresponding to G is

From this theorem, we conclude that each coset of the standard array can be uniquely
identified by the product elRt

• In general, for any binary sequence Y oflength n, We
define the syndrome s as '

s=yRt

If Y = ez EB Ci; Le., Ybelongs to the (1 + l)st coset, then obviously s = ezHt
. The

syndrome is a binary sequence of length n - k and correspondin.g to each coset there
exists a unique syndrome. Obviously, the syndrome corresponding to the first coset,
which consists of the code words, is s = O.
Example 9.5.7 ,

Find the standard array for the (5, 2) code with code words 00000, 10100,01111, 1101L'
Also find the syndromes corresponding to each coset. '

Solution The generator matrix of the code is

From this theorem, we conclude that the standard array contains exactly 2n - k

rows.

910

Theorem 9.5.3. If YI and Y2 are elements of the same coset, we have yIff -:

Y2Ht . "
Proof. It is enough to note that since YI and Y2 are in the same coset, YI = ez EB ci',

and Y2 = ez EB Cj, therefore

YIRt = (ez EB cz) Ht ='ezHt + 0 = (ez EB Cj) Ht
= Y2Ht

)f, '

iii;' :
~;t: '
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(9.5.35)

(9.5.36)

Figure 9.18 Relation between ec, ed and
dmino

dmin odd

dmin even

_[dmin - 1]ee -, 2

{
~

ee = 2
dmi2-2

Figure 9.17 Relation between ec and dmi•.

d min

D 0•ec ec

dmin

D 0
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other code word. This situation is ,shown in Figure 9.17. As shown, around each code
word there is a "Hamming sphere" of radius ee, where ee denotes the number of cor­
rectable errors. As long as these spheres are disjoint, the code is capable of correcting
ee errors. A little thinking shows that the condition for nonoverlapping spheres is

{
2ee + 1 = dmin dmin odd

2ee + 2 = dmin dmin even
or

which can be summarized as

In some cases, we are interested in decoding procedures that can detect errors
rather than correcting them. For example, in a communication system where a feedback
link is available from the receiver to the transmitter, it might be desirable to detect if an
error has occurred and if so, to ask the transmitter via the feedback channel to retransmit
the message. If we denote the error-detection capability of a code by ed, then qbviously,
in the absence of error correction,ed = dmin - 1, because if dmin - 1 or fewer errors
occur, the transmitted code, word will be converted to a noncode word sequence and,
therefore, an error is detected. Ifboth error correction and error detection are desirable, '
then there is naturally a trade-off between these. Figure 9.18 demonstrates this. From

dmin even

dmin odd

Channel Capacity and Coding612

or, in general,

at distance dmin from °we have

{

~d",i', (d~,.) pi (1 _ P )dm,.-i
i=dm'i+ l I b b l

dmilt dmin pi 1 _ P dmin- i
P(cIOsent):::o ~i=~+l (i) b( b)

+~(~)P~(l- Pb)~,

Therefore,

Error Detection versus Error Correction. Let C be a linear block code with'
minimum distance dmin • Then, if c is transmitted and hard-decision decoding is em-,
ployed, any code word will be decoded correctly if the received y is closer toc than any

d
min (d )Pe :::0 (M - 1) L 7n pi (1 - pbim,.-i

i=[¥J

This gives an upper bound on the error probability of a linear block code using hard-:
decision decoding. As seen here both in soft-decision and hard-decision decoding, dmin '
plays a major role in bounding the error probability. This means that, for a given (n, k),
it is desirable to have codes with large dmin.

It can be shown that the difference between the performance of soft- and hard~:

decision decoding is roughly 2 dB for an additive white Gaussian noise channel. That;
is, the error probability of a soft-decision decoding scheme is comparable to the error:,
probability ofa hard-decision scheme whose power is 2-dB higher than the soft-decision,
scheme. It can also be shown that if instead of quantization of each component of r to .
two levels, an 8-level quantizer (three bits/component) is employed, the performance:
difference with soft decision (infinite precision) reduces to 0.1 dB. This multilevel
quantization scheme, which is a compromise between soft (infinite precision) and hard
decision, is also referred to as soft decision in the literature. ' '

Example 9.5.8
If hard-decision decoding is employed in Example 9.5.5, how will the results change? ,

Solution Here Pb = Q({ij)= Q(2.39) = 0.0084 and dmi• = 3. Therefore,

Pe ~ G) pJ(l - Pbi + G) pl(l - Pb )4 + ... + P;

"'" 21P~ "'" 1.5 x 10-3

In this case, coding has decreased the error probability by a factor of 2, compared to 12 ,
in the soft-decisioncase."
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(9.6.1)

Figure 9.20 A block interleaver for coded data.
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Section 9.6

Cyclic codes are a subset oflinear block codes for which easily implementable encoders

and decoders exist. In this section, we will study the structure of cyclic codes.

Definition 9.6.1. A cyclic code is a linear block code with the extra condition

that if c is a code word, a cyclic shiftt of it is also a code word.

Example 9.6.1

The code {OOO, 110, 101, all} is a cyclic code because it is easily verified to be linear and

a cyclic shift of any code word is' also a code word. The code {OOO, 010. 101, lII} is not

cyclic because, although it is linear, a cyclic shift of 101 is not a code word.

interleaving/deinterleaving was not employed, an error burst oflength 8 could possibly

result in elToneous detection in 2 code words (up to 22 information bits).

9.6.1 The Structure of Cyclic Codes

To st.ndy the properties ofcyclic codes, it is easier to represent each code word as a poly­

nOIlllal; called the code word polynomial. The code word polynomial corresponding to

c = (Cl' C2, ... , cn-!, cn) is simply defined to be

!lie code word polynomial of c(l) = (C2, C3, ... , Cn-2, Cn-1, Cn, Cl), the cyclic shift of c;

IS

9.6 CYCLIC CODES
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this picture, we see that
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with the extra condition ec :S ea.

9.5.2 Burst-Error-Correcting-Codes

Most of the linear block codes are designed for correcting random errors; i.e., erra'

that occur independently from the location of other channel errors. Certain chann.

models including the additive white Gaussian noise channel, can be well modeled

channels with random errors. In some other physical channels, however, the assumpti

of independently generated errors is not a valid assumption. One such example iS,a

fading channel, as will be discussed in Section 10.1. In such a channel, if the channel

is in deep fade, a large number of errors occur in sequence; i.e., the errors have a burstY

nature. Obviously, in this channel, the probability of error at a certain location or tim,

depends on whether or not its adjacent bits are received correctly. Another example of

channel with bursty errors is a compact disc (see Section 9.10). Any physical damage to

a compact disc, such as a scratch, damages a sequence of bits and, therefore, the errors

tend to occur in bursts. Of course, any random error-correcting code can be used to,

correct bursts of errors as long as the number oferrors is less than half of the minimuriJ\

distance of the code. But the knowledge of the bursty nature of errors makes it possible

to design more efficient coding schemes. Two particular codes that are designed to be"

used for burst-error-correction are Fire codes and Burton codes. The interested reader"

is referred to Lin and Costello (1983) for a discussion of these codes.

An effective method for correction of error bursts is to interleave the coded data. '

such that the location of errors looks random- and is distributed over many code words ,"

rather than a few code words. In this way, the number of errors ,that occur in each block­

is low and can be corrected by using a random error-correctmg code. At the receiver, .

a deinterleaver is employed to undo the effect of the interleaver. A block diagram of a

coding system employing interleaving/deinterleaving is shown in Figure 9.19. "

An interleaver oj depth m reads m code words of length n each and arranges '

them in a block with m rows and n columns. Then, this block is read by column and

the output is sent to the digital modulator. At the receiver, the output of the detector is .

supplied to the deinterleaver, which generates the same m x n block structure and then

reads by row and sends the outputto the channel decoder. This is shown in Figure 9.20.

Let us assume that m = 8 and the code in use is a (15, 11) Hamming code capable,

of correcting one errorlCode word. Then, the block generated by the interleaver is a

8 x 15 block containing 120 binary symbols. Obviously, any burst of errors oflength 8 ,

or less will result in at most one elTor/code word and, therefore, can be corrected. If

f"

~·"l .

,~ I
i· ,

fl
~:
<!;, •

tA cyclic shift of the code word c= (CI, C2, ... , Cn_I, cn ) is defined to be c(1) = (C2, C3, ... ,

eJl-I , Gill cr)·Figure 9.19 Block diagram of a system that employs interleaving/deinterleaving

for burst-error-correction.

(1)( ) n-1 n-2 2
C P =C2P +C3P +"'+Cn-IP +CnP+Cl (9.6.2)

~;

~



tSee Lin and Costello (1983) for aproof.
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Input X(p) c(p) = X(p)g(p) Code word

0000 0 0 0000000
0001 1 p3 + p2 + 1 0001101
0010 P p4 +p3 + p 0011010
0100 p2 p5 + p4 + p2 0110100
1000 p3 p6 + p5 + p3 1101000
0011 p+l p4 + p2 + p + 1 0010110
0110 p2+ P p5 -+ p3 + p2 + p 0101110
1100 p3 + p2 p6 + p4 + p3 + p2 1011100
1001 p3 + 1 p6 + p5 + p2 + 1 1100101
0101 p2 + 1 p5 + p4+ p3 + 1 0111001
1010 p3 + P p6 + p5 + p4 + p 1110010
0111 p2 + p+ 1 p5 + P + 1 0100011
1110 p3 + p2+ P p6 + p2 + p 1000110 .
1101 p3 + p2 + 1 p6 + p4 + 1 1010001
1011 p3 + p+ 1 p6 + p5 + p4 + p3 + p2 + p + 1 1111111 .'~

1111. p3 +p2 + P + 1 p6 + p3 + p + 1 1001011

..~

--- -' .__ ..._._--..-
.---

As seen from the above table all cyclic shifts of a given code word are code words
themselves.

The following table shows the input binary sequences and the corresponding code words:

Section 9.6

The fact that any code word polynomial is the product of the generator polynomial
and the information sequence polynomial, implies that c = (CI, C2, ... , Cn-l, cn) is the
discrete convolution of the two sequences x = (Xl, X2, ... ,Xk) and g = (1, g2, ... ,
gn-k, 1). This fact is very important in designing cyclic encoders.

Example 9.6.2
To generate a (7,4) cyclic code we need a generator polynomial of degree n - k = 3.
This polynomial has to divide p 7 + 1. Since

p7 + i = (p + 1)(p3 + p2 + 1)(p3 + P + 1)

the only third degree polynomials that divide p7 + 1 are p3 + p2 + 1 and p3 + p + 1. We
can choose either of these polynomials to generate a cyclic code. If we choose

g(p) = p3 + p2 + 1

and multiply it by all X (p) polynomials of the form

X(p) = X1p3 + X2p2 +X3P + X4

where Xi is either one or zero, we generate 16 code word polynomials from which we can
obtain the code words. The X (p) polynomial is the messagepolynomial or the infonnation
sequence polynomial corresponding to the binary sequence to be encoded and, in general,

e(p) = X(p)g(p)

Channel Capacity and Coding

For i = n, we have

c(n)(p) = pne(p) (mod (pn + 1)

= (pn + l)e(p) + c(p) (mod (pn + 1)

=e(p)

The above result is obvious because shifting any code word n times leaves it unchanged. ..
The following theorem, which we will state without proof,t is fundamental in .

further study of cyclic codes.

Theorem 9.6.1. In any (n, k) cyclic code all code word polynomials are mul­

tiples of a polynomial of degree n - k of the form

g(p) =pn-k + g2pn-k-1 + g3pn-k-2 + ... + gn-kP + 1

called the generator polynomial, where g(p) divides pn + 1. Furthermore, for any
information sequence x = (Xl, X2, ... ,Xk-l, Xk), we have the information sequence

polynomial X (p) defined by

X(p) =xIl-I + X2pk-2 + ... +Xk-IP +Xk

and the code word polynomial corresponding to x is given by c(p) = X (p)g(p). II

C(2)(p) = pc(l)(p) (mod (pn + 1)

= p2c(p) (mod (pn + 1))

a(p) = b(p) (mod d(p))

means that a (p) and b(p) have the same remainder when divided by d(p). In general~·:.

for i shifts we have the code word polynomial . :.,'

c(i)(p)= piC(p) (mod (pn + 1)

where

or
e(ll(p) = pc(p) (mod (pn + 1))

If we shift c(l) once more the result will also be a code word and its code word polY~'·
nomial will be

which can be written as

e(l) (p) = peep) + el (p" + 1)

Noting that in the binary field addition and subtraction are equivalent, this reduces to.

pe(p) = e(l) (p) + el (p" + 1) (9.6.4

616
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Both switches
change to
position 2 after
transmission of
the first k bits

Cyclic Codes

Now having the Pi,/S, we can find G as follows

G~ [I
0 0 0 1 1

1]
1 0 0 0 1
0 1 0 1 1
0 0 1 1 0

Figure 9.21 Implementation of a cyclic encoder,

Section 9.6

Encoding of Cyclic Codes. Compared to the general class of linear block
codes, cyclic codes have more built in structure and this extra structure makes the
implementation of their encoders easier. The cyclic encoders can be implemented by
shift registers. In this section, we examine some basic structures for encoding of cyclic
codes. An easily implementable cyclic encoder is based on the observation that any
code word polynomial can be obtained by multiplying the generator polynomial g(p)
by the input sequence polynomial X(p), or equivalently by convolving sequences x
and p. This can easily be done by a digital filter-like structure as shown in Figure 9.21.
The main advantage of cyclic codes is the existence of an easily implementable decoder
for them. The interested reader is referred to the book by Lin and Costello (1983) for
details on decoding of cyclic codes.

Example 9.6.4
The encoder for the (7, 4) cyclic code this structure is shown in Figure 9.22,

':---:---;-:""""--::2'Encoded sequence .Parity check bits

Figure 9.22 Acyclic (7, 4) encoder.

~ ...n $t 81-

~ + - + ...•
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The Generator Matrix. Since the generator matrix G for a linear block Co
is not unique, for any cyclic code, with a given generator polynomial, there exist m
generator matrices. Here, we describe a method to obtain a generator matrix in"
systematic form. A generator matrix is in the systematic form if it can be written in'
form

p6 mod p3 + p2 + 1 = p2+ P

p5 mod p3 + p2 + 1 = p + 1

p4 mod p3 + p2 + 1 ~ p2 + p + 1

p3 mod p3 + p2 + 1 = p2 + 1

On the other hand, all rows of the generator matrix are code words. This means that
polynomials corresponding to different rows of the generator matrix' are all multipl,.
of the generator polynomial g(p). On the other hand the ith row of the matrix G is "

gi = (0,0, ... , 0, 1,0, ... , 0, Pi,l, Pi,2, ... , Pi,n-k)

gi(P) = pn-i + Pi,lpn- k- 1+ Pi,2p li
-

k- 2+ ... + pi,n-k = X(p)g(p)

where the first k components of gi are all zeros except the ith component which i
1 and Pi,j denotes the (i, j)th element of the matrlx P. From above, the polynomial
corresponding to gi is

() n-i n-k-l + n-k-2 + +gi P = P + Pi,lP Pi,2P . . . . Pi,n-k

Because gi (p) is the code word polynomial corresponding to the code word gi, it has"
to be a multiple of g(p), the generator polynomial of the cyclic code under study.'
Therefore, we have

Now, since g(p) is of degree n - k we conclude that

Pi,lpn-k-1 + Pi,2pn-k-2 + ... + Pi,n-k = pn- i (mod g(p)) 1:::: i :::: k

(9.6.16)

This relation shows that having g(p) we can find all Pi,/S for all 1:::: i::::k and
1:::: j :::: n - k. Therefore, P can be obtained from g(p) and, thus, we obtain G, the
generator matrix.

Example 9.6.3
Find the generator matrix in the systematic form for the (7,4) cyclic code generated by
g(p) = p3 + p2 + 1.

Solution We observe that

"""-i.. -.-I
l
I

:1 1
. t

­...
'<:] .
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g(p)

(continued)

13
23
721
2467
45
3551
107657
5423325
313365047
103
12471
1701317
166623567
1033500423
157464165547
17323260404441
1363026512351725
6331141367235453
472622305527250155
5231045543503271737
211
41567
11554743
3447023271
624730022327
130704476322273
26230002166130115
6255010713253127753
1206534025570773100045
335265252505705053517721
54446512523314012421501421
1772J772213651227521220574343
3146074666522075044764575721735
403114461367670603667530141176155
123376070404722522435445626637647043
22057042445604554770523013762217604353
7047264052751030651476224271567733130217
435
267543
156720665
75626641375
23157564726421
16176560567636227
7633031270420722341
2663470176115333714567
52755313540001322236351

1
1
2
3
1
2
3
5
7
1
2
3
4
5
6
7

10
11
13
15
1
2
3
4
5
6
7
9

10
11
13
14
15
21
23
27
31
1
2
3
4
5
6
7
8
9

Cyclic Codes

4
11
7
5

26
21
16
11
6

57
51
45
39
36
30
24
18
16
10
7

120
113
106
99
9~

85
78
71
64
57
50
43
36
29
22
15
8

247
239
231
223
215
207
199
191
187

7
15

31

63

Section 9.6

TABLE 9.1 COEFFICIENTS OF THE GENERATOR POLYNOMIALS OF BCH CODES

n k

127

255

N

k I k I ~

Channel Capacity and Coding

Dmin = N - K + 1
K

Rc =-
N

k I k I---~ EJ
K
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N = q -1 = Zk-1

K=1,3, ... ,N-Z

BCH Codes. Bose, Chaudhuri, and Hocquenghem (BCH) codes are a subcl
ofcyclic codes that, in general, can be designed for correction of t errors. This versatili
in design and the existence of an efficient decoding algorithm for these codes ( .
Berlekamp-Massey algorithm) makes these codes particularly attractive.

To be more specific, for any m and t, there exists a BCH code with parameters'

n = 2m
- 1

n - k :'S mt

Figure 9.23 A Reed-Solomon encoder.

Reed~Solomon CodES. Reed-Solomon codes are a subset of BCH codes and, .
therefore, belong to the family of cyclic codes. Reed-Solomon codes are nonbinary'
codes; i.e., in a code word-c = (el, C2, •.• , cn), the elements Ci, 1 :'S i :'S n, are members
of a q-ary alphabet. In most practical cases q is chosen to be a power of2, say q = Zk. In:
such a case, k-information bits are mapped into a single element from the q-ary alphabet
and, then, using an (N, K) Reed-Solomon code, K, q-ary symbols are mapped into N
q-ary symbols and transmitted over the channel. Figure 9.Z3 shows this procedure..

A Reed-Solomon code is a BCH code defined by the following parameters.

Since m and t are arbitrary, the designer of the communication system has a large"
number of selections in this family of codes. BCH codes are well tabulated. Table 9.f
shows a table of the coefficients of the generator polynomials for BCH codes of length.
7 :'S n :'S 255. The coefficients of g(p) are given in octal form. Thus, the coefficients
of the generator polynomial of the (15,5) code are 2467, which in binary form is':
010,100,110,111. Consequently, the generator polynomial for this code is g(p) =
plO + p8 + p5 + p4 + p2 + P + 1.

More information on the properties of BCH codes and their decoding algorithms·
can be found in Lin and Costello (1983) and Blahut (1983).



symbol errors.
Reed-Solomon codes have particularly good distance properties, are quite suitable

for use in conjunction with q-ary modulation, and are useful in situations where errors
tend to happen in "bursts" rather than randomly. This latter property is a consequence

. of the fact that bursts of errors cause only a few symbol errors in a Reed-Solomon code,
which can easily be corrected. In binary codes, the same burst results in many bits in
error which may not be easily corrected.

623

n

Encoded
sequence

to modulator

32lrz
'----------==~-------

Convolutional CodesSection 9.7

I~E-------------Lkstages----------+/'1

Figure 9.24 The block diagram of a convolutional encoder.

Reed-Solomon codes can also be concatenated with a binary code to provide
higher levels of error protection. The binary code used in concatenation with the Reed­
Solomon codes could be either a blockcode or a convolutional code. The binary encoder
and decoder are located rightbefore the modulator and after the demodulator, respec­
tively, and are called the inner encoder-decoder pair. We will discuss these codes in
Section 9.8.

9.7 CONVOLUTIONAL CODES

Convolutional codes are different from the block codes by the existence of memory in
the encoding scheme. In block codes, each block of k input bits is mapped into a block
oflength n of output bits by a rule defined by the code (for example by G or g(p)) and
regardless of the previous inputs to the encoder. The rate of such a code is given by

k
Rc = - (9.7.1)

n

In convolutional codes, each block ofk bits is again mapped into a block of n bits
to be transmitted over the channel, but these n bits are not only determined by the
present k-information bits but also by the previous information bits. This dependence
on the previous information bits causes the encoder to be a finite state machine.

To be more specific, the block diagram of a convolutional encoder is given in
Figure 9.24. The convolutional encoder consists of a shift register with kL stages where
L is called the constraint length of the code. At each instant of time, k-information
bits enter the shift register and the contents of the last k stages of the shift register
are dropped. After the k bits have entered the shift register, n-linear combinations of
the contents of the shift register, as shown in the figure, are computed and used to
generate the encoded waveform; From the above coding procedure, it is obvious that
the n-encoder outputs not only depend on the most recent k bits that have entered the

(9.6.24)

g(p)

Channel Capacity and Coding

COEFFICIENTS OFTHE GENERATOR POLYNOMIALS OF BCH CODES (continued)
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TABLE 9.1

n k

179
171
163
155
147
139
131
123
115
107
99
91
87
79
71
63
55

47

45

37

29

21

13

9

10 22624710717340432416300455
11 15416214212342356077061630637
12 7500415510075602551574724514601
13 3757513005407665015722506464677633
14 1642130173537165525304165305441011711
15 461401732060175561570722730247453567445
18 215713331471510151261250277442142024165471
19 120614052242066003717210326516141226272506267
21 60526665572100247263636404600276352556313472737
22 22205772322066256312417300235347420176574750154441
23 10656667253473174222741416201574332252411076432303431
25 6750265030327444172723631724732511075550762720724344561
26 110136763414743236435231634307172046206722545273311721317
27 66700035637657500020270344207366174621015326711766541342355
29 24024710520644321515554172112331163205444250362557643221706035
30 10754475055163544325315217357707003666111726455267613656702543301
31 73154252035011001330152753060320543254143267550105570444260354

73617
42 25335420170626465630330413774062331751233341454460450050660245

52543173
43 152020560552341611311013463764237401563670024470762373033202157

025051541
45 51363302550670074141774472454375304207357061743234323476443547

37403044003 .
47 30257155366730714655270640123613771153422423242011741140602547

57410403565037
55 12562152570603326560017731536076121032273414056530745425211531

21614466513473725
59 46417320050525645444265737142500660043306774454765614031746772

1357026134460500547
63 15726025217472463201031043255355134614162367212044074545112766

115547705561677516057

This code is capable of correcting up to

t = Dmin -1
2

t(From paper by Stenbit; © 1964 IEEE. Reprinted with permission.)

~
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Figure 9.27 Trellis diagram for the
encoder of Figure 9.25.

Figure 9.26 State transition diagram for
tbe encoder of Figure 9.25.
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Section 9.7, Convolutional Codes

A second, and more popular method, to describe convolutional codes is to specify
their trellis diagram. The trellis diagram is a way to show the transition between various
states as the time evolves. The trellis diagram is 'Obtained by specifying aU states on a
vertical axis and repeating this vertical axis along the time axis. Then, each transition
from a state to another state is denoted by aline connecting the two states on two adjacent
vertical axes. In a sense, the trellis diagram is nothing but a repetition of the state­
transition diagram along the time axes. As was the case with the state transition diagram,
here again we have Zk branches of the trellis leaving each state and 2k branches merging
at each. In the case where k = 1, it is common to denote the branch corresponding
to a 0 input by a bold line and the branch corresponding to a 1 input to the encoder
by a dashed line. Figure 9.27 shows the trellis diagram for the code described by the
encoder of Figure 9.25. '

Encoding. The encoding procedure in a convolutional code is very simple.
We assume that the encoder, before the first information bit enters it, is loaded with
zeros (the all-zero state). The information bits enter the encoder k bits at a time and

b 01 •

a 00 't,\_";o:..:o_~_o:.;O~~~.:..:..._~_...::..:.~,",,,

\11
\

\

States

Figure 9.25 A rate ~ convolutional
encoder.

Channel Capacity and Coding

'--n=2

L=3

k
Rc =­

n

9.7.1 Basic Properties of Convolutional Codes

Because a convolutional encoder has finite memory, it can easily be represented by a
state-transition diagram. In the state-transition diagram, each state of the convoluti~nal
encoder is represented by a box and transitions between states are denoted by lInes
connecting these boxes. On each line both the input(s) causing that transition and ~e,
corresponding output are specified. The numb~r of lines emerging from each st~te I~,
therefore, equal to the number of possible inputs to the encoder at that state, WhICh IS
equal to Zk. The number of lines merging at each state is equal to the number of st~tes
from which a transition is possible to this state. This is equal to the number of.poSSl~le
combinations of bits that leave the encoder as the k bits enter the encoder. This, agam,
is equal to 2k • Figure 9.26 shows the state transition matrix for the convolutional code

of Figure 9.25.

Example 9.7.1
A convolutional encoder is shown in Figure 9.25. In this encoder k = 1, n = 2, and'L ::' .
Therefore, the rate of the code is 1and the number of states is 2(L- l lk = 4. One way to'
describe such a code (other than drawing the encoder) is to specify how the two output
bits of the encoder depend on the contents of the shift register. This is usually done by
specifying n vectors gl, gz, ... , gn, known as generator sequences of the convolutional
code. The ith 1::; i ::; 2kL component of gj, 1::; j ::; n, is 1 if the ith stage of the shift
register is connected to the combiner corresponding to the j th bit in the output and 0 ,
otherwise. In the above example, the generator sequences are given by

gl = [1 0 1]

gz = [1 1 1]

encoder but also on the (L - l)k contents of the first (L - l)k stages of the
register before the k bits arrived. Therefore, the shift register is a finite state mac
with 2(L-I)k states. Because for each k-input bits, we have n-output bits, the rate oft ,
code is simply

624
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Figure 9.28 Flow graph for finding the
transfer function.
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00

T(D, N, J) == L adDdN!(d) Jg(d)

d=drr~

NJ

Convolutional Codes

shift register. We denote these states by the following letters

00 -7 a

01 -7 b

lO-7c

11 -7 d

As seen i.n the figure, state a is sp.lit into states a' and an denoting the starting and returning

state. Usmg the flow graph relatlOns, we can write

Xc = Xa,D2N J + N JXb

Xb == DJXd + DJXc

Xd==DNJXc+DNJXd

Xa" == D2JXb

Eliminating Xb, Xc, and Xd results in

T(D,N,1)==XO"== D
5
NJ3

X, 1- DNJ _ DNJ2 (9.7.3)

Now, expanding T(D, N, J) in a polynomial fonn, we obtain

T(D, N, J) == D5NJ3+ D6N 2 J4+ D6N 2 J5 + D7N 3 J5 +... (9.7.4)

The term D
5
N J3 in~icates that there exists a path through the trellis starting from the all­

zero state ~d return;-ng to.the all-zero state for the first time, which spans three branches,

corresponding to an mp~t-mformation sequence containing one 1 (and, therefore, two O's),

and th.e co~e wordfor this path has Hamming weight equal to 5. This path is indicated with

bold l~nes m the FIgure 9.29. This path is somewhat similar to the minimum-weight code

",:ord m ~lock codes. In fact, this path corresponds to the code word that is at "minimum

dl~t~nce from the all zero code word. This minimum distance which is equal to the

Illlllimum power of D in the expansi?n of T (D, N, J) is called the free distance of the

code and denoted by dfree: Th.e free distance of the above code is equal to 5. The general

, form of the transfer functIon IS, therefore,
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the corresponding n-output bits are transmitted over the channel. This procedure is

continued until the last group ofk bits are loaded into the encoder and the corresponding'

n-output bits are sent over the channeL We will assume, for simplicity, that after the:

last set of k bits, another set of k(L - 1) zeros enter the encoder and the corresponding

n outputs are transmitted over the channel. This returns the encoder to the all-zero state

and makes it ready for next transmission,'

Example 9.7.2
In the convolutional code shown in Figure 9.25, what is the encoded sequence correspond_ "

ing to the infonnation sequence x == (1101011)?

Solution It is enough to note that the encoder is in state 0 before transmission, and after',

transmission of the last infonnation bit two 0 bits are transmitted, This means that the

transmitted sequence is XI == (110101100). Using this transmission sequence we have the

following code word c == (111010000100101011).

The Transfer Function. For every convolutional code, the transfer function

gives information about the various paths through the trellis that start from the all-zero

state and return to this state for the first time. According to the coding convention '

described before, any code word of a convolutional encoder corresponds to a path "

through the trellis that starts from the all-zero state and returns to the all-zero state. "

As we will see in Section 9.7.4, the transfer function of a convolutional code plays a,T

major role in bounding the error probability of the code. To obtain the transfer function -:::

of a convolutional code, we split the all~zero state into two states, one denoting the

starting state and one denoting the firsrreturn to the all-zero state. All the other states

are denoted as in-between states. Corresponding to each branch connecting two states,

a function of the form Da:N~J is defu1ed where a denotes the number of ones in the

output bit sequence for that branch and f3 is the number of ones in the corresponding

input sequence for that branch. The transferfunction of the convolutional code is, then,

the transfer function of the flow graph between the starting all-zero state and the final

all-zero state, and will be a function of the tree parameters D, N, J and denoted by

T(D, N, J). Each element of T(D, N, J) corresponds to a path through the trellis.

starting from the all-zero state and endi,ng at the all-zero state. The exponent of I'

indicates the number of branches spanned by that path, the exponent of D shows ..

the number of ones in the code word corresponcFng to that path (or equivalently the

Hamming weight of the code word), and finally, the exponent of N indicates the number'

of ones in the input information sequence, Since T (D, N, J) indicates the properties

of all paths through the trellis starting from the all-zero path and returning to itfor the.

first time, then, in deriving it, any self loop at the all-zero stateis ignored. To Obtain),

the transfer function of the convolutional code, one can use all rules that can be used':.,'

to obtain the transfer function of a flow graph. ,',

Example9.7.3
Find the transfer function of the convolutional code of Figure 9,25.

Solution Figure 9.28 shows the diagram used to find the transfer function of this

The code has a total of four states denoted by the contents of the first two stages of the
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Figure 9.30 Encoder and the state-transition diagram for a catastrophic code.

Section 9.7

gl = [l 1 OJ

g2 = [0 1 1J

The enc~der.an~ the state-transition diagram for this code are given in Figure 9.30.
~s seen ill this dIagram, there exists a self loop in state "11" that corresponds to a "1"
~put ~o the en~oder and the co~espondingoutput consists of all zeros. Therefore, if an
mput-informatlon stream conSIsts of all ones, the corresponding output will be

c = (IPOlOOOO ... 0001001)

Ifwe compare this code word to the code word corresponding to the all-zero information
sequence

As an example of a catastrophic code, let us consider the (2, 1) code described
by

Co = (0000 ... 000)

we ??serve that, althoug~ the information sequences are different in a large number of
pO~ltlOnS, the correspondmg output sequences are quite close (the Hamming distance
bemg only 4) and therefore they can be mistaken very easily; The existence of such a
s~lf loop corresponding to k inputs which are not all zeros and forwhich the n output·
bItS are all zeros, shows that a code is catastrophic and should, therefore, be avoided.

9.7.2 Optimum Decoding of Convolutional Codes-The
. Viterbi Algorithm

In our di~c~~sionof various decoding schemes for block codes, we saw that there exists
theposslbllI:y of soft- and hard-decision decoding. In soft-decision decoding, I, the

. ve~tor ~enotmg the ou~uts of the matched filters is compared to the various signal
~omts I~ the c~nstellat1on of the coded-modulation system, and the one closest to it

. m EuclIdean distance is chosen. In hard-decision decoding, I, is first turned into a

Figure 9.29 The path corresponding to
D 5N J3 in code represented in
Figure 9.25.
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Catastrophic Codes. A convolutional code maps a (usually long) sequence of
input-information bits into a code word to be transmitted over the channel. The purpose
of coding is to provide higher levels of protection against channel noise. Obviously, a ..
code that maps information sequences that are far apart into code words that are not far .
apart is not a good code since these two code words can be mistaken rather easily and
the result would be a large number of bit errors in the information stream. A limiting
case of this undesirable property happens when two information sequences that are
different in infinitely many positions are mapped into code words that differ only in a .
finite number of positions. In such a case, since the code words differ in a finite number
of bits, there always exists the probability that they will be erroneously decoded and
this, in turn, res11lts in ali infinite number of errors in detecting the input information
sequence. Codes that exhibit this property are called catastrophic codes and should be

avoided in practice.

and will later be used in deriving bounds on the error probabilities of the convolutional

codes.

Example 9.7.4
For the code of Figure 9.25 we have

A shorter form of transfer function, which only provides information about the
weight of the code words, can be obtained from T (D, N, J) by setting N = J = l.
This shorter form will be denoted by

628
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Section 9.7

First, observe that if the path (SI ='0, Si = 1, Sm = 0), 1 ~ i ::s; m, is the optimal path,
where O::s; 1::s; M - 1 (M =2(L-l)k is the number of states), then the metric contri­
bution of the path (SI = 0, Si =1) is lower than the metric contribution of any other
path (SI = 0, Si = 1) connecting S1 = 0 to Si = 1. Otherwise, the path consisting of
(S1 = 0, Si = 1) and (Si = 1, Sm = 0) would be the optimal path. This is shown in
Figure 9.3l.

In Problem 9.42, it is shown that the number of branches entering each state in
the trellis is 2k

. Let Ai-l denote the set of 2k states that are connected with a branch to
Si = 1. If the path from Sl = 0 to Si = 1is the optimal path between these two states,
then this path must be the concatenation of an optimal path connecting SI = 0 to a state
Si-1 = Afor some A. E Ai-1, and the branch connecting Si-1 = Ato Si = 1. The optimal
pathconnectingSl = OtOSi_l = AiscalledasurvivorpathatstateSi_l = A, or simply
a survivor. Therefore, in order to find the survivor path at state Si = I, it is sufficient to
have the survivors (and theirmetrics) for all Si-1 =,A., A E Ai-I, append them with the

m

f.L(a, b) = I>'l.(ai, hi)
i=1

tThe problem can also be formulated as a maximization problem. For example, instead ofminimizing
the Euclidean distance, one could maximize the correlation.

measure between a and a sequence b corresponding to that path is minimized. t The
important fact that makes this problem easy to solve is that the distance between a
and b in both cases of interest can be written as the sum of distances corresponding
to individual branches of the path. This is easily observed from Equations (9.7.7) and
(9.7.8).

Let us assume that the general problem is formulated as minimizing a metric f.L
in the form

Figure 9.31 Comparison of the optimal path, (Sj = 0, S; = /, Sm = 0), with a
suboptimal path consisting of the concatenation of (Sj = 0, S; = 1) and
(S; = 1, Sm = 0).

and 1::s; j ::s; nfor 1 ::s; i ::s; m

Channel Capacity and Coding

o {v!£ Cij = 1ct. = ~
IJ -ve, Cij = 0

3. Instead of Hamming distance, we are using Euclidean distance. This is a con-."
sequence of the fact that the channel under study is an additive white Gaussian '
noise channel.
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In soft-decision decoding, we have a similar situation with three differences.

1. Instead of y, we are dealing directly with the vector r, the vector output of the
optimal (matched-filter type or correlators-type) digital demodulator.

2. Instead of the binary 0, 1 sequence c, we are dealing with the corresponding
sequence c' with

m

d(c, y) ~ :La(Ci, Yi)
i=1

binary sequence y by making decisions on individual components of r, and then t'
code word, which is closest to y in the Hamming distance, is chosen. It is seen
in both approaches, a fundamental task is to find a path through the trellis that is
minimum distance from a given sequence. This fundamental problem arises in rna'
areas of communications, and other disciplines of electrical engineering. Particular
the same problem is encountered in ML sequence estimation when transmitting 0\7

bandlimited channels with intersyrnbol interference (see Chapter 8), demodulati
of CPM schemes (see Chapter 10), speech recognition, some pattern-classification'
schemes, etc. All these problems are essentially the same and can be titled as optimal'
trellis searching algorithms. The well known Viterbi algorithm, described previously
in Sections 8.5 and 8.6, provides a satisfactory solution to all these problems. 0 ....•• ,:

In hard-decision decoding of convolutional codes, we want t6 choose a path
through the trellis whose code word, denoted by c, is at minimum Hamming distance:;
from the quantized received sequence y. In hard-decision decoding, the channel is"
binary memoryless (the fact that the channel is memoryless follows from the fact that~

the channel noise is assumed to be white). Because the desired path starts from the:
all-zero state and returns back to the all-zero state, we assume that this path spans a':
total of m branches, and since each branch corresponds to n bits of the encoder output;"
the total number of bits in c, and also in y, is mn. We denote the sequence of bits"
corresponding to the ith branch by Ci and Yi, respectively, where 1 ::s; i ::s; m, and each 0'

Ci and Yi is oflength n. The Hamming distance between C and Yis, therefore,

From the above, we have
m

d~(c', r) = :Ld~(c;, ri)
i=1

From Equations (9.7.7) and (9.7.8), it is seen that the genericform of the problem,
we have to solve is: given a vector a to find a path through the trellis, starting at the
all-zero state SI = 0 and ending at the all-zero state Sm = 0, such that some distance
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Figure 9.33 The trellis diagram for Viterbi decoding of the sequence
(01101111010001).

Received --->- 01
sequence

Section 9.7

y = (01101111010001)

The convolutional code is the one given in Figure 9.25. Find the ML information sequence
and the number of errors.

Solution The code is a (2, 1) code with L = 3. The length of the received sequence
y is 14. This means that m = 7 and we have to draw a trellis of depth 7. Also note
that, because the input-information sequence is padded with k(L - 1) = 2 zeros, for the
final two stages of the trellis we will only draw the branches corresponding to all zero
inputs. This also means that the actual length of the input sequence is 5, which, after
padding with 2 zeros, has increased to 7. The trellis diagram for this case is shown in

To obtain the best guess about the input bit sequence, remove the last k(L - 1)
zeros from this sequence.

As seen from the above algorithm, the decoding delay and the amount ofmemory
required for decoding a long information sequence is unacceptable. The decoding
cannot be started until the whole sequence (which, in the case of convolutional codes,
Can be very long) is received, and all surviving paths have to be stored. In practice, a
suboptimal solution that does not cause these problems is desirable. One such approach,
referred to as path-memory truncation, is that the decoder at each stage only searches
" stages back in the trellis instead of searching back to the start of the trellis. With
this approach at the (8 + l)th stage, the decoder makes a decision on the input bits
.corresponding to the first stage of the trellis (the first k bits) and future received bits do
.not change this decision. This means that the decoding delay will be k8 bits and it is
only required to keep the surviving paths corresponding to the last 8 stages. Computer
simulations have shown that if" ~ 5L, the degradation in performance due to path­
memory truncation is negligible.

Example 9.7.5
Let us assume that in hard-decision decoding, the quantized received sequence is

ChapterChannel Capacity and Coding
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Having found the survivor metric, the new survivor at Si = 1is the path (Sl = 0, Si-l =.'

A, Si = l) for the Athat minimizes the su,rvivor metric in Equation 9.7.9.
The above procedure can be summarize.d with the Viterbi algorithm.

I

1. Parse the received sequence into m subsequences each of length n.
2. Draw a trellis of depth m for the code under study. For the last L - 1 stages of

the trellis, draw only paths corresponding to the all-zero input sequences (this is
done because we know that the input sequence has been padded with k(L - 1)
zeros).

3. Set i = 1, and set the metric of the initial all-zero state equal to zero.

4. Find the distance of the i th subsequence of the received sequence to all branches
connecting ith stage states to the (i + l)st-stage states of the trellis.

5. Add these distances to the metrics of the ith stage states to obtain the metric
candidates for the (i + l)st-stage states. For each state of the (i + l)st stage, there
are 2k metrics candidate, each corresponding to one branch ending at that state.

6. For each state at the (i + l)ststage, choose the minimum of the metric candidates,
label the branch corresponding to this minimum value as the survivor, and assign
the minimum of the metric candidates as the metrics of the (i + l)st-stage states.

7. If i = m, go to step 8, otherwise increase i by 1 and go to step 4.
8. Starting with the all-zero state at the final stage, go back through the trellis along

the survivors to reach the initial all-zero state. This path is the optimal path and the
input-bit sequence corresponding to it is the ML decoded information sequence.
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branches connecting elements of Ai_Ito Sf = l, find the metric of the resulting paths'·
from Sl = 0 to Si = I, and pick the one with minimum metric; this will be the new
survivor path at Si = l. This process is started at Sl = 0 and is finished at Sm =0; the·'
final survivor at Sm = 0 is the optimal path and the best (maximum-likelihood) match
to the received sequence. This process is shown in Figure 9.32.

At each step, the new survivor metric is

J.L(SI = 0, Si = I) = min LU(SI = 0, Si-l = A) + J.L(Si-l = A, Si =I)} (9.7.9)
AeAi_1



For soft-decision decoding a similarprocedure is followed with squaredEuclidean

distance substituted for Hamming distance.
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Figure 9.34 The path corresponding to
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The longer the input sequence, the higher the probability ofmaking errors. Therefore, it

makes sense ~onormalizethe number of bit errors to the length of the input sequence. A

:neasure that 1S usually adopted for comparing the performance of convolutional codes

1S the expected number of bits received in error/input bit. '

T~ find a bound on the average number of bits in error for each input bit, we

first denve a bound ?n th~ average number of bits in errOr for each input sequence of

length k. To determme this, let us assume that the all-zeros sequence is transmittedt

and, up to stage / in the decoding. there has been no error. Now k-information bits

~nter tile encoder and result inmoving to the next stage in the trellis. We are interested

III finding a bound on the expected number of errors that can occur due to this input

block of len~th k. Because we are assuming that up to stage / there has been no error.

then.up to thIS stage the all-zero path through the trellis has the minimum metric. Now,

mo~mg ~o the next stage (stage (l + l)th), it is possible that another path through the

trellis WIll have a metric less than the all-zero path and, therefore. cause errors. If this

happens•.we must have a path through the trellis that merges with the all-zero path, for

the first ~me, at the (/ + l)st stage and has a metric less than the all-zero path. Such

an event IS called the first-error-event and the corresponding probability is called the

first-error-event probability. This situation is depicted in Figure 9.34.

Our ~r~tstep would be bounding the first-error-event probability. Let P2 (d) denote

the probab111~ that a patJ: through the trellis which is at Hamming distance d from the

all-.zero path, 1S the surVIvor at the (l + l)st stage. Denoting the number of paths of

weight d by ad, we can bound the first-error-event probability by

w?ere on the right-hand side, we have included all paths through the trellis that merge

WIth the all-zero path at the (/ + 1)8t stage. The value of P2 (d) depends on whether

soft- or hard-decision decoding is employed.

t~ecause of the linearity of convolutional codes we can, without loss of generality, make this
assumptIOn.

..

..

Figure 9.33. The parsed received sequence y is also shown in this figure. Note that/

drawing the trellis in the last two stages, we have only considered the zero inputs to th

encoder (notice that, in the final two stages, there exist no dashed lines correspon .

to 1 inputs). Now, the metric of the initial all-zero state is set to zero and the metrics

the next stage are computed. In this step, there is only one branch entering each stat

therefore there is no comparison, and the metrics (which are the Hamming distanc

between that part of the received sequence and the branches of the trellis) are added t

the metric of the previous state. In the next stage, there exists no comparison either. In the

third stage, for the first time we have two branches entering each state. This means that

a comparison has to be made here and survivors are to be chosen. From the two branches'::,

that enter each state. one which corresponds to the least total accumulated metric remains':

as a survivor and the other branches are deleted. If at any stage, two paths result in the ~

same metric, each one of them can be a survivor. Such cases have been marked by a

"?" in the trellis diagram. The procedure is continued to the final all-zero state of the";

trellis and then starting from that state. we move along the surviving paths to the initial' ,.

all-zero state. This path. which is denoted by a' heavy path through the trellis is the:

optimal path. The input bit sequence corresponding to this path is 1100000 where the 1aitT

two zeros are not information bits but were added to return the encoder to the all-zero:~

state. Therefore, the information sequence is 11000. The corresponding code word for ..··

the selected path is 11101011000000, which is at Hamming distance 4 from the received

sequence. No other path through the trellis is at a Hamming distance less than 4 from the

received y. .

Channel Capacity and Coding
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9.7.3 Other Decoding Algorithms for Convolutional Codes

The Viterbi algorithm provides maximum-likelihood decoding for convolutional codes;

However, as we have already seen, the complexity of the algorithm is proportionalto the.

number of states in the trellis diagram. This means that the complexity of the algorithm '.'

increases exponentially with the constraint length ofthe convolutional codes. Therefore.

the Viterbi algorithm can be applied only to codes with low-constraint lengths. For

higher constraint-length codes other suboptimal decoding schemes have been proposed.

These include the sequential decoding ofWozencraft (1957); the Fano algorithm (1963), ,

the stack algorithm (Zigangirov (1966) and Jelinek (1969)); the feedback-decoding

algorithm (Heller (1975)); and majority logic decoding (Massey (1963)).

9.7.4 Bounds on Error Probability of Convolutional Codes

Finding bounds on the error performance of c6nvolutional codes is different from the

method used to find error bounds for block codes. because, here we are dealing with

sequences of very large length and. since the free distance of these codes is usually

small. some errors will eventually occur. The number of errors is a tandom variable

that depends both on the channel characteristics (SNR in soft-decision decoding and'

crossover probability in hard-decision decoding) and the length of the input sequence.
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If we define

we have

Therefore, using Equations (9.7.16) and (9.7.18), one obtains

P (k) < ~ BT2(D, N) I
b - 2 aN tb

N=l,D=<-R,NO

To obtain the average number of bits in error for each input bit, we have to divide this
bound by k. Thus, the final result is .

P <~ aT2(D,N)1
b -:- 2k aN N=l,D=<-R,#,; (9.7.20)

For high SNRs, the first term corresponding to the minimum distance, is the dominant
term, and we have the approximation

- 1
Pb >:>i-ad· f(dm; )e-R,.dm;,E:b/No

2k mm n .

For hard-decision decoding, the basic procedure follows the above derivation.
The only difference is the bound on P2 (d). It can be shown that (see Problem 9.49)
P2 (d) can be bounded by .

P2(d) ~ [4p(l- p)]d/2 (9.7.22)

where p is the crossover probability of the binary symmetric channel. Using this result,
it is straightforward to show that in hard-decision decoding, the probability of error is
upperbounded as

P <.~ aT2(D, N) I
b - k aN

. N=l,D=.j4p(1-p)

A comparison of hard-decision decoding and soft-decision decoding for convolutional
codes shows that here, as in the case for linear block codes, soft-decision decoding
outperforms hard-decision decoding by a margin of roughly 2 dB in additive white
Gaussian noise channels. .

Coiwolutional Codes with Good Distance Properties. From the analysis
carried out above it is obvious that dfree plays a major role in the performance of
convolutional codes. For a given nand k, the free distance of a convolutional code
depends on the constraint length of the code. Searching for convolutional codes with

Channel Capacity and Coding

=Q(ft!)
=Q(V2Rcd~)

For soft-decision decoding, if antipodal signaling (binary PSK) is used, we have.

P2(d) = Q (:Z~J

Now, noting that

we finally obtain

Pb(k) ~ d'f, adf(d)Q (V2Rcd~)

~ ~ f ad!(d)e-R,dGb/No

d=dr=

and, therefore,
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This is a bound on the first-error-event probability. To find a bound on the average
number of bits in error for k-input bits, h(k), we note that each path through the
trellis causes a certain number of input bits to be decoded erroneously. For a general
Dd N fed) p(d) in the expansion of T(D, N, J), there are a total of ! (d) nonzero-input
bits. This means that the average number of input bits in error can be obtained by
multiplying the probability of choosing each path by the total number of input errors
that would result if that path were chosen. Hence, the average number of bits in error, _.
in the soft-decision case, can be bounded by

Using the upper bound on the Q function, we have

Q (V2Rcd~.) ~ ~e-R'dGb/NO.



good distance properties has been extensively carried out in the literature. Tables 9.2
and 9.3 summarize the result of computer simulations carried out for rate ~ and rate t
convolutional codes. In these tables, for each constraint length, the convolutional code
that achieves the highest free distance is tabulated. For this code, the generators gi are
given in octal form. The resulting free distance of the code is also given in these tables.

639Complex Codes Based on Combination of Simple CodesSection 9.8

block codes with a given rate and with high minimum distance, we have to increase n,
the block length of the code. Increasing n increases the complexity of the decoding. In
most decoding algorithms the complexity of the decoding increases exponentially with
increasing the block length of the code.

For convolutional codes, increasing the free distance at a given rate requires
increasing the constraint length of the code. But increasing the constraint length of
the code increases the number of states in the code trellis, which in tum, increases
the decoding complexity. Again, here the decoding complexity increases exponentially
with the constraint length of the convolutional code.

Various methods have been proposed to increase the effective block length of the
code but at the same time keeping the complexity tractable. Most of these methods are
based on combining simple codes to generate more complex codes. The decoding of
the resulting code is performed by using methods for decoding the simple component
codes. The resulting decoding is a SUboptimal decoding scheme, which in most cases
performs satisfactOrily. Here, we discuss three widely used methods for combining
simple codes to generate more complex codes. These techniques generate product
codes, concatenated codes, and turbo codes.

Figure 9.35 The structure of a product
code.

9.8.1 Product Codes

The structure ofproduct codes (or array codes) is very similar to a crossword puzzle.
Product codes are generated by using two linear block codes arranged in a matrix form.
Two linear block codes, one with parameters n j, k j , dmi.n j and another with parameters
n2, k2 , dmiD.2, are used in a matrix of the form shown in Figure 9.35 The resulting code
is an (njn2, k-j k2) linear block code. It can be shown that the minimum distance of the
resulting code is the product of the minimum distances of the component codes; i.e.,
dmin = dmi.n Idmin 2, and is capable of correcting Ldm;nldt2-1 J, using complex optimal
decoding. But one can also decod¢ this code using the properties of the component
codes, similar to how a crossword puzzle is solved. Using the row codes, we can come
up with the best guess for the bit values and, then, using the column codes improve these
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TABLE 9.2 RATE
,

MAXIMUM FREE DISTANCE2"
CODES

Constraint length L Generators in octal dfree

3 5 7 5
4 15 17 6

5 23 35 7

6 53 75 8
7 133 171 10

8 247 371 10

9 561 753 12

10 1167 1545 12

11 2335 3661. 14

12 4335 5723 15

13 10533 17661 16
14 21675 27123 16

Odenwa1der (1970) and Larsen (1973).

TABLE 9.3 RATE ~ MAXIMUM FREE DISTANCE CODES

Constraint length L Generators in octal dfree

3 5 7 7 8

4 13 15 17 10

5 25 33 37 12

6 .47 53 75 13

7 133 145 175 15

8 225 331 367 16

9 557 663 711 18

10 1117 1365 1633 20

11 2353 2671 3175 22

12 4767 5723 6265 24

13 10533 10675 17661 24

14 21645 35661 37133 26

Odenwalder (1970) and Larsen (1973).
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9.8 COMPLEX CODES BASED ON COMB'INATION
OF SIMPLE CODES

As we have seen in the preceding sections, the performance ofblock and convolutional
codes depends on the distance properties of the code and, in particular, the minim?m
distance in block codes and the free distance in convolutional codes. In order to desIgn

·..11'.
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Figure 9.37 Block diagram of a turbo
encoder.

Figure 9.38 A recursive systematic
convolutional encoder.

N encoded bits

Recursive systematic I--_N_en_c_o_de-;d~bits
convolutional code I

Recursive systematic
convolutional code 2
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N Information bits

Section 9.8

The structure of a turbo encoder is shown in Figure 9.37. The turbo encoder con­
sists of two constituent codes separated by an interleaver of length N. The constituent
codes are usually r~cursive systematic convolutional codes (RSCC) ofrate ~,and usu­
ally the same code IS employed as the two constituent codes. Recursive convolutional
codes are different from the nonrecursive convolutional codes by the existence of feed­
back in their shift-register realization. Therefore, unlike the nonrecursive convolutional
codes which are realized as finite impulse response (FIR) digital filters, recursive con­
volutional codes are infinite impulse response (llR) filters. An example of a recursive
systematic convolutional encoder is shown in Figure 9.38.

In the encoder structure shown in Figure 9.37, N information bits enter the first
encoder. The same infonnation bits are interleaved and applied to the second encoder.
Because the encoders are systematic, each encoder generates the N -information bits
applied to its input followed by N parity check bits. After the encoding, the N infor­
mation bits and the 2N parity check bits of the two encoders; i.e., a total of 3N bits, are
transmitted over the channel. Therefore, the .overall rate is R =N /3N =1/3. If higher
rates are desirable, the parity check bits are punctured; i.e., only some of parity check
bits, according to a regular pattern, ·are transmitted.

The interleaver in turbo codes is usually very long, in the order of thousands

Information bits

Figure 9.36 Block diagram of a communication system with concatenated coding.

Input ,------,
data Outer

. encoder
(N,K)
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9.8.2 Concatenated Codes

Turbo codes are a special class of concatenated codes where there exists an interleaver
between two parallel or serial encoders. The existence of the interleaver results in very
large code word lengths with excellent performance, particularly at low SNRs. Using.
these codes, it is possible to get as close as 0.7 dB to the Shannon limit at low SNRs.

Also, the minimum distance of the concatenated code is the product of the minimum
distances of the inner and the outer codes. In concatenated codes, theperfonnance
of the inner code has a major impact on the overall performance of the code. That is .'
why usually convolutional codes with soft decoding using the Viterbi algorithm are
commonly employed for the inner code.

9.8.3 Turbo Codes

guesses. This process can be repeated in an iterative fashion, improving the quality of"
the guess in each step. This process is known as iterative decoding and is very similar:
to the way a crossword puzzle is solved. To employ this decoding procedure, we need~

decoding schemes for the row and column codes that are capable of providing guesses'
about each individual bit. In other words, decoding schemes with soft outputs (usually, :
the likelihood values) are desirable. We will describe in Section 9.8.4, such decoding'
procedures in our discussion of turbo codes. . .

A concatenated code consists of two codes, an inner code and an outer code, connected .'
serially as shown in Figure 9.36. The inner code is a binary block or convolutional ';;'
code and the outer code is typically a Reed-Solomon code. If the inner code is an (n, k) .
code, the combination ofthe inner encoder, digital modulator, wavefonn channel, digital
demodulator, and the inner decoder can be considered as a channel whose input and
output are binary blocks oflength k, or equivalently, elements of a q-ary alphabet where
q = 2k

• Now the Reed-Solomon code (the outer code) can be used on this q-ary input,.
q-ary output channel to provide further error protection. It can easily be seen that if ,;
the rates of the inner and the outer codes are rc and Re , respectively, the rate of the
concatenated code will be ..
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c = a/\ b = (albl , a2b2, ... , aMbM)

The BCJR algorithm states that

1. A(i), a(i), and (3 (i) are related by

A(i) rv aU) /\ (3(i)

where rv denotes proportionality. It means that the right-hand side should be

appropriately normalized to make it a probability mass function equal to the

left-hand side.

2; Defining

Ym'm(i) = P[s(i) = m, y(i) IsCi - 1) = m']

and the M x M matrix rei) ;", [Ym'm (i)], we have thefollowing recursions

a'(i) rv a' (i - l)r(i)

(3(i) rv r(i + 1)(3(i + 1)

3. Using the boundary conditions, a(O) = (3(N) = (1, 0, ... , 0), with the recursive

relations in part 2, provide the forward and backward relations for the computation

of a and (3, and hence A.

Figure 9.40 The trellis for the BCJR algorithm.

the iterative decoding of the turbo codes.

Let us a~sume that the code is described by a trellis shown in Figure 9.40, where

we are assu:nm~ that the .depth of the trellis for the received sequence is N stages and

we are co~sldenng stage I. The number of states is denoted by M and the total received

seq~ence IS Y[l,N]. Denote the received sequence up to time i by Y[l,i] and from time i

to tune N by YU,N]. Let us denote three M -dimensional vectors,defined as

A(i) = P[s(i) Iy]

a(i) = P [s (i) IY[1,ij]

(3(i) = P[s(i) IYU,N]]

and let for any twoM-dimensional vectors a and b, the M-dimensional vector c = a /\ b

be defined as
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Y,
Ylp
Y2p

Figure 9.39 The iterative decoding scheme for turbo codes.

9.8.4 The BCJR Algorithm

The BCJR algorithm is a trellis-based decoding algorithm that decodes each information

bit in a convolutional code based on the MAP criteria. This is in contrast to the Viterbi

algorithm that makes a maximum-likelihood decision on a sequence of inform~tion

bits based on the maxinium-likelihood criterion. As a by-product, the BCJR algonthm

generates the probabilities, or likelihoods, for the transmitted bits that can be used in

of bits. Pseudorandom interleavers perform well, although some improvement irr the
performance of the code can be obtained by clever choice of the interleaver. This
improvement is more noticeable at short interleaver lengths. Also note that unlike

nonrecursive convolutional codes in which a sequence of zeros padded to the message

sequence guarantees that the encoder returns to the all-zero state, here retumillga

component code to the all-zero state requires padding the information sequence with a.
particular nonzero sequence. Due to the existence of the interleaver, it is, in most cases;<
impossible to return both codes to the all-zerostate./ .....

Since turbo codes havetwo constituent-code' components, an iterative algorithm

is appropriate for their decoding. Any decoding method that yields the likelihood of

the bits as its output can be used in the iterative decoding scheme. One such dec0cling

scheme is the maximum a posteriori (MAP) decoding method of Baht, Cocke, Jelinek,

andRaviv (BCJR) (see Bahl et al. (1974)) and variations of it. Another popular method'.\i

with lower complexity (and degraded performance) is the soft-output Viterbi algorithm

(SOVA) due to Hagenauer and Hoher (1989). Using either method, the likelih90ds

of different bits are computed and passed to the second decoder. The second decoder

computes the likelihood ratios and passes them to the first decoder; this process is

repeated until the likelihoods suggest high probability of correct decoding for eachbit.

At thispoint, the final decision is made. The iterative decoding procedure is shown in

Figure 9.39. In this figure, Ys, YIp, and Y2p represent the received data corresponding to

the systematic bits, parity check bits for encoder 1 and parity check bits for encoder 2,

respectively, Lh and L 21 represent the information passed between the two decoders.
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Figure 9.41 The 21/37 recursive systematic convolutional code.
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Figure 9.42 The performance plots for the (37,21,65536) turbo code for different
number of iterations.
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recursive systematic convolutional code. This code was employed in a turbo code with
a constraint length of N =65536 and puncturing was used to increase its rate to 1/2.
The performance of the resulting code using the BCJR decoding algorithm is shown in
Figure 9.42. After 18 iterations, the performance of this code is only 0.7 dEs from the
Shannon limit.

One problem with the turbo codes is the existence of the error fioor. As seen
in Figure 9.42, the probability of error decreases sharply with increasing [blNo up

Chapter.Channel Capacity and Coding

9.8.5 Performance of Turbo Codes

YOl'ol Ci) = P[s(i) = m, yCi) IsCi - 1) =mil

=P[s(i) =m IsCi -1) = m']P[y(i) Isci) = m, sCi - 1) =m' ]

= P[sCi) = m Isci - 1) = m']P[y(i) IxU)]

= P(u(i»P[y(i) IxU)]

Turbo codes are characterized by excellent performance at low SNRs. The performance
of turbo codes improves with increasing the length of the interleaver and the number
of iterations. The original turbo code studied by Berrou et al. (1993) used the recursive
systematic convolutional encoder shown in Figure 9.41. It is seen that in this code the
forward connections to the code.can be represented by gj = [1 000 1] and thefeedback
connection can be described by g2 = [1 1 1 1 1]. These vectors can be represented in
octal form as 21 and 37, respectively. It is customary to refer to such a code as a 21/37

1 (~·(i)_X(i)2

P[yCi) Ix(i)] = -'-e-~
..[iira

and an estimate of the channel SNR is required.
In summary, the BCJR algorithm can be carried out as outlined next.

1. Initialize the algorithm with the boundary conditions a(O) =(3(N) =(1,
0, ... , 0) (trellis termination condition).

2. Given prior probabilities of u(i) (usually assumed equiprobable to be 0 or 1), the
channel characteristics, and the received sequence, compute the y's.

3. Use the forward recursion to compute the a's.

4. Use the backward recursion to compute the {3's.

S. Compute )..'s.

6. Compute the posterior probabilities of uCi)'s and make the decision.

Note that, in the BCJR algorithm, we have to pass the trellis once in the forward direction
and once in the backward direction. Therefore, the complexity of this algorithm is
roughly twice the complexity of the Viterbi algorithm. Also, because in the forward
pass the values of a have to be stored, the storage requirements of the algorithm are
quite demanding.

Because the BCJR algorithm provides the likelihood ratios for the transmitted bits,
it can be employed in the iterative decoding of turbo codes as shown in Figure 9.39.
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where u(i) is the input bit and x(i) is the channel symbol that cause a transition
from sU - 1) = m' to sCi) = m. The term P[y(i) IxCi)], depends on the channel·
characteristics. In an AWGN channel

The boundary conditions in part 3 are based on the assumption that the path starts aJ
ends in the all-zero state of thetrellis.;

Computation of y's requires knowledge of the channel characteristics because.

": I.,
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and, hence,

coded waveforms is increased by use of coding, but at the same time the bandwidth is
increased by a factor of I = if. These type of codes have wide applications in cases
where there exist enough bandwidth and the communication system designer is not un­
der tight bandwidth constraints. Examples ofsuch cases are deep-space communication
systems. However, in many practical applications we are dealing with communication
channels with strict bandwidth constraints and the bandwidth expansion due to coding
may not be acceptable. For example, in transmission of digital data over telephone
channels (modem design), we are dealing with a channel that has a restricted band­
width, and the overhead due to coding imposes a major restriction on the transmission
rate. In this section, we will discuss an integral coding and modulation scheme called
trellis-coded modulation that is particularly useful for bandwidth-constrained channels.

9.9.1 Combined Coding and Modulation

Use of block or convolutional codes introduces redundancy that, in turn, causes in­
creased Euclidean distance between the coded waveforms. On the other hand, the
dimensionality of the transmitted signal will increase from k-dimensions/transmission
to n-dimensions/transmission, if binary PSK modulationis employed. This increase in
dimensionality results in an increase in bandwidth since bandwidth and dimensionality
are proportional. If we want to reap the benefits of coding and, at the same time, not
~crease the bandwidth, we have to use a modulation scheme other than binary PSK;
I.e., a scheme that is more bandwidth efficient. This means that we have to employ
a multilevel/multiphase-modulation scheme to reduce the bandwidth. Of course using
a multilevel/multiphase-modulation scheme results in a more "crowded" constellation
and, at a constant power level, decreases the minimum Euclidean distance within the
constellation. This certainly has anegative effect on the error performance ofthe overall
coding-modulation scheme. But, as we will see next, this reduction of the minimum
Euclidean distance within the constellation can be well compensated by the increase in
the Hamming distance due to coding such that the overall performance shows consid­
erable improvement.

As an example, let us assume that, in the coding stage, We want to USe a rate ~ code.
If the rate of the source is R bits/sec, the number of encoder output binary symbols/sec
will be ~ R. If we want to use a constellation such that the bandwidth requirement is
equal to the bandwidth requirement of the uncoded signal (no bandwidth expansion),
we must assign m dimensions for each output binary symbol such that the reSUlting
number of dimensions/sec is equal the number of dimensions/sec of the uncoded data,
which is R. Therefore, we must have

2
m = - dimensionlbinary symbol (9 9 2)'3 ..

This means that the constellation should be designed in such a way that we have two
dimensions for each three binary symbols. But three binary symbols are equivalent

2.52
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to a certain point. After this point, the error probability decreases very slowly. The
existence of the error floor is a consequence of the distance properties of turbo codes.
Its turns out that, although turbo codes have excellent performance, they have rather
poor minimum distance. The reason they can perform well is that, although the distance
properties are poor, the numberof paths at low distance (called the multiplicity of that
distance) is very low. In ordinary convolutional codes, one can design codes with much
better minimum distance but the multiplicity of the low distances is much higher. Now
referring to Equation (9.7.21), we see that for low SNRs the effect ofmultiplicity (admiJ
is more important on the perfortnance of the code, whereas at high SNRs, the minimum
distance of the code plays a major role and, thus, the performance of turbo codes at
high SNRs sharply degrades.

Figure 9.43 compares the performance of the 37/21 turbo code described above
with a rate 1/2 convolutional code with constraint length 14, and soft-decision Viterbi
decoding. In the same plot performance bounds (using the union bound) for both codes
are also plotted.

In the two major classes of codes studied so far; i.e., block and convolutional codes,
an improvement in the performance of the commurncation system is achieved by
expanding bandwidth. In both cases the Euclidean distance between the transmitted

9.9 CODING FOR BANDWIDTH-CONSTRAINED CHANNELS
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(9.9.9)

(9.9.8)

(9.9.10)dz = 2.;E;,
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Now, we further partition Bo and Bj to obtain Co, Cj, C2 and C3. The inner partition
distance now has increased to

ITo be more precise, the term trellis-coded modulation is used when a general trellis code is employed.

9.9.2 Trellis-Coded Modulation

Trellis-coded modulation, or TCM, is a simple method for designing coded-modulation
schemes that can achieve good ove.rall performance. This coding-modulation scheme
is based on the concept of mapping by set partitioning developed by Ungerboeck
(1982). Mapping by set partitioning can be used in conjunction with both block and
convolutional codes, but due to the existence ofa simple optimal soft-decision decoding
algorithm for convolutional codes (the Viterbi algorithm), it has been mostly used
with convolutional codes. When used with convolutional codes, the resulting coded­
modulation scheme is known as trellis-coded modulation.t

its use of the overall coding-modulation scheme. We can use any block or convolutional
code that can provide the minimum distance required to achieve a certain overall coding
gain. For example, if we need an overall coding gain of 3 dB, the code must provide a
coding gain of 8.33 dB to compensate for the 5.33-dB loss due to modulation and to
provide an extra 3-dB coding gain. A code that can provide such a high coding gain
is a very complex (long constraint length) code requiring a sophisticated encoder and
decoder. However, by interpreting coding and modulation as a single entity as shown
in Section 9.9.2, we see that a comparable performance can be achieved using a much
simpler coding scheme.

Set Partitioning Principles. The key point in partitioning of a constellation
is to find subsets of the constellation that are similar and the points inside each partition
are maximally separated. To do this starting from the original constellation, we partition
it into two subsets that are congruent and the points within each partition are maximally
separated. Then, apply the same principle to each partition and continue. The point at
which the partitioning is stopped depends on tlle code that we are using and will be
discussed shortly. .

, An example of set partitioning is shown in Figure 9.45. We start with an 8-PSK
constellation with power Es . The minimum distance within this constellation is

, This constellation is partitioned into two subsets denoted by Bo and Bj • Note that
Bo and Bj are congruent. There are many ways that the original 8-PSK con;tellation
can be partitioned into two congruent subsets, but Bo and Bj provide the maxinlum
inner-partition distance. This distance is easily seen to be

Channel Capacity and Coding

E _ 2P
S - R

From this, we can derive an expression for the minimum Euclidean distance within the
constellation (see Figure 9.44) as

d2 = 42P sin2 ~ = 2(2 - .J2/-
mm R 8 R

Obviously, the minimum Euclidean distance has been decreased. To see this effect we
derive the loss due to using this constellation

d2 2__ = -- = 2+.J2 = 3.141 ~ 5.33 dB
d2min 2 - .J2

This loss has to be compensated by the code. Of course, the rate ~ code employed here
should not onIy compensate for this loss but should also provide additional gain to justify

-fl;

to eight points in the constellation and therefore we can achieve our goal with an .
eight-point constellation in the two-dimensional space. One such constellation is, of~:
course, an 8-PSK modulation scheme. Therefore, ifwe use a rate ~ code in conjunction
with an 8-PSK modulation scheme, there will be no bandwidth expansion. '

Now, let us examine how much coding gain we, can obtain from such a scheme.
Assuming that the available power is P, with no coding we have '

p
Eb =­

R
and, therefore, for the minimum Euclidean distance between two sequences, we have

2 4Pd = - (9.9.4)
R

If two information bits are mapped into a point in an 8-PSK constellation, the energy

of this point is

Figure 9.44 The 8-PSK constellation
,used for bandwidth-efficient coding·
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Figure 9.45 Partitioning of an 8~PSK constellation.
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Coded Modulation. The block diagram of a coded-modulation scheme is,
shown in Figure 9.47. A block oflength k-input bits is broken into two subblocks of,
lengths k

1
and k2' respectively. The firstk I bits are applied to an (nl, kl) binary encoder~/

We can still go one step further to obtain eight partitions each containing a single point. ,.,:
The corresponding subsets are denoted by Do through D7. Another example of set'
partitioning applied to a QAM constellation is given in Figure 9.46. The reader can
verify that this partitioning follows the general rules for set partitioning as described'

above.
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(9.9.12)
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....._.... ---_.--/;

and in the coded scheme

points which are partitioned into 2"' =4 subsets each containing 2k, =2 points. The
. constellation chosen here is an 8-PSK constellation and it is partitioned as shown in

Figure 9.45. The convolutional code employed here can be any rate i?- = ~ code. The
constraint length of this code is a design parameter and can be chosdn to provide the
desired coding gain. Higher constraint lengths, of course, provide higher coding gains
at the price of increased encoder-decoder complexity. In this very simple example, the
constraint length has been chosen to be equal to 3. The (one-stage) trellis diagram of
this code is also shown in Figure 9.48.

The trellis diagram shown in Figure 9.48 is the trellis diagram of an .ordinary
convolutional code. The main difference is that here we have two paths connecting two
states. The reason for this is the existence of the extra kz = 1 bit, which chooses a point
in each partition. In fact, the two parallel paths connecting two states correspond to a
partition, and any single path corresponds to a point in the partition. One final question
remains to be answered: what is the optimal assignment of the constellation points to
the branches of the code trellis? Extensive computer simulations as well as heuristic
reasoning result in the following rules.

1. Parallel transitions, when they occur, correspond to signal points in a single
partition at the last stage of partitioning (thus providing the largest Euclidean
distance). In the above example Co = {Do, D4 }, Cz = {Dz, D6 }, C j = {D j , Ds}
and C3 = {D3 , D7 } correspond to parallel transitions. These points are separated
by the maximum Euclidean distance of dz = 2...;E;.

2. The transitions originating from, or merging into, any state are assigned partitions,
in the last stage of partitioning, that have a single parent partition in the preceding
stage. In the above example {Co, Cz} and {C1, C3 } are such partitions, having
parents Bo and B1, respectively. The maximum distance in this case is d j = ..;?I;.

3. The signal points should OCCUI: with equal frequency.

To see how the trellis-coded modulation scheme ofFigure 9.48 performs, we have
to find the minimum Euclidean distance between two paths originating from a node and
merging into another node. This distance, known as the free- Euclidean distance and
denoted by Dfed, is an important characteristic of a trellis-coded modulation scheme.
One obvious candidate for Dfed is the Euclidean distance between two parallel transi­
tions. The Euclidean distance between two parallel transitions is dz =2...;E;. 'Another
candidate path is shown in Figure 9.49. However, the Euclidean distance between these
two paths is d Z =d5 +2df =4.58£s. Obviously, this is larger than the distance between
two parallel transitions. It is easily verified that for this code the free Euclidean distance
is Dfed = dz = 2...;E;. To compare this result with an uncoded scheme, we note that in
an uncoded scheme
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Figure 9.48 A simple TCM scheme.
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Figure 9.47 The block diagram of a coded-modulation system.
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The output of the encoder consists of nj bits. These bits are used to choose one of 2"'
partitions in the constellation. This means that the constellation has been partitioned:..
into 2"' subsets. After the constellation is chosen the remaining kz bits are used to'-'·
choose one of the points in the chosen constellation. This means that there exist 2kz ."~

points in each partition. Therefore, the partitioning that is used contains 2n
, subsets

and each subset contains 2k2 points. This gives us a rule for how large a constellation
is required and how many steps in partitioning of this constellation must be taken.

Ungerboeck (1982)has shown that by choosing nl = k1+1and kz = 1 and using.'
simple convolutional codes we can design coded modulation schemes that achieve an'
overall coding gain between 3 and 6 dB. One such scheme is shown in Figure 9.48. In
this coding scheme k1 = 1, nl = 2 and kz = 1. The constellation contains 2n1+kz = 8.
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Thus, this simple coding scheme is capable of achieving a 3-dB coding gain without
increasing bandwidth. Of course, the ptice paid for this better performance is increased ",'
complexity in encoding and decoding. '

Instead of a 4-state trellis, a trellis with a higher number of states yields higher
coding gains. Extensive computer simulations by Ungerboeck indicate that with 8, 16, ,
32, 64, 128, and 256 states coding gains in the range of 3.6--5.75 dB can be achieved.
The trellis diagram for an 8-state trellis is shown in Figure 9.50
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Figure 9.50 An 8-state Ungerboeck encoder.
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In the previous sections, we have Seen that coding can be employed to improve the
effective SNR and, thus, enhance the performance of the digital communication system.
Block and convolutional codes and combinations of them in the form of concatenated
and turbo codes as discussed earlier, have been applied to communication situations
where bandwidth is not a major concern and, thus, some bandwidth expansion due to
coding is allowed. On the other hand, in cases where bandwidth is a major concern, as in
digital communication over telephone channels, coded modulation can be employed.
By using coding, performance of practical digital communication systems has been
improved by upto 9 dB, depending on the application and the type of the code employed.
In this section, we discuss applications of coding to three digital communication cases.

9.10 PRACTICAL APPLICATIONS OF CODING

°

•

°
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Gcodiog = ~;Oded = 2 ~ 3 dB
duncoded

Figure 9.49 Two candidate minimum distance paths,
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Therefore, the coding gain is given by

Decoding of Trellis-Coded Modulation Codes., ,The decoding of trellis­
coded modulation is performed in two steps. Because each transition in the trellis
corresponds to a partition of the signal set, and each partition generally corresponds to
a number of signal points, the first step is to find the most likely signal point in each
partition. This is accomplished by finding the point in each partition that is closest in
Euclidean distance to the received point. This first step in decoding of a trellis-coded
modulation scheme is called subset decoding. After this step, corresponding to each
transition in the trellis there exists only one point (the most likely one), and only one
Euclidean distance (the distance between the re~eivedpoint and this most likely point).
The second step of the decoding procedure is to use this Euclidean distance tofind a
path through the trellis whose total Euclidean distance from the received sequence
minimum. This is done by applying the Viterbi algorithm.

Trellis-coded modulation is now widely used in high-speed telephone line "
modems. Without coding, high-speed modems achieved data rates up to 14,400 bits/sec' ,
with a 64-QAM signal constellation. The added coding gain provided by trellis-coded,
modulation has made it possible to more than double the speed of transmission.
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gl = [1 1 0 1 0 1]

gz = [1 o -0 1 1 1]

and a (3, 1) convolutional code with L =7 and

gl = [1 1 0 1 0 1]

gz = [l 0 0 1 1 1]

g3 = [1 0 1 0 1 1]

The first code has a free distance of diree = 10 and for the second code d iree = 15.
Both codes were decoded using the Viterbi algorithm and a soft-decoding scheme in
which the output was quantized to Q = 8 levels. The first code provides a coding gain
of 5.1 dB with respect to an uncoded PSK system operating at an error rate of 10-5•

The second code provides a gain of 5.7 dB. Both codes operate about 4.5 dB above the
theoretical limit predicted by Shannon's formula.

In subsequent missions of the Voyager to Uranus, in 1986, the (2, 1) convolutional .
code with L = 7 was used as an inner code in a!concatenated coding scheme where a
(255,223) Reed-Solomon code served as the outer code. Viterbi decoding followed by
a Reed-Solomon decoder at the Earth terminal provided a total coding gain of 8 dB at
an error rate of 10-6• This system operated at a data rate of approximately 30 Kbits/sec..

Other decoding algorithms for convolutional codes have also been applied to
certain deep-space communication projects. For NASA's Pioneer 9 mission a (2,1)
convolutional code with a constraint length of L = 21 was designed with generator
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gl = [4 0 0 0 0 0 0]'

gz = [7 5 4 7 3 7J

Practical Applications of CodingSection 9.10

sequences (in octal representation)

gi = [7 3 3 5 3 3 6 7 6 7 2]

gz = [5 3 3· 5 3 3 6 7 6 7 2]

which employed Fano's algorithm with a soft-decision decoding scheme and eight
levels of output quantization. Pioneers 10, 11, and 12 and also in Helios A and B
German solar orbiter missions employed a (2, 1) convolutional code with a constraint
length of L = 32. The generator sequences for this code (in octal representation) are
given below.

This code has a free distance of diree =23. For decoding, again, the Fano decoding
algorithm with eight-level output quantization was employed. Majority logic decoding
has also been used in a number of coding schemes designed for the INTELSAT com­
munication satellites. As an example a (8, 7) code with L = 48 designed to operate
at 64 Kbits/sec on an INTELSAT satellite was capable of improving the error rate
from 10-4 to 5 X 10-8• In the Galileo space mission a (4, 1, 14) convolutional code
was used, resulting in a spectral-bit rate of ~, which at Eb / No of 1.75 dB, achieved an
error probability of 10-5. This ·code performed 2.5 dB from the Shannon limit. Using
an outer (255,223) Reed-Solomon code improves the coding gain by another 0.8 dB,
resulting in a concatenated code operating 1.7-dB from the Shannon limit. Turbo codes
performing at a spectral-bit rate of 0.5 and operating only 0.7-dB from the Shannon
limit, compare quite favorably with qll systems described above.

9.10.2 Coding for Telephone-Line Modems

Telephone-line channels are characterized by a limited bandwidth, typically between
300-3000 Hz, and a rather high SNR, which is usually 28 dB or more. Therefore, in
designing coding schemes for telephone-line channels, we are faced with bandwidth
limitation. This is in direct contrast to the deep-space communication channel which
is primarily power limited. This corresponds to the case of r » 1 in Figure 9.11.
Because bandwidth is limited, we have to use low dimensional signaling schemes, and
since power is rather abundant, we can employ multilevel modulation schemes. As we
have already seen in Section 9.9, trellis-coded modulation is an appropriate scheme to
be employed in such a case.

Historically, the first modems on telephone channels (prior to 1960s) employed
frequency-shift keying with asynchronous detection and achieved bit rates in the range
of 300-1200 bits/sec. Later, in the early 1960s, the first generation of synchronous
modems employing 4-PSK modulation achieved bit rates of up to 2400 bit/sec. Ad­
vances in equalization techniques allowed for more sophisticated constellations which
resulted in higher bit rates. These included 8-PSK modems achieving a bit rate of

Channel Capacity and Coding656

These include deep-space communications, telephone-line modems, and coding
compact discs (CDs). . . '" •.'

9.10.1 Coding for Deep-Space Communications

Deep-space communication channels are characterized by very low SNRs and pr~ .
cally no bandwidth limitations. The transmitter power is usually obtained from on-b
solar cells and, therefore, is typically limited 20-30 W. The physical dimensions of
transmitting antenna are also quite limited and, therefore, its gain is limited too.
enormous distance between the transmitter and the receiver and lack of repeaters r
suits ,in a very. low SNR at the receiver. The cha:iJ.nel noise can be characterized by'
a white GaussIan random process. These channels are very well modeled as AWGN:
channels. Because bandwidth is not a major concern on these channels both block and"
cOIl,volutional codes can be applied. .

In the Viking orbiters and landers mission to Mars, a (32, 6) block code (Reed-­
Muller code) was employed that provided a coding gain a gain of approximately 4 dB
with respect to an uncoded PSK system at an error rate of 10-6. Later, in the Voyager
space mission to outer planets (Mars, Jupiter, and Saturn),. convolutional codes with
Viterbi decoding were employed. Two codes that were designed at the Jet Propulsion
Laboratory (JPL) for that mission were a (2, 1) convolutional code with a constraint~

length of L = 7 with .
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Figure 9.51 (a) Differential encoder, nonlinear convolutional encoder, and
(b) signal constellation adopted in the V.32 standard.
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Section 9.10

instant there are 32 bits, or four 8-bit sequences to be encoded. Each 8-bit sequence is
called a "symbol." .

F?r e~or correction and detection, two Reed-Solomon codes are employed,t as
shown ill FIg. 9.52. The first code, denoted by Cj, is a (28, 24) RS code and the second

. tThese ~e n: fact, shorrened Reed-Solomon codes, obtain~d from Reed-Solomon codes by putting
some rnformatlon bIts equal to zero, and therefore reducing both k and n by a constant, while keepin" the
minimum distance intact. 0>

Channel Capacity and Coding

9.10.3 Coding for Compact Discs

In Chapters 6 and 8, the problems of sOurce coding and modulation codes for compact
discs were addressed. In this section we consider error correcting techniques that are -'
employed for compact disc digital audio recording.

The storage medium for digital audio recording on a compact disc is a plastic·
disc with a diameter of 120 rom, a thickness of 1.2 rom and a track pitch of 1.6 /Lm.
At playing time, this disc is read by a laser beam ata velocity of 1.25 mls. Inside the,
spiral track on the disc, there are depressions called "pits" and flat areas between pits .. ,
called "lands." The digital audio is stored by the length of these pits and lands. A 1 is
represented by a transition from a pit to a land or vice versa, whereas a 0 c'orresponds
to no transition (NRZI modulation). As we have seen in Chapter 8, constraints on the
physical length of pits and lands make it necessary to employ runlength-lirnited (RLL) ,
codes. The eight-to-fourteen modulation (EFM) code with d = 2 and K = 10 is used"
in compact-disc recording.

The main source of errors in a compact disc is imperfections in the manufacturing "
of the disc, such as air bubbles in the plastic material or pit inaccuracies; and damages:
to the disc, such as fingerprints or scratches, dust, dirt, and surface abrasions. Since",
each pit is almost 0.5 !Lm wide and between 0.9 and 3.3 !Lm long, these sources of'"
errors result in error bursts, affecting many adjacent information bits. This means that'
a good model for this storage channel is a channel with bursts of error, and well-known,
techniques for correcting bursts of errors can be employed. As we have discussed ill •
Section 9.6.1, Reed-Solomon codes are particularly attractive for such applications.

Recall from Chapter 6, that the left and the right channel are sampled at a rate of
44.1 KHz and then each sample is quantized to 16 levels. Therefore, at each sampling

4800 bit/sec and 16-point QAM modems that increased the bit rate to 9600 bits/sec
In the early 1980s, modems with a bit rate of 14,400 bits/sec were introduced tha
employed a 64-point QAM signal constellation. All these improvements were reSult
of advances in equalization and signal-processing techniques and also improvements
in the characteristics of telephone lines. ' .'.

The advent of trellis-coded modulation made it possible to design coded~
modulation systems that improved overall system performance without requiring ex~;
cess bandwidth. Trellis-coded modulation schemes based on variations ofthe original
Ungerboeck's codes and introduced by Wei (1984) were adopted as standard by thr'
CCITT standard committees. These codes are based on linear ornonlinear convolutional
codes to guarantee invarianceto 1800

- or 90°-phase rotations. This is crucial in applic~­
tions where differential encoding is employed to avoid phase ambiguities when a PLL
is employed for carrier-phase estimation at the receiver. These codes achieve a coding
gain comparable to Ungerboeck's codes with the same number of states but, at the same
time, provide the required phase invariance. In Figure 9.51 we have shown the combi-~

nation of the differential encoder, the nonlinear convolutional encoder, and the signal'
mapping for the 8-state trellis-coded modulation system that is adopted in the ccrn'
V.32 standard. .
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661Problems

the relation in Equation (9.5.37)

The noisy channel-coding theorem, which plays a central role in information theory,
and the concept ofchannel capacity were first proposed and proved by Shannon (1948).
For detailed discussion of this theorem and its several variations the reader may refer
tostandard books on information theory such as Gallager (1968), Blahut (1987), and
Cover and Thomas (1991).

Golay (1949), Hamming (1950), Hocquenghem (1959), Bose and Ray-Chaudhuri
(1960a,b), and Reed and Solomon (1960) are landmark papers in the development of
block codes. Convolutional codes were introduced by Elias (1955) and various methods
for their decoding were developed by Wozencraft and Reiffen (1961), Fano (1963),
Zigangirov (1966), Viterbi (1967), and Jelinek (1969). Trellis-coded modulation was
introduced by Ungerboeck (1982) and later developed by Forney (1988a,b). Product
codes were introduced by Elias (1954) and concatenated codes were developed and
analyzed by Forney (1966). Berrou, Glavieux, and Thitirnajshima (1993) introduced
turbo codes. The interested reader is referred to books on coding theory including
Berlekamp (1968), Peterson and Weldon (1972), MacWilliams and Sloane (1977), Lin
and Costello (1983), and Blahut (1983). The reader is referred to the book by Heegard
and Wicker (1999) on turbo codes.

9.1 Find the capacity of the channel shown in Figure P-9.1.

9.2 The channel shown in Figure P-9.2 is known as the binary erasure channel. Find
the capacity of this channel and plot it as a function of E.

9.3 Find the capacity of the cascade connection of n binary-symmetric channels with
same crossover probability E. What is the capacity when the number of channels
goes to infinity. .

ec + ed =d;";"-l

it can detect up to 3 errors with certainty and 4 or more errors with high probability.
If a single error is encountered, it is corrected, if multiple errors are detected, then all
28 symbols are flagged as "unreliable." After deinterleaving, these symbols are passed
to the decoder for the code C j •. Decoder C j tries single error, or 2 erasure corrections.
If it fails, all output symbols are flagged; if there aremore 3or more flags at its input,
it copies them to its output.

At the output of the second decoder, the symbol corresponding to "unreliable"
positions are filled in by interpolation of the other positions. Using this rather complex
encoding-decoding technique together with the signal processing methods, burst errors
of up to 12,000 data bits, which co~espond to a track length of 7.5 mm on the disc, can
be concealed.

9.11 FURTHER READING

PROBLEMS

Channel Capacity and Coding

Adding 24-bit 33X17+Z7=588
~-':":"':':':H synchronization pattern I----=~:;::::

and 3 merging bits

24x8 bits
24 symbols ..---''--'-'----'-~

f---t

channel bits (see Figure 8.29). This means that an expansion of, roughly, three times
has taken place. These extra bits are used to protect the digital audio information bits
from errors (the RS codes) and also make sure tha't the runlength constraint is satisfied
(the EFM code).

On the playback, first synchronization and merger bits are separated, and then. ,.,;'
the 32 symbols are deinterleaved. The result then enters the decoder for the code C2'
This code has a minimum distance of 5 and, therefore, is capable of correcting up to
2 errors. The decoder, however, is designed to correct only 1 error. Then according to

Figure 9.52 Encoding for compact-disc recording.

code, Cz, is a (32, 28) RS code. The alphabet on which these codes are defined consists
of binary sequences of length 8, which coincides with our definition of a symbol.

The input sequence to the C j encoder consists of 24 symbols (usually known
as a "frame"), which are encoded into 28 symbols. The 28 symbols at the output of
the Cj encoder are interleaved (see Section 9.5.2) to reduce the effect of error bursts
and spread them over a longer interval, making them look more "random." These are
encoded by the C2 -encoder to 32 symbols. At the output of the C2 encoder, the odd­
numbered symhols of each frame are grouped with the even-numbered symbols of the
next frame to form a new frame. At the output of the C2 encoder corresponding to
each set of six audio samples., we have 32 eight-bit symbols. One more 8-bit symbol is
added that contains the control and display (C & D) information, bringing the total to
33 symbols/frame. . .

The output is then applied to the eight-to-fourteen (EFM) runlength-llmited en­
coder, which maps each symbol into a binary sequence of length 14. We have seen in
Chapter 8 that three more bits, called "merger" bits, are added for each symbol to make
sure that the merger of code words satisfies the runlength constraint. These bring the .
length of each sequence to 17. Next, a frame is completed by adding a 24 synchro­
nization pattern and 3 additional "merger" bits to guarantee the runlength constraint
after a merger. This brings the total number of encoded bits/frame (six samples, or
6 x 2 x 16 = 192 audio bits) to

33 x 17 + 24 + 3 = 588
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Figure P·9.9

3. Let C.~enote the capacity of the third channel and Cl and C2 represent the

capaCItIes of the first and second channel. Which of the following relations

holds true and why?

(a) C < ~(Cl + C2) .•

(b) C = ~(Cl + C2).

(c) C > ~(Cl + C2).

9.8 Let C denote the capacity of a discrete-memoryless channel with input alphabet

ge = {Xl, X2, ... , XN} and output alphabet l!Y = {Yj, Y2, ... , YM}. Show that C <

~~~~m.
-

9.9 The channel C is (known as the Z channel) shown in Figure P-9.9.

o ) 0

9.4 Using Stirling's approximation n! >:::3 nne-n ..j2:rrn, show that

(:E) >:::3 2nHb
(e)

9.5 Show that the capacity of a binary-input, continuous-output AWGN channel with

inputs ±A and noise variance 0-2 (see Example 9.1.2) is given by

where

Figure P-9.2

1-<

f(x) =100

-._1_e-(u-d/2Iog 2 du
-00 .J2ii 2 1 + e-2xu

9.6 The matrix whose elements are the transition probabilities of a channel; i.e.,

P(Yi IXj)'s, is called the channel probability transition matrix. A channel is called

symmetric if all rows of the channel probability transition matrix are permutations .

of each other, and all its columns are also permutations of each other. Show that

in a symmetric channel the input probability distribution that achieves capacity

is a uniform distribution. What is the capacity of this channel?

9.7 Channels 1,2, and 3 are shown in Figure P-9.7.

1. Find the capacity of channelL What input distribution achieves capacity?

2. Find the capacity of channel 2. What input distribution achieves capacity?
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2

Problems

B

A ------_---;....

c

2. If the channel is a discrete-time memoryless additive Gaussian noise channel
with input power P and noise power 0";, what is the minimum attainable
distortion?

3. Now assume that the source has the same basic properties but is not mem­
oryless. Do you expect that the distortion in transmission over the binary­
symmetric channel to be decreased or increased? Why?

9.14 For the channel shown below, find the channel capacity and the input distribution
that achieves capacity. .

Figure P-9.14

9.15 Consider two discrete-memoryless channels represented by (gel, P(YI IXl), qyl)
and (gez, p(Y21 xz), qyz) with corresponding (information) capacities CI and Cz. A
new channel is defined by (gel xgez, P(YI IXI)p(Yzl Xz), qyl x qyz). This channel
is referred to as the "product channel" and models the case where Xl E gel andxz E

gez are simultaneously transmitted over the two channels with no interference.
Prove that the capacity of this new channel is the sum of CI and Cz.

9.16 Let (gel, p(Yllxl), qyl) and (gez, p(Yzlxz), qyz) represent two discrete­
memoryless communication channels with inputs gei, outputs qyi, and conditional
probabilities P(Yi IXi). Further .assume that gel n gez = 0 and qyl n qyz = 0. We
define the sum of these channels as a new channel with input alphabet gel U gez,
output alphabet qyl U"Yz and conditional probability P(Yi IXi), where i denotes
the index ofge to which the input to the channel belongs. This models a communi­
cation situation where we have two channels in parallel, and at each transmission
interval we can use one and only one of the channels, the input and output al­
phabets are disjoint and, therefore, at the receiver there is no ambiguity which
channel was being used.· .

1. Show that the capacity of the sum channel satisfies 2c = 2Ct + 2cz where
eland Cz are the capacities of each channel.

2. Using the result of part 1 show that if CI = Cz = 0 we still have C = 1;
that is, using two channels with zero capacity we are able to transmit one
biUtransmission. How do you interpret this result?

3. Find the capacity of the channel shown in Figure P-9.16.

Chapter

ChanneIB

ChanneIB

Channel Capacity and Coding

Figure P-9.10

Channel A

Channel A

1. Find the input probability distribution that achieves capacity.

2. What is the input distribution and capacity for the special cases 10 =0, 10 =
and 10 = 0.5?

3. Show that if n such channels are cascaded, the resulting channel will
equivalent to a Z channel with 101 = En.

4. What is the capacity of the equivalent Z channel when n ---+ 00.

9.10 Find the capacity of the channels A and B as shown in Figure P-9.l O. What is the
capacity of the cascade channel AB? (Hint: Look carefully at the channels and .':
avoid lengthy math.) .

j w Sn (f) df = jW No df = No W
-w -1;1' 2

Which channel do you think has a larger capacity? Give an intuitive reasoning.
9.13 A discrete-time memoryless Gaussian source with mean 0 and variance o"z is to .

be transmitted over a binary-symmetric chaimel with crossover probability E.

1. What is the minimum value of the distortion attainable at the destination?
(Distortion is measured in mean-squared-error.)

9.11 Find the capacity of an additive white Gaussian noise channel with a bandwidth
of 1 MHz, power of 10 W, and noise power-spectral density of!1f = 10-9 WfHz..

9.12 Channel Cl is an additive white Gaussian noise channel with a bandwidth of W,
transmitter power of P and noise power-spectral density of ~. Channel Cz is an
additive Gaussian noise channel with the same bandwidth and power as channel
Cl but with noise power-spectral density Sn(f). It is further assumed that the
total noise power for both channels is the same, that is
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667Problems

1 (P) 1210g 1 + N ::::: C ::::: 2log[2rre(P + N)] - h(Z)

1. What is Dmax in the compression of the source?

2. Find the rate-distortion function for the source.

3. Ifwe want to reproduce X (t) with a distortion equal to 10, whattransmission
rate is required?

4. Find the channel capacity-cost function, where cost is assumed to be the
power. What is the required power such that the source can be transmitted
via the channel with a distortion not exceeding 1O?

9.20 It can be shown that the capacity of a discrete-time power constrained additive
noise channel described by Y =X + Z, where X and Y are the input and the
output and Z is the noise, satisfies the inequalities

where P is the input power constraint, N is the variance (power) of the noise
process, and h(.) denotes the differential entropy as defined in Chapter 6. Using
the result of Problem 6.36, plot the lower and upper bounds to the capacity for
a channel with Laplacian noise (see Problem 6.36) as a function of the noise
variance (noise power).

9.21 Plot the capacity of an AWGN channel that employs binary antipodal signaling,
with optimal bit-by-bit detection at the receiver, as a function of ft. On the same
axis, plot the capacity of the same channel when binary orthogo~al signaling is
employed.

9.22 In Example 9.5.1, find the minimum distance of the code. Which code word(s)
is(are) minimum weight?

9.23 In Example 9.5.3, verify that all code words of the original code satisfy

cHt =0

9.24 By listing all code words of the (7,4) Hamming code verify that its minimum
distance is equal to 3.

9.25 Find the parity check matrix and the generator matrix of a (15, 11) Hamming
code in the systematic form.

9.26 Show that the minimum Hamming distance of a linear block code is equal to the
minimum number of columns of its parity check matrix that are linearly depen­
dent. From this conclude that the minimum Hamming distance of a Hamming
code is always equal to 3.

9.27 A simple repetition code ofblocklength n is a simple code consisting of only two
code words one (0,0, ... ,0) and the other (1; 1, ... , 1). Find the parity check
~ ~

n . n
matrix and the generator matrix of this code in the systematic form.

9.28 G is the generator matrix of a(6, 3) linear code. This code is extended by adding
an overall parity check bit to each code word so that the Hamming weight of each

Chapter'
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{
2 If I < 10

SAf) = 0, otherwise

The distortion in reproducing X (t) by XU) is D = EIX(t) - X(t)1 2
• This source

is to be transmitted over an additive Gaussian noise channel, in which the noise
power-spectral density is given by

{
1 If I <4

Sn (f) = 0, otherwise

9.17 X is a binarymemoryless source with P(X = 0) = 0.3. This source is transrnitted
over a binary-symmetric channel with crossover probability E = 0.1.

1. 'Assume that the source is directly connected to the channel; i.e., no coding .'
is employed. What is the error probability at the destination?

2. If coding is allowed, what is the minimum possible error probability in
reconstruction of the source.

3. For what values of E is reliable transmission possible (with coding, of
course)?

9.18 Each sample of a Gaussian memoryless source has a variance equal to 4 and the
source produces 8000 samples/sec. The source is to be transmitted via an additive
white Gaussian noise channel with a bandwidth equal to 4000 Hz. It is desirable to
have a distortion/sample not exceeding 1at the destination (assume squared-error '
distortion). '

1. What is the minimum required signal-to-noise ratio of the channel?

2. If it is further assumed that, on the same channel, a binary PSK scheme is
employed with hard-decision decoding, what will be the minimum required
channel signal-to-noise ratio?

(Hint: The SNR of the channel is defined by N:W')

9.19 A certain source can be modeled as a stationary zero-mean Gaussian process X (t)
with power-spectral density

Ttl
l/;l
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P(error Ixm(t) sent) S I: J... JJper Ixm)p(r Ixm') dr
l:::m'~M RN

. m'=/;m

where r, Xl, and Xz are the vector representations ofr(t), Xl(t), andx2(t)
in the N-dimensional space.

4. Using the result of part 3, show that for general M,

P(error IXl (t) sent):s; J...f J per IXI)p(r IXz) dr

RN

_ .._...-._-(;

"

n-l

Xi(t) = I:qJij(t - jT)
j=O

where qJij (t) can be either ofthe two signals ¢l (t) or¢z(t), where ¢l (t) = ¢2(t) ==
Oforallt ¢ [0, T]. We further assume that ¢l (t) and¢2(t) have equal energy £' and
the channel is ideal (no.attenuation) with additive white Gaussian noise of power­
spectral density !if. 'This means that the received signal is ret) = x(t) + net),
where x(t) is one of the Xi (t)'s and net) represents the noise.

1. With ¢l (t) = -¢z(t), show that N, the dimensionality of the signal space,
satisfies N :s; n.

2. Show that in general N:s; 2n.

3. With M = 2, show that for general ¢l (t) and ¢2 (t)

information is transmitted at the maxlmum theoretically possible speed,
while avoiding lSI, find the upper bound on the block error probability
assuming the receiver employs a soft-decision scheme.

9.38 The Golay code is a cyclic (23, 12) code with dmin = 7. Show that if this code
is used with interleaving/deinterleaving of depth 5, the resulting block of length
115 can correct single bursts of error of length up to 15.

9.39 Let C I and Czdenote two cyclic codes with the same blocklength n, with generator
polynomials gl(P) and gz(p) and with minimum distances d l and dz. Define
Cmax = CI U Cz and Croin = CI n Cz.

1. Is Cmax a cyclic code? Why? If yes, what are its generator polynomial and
minimum distance?

2. Is Croin a cyclic code? Why? Ifyes, find its generator polynomial. What can
you say about its minimum distance?

9.40 In a coded-communication system, M messages 1, 2, ... , M = Zk are transmitted
by M baseband signals Xl (t), Xz(t), ... ,XM(t), each of duration nT. The general
form of Xi(t) is given by

Channel Capacity and Coding

resulting code word is even.

[

1 0 0 1 1 0]
G= 0 1 0 1 0 1

001011

1. Find the parity check matrix of the extended code.

2. What is the minimum distance of the extended code?

3. Find the coding gain of the extended code?

9.29 Compare the block error probability of an uncoded system with a system that uses
a (15, 11) Hamming code. The transmission rate is R = 104 bps and the channel
is AWGN with a received power of 1 fhW and noise power-spectral density of!!t.
The modulation scheme is binary PSK and soft-decision decoding-is employed.
Answer the question when hard decision is employed.

9.30 Generate the standard array for a (7,4) Hamming code and use it to decode the· .
received sequence (1,1,1,0,1,0,0).

9.31 For what values of k does an (n, k) cyclic code exist? List all possible k's with
corresponding generator polynomial(s).

9.32 Find a generator polynomial and the corresponding code words for a (7, 3) cyclic
code. What is the minimum distance of this code?

9.33 Design an encoder for a (15, 11) cyclic code.

9.34 Using the generator polynomial g(p) = 1 + p + p4, find the generator matrix
and the parity check matrix (in systematic form) of a (15, 11) cyclic code.

9.35 Let g(p) = pS + p6 + p4 + pZ + 1 denote a polynomial over the binary field.

1. Find the lowest rate cyclic code whose generator polynomial is g(p); what
is the rate of this code?

2. Find the minimum distance of the code found in part 1.

3. What is the coding gain for the code found in part 1?

9.36 The polynomial g (p) = p + lover the binary field is considered.

1. Show that this polynomial can generate a cyclic code for.any choice of n.
Find the corresponding k.

2. Find the systematic form of G and H for the code generated by g(p).

3. Can you say which type of code this generator polynomial generate?

9.37 Design a (6,2) cyclic code by choosing the shortest possible generator ..
polynomial. '

1. Determine the generator matrix G (in the systematic form) for this code and
find all possible code words.

2. How many errors can be corrected by this code?

3. If this code is used in conjunction with binary PSK over an AWGN chan"
nel with P = 1 W, No =2 X 10-6 WfH:z, and W = 6 X 104 Hz and the
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n =3

3

1. Draw the state diagram for the code.

2. Firid T(D), the transfer function of the code.

3. What is dfree, the minimum free distance of the code?

4. Assume that a message has been encoded by this code and transmitted
over a binary-symmetric channel with an error probability of p = 10-5. If
the received sequence is r = (110, 110, 110, 111,010, 101, 101), using the
Viterbi algorithm find the transmitted bit sequence.

5. Find an upper bound to bit-error probability of the code when the above
binary-symmetric channel is employed. Make any reasonable approxima­
tions.

Figure P·9.44

1. Draw the state diagram of the code.

2. Find the transfer function T (D) of the code.

3. Find the minimum free distance (dfree ) ofthe code and show the correspond­
ing path (at distance dfree from the all-zero code word) on the trellis.

4. Assume that four informationbits, (Xl, X2, X3, X4), followed by two zero bits,
have been encoded and sent via a binary-symmetric channel with crossover
probability equalto 0.1. The received sequence is (Ill, 111, 111, 111, 111,
111). Use the Viterbi decoding algorithm to find the most likely data
sequence.

k =1--=-

"I 2

4-
+

Problems

9.44 The block diagram of a (3, 1) convolutional code is shown in Figure P-9.44.

n =3

° OJ
° 1]

1 1]

Channel Capacity and Coding

P(error IXm (t) sent) ::s

and, therefore,

=1--
"I 2

Jr-
+'

5. Show that

Figure P-9.43

k

1. Draw the encoder corresponding to this code.

2. Draw the state-transition diagram for this code.

3. Draw the trellis diagram for this code.

4. Find the transfer function and the free distance of this code.

5. Verify whether this code is catastrophic or not.

9.42 Show that in the trellis diagram of a convolutional code, 2k branches enter each
state and 2k branches leave each state.

9.43 The block diagram of a binary convolutional code is shown in Figure P-9.43.

9.41 A convolutional code·is described by

gl = [1

g2 = [1

g3 = [1

670
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_________.-J:
\

2. From above, conclude that
d

P(d) :s [4p(l - p)]2

9.50 The complementary error function erfc(x) is defined by

erfc(x) = In100

e-
t2

dt

1. Express Q(x) in terms of erfc(x).

2. Using the inequality

erfc(.Jx + y) :s erfc(.JX)e-Y x:::: 0, y:::: 0

prove the following bound on the average bit-error probability of a convo­
lutional code, assuming that soft-decision decoding is employed.

1 aT(D, N) IPb :s -erfc ( ) dfreeRcPb ) edr""RcPb --:-:c--'-
2k _ aN N=l,D=e-RcPb

9.51 A trellis-coded modulation system uses an 8-ary PAM signal set given by {±1,
±3, ±5, ±7} and the 4-state trellis encoder shown in Figure 9.48(a).

1. Using the set partitioning rules, partition the signal set into four subsets.

2. If the channel is additive white Gaussian noise, and at the output of the
matched filter the sequence (-.2,1.1,6,4, -3, -4.8,3.3) is observed,
what is the most likely transmitted sequence?

. ,:'.

Chapter 9

gl = [ 001 ]

Channel Capacity and Coding

Figure P-9.48

k=l

1. Show that

gl = [1 1 0]

gz = [l 0 1]

g3 = [l 1 1]

9.49 Let Xl and Xz be two code words oflength n with distance d, and assume that these
two code words are transmitted via a binary-symmetric channel with crossover
probability p. Let P (d) denote the error probability in transmission of these two_
codewords.'

2"

where the summation is over all binary sequences Yi.

P(d):s 2: )P(Yi IXI)P(Yi [xz)
i=l

9.45 The convolutional code of Problem 9.41 is used for transmission over a AWGN
channel with hard-decision decoding. The output of the demodulator-detector is
(l01001011110111. ..) . Using the Viterbi algorithm, find the transmitted
sequence.

9.46 Repeat Problem 9.41 for a code with

9.47 Show the paths corresponding to all code words of weight 6 in Example 9.7.3.
9.48 In the convolutional code generated by the encoder shown in Figure P-9.48.

1. Find the transferfunction of the code in the form T(N, D).

2. Find dfree of the code.

3. If the code is used on a channel using hard-decision Viterbi decoding,
assuming the crossover probability ofthe channel is P = 10-6

, use the hard- ­
decision bound to find an upper bound on the average bit-error probability
of the code.
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Figure 10.1 illustration ofmultipath
propagation in LOS microwave

~ transmission.

Digital Transmission on Fading Multipath ChannelsSection 10.1

of these ionospheric layers, the signal arrives at the receiver via different propagation
paths at different delays. These signal components are called multipath components.
The signal mu1tipath components generally have different carrier-phase offsets and,
hence, they may add destructively at times, resulting in a phenomenon called signal
fading. Hence, signal fading is a result of multipath signal propagation. To characterize
such channel behavior, we adopt a time-varying impulse response model.

Mobile Cellular Transmission. In mobile cellular radio transmission between
a base station and a mobile telephone, the signal transmitted from the base station to
the mobile receiver is usually reflected from surrounding buildings, hills, and other
obstructions. As a consequence, we observe multiple propagation paths arriving at the
receiver at different delays. Hence, the received signal has characteristics similar to those
for ionospheric propagation. The same is true of transmission from the mobile telephone
to the base station. Moreover, the speed that the mobile (automobile, train, etc.) is
traveling results in frequency offsets, called Doppler shifts, of the various frequency
components (see ProblemlO.1) of the signal.

Line-of-sight Microwave Radio Transmission. In line-of-sight (LOS) radio
.transmission of signals, the transmitting and receiving antennas are generally mounted
on high towers, in order to avoid obstructions, such as buildings and hills, in the path
of signal propagation. However, when there are tall obstructions or hilly terrain in the
path of propagation, it is likely that signals will be reflected from the ground to the
receiving antenna as illustrated in Figure 10.1. This is especially a problem under severe
weather conditions. In this case, there is a received signal component that arrives via
the direct. path and an ensemble of secondary paths that are reflected from the ground
terrain. The latter arrive at the receiver with various delays and constitute multipath
propagation. Relatively narrow-beamwidth antennas are employed in microwave LOS
transmission to reduce the occurrence of secondary reflections. Nevertheless, some
secondary signal reflections are frequently observed in practice. Such secondary signal
reflections generally vary with time, so the channel may be characterized by a time-
varying impulse response. .

Airplane-ta-Airplane Radio Communications. In radio communications
between two aircraft, it is possible for secondary signal components to be received
from ground reflections, as illustrated in Figure 10.2. This is especially the case when
omnidirectional antennas are employed in the communication system. The ensemble of

10

In Chapters 7 and 8, we described digital modulation and demodulation methods for
transmission of information over two types of channels, namely, an additive Gaussian .
noise channel and a linear filter channel. Such channel models are appropriate for
characterizing physical channels that are "relatively static; i.e., the channel transmis­
sion characteristics are generally modeled as time invariant. In this chapter we treat
modulation and demodulation techniques that are appropriate for wireless communica­
tion channels, such asradio and acoustic communication channels, whose transmission
characteristics are time varying.

Physical channels with time-varying transmission characteristics may be characterized
as time-varying linear filters. Such linear filters are described by a time-varying impulse
response h(r; t),where her; t) is the response of the channel at time t due to an impulse
applied at time t - r. Thus, r denotes the "age" (elapsed time) variable. The time­
varying linear filter model of the channel with additive noise was previously shown in
Figure 1.10. We cite the followingexamples of wireless communication channels that
can be modeled in this manner.

Wireless Communications

Signal Transmission via Ionospheric Propagation in the HF Band. We
recall from our discussion in Chapter 1 that sky-wave propagation, as illustrated in
Figure 1.6, results from transmitted signals (in the HF frequency band) being bent
or refracted by the ionosphere, which consists of several layers of charged particles.
ranging in altitude from 30-250 miles above the surface of the earth. As a consequence

674
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(10.1.1)

(10.1.3)

Figure 10.3 illustration of time-variant
channel response characteristics.

= I>n(t) e- j 1>"(t)

n

Received signal

n

c(t) = A cos 2Jrfct

Digital Transmission on Fading Multipath Channels

JL

Section 10.1

JL

time variations, the response of the channel to any signal transmitted through it will
change with time. Hence, if we repeat the short pulse transmission experiment over
and over, we would observe changes in the received signal, which are due to physical
changes in the medium. Such changes include variations in the relative delays ofsignals
from the multiple scatterers. Hence, the received signal might appear as illustrated in
Figure 10.3. In other words, the impulse response of the channel is varying with time.
In general, the time variations in the received signal appear to be unpredictable to the
user of the channel. This leads us to characterize the time-variant multipath channel
statistically.

To obtain a statistical description of the channel, let us consider the transmission
of an unmodulated carrier

The received signal in the absence of noise may be expressed as

x(t) = A L an(t) cos[2JrfcCt - <n(t)]

=ARe [~an(t)e-j2nf"n(')e j2Jrf,,] (10.1.2)

where an (t) is the time-variant attenuation factor associated with the nth propagation
path and in (t) is the corresponding propagation delay. The complex-valued signal

z(t) = Lan(t) e-j2rrf",,(,)

n

Transmit/ed signal

t = to
JL

Figure 10.2 illustration of multipath
propagation in airplane-to-airplane
communications.

Wireless Communications

Secondary path

Ground

676

ground-reflected signal components generally arrive at the receiver with different delays .
and different attenuations. In addition, the motions of the aircraft result in Doppler
frequency offsets in the various signal components. In many respects, this situation is
similar to that in mobile cellular communications.

Underwater Acoustic Signal Transmission. A· shallow-water acoustic
channel is generally characterized as a multipath channel due to acoustic si?nal re­
flections from the surface and the bottom of the sea. Because of wave motlOn, the
signal multipath components undergo time-varying propagation d~lays w~c~ result in
signal fading. In addition, there is frequency-dependent attenuatIOn, which illcreases
proportionally as the square of the signal frequency. ..

The channels briefly described above may be generally charactenzed as linear
systems with time-varying impulse responses. Since it is generally difficult, if not
impossible, to characterize the microscopic effects of signal transmission on ch~els

as the ones described above in a deterministic fashion, it is logical to adopt a statistIcal
characterization. Such an approach is described below.

10.1.1 Channel Models for Time-Variant Multipath Channels

As we have observed, there are basically two distinct characteristics of the type~ of
radio channels described above. One characteristic is that the transmitted signal arnves
at the receiver via multiple propagation paths, each of which has an associated time
delay. For example, if we transmit an extremely short pulse, the channe~ response due
to multiple scatterers (such as ionized particles in the ionosphere) IIl1ght appe~ as
shown in Figure 10.3. Because the received signal is spread in time due to the multIple
scatterers at different delays, we say that the channel is time dispersive.

A second characteristic of the types of radio channels described above is con­
cerned with the time variations in the structure of the medium. As a result of such
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Channel
}----,l>- output

Noise

Figure 10.4 Model for time-variant
multipath channeL

)---,l>- Channel
output

Additive
noise
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Channel
input

Figure 10.5 Channel model for two-path channel in Example 10.1.1.

model consists of 10 taps, with only the first tap and the last tap having non-zero, time­
varying coefficients, denoted as Cl (t) and C2(t), as shown in Figure 10.5. Because Cl (t)
and C2 (t) represent the signal response of a large number of ionized particles from two
different regions ofthe ionosphere, we may characterize CI (t) and C2 (t) as complex-valued,
uncorrelated Gaussian random processes. The rate of variation of the tap coefficients
determine the value of the Doppler spread for each path.

f4-------Tm-------,I
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represents the response of the channel to the complex exponential exp(jZrclct). We
note that, although the input to the channel isa monochromatic signal; Le., a signal at
a single frequency, the output of the channel consists of a signal that contains many
different frequency components. These new components are generated as a result of the
time variations in the channel response. The r.m.s. (root-mean-square) spectral width
of z(t) is called the Doppler frequency spread of the channel and is denoted as Bd•

This quantity is a measure of how rapidly the signal z(t) is changing with time. If z(t)
changes slowly, the Doppler frequency spread is relatively small, while if z(t) changes
rapidly, the Doppler frequency spread is large.

We may view the received complex-valued signal z(t) in Equation (10.1.3) as the
sum of a number ofvectors (phasors) each of which has a time-variant amplitude an (t)
and phase ¢n(t). In general, it takes large dynamic changes in the physical medium to
cause a large change in (an (t) }. On the other hand, the phases {¢n (t)} will change by
Zrc radians whenever {Tn (t)} change by 1/fc. But 1/Ie is a small number and, hence,
the phases {¢n (t)} change by 2rc or more radians with relatively small changes of the
medium characteristics. We also expect the delays {Tn (t)} associated with the different
signal paths to change at different rates and in as unpredictable (random) manner. This.
implies that the complex-valued signal z(t) in Equation (10.1.3) can be modeled as a
random process. When there are a large number of signal propagation paths, the central
limit theorem can be applied. Thus, z(t) can be modeled as a complex-valued Gaussian
random process.

The multipath propagation model for the channel, embodied in the received signal
x(t) or, equivalently, z(t) given by Equation (10.1.3), results in signal fading. Thefading ....
phenomenon is primarily a result of the time-variant phase factors {¢n (t)}. At times,
the complex-valued vectors in z(t) add destructively to reduce the power level of the
received signal. At other times, the vectors in z(t) add constructively and, thus, produce
a large signal value. The amplitude variations in the received signal due to the time­
variant multipath propagation in the channel are usually called signal jading.

Tapped Delay Line Channel Model. A general model for a time-variant
multipath channel is illustrated in Figure 10.4. The channel model consists of a tapped
delay line with uniformly spaced taps. The tap spacing between adjacent taps is 11 W,
where W is the bandwidth of the signal transmitted through the channel. Hence, l/W
is the time resolution that can be achieved by transmitting a signal of bandwidth W.
The tap coefficients, denoted as {en (t) == an (t)ej<t>" (t)} are usually modeled as complex­
valued, Gaussian random processes which are mutually uncorrelated. The length of the
delay line corresponds to the amount of time dispersion in the multipath channel, which
is usually called the multipath spread. We denote the multipath spread as Tnt = L I W,
where L represents the maximum number of possible multipath signal components.

Example 10.1.1
Detennine an appropriate channel model for two-path ionospheric propagation, where the
relative time delay between the two received signal paths is I msec and the transmitted
signal bandwidth W is 10 kHz.

Solution A 10-kHz signal can provide a time resolution of l/W = 0.1 msec. Since the
relative time delay between the two received signal paths is 1 msec, the tapped delay line
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(10.1.4)

(10.1.6)

(10.1.7)

C(t) = Cr (t) + jCi (t)

Digital Transmission on Fading Multipath ChannelsSection 10.1

a(t) = Vc;(t) + cl(t)

"'( ) -1 Ci(t)
'f'1 =tan --
. cr (t)

In this representation, if Cr (t) and Ci (t) are Gaussian with zero-mean values, the am­
plitude aCt) is characterized statistically by the Rayleigh probability distribution and
¢(t) is uniformly distributed over the interval (0, 2rr). As a consequence, the channel
is called a Rayleighfading channel. The Rayleigh fading signal amplitude is described
by the PDF

f( ) =..::.. -a'j2(1' 0a (j2 e , a::::

and f(a) = 0 for a < O. The parameter (j2 = E(c~) = E(c;).
On the other hand, if cr(t) and Ci(t) are Gaussian with nonzero mean as in the

airplane-to-airplane communication link described in Example 10.1.3, the amplitude
ex (t) is characterized statistically by the Rice probability distribution and the phase ¢ (I)
is also nonzero mean. In this case the channel is called a Riceanfading channel and the
PDF of the amplitude is given as

where

where cr(t) and Ci (t) represent real-valued Gaussian random processes. We assume that
cr(t) and Cf(t) are stationary and statistically independent. This assumption generally
holds for the tapped delay model of physical channels.

We may also express c(t) in the form as

c(t) =a(t) ej¢(t) (10.1.5)

Rayleigh and Ricean Fading Models. In the channel models described in
Examples 10.1.2 and 10.1.3, the tap coefficients in the tapped-delay line model were
characterized as complex-valued Gaussian random processes. We may express each of
the tap coefficients as

f(a) = a2e-(~'+S')j2(1' 10 (S~), ex:::: 0 (10.1.8)
.(j ~

where the parameter s2 represents the power of the received nonfading signal component
and (j2 = VAR(cr ) = VAR(Ci).

Propagation Models for Mobile Radio Channels. In the link budget calcu­
lations that were described in Section 7.7.2, we had characterized the path loss of radio
waves propagating through free space as being inversely proportional to d 2 , where d
is the distance between the transmitter and the receiver. However, in a mobile radio
channel, propagation is generally neither free space nor LOS. The mean path loss en­
countered in mobile radio channels may be characterized as being inversely proportional

Chapter 10Wireless Communications

Figure 10.6 Channel model for
two-path channel in Example 10.1.2.

Channel
output

Noise

Channel
input

Example 10.1.2
Determine an appropriate channel model for an airplane-to-airplane communication link
in which there is a direct signal propagation path, and a secondary propagation resulting
from signal scattering due to the surrounding ground terrain. The secondary path has a
propagation delay of TO = 10 /-Lsec relative to the propagation delay of the direct path. The
signal bandwidth is W = 100 kHz.

Solution A 100-kHz signal provides a time resolution of 1/W = 10 /-Lsec. Consequently,
the secondary signal path is resolvable, since its relative time delay is 10 /-LSec. In this
case, a channel model that has two taps with tap coefficients CI (t) =(Xl (t) eJ¢>, (I) and
Cz(l) = (Xz(t) eN, (I) , as shown in Figure 10.6, is appropriate. The direct path may be
modeled as having a fixed (time-invariant) attenuation (Xl, but a time-varying phase shift.
The secondary path, which results from ground terrain, is modeled as having a time­
varying attenuation and phase shift, since the ground terrain is changing with time due
to the motion of the airplanes. In this case, it is appropriate to model Cz (t) as a complex­
valued, Gaussian random process. The rates of variation of the tap coefficients, Cl (I) and
C2 (t), determine the value of the Doppler frequency spreads for these paths. Note that,
in both the direct and the reflected signal paths, there will be Doppler frequency shifts
resulting from motion of the aircraft.

680

Example 10.1.3
Determine the appropriate channel model for the airplane-to-airplane communication
link described in Exainple 10.1.2, but now assume that the transmitted signal bandwidth
is 10kHz.

Solution A 10-kHz signal provides a time resolution of 100 /-Lsec. Since the relative delay
between the two signal components is 10 /-Lsec, the two signal paths are not resolvable
in time. Consequently, the channel appears as a single path channel with tap coefficient
c(t) that includes the direct path and the secondary path. Since the secondary path results
from signal scattering from a large number of scatterers, we may characterize cCt) as a
complex-valued Gaussian random process with a mean value of (XI eJ¢>' (I), which is due to
the direct path.



where f is the operating frequency in MHz (150 < f < 1500), h t is the transmitter
antenna height in meters (30 < h t < 200), hr is the receiver antenna height in meters
(1 < hr < 10), d is the distance between transmitter and receiver in km (1 < d < 20), and

683

(10.1.15)
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parameter the coherence time of the channel, and define it as

1
Tet = - (10.1.14)

Bd
The other useful parameter is the reciprocal of the multipath spread, which has

units of frequency. This quantity is a measure of the bandwidth over which the channel
characteristics (magnitude aCt) and phase ¢J(t)) are highly correlated. In other words,
all frequency components of a signal within this bandwidth will fade simultaneously.
We call this parameter the coherence bandwidth of the channel and define it as

1
Beb =­

Tm

Example 10.1.4
Consider the communication link described in Example 10.1.1. Determine the coherence
bandwidth of this channel.

Solution The multipath spread for this channel is T,ll = 1 msec. Hence, the coherence
bandwidth of the channel is l/Tm = 1000 Hz. Within this bandwidth, all frequency
components ofasignal will be affected similarly by the channel. For example, all frequency
components of a signal that fall within the coherence bandwidth will fade simultaneously.

Examples 10.1.1, 10.1.2, and 10.1.3 provide some indication on the role that
the signal bandwidth plays in relation to the characteristics of the channel model. For
example, if the transmitted signal has a bandwidth W that is larger than the coherence
bandwidth Bcb of the channel (W > Beb), as is the case in Example 10.1.1 and 10.1.2,
the multipath components are resolvable and, as a consequence, frequency components
of the transmitted signal that are separated by more that Bcb are affected (attenuated
and phase shifted) differently by the channel. In such a case we say that the channel
is frequency selective. On the other 'hand, if the signal bandwidth W is smaller than
Bcb(W < B~b), as is the case in Example 10.1.3 , all the frequency components in the
signal are affected (attenuated and phase shifted) similarly by the channel at any instant
in time. In such a case, we say that the channel is frequency nonselective.

The Channel Spread Factor. The product TmBd =Tm/Tet is usually called
the channel spread factor. If TmBd < 1, the channel is called underspread and if
TmBd> 1, the channel is said to be overspread. The spread factor usually provides
some indication on whether or not phase-coherent demodulation is possible at the re­
ceiver. In general, if the channel is overspread, due either to a large multipath spread or
a large Doppler spread or both, the estimation of the carrier phase is extremely difficult
because of the rapid time variations (Tet « Tm ) in the channel that occur in the time
interval Tm . On the other hand, if the channel is underspread, the channel-time varia­
tion is slow relative to the multipath spread (Tet » Tm) and, hence, the carrier phase of
the received signal can be estimated with good precision. Fortunately, most physical
time-varying channels encountered in practice are underspread.

Next, we describe how these channel parameters are used in the design ofmodu­
lation signals for transmitting digital information over the channel. Table 10.1 lists the

(10.1.9)

(10.1.10)

(10.1.11)

(10.1.12)

(10.1.13)

f::: 400MHz

Wireless Communications

ret) = Aog(t)s(t)
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The Coherence Time arid Coherence Bandwidth of the Channel. Be­
sides the multipath (time) spread Tm and the Doppler (frequency) spread Bd, there are
two other parameters that are useful in characterizing fading, multipath channels. One
parameter is the reciprocal of the Doppler spread. This quantity is a measure of the
time interval over which the channel characteristics will change very little. We call this

Inmobile radio co=unications we often encounter the effect ofshadowing ofthe
signal due to large obstructions, such as large buildings, trees, and hilly terrain between
the .transmitter and the receiver. Shadowing is usually modeled as a multiplicative
and, generally, slowly time-varying random process; i.e., the received signal may be
characterized mathematically as

where Ao represents the mean path loss, set) is the transmitted signal, and gCt) is a
random process that represents the shadowing effect. At any time instant, the shadowing
process is modeled statistically as lognonnally distributed. The PDF for the lognormal
distribution is

{

__1_ e-(Ing-fL)2/2a2 (g::: 0)
fCg) = .J'iM2g

0, (g < 0)

If We define a new random variable X as X = In g, then

f(x) = __1_ e-(x-fL)2/2a 2, -00 < x < 00

.J211:0-2

The random variable X represents the path loss measured in dB, f-i- is the mean path
loss in dB and 0- is the standard deviation of the path loss in dB. For a typical cellular
environment, 0- is in the range of 5-12 dB.

to d P , where 2 :5 p :5 4, with d4 being a worst-case model. Consequently, the path
loss is usually much more severe compared to that of free space.

There are a number of factors affecting the path loss in mobile radio communi­
cations. Among these factors are base-station antenna height, mobile antenna height,

.operating frequency, atmospheric conditions, and presence or absence of buildings and
trees. Various mean path loss models have been developed that incorporate such factors.
For example, a model for a large city in an urban area is the Rata"model, in which the
mean path loss is expressed as .

Loss in dB = 69.55 + 26.1610g lO f - 13.8210glO h t ~ a(hr)

+ C44.9 - 6.5510glO ht ) 10glO d
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For example, if we select the symbol rate liT = W, then, since Tm > 11W, it follows
that Tm > T. In this case, the receiver encounters intersymbol interference (lSI) and
must employ some type of equalization, as previously described in Section 8.6. On the
other hand, if the symbol rate is selected to be very small; i.e., T» Tm , then the lSI
becomes insignificant and no equalization is necessary. Such signal design is usually
accomplished by the use of spread-spectrum signals, as described in Section 10.3.
Further discussion on this topic is deferred to Section 10.3.2.

Example 10.1.5 Single Carrier Signal Transmission
Suppose that an HF channel with a nominal bandwidth allocation of3200 Hz is to be used
for transmitting digital information at a rate of either (1) 4800 bits/sec or (2) 20 bits/sec.
The channel multipath spread is Tm = 5 msec. Specify a modulation method for achieving
the desired data rates and indicate whether or not an equalizer is necessary at the receiver
for the intersymbol interference.

Solution For the 4800-bps system, we select a symbol rate of 2400 symbols/second and
four-phase modulation (either coherent PSK or DPSK). A symbol rate of 2400 can be
accommodated in a channel bandwidth of 3200 Hz,. since there is an excess bandwidth of
800 Hz. A transmitting filter with a raised cosine spectral characteristic may be used to
obtain the desired signal shaping. The symbol rate 11 T = 2400 means that the received
signal will be corrupted by intersymbol interference (T,,, » T), which will require the use
of an equalizer to reduce its effect on performance.

For the low rate of20 bits/sec we may again employ four-phase modulation (PSK
or DPSK). Thus, the symbol rate is 10 symbols/sec and, hence, T = 100 msec. Since
T » T,n, the effect of the multipath spread is negligible and no equalization is necessary
at the receiver. To use the entire channel bandwidth, we may employ a phase-modulated
spread-spectrum signal as described in Section 10.3.

Example 10.1.6. Multicarrier OFDM Signal Transmission
Consider an HF channel which has a nominal bandwidth of 3200 Hz and a multipath
spread of Tm = 1 msec. Design a nmltiple-carrier OFDM signal that achieves a data rate
of 4800 bits/sec.

Solution We may select the number N of subcarriers to be as large as we like so as to
achieve the desired condition that T,c» Till, where Tsc is the symbol duration for each
subcarrier. However, the complexity of the demodulator increases, as N log2 N (com­
putational complexity of FFT algorithm) and the demodulation delay for delivering the
information to the user increases (linearly) with N. Therefore, it is desirable to keep N as
small as possible. Suppose we select N such that Tsc = 100 msec. Then, each subchannel
may be as narrowt as Vl'rc "" ~,. = 10 Hz. Note that Wsc « Bcb = 1000 Hz as desired. If
we employ four-phase (PSK or DPSK) modulation in each subchannel, we achieve a bit
rate of 20 bits/sec, per subchannel. With N = 240 subchannels, we achieve the desired
data rate of 4800 bps.

As previously indicated in Section 8.7, a disadvantage of multicarrier OFDM
modulation is the relatively high peak-to-average ratio (PAR) that is inherent in the

tIn practice, it will be necessary to have some excess bandwidth in each subchanneL The excess
bandwidth may be in the range of 25-50%.
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Type of channel Multipath duration (s) Doppler spread (Hz) Spread factor

Shortwave ionospheric 10-3 _10-2 10-1 -1 10-4 -10-2

propagation (HF)
10-3 _ 10-2 10-2 -1Ionospheric propagation under 10 -100

disturbed auroral conditions
Ionospheric forward scatter (VHF) 10-4 10 10-3

Tropospheric scatter 10-6 10 10-5

Mobile cellular (UHF) 10-5 100 10-3

values of these channel parameters for several multipath channels. Although we focus
our treatment on binary modulation, the basic concepts carry over to M-ary IIlodulation
without exceptions.

10,1,2 Signal Design for Fading Multipath Channels

There are different approaches that one can take in the design of signals for transmitting
digital information through a fading multipath channel. Although, in principle, any of
the carrier-modulation methods (pAM, QAM, PM, and FSK) are applicable, signal
fading generally causes large fluctuations in the received signal amplitude and, conse­
quently, it is extremely difficult to discriminate among multiple-amplitude levels in the
received signal. For this reason, PAM and QAM are often avoided for digital commu­
nications through fading channels. In ow:: discussion, we shall focus our attention on
digital-phase modulation (PSK) and frequency-shift keying (FSK)..

As indicated in the previous section, the available channel bandwidth plays an
important role in the design of the modulation. If the bandwidth that is allocated to
the user exceeds the coherence bandwidth Bcb of the channel, we have basically two
options. One option is to transmit the information on a single sinusoidal carrier, using a
signal that occupies the entire available channel bandwidth. In this case, the multipath
signal components are resolvable to within a time resolution of I/W. Hence, signal
propagation paths that differ in time-of-arrival at the receiver by a time interval greater
than or equal to 11W will be distinguishable as separate propagating signal components.
The number of distinct signal components depends on the channel characteristics. For
example, in the airplane-to-airplane communication link, we would expect to see ~e
direct path and the ground-reflected path. In radio-signal transmission via ionosphenc
propagation in the HF frequency band, the number of received signal components
depends on the number of ionospheric reflecting layers and the possibility of paths
arriving by multiple skips. . ' .

We observe that, when W > Bcb, the received signal may be corrupted by inter­
symbol interference, unless the symbol rate is selected to be significantly smaller than
the multipath spread Tm . We recall that the symbol rate 11 T satisfies the condition

1
-- < 2W (10.1.16)T-
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(10.1.20)

(10.1.22)

(10.1.23)

(10.1.24)

(10.1.26)

(10.1.28)

m = 0, 1
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JZEbr(t) = a . T cos(2rrfe t + mrr + ¢J) + net) (10.1.21)

where ¢J is the carrier-phase offset. Let us assume that ¢J is known to the demodulator,
which crosscorrelates r(t) with

1/I(t) = II cos(2rrfct + ¢J), O:s t :s TV'T

Um(t) = J2:
b

cos(Zrrfet +mrr) +n(t),

The received signal is the interval 0:s t :s T is

Hence, the input to the detector at the sampling instant is

r = ajf;, cos mrr + n, m = 0, 1

For a fixed value of Ct., the probability of error is the familiar form

Pb(Ct.) = Q(J2~:b)
We view Pb(Ct.) as a conditional probability of error for a given value of the channel
attenuation a. To determine the probability of error averaged over all possible values
of Ct., we compute the integral

Now, suppose that binary antipodal signals; e.g., binary PSK, are used to transmit
the information through the channel. Hence, the two possible signals are

Pb =100

Pb(ex)f(ex)da (10.1.25)

where f(a) is the Rayleigh PDF given by Equation (10.1.19). This integral has the
simple closed form expression

where, by definition,

Eb 2i5b = -E(a ) (10.1.27)
No

Hence, i5b is the average received SNRfbit and E (ex 2) = 2a2 .

If the binary signals are orthogonal, as in orthogonal FSK, where the two possible
transmitted signals are given as

IIm(t) = J2;b cos [zrr (fe+ ;;,) t], m = 0,1,

(10.1.17)

(10.1.18)

(10.1.19)

Wireless Communications

he,; t) = a(t)o(r - 'oCt))

he,; t) == he,) = ao(, - TO)

{

. .!!...e-cx2j2(f2. a > °
f(a) = (f2 ,

0, otherwise
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transmitted signal. In general, large peaks occur in the transmitted signal when the .
signals in many of the subchannels add constructively in phase. Such large signal peaks .
may saturate the power amplifier and, thus, cause intermodulation distortion in the
transmitted signal. One way to avoid intermodulation distortion is to reduce the pow~i
in the transmitted signal and, thus, operate the power amplifier at the transmitter in its
linear operating range. However, this power reduction or "power backoff" results in .
inefficient operation of the communication system. For this reason, alternative methods
have been developed to reduce the PAR in OFDM systems. The interested reader is
referred to the references cited at the end of Chapter 8.

In the above discussion, we assumed that the available channel bandwidth exceeds
the coherence bandwidth Beb ofthe channel. On theather hand, if the channel bandwidth
is much smaller than Beb , there is no point in designing a multicarrier system. A single­
carrier system can be designed using the entire bandwidth, with a symbol rate of
W :s liT :s 2W. In this case T » Tm , so that the effect of intersymbol interference
on the performance of the system is negligible.

Next, we evaluate the performance of the demodulator and detector for a PSK,
DPSK, and FSK modulations in a Rayleigh fading channel under the condition that
intersymbol interference is negligible.

10.1.3 Performance of Binary Modulation in Frequency
Nonselective Rayleigh Fading Channels

In this section, we determine the probability of error at the receiver of a binary digital
communication system that transmits information through a Rayleigh fading channeL
The signal bandwidth W is assumed to be much smaller than the coherence band­
width Beb of the channel, as in Example 10.1.3. Since the multipath components are
not resolvable, the channel is frequency nonselective and, hence, the channel impulse
response is represented as

where aCt) has a Rayleigh distribution at any instant intime.
We assume that the time variations ofaCt) and 'oCt) are very slow compared to

the symbol interval, so that within the time interval °:s t :s T, the channel impulse
response is constant; i.e.,

where the amplitude a is Rayleigh distributed; i.e.,
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(10.1.36)
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Figure 10.7 Performance of binary signaling on a Rayleigh fading channel.
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Problem 10.3) is

10.1.4 Performance Improvement Through Signal Diversity

The basic problem in digital communication through a fading channel is that a large
number of errors occur when the channel attenuation is large; i.e., when the channel
is in a deep fade. If we can supply to the receiver two or more replicas of the same
information signal transmitted through independently fading channels, the probability
that all the signal components will fade simultaneously is reduced considerably. If p

(10.1.34)

(10.1.32)

(10.1.33)

(10.1.30)

(10.1.29)

(10.1.31)
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1
Pb ~ - antipodal signals

4i5b'
1

Pb ~ - orthogonal signals
2fib'

Hence the probability of error in bo¢ cases decreases only inversely as the SNR. This
is in contrast to the exponential decrease in the case of the AWGN channel. We also
note that the difference in SNR between antipodal signals (binary PSK) and orthogonal ....
signals (binary FSK) is 3 dB.

Two other types of signal modulation are DPSK and noncoherent FSK. For.
completeness, we state that the average probability of error for these signals (see

rz = n2

where nl and nz are the additive noise components at the outputs of the two correlators.
Hence, the probability of error is simply the probability that rz > rl. Since the signals
are orthogonal, the probability of erroffor a fixed value of a has the familiar fonn

As in the case of antipodal signals, the av~rage probability of error over all values of ex
is determined by evaluating the integral in Equation (10.1.25). Thus, we obtain

1[ ~-bPb=- 1+ --
2 2+h

where Pb is the average SNRlbit defined by Equation (10.1.27).
Figure 10.7 illustrates the average probability of error for binary antipodal and

orthogonal signals. The striking aspects of these graphs is the slow decay of the prob­
ability of error as a function of SNR. In fact, for large values of Pb, the probability of
error for binary signals is

the received signal is

rCt) =aJ2:b
cos [2n (fc+;;') t+¢] +n(t)

In this case, the received signal is crosscorrelated with the two signals

'hCt) = fJr cos(2nfct + ¢)

1h(t) = fJrcos[2n(fc+ 2~) t+¢]
If m = 0, for example, the two correlator outputs are

rl = a"ftb + nl

688
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Figure 10.9 Model ofbinary digital communication system with D-order diversity.

that is appropriate for coherent demodulation and detection requires that the receiver
estimate and correct forthe different phase offsets on each ofthe D received signals after
demodulation. Then, the phase-corrected signals at the outputs of the D demodulators
are summed and fed to the detector. This type of signal combining is called equal-gain
combining. If, in addition, the received signal power level is estimated for each of the
D received signals, and the phase-corrected demodulator outputs are weighted in direct
proportion of the received signal strength (square-root of power level) and the~ fed to
the detector, the combiner is called a maximal-ratio combiner. On the other hand, if
orthogonal signals are used for transmitting the information through D independently
fading channels, the receiver may employ noncoherent demodulation. In such a case the
outputs from the D demodulators may be squared, summed, and then fed to detector.
This combiner is called a square-law combiner.

All these types of combining methods lead to performance characteristics that
result in a probability of error which behaves as K D / i5 D where K D is a constant that
depends on D, and i5 is the averageSNRJdiversity channel. Thus, we achieve an ex­
ponential decrease in the error probability. Without providing a detailed derivation, we
simply state that for antipodal signals with maximal ratio combining, the probability

Figure 10.8 Illustration of diversity
reception using two receiving antennas.Earth

is the probability that anyone signal will fade below some critical value, then pD is
the probability that all D independently fading replicas of the same signal will fade
below the critical value. There are several ways that we can provide the receiver with
D independently fading replicas of the same information-bearing signal.

One method for achieving D independently fading versions' of the same
information-bearing signal is to transmit the same information on D OFDM carrier fre­
quencies, where the separation between successive carriers equals or exceeds the co­
herence bandwidth Beb of the channel. This method is calledfrequency diversity.

A second method for achieving D independently fading versions of the same
information-bearing signal is to transmit the same information in D different time
slots, where the time separation between successive time slots equals or exceeds the
coherence time Tel of the channel. This method is called time diversity.

Another commonly used method for achieving diversity is via use of multiple
receiving antennas, but only one transmitting antenna. The receiving antennas must be
spaced sufficiently far apart so that the multipath components in the signal have signif­
icantly different propagation paths, as illustrated in Figure 10.8. Usually, a separation
of a few wavelengths is required between a pair of receiving antennas in order to obtain
signals that fade independently.

Other diversity transmission and reception techniques that are used in practice,
are angle-of-arrival diversity and polarization diversity.

Given that the information is transmitted to the receiver via D independently
fading channels, there are several ways that the receiver may extract the transmitted
information from the received signal. The s~mplestmethod is for the receiver to monitor
the received power level in the D received signals and to select for demodulation and
detection the strongest signal. In general, this approach results in frequent switching
from one signal to another. A slight modification that leads to a simpler implementation
is to use a signal for demodulation and detection as long as the received power level
in that signal is above a preset threshold. When the signal falls below the threshold, a
switch is made to the channel which has the largest received power level. This method
of signal selection is called selection diversity.

For better performance, we may use one of several more complex methods for
combining the independently fading received signals as illustrated in Figure 10.9. One-~'I'
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Figure 10.10 Performance of binary signals with diversity.
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orthogonal FSK is used to transmit each code bit. The channel is a Rayleigh fading channel
and the receiver employs square-law combining and detection for both types of signals.

Solution Let us assume that signal diversity is obtained by interleaving the coded bits
. so that we have statistically independent fading among the coded bits for both signals.

Note that, the repetition code and the Golay (24, 12) code, are rate 1(2 codes. For the
repetition code, we combine the square-law detected FSK signals in the two (interleaved)
signal intervals. Hence, if a zero is transmitted, the two memcs at the combiner output
corresponding to a 0 and aI, respectively, are

TO = la,..;£ eN' +noIi2 + la2..;£ eN, + n0212

ri = InJll2 + In12l2

Section 10.1

(l0.1.38)

(10.1.40)

(10.1.39) ..
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KD
Pb~-- p-»l

(4p)D'

of error has the general form

(2D - 1)!
KD = D!(D -I)!

For binary orthogonal signals with square-law combining, the probability of error has
the asymptotic form

Example 10.1.7
Compare the error-rate performance of binary orthogonal FSK with dual diversity with
the performance of the rate 1/2, dmin = 8, extended Golay (24, 12) code in which binary

Finally, for binary DPSK with equal gain combining, the probability of error has the
asymptotic form

692

KD
Pb~-- p-»l

(2p)D'

These error probabilities are plotted in Figure 10.10 for D = 1, 2, 4 as a function
of the SNR/bit Ph = D p. It is apparent that a large reduction in SNRlbit is achieved
in having D = 2 (dual diversity) compared to no diversity. A further reduction in SNR
is achieved by increasing the order of diversity to D = 4, although the additional gain
from D = 2 to D = 4 is smaller than going from D = 1 to D = 2. Beyond D = 4,
the additional reduction in SNR is significantly smaller.

These performance results illustrate that efficient use of transmitter power in a
Rayleigh fading channel can be achieved by using some form of diversity to provide the
receiver with several independently fading signals all carrying the same information.
The types of diversity that we described (time or frequency) are a form of channel
coding usually called repetition coding where the code rate is 1/D. Thus, if each
information bit is transmitted twice in two widely separated time slots or in two widely
separated frequency bands, we have a dual diversity (D = 2) system obtained with a
repetition code of rate Rc = 1/2. However, in general, a nontrivial code of rate 1/2
will yield significantly better performance if the coded bits are interleaved prior to
transmission, as described in Chapter 9, so that the fading on each bit of a code word
is statistically independent. In particular, a binary linear (n, k) code with minimum
Hamming distance dmin results in a performance that is equivalent to a repetition ~~de

of diversity drnm when soft-decision decoding is used and dmin /2 when hard-decIsIOn
decoding is used. Therefore, for any code rate l/D, a nontrivial code can be selected
which has a minimum Hamming distance dmin > D and, thus, provides a larger order
of diversity than the corresponding repetition code of the same rate.

.where K D is defined as
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Figure 10.11 Comparison of performance of repetition code with Golay (24, 12)
code.
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S~ce W is the bandwidth of the bandpass signal, the bandwidth occupancy of
the equI:alent lowpass signal is W12. Hence, we employ a band-limited lowpass signal
s(t). Usmg the channel model for the frequency selective channel shown in Fiaure 10.4
we may express the received signal as _ to ,

where n.(t) re~resents the A':!GN. Therefore, the frequency-selective channel provides
:he rec~Iv~rWIth up to L replicas ofthe transmitted signal, where each signal component
IS mulTIplied by a corresponding channel tap weight Cn (t), n = 1,2, ... , L. Based on

K K
P2 "" 158 = (15b/2)8

where K is a constant independent of SNR, Pb = 15 / Re is the SNRfbit and Rc is the code
rate. Figure 10.11 illustrates the error probability for the two types of signals. Note that
the Golay code outperforms the repetition code by over 8 dB at a bit-error probability of
10-4. The difference is even greater at lower error rates. In conclusion, a nontrivial code
with interleaving generally provides more signal diversity thana repetition code of the

same code rate.

_where the {nij} are statistically i.i.d. complex-valued, zero-mean Gaussian random van- :
abIes. The probability of error is simply the probability that rj > ro, and is given as

K? 3
P - .0»1

b "" 152 = (pb/2)2'

where the average SNRfbit is h. In the Golay code; there are 212 = 4096 code words,
so that there are 4096 metrics at the output of the square-law combiner. To compute the
probability of error, we may assume that the all-zero code word is transmitted. Then the
combiner output corresponding to the all-zero code word is the metric

24

ro = 2:!ak.JE eN, +nod
k=j

In the Golay (24, 12) code, there are 759 code words having distance drnin = 8 from the all­
zero code word. Since anyone of these code words differs in 8 bits from the all~zero code
word and is identical with the all-zero word in 16 bits, the combiner output corresponding ­
to anyone of these 759 code words is statistically equivalent to the metric

8 24

rl = 2: In lkl2 +2: jakJE ej<P, +nod
k=! k=9

Hence, the difference between ro and rj is
8

""' r;:;'<p 2 - 2ro - Tj = L....- [Jak-Y E.eJ , + nOk I - Inlkl ]
k=l

We observe that this difference is a function of summing the received signal over eight
independently fading bits and, consequently, the code provides an order of diversity of
drnln = 8. This implies that the error rate for the Golay code decays inversely as 15

8
; i.e.,

the bit-error rate is

Wireless Communications

,
Let us consider the case in which the available channel bandwidth W exceeds the
coherence bandwidth Beb ofthe channel, and we transmit digital information at a symbol
rate liT by modulating a single carrier frequency. We assume that the symbol duration
T satisfies the condition T« Tel' Consequently, the channel characteristics change
very slowly in time, so that the channel is slowly fading, but it is frequency selective
because W» Beb' Furthermore, we assume that T» Tm so that lSI is negligible.
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(10.1.42)

(10.1.43)

10.1.6 Multiple Antenna Systems and Space-Time Codes

The use of two or more antennas at the receiving terminal of a digital communication
system is a commonly employed method for achieving spatial diversity to mitigate the
effects of signal fading. Typically, the receiving antennas must be separated by one or
more wavelengths to ensure that the received signal undergoes statistically independent
fading. Spatial receiver diversity is especially attractive because the signal diversity is
achieved without expanding the signal transmission bandwidth.

r
\

.._---._.---~.

delay-line filter with tap spacing of 1/ W, as in the channel model. The number of taps
is selected to match the total number of resolvable signal components. At each tap, the
signal is multiplied with each of the two possible transmitted signals Sl (t) and S2 (t),
and, then, each multiplier output is phase corrected and weighted by multiplication
with c~ (t), n = 1, 2, ... , L. Then, the corresponding phase-aligned and weighted sig­
nal components are integrated over the duration of the symbol interval T and the two
integrator outputs are sampled periodically every T seconds. Their outputs are then
sent to the detector. Thus, we have crosscorrelated the received signal with each of the
two possible transmitted signals at all possible delays introduced by the channel. Note
that the multiplication of the signal at each tap with the corresponding tap coefficient
<(t) results in weighting the signal components by the corresponding signal strengths.
Hence, the combining of the phase.corrected and weighted signal components corre­
sponds to maximal ratio combining.

In order to perform maximal ratio combining, it is necessary to estimate the
channel-tap coefficients Cn (t) from the received signal. Since these coefficients are
time varying, it is necessary for the estimator to be adaptive; i.e., to be able to track the
time variations. .

The demodulator structure shown in Figure 10.12 is called a RAKE demodulator.
Because this demodulator has equally spaced taps with tap coefficients that essentially
collect all the signal components in the received signal, its operation has been likened
to that of an ordinary garden rake.

Assuming that there are L signal components in the received signal, with corre­
sponding signal strengths that are distinct and Rayleigh distributed, the probability of
error for binary signals is well approximated as

L 1
Pb = KL I1-.---'--·-­

k=l [2Pk(l - Yr)]

where i5k is the average SNR for the kth~signal component; i.e.,

E:b (2)i5k = -E iXk
. No

where iXk = ICk Iis the amplitude ofthe kth-tap coefficient, Yr = -Horantipodal signals
and Yr = 0 for orthogonal signals, and KL is the constant defined in Equation (10.1.38).
In the special case where all the signal components have the same strength, the error
probability in Equation (10.1.42) reduces to that given by Equation (10.1.37) with
D=L.

the slow fading assumption, the channel coefficients are considered as constant over
the duration of one or more symbol intervals.

Since there are up to L replicas of the transmitted signal sct) in ret), a receiver·
that processes the received signal in an optimum manner will achieve the performance
that is equivalent to that of a communication system with diversity equal to the number.
of received (resolvable) signal components.

Let us consider binary signaling over the channel. Suppose we have two equal
energy signals Sl (t) and S2(t), which are orthogonal, with a time duration T » Tm•

Since the lSI is negligible, the optimum receiver consists of two correlators or two
matched filters that are matched to the received signals. Let us use the correlator struc­
ture that is illustrated in Figure 10.12. The received signal is passed through a tapped

Sample at

I --- t=kT -- t
t To Detector

Figure 10.12 RAKE demodulator for signal transmitted through a frequency selective
channel.
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Figure 10.14 A digital communication system with multiple transtnit and receive
antennas.

Output
data

Section 10.1

rk and rk+l is left as an exercise for the reader. The scheme for achieving dual transmit
diversity is especially suitable when the receiving terminal is a small mobile platform
where it may be difficult more than one receiving antenna on the platform.

In addition to providing signal diversity, multiple transmit antennas can be used to
create multiple spatial channels for the purpose of increasing the data transmission rate.
In particular, suppose that we employ N transmit antennas and M receive antennas,
where each of the N transmit antennas is used to transmit a different symbol in every
symbol interval. Figure 10.14 illustrates the block diagram of a digital communication.
system that employs N transmit antennas and M receive antennas. The system shown in
this figure includes an encoder and an interleaver at the transmitter and a deinterleaver
and a decoder at the receiver. In the system all signals from the N transmit antennas
are transmitted synchronously through the common channel. Thus, we achieve an N­
fold increase in data rate compared to a system that uses a single transmit antenna.
Assuming that the channel is frequency nonselective arid slowly fading, so that the
channel coefficients can be accurately measured, we can achieve Mth-order spatial
diversity by using M receive antennas, where M 2: N. Additional diversity, equal to
the minimum distance of the code, can be achieved by encoding the data, provided that
we employ a sufficiently long interleaver to ensure statistically independent channel
fading;

Example 10.1.8

Consider a co=unication system that employs two transmit and two receive antennas.
The encoder implements a rate 1/2 convolutional code with free distance dfree = 6. The
interIeaver is sufficiently long to assure that successive code symbols are separated in time

(10.1.44)

(10.1.45)

(10.1.46)
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(b) Receiver

Serial
to

parallel
converter

Parallel
to

serial
converter

Output
data

Data

Figure 10.13 Communication system employing two transtnit antennas and one
receive antenna.
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Spatial diversity can also be achieved by using multiple antennas at the trans­
mitter terminal of the communication system. For example, suppose we employ two
antennas at the transmitter (Tl and T2) and one antenna at the receiver, as shown in
Figure 10.13. Two information symbols are transmitted in each symbol interval. In the
kth-symbol interval, antenna T1 transmits the signal slkgT(t) and antenna T2 simulta­
neously transmits the signal S2kgT(t), where gT(t) is some basic signal pulse and Slk
and S2k are symbols selected from some signal constellation; e.g., QAM or PSK. The
signal at the receiving antenna may be expressed as

where the fading channel is assumed to be slowly fading and frequency nonselective
with complex valued channel coefficients Cj and C2, and net) denotes the additive noise.
The receiver processes the received signal by passing it through a filter matched to gT (t).
Hence, at the sampling instant, the matched-filter output may be expressed as

In the following symbol interval, T1 transmits the signal s~kgT(t) and T2 transmits
-sfkgT(t) where the asterisk denotes complex conjugate. Hence, the output of the
matched filter may be expressed as

It is assumed that the receiver has knowledge ofthe channel coefficients Cj and
C2, which is obtained by periodically transmitting pilot signals through the channel and
measuring the channel coefficients Cj and C2. Thus, it is pOSSIble for the receiver to
recover Sjk and S2k and, thus, achieve dual diversity. The recovery of Slk and S2k from
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3 """"'-------=0"

Input: 0 2 3 o ...
2 0

Antenna 1 : 0 0 2 3

Antenna 2: 0 2 3 0

FIgure 10.16 4-PSK, 4-state, space-time code.

Figure 10.15 Block diagram of communication system employing a space-time
code for two transmit and two receive antennas.

Section 10.1

two symbols are transmitted synchronously through the channel. At the receiver,the
signals received at the antennas are passed through matched filters, deinterleaved, and
fed to the trellis (Viterbi) decoder. The 4-state trellis code can be shown to provide dual
diversity and the use of two antennas at the receiver results in fourth-order diversity for
the communication system.

Wireless Communications

by at least the coherence time of the channel. The channel is slowly fading and frequency:>,
nonselective. The decoder employs the Viterbi algorithm to recover the data.:'-.:;.

1. Express mathematically the signal that is transmitted through the channel by the :'
two antennas, the signal received at each of the received antennas, and the signal at
the output of the demodulator (input to the decoder).

2. What is the order of diversity achieved by the receiver if the decoder performs
soft-decision decoding?

3. What is the order of diversity achieved by the receiver if the decoder performs
hard-decision decoding? .~,'.

Solution

1. The signal at the input to the channel at the kth-symbol interval is

x(t) = SlkgT (t) + S2kgT (t), 0 ~ t ~ T

The signal received at the two receive antennas are

Tl (t) = cllslkgT(t) + c12SZkgT(t) + nl (t)

T2(t) = c21Slkgy(t) + c22S2kgT(t) + n2(t)

where the (Clj} are the channel coefficients, Slk and SZk are the channel symbols and
nl (t) and nz(t) are the additive noise noise terms at the input to the receiver. The
demodulator (matched filter) outputs are

Tl = CllSlk + C12S2k + nl

TZ = CZlSlk + CZ2S2k + nz

These two signals are fed to the decoder.

2. With ideal interleaving, all the coded symbols fade independently so the received
signal at each antennaprovides a diversity order equal to drree = 6.lf the decoderis a
soft-decision decoder; the total order of diversity for the two antennas is 2dfree = 12.

3. With hard-decision decoding, the order of signal diversity from each antenna is
dfree /2. Hence, the total order ofdiversity for the two antennas is reduced to dfree = 6.

An alternative approach to coding for multiple antenna systems is to employ a new
class of codes, called space"time codes. A space-time code may be either a block code
or a trellis code that is especially designed for multiple transmit and receive antennas
to achieve diversity and an increase in data rate.

We consider a trellis code to illustrate the encoding process. A block diagram of
the transmitter and the receiver is illustrated in Figure 10.15 for the case of two transmit
and receive antennas. We assume that the data is binary and a signal constellation of
2k signal points is selected. Thus, any k-input data bits are mapped into one of 2k

signal points. As an example, suppose that the modulation is 4-PSK and the encoder
is represented by the 4-state trellis shown in Figure 10.16. This trellis generates a
rate ! code, where each input symbol, represented by the possible phase values 0,
1, 2, 3 is encoded into two output symbols, as specified by the trellis code. Each
of the two output symbols is passed to (identical) inter~eavers. The symbol (phase)
sequence at the output of each interleaver modulates a basic pulse shape gr (t) and the
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The radio spectrum is a precious commodity that is shared by many users. For example,
in the 900 MHz- and 1800 MHz-frequency bands used for digital cellular communica­
tions, the available licenses to use this spectrum are sold by the government licensing
authorities-such as the FCC in the U.S.-tothe cellular telephone operators, by means
ofan auction. In other words, the licenses to use certain parts of the spectrum are sold
to the highest bidder. Therefore, it is important that the modulation used to transmit
information over these radio channels be bandwidth efficient, so that more subscribers
can be accommodated in any given frequency band.

In the case of FSK and PSK modulation, the bandwidth of the transmitted signal
can be narrowed further by imposing the condition that the carrier phase of the trans­
mitted signal be continuous from one signal interval to the next. This is in contrast to
conventional FSK and PSK,.where the carrier phase may change instantaneously at the
beginning of each symbol interval.

In Sections 10.2.1 and 10.2.2, we describe both continuous-phase FSK and, more
generally, continuous-phase modulation. After describing the characteristics of these
modulations, we present their spectral characteristics and describe their demodulation
and detection. We will observe that the inherent memory prOVided by the phase con­
tinuity of the signal not only results in a narrower spectrum, but it also allows us to
employ a demodulator that exploits this memory. We begin by describing continuous­
phase FSK.

As a second example, we consider a rate 1/2, 8-state trellis code which is used with
8-PSK modulation, as shown in Figure 10.17. In this case, we transmit 3 bits/symbol,
so that the throughput is 50% higher comparedwith the rate !' 4-state trellis code. With
two transmit and two receive antennas, the code also results in fourth-order diversity.

For the sake of brevity, we will not discuss methods for designing space-time
codes. For the interested reader, we cite the papers by Tarokh, et al. (1998, 1999) which
describe the design of trellis codes and block codes.

10.2.1 Continuous-Phase FSK (CPFSKj

Ordinary FSK signals may be generated by baving M = Zk separate oscillat~rs tuned
to the desired frequencies fe + m f:::,f == fm, and selecting one of the M frequencies
according to the particular k-bit symbol that is to be transmitted in a signal interval.
However, such abrupt switching from one oscillator output to another in successive sig­
naling intervals results in relatively large spectral sidelobes outside of the main spectral
band of the signal, which decay slowly with frequency separation. Consequently, this
method is wasteful of bandwidth.

To avoid the use of signals having large spectral sidelobes, we may use the
information-bearing signal to frequency-modulate a single carrier whose frequency is
changed in a continuous manner. The resulting frequency-modulated signal is phase
continuous and, hence, it is called continuous-phase FSK (CPFSK).

10.2 CONTINUOUS CARRIER-PHASE MODULATION

7
6

5

10 11 12 13 14 15 16 17

Wireless Communications

Figure 10.17 8-PSK, 8-state, space-time code.

~=--__','~_":_~----'*--:r<__+_h4_---=~50 51 52 53 54 55 56 57

o"""::-------------------=~ 00 01 02 03 04 05 06 07

2 ~=---->~"""'.._7>'~---'*__,~*''7__hI----:~ 20 21 22 23 24 25 26 27

3 ~=---+*__'M'_*_'r'*....p~*__*+---:~ 70 71 72 73 74 75 76 77

4 .tff:.:::::::::.-...,L.'*-::¥:~'P~:_\';p~*~-~~ 40 41 42 43 44 45 46 47

6 ~:::::......_HY-~--rt:--__::;>4,__--:~__"<:...:y'"""----=:~ 60 61 62 63 64 65 66 67

7
30 31 32 33 34 35 36 37

2 '."

Input: 0 7 5 4 6

Antenna 1 : 0 0 5 4 4 0

Antenna 2: 0 7 5 4 6
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Figure 10.18 The signal pulse gT(t) and
its integral q(t).
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.ll------,
2T

8T(t)

,.. ,

(10.2.7)

(10.2.6)

(10.2.4)

(10.2.5)

(10.2.1)
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h = 2faT

n-I

en =rrh L ak
k=-co

n-]

B(t; a) = 2rrfaT L ak + 2rr(t ~ nT)faan
k=-co

Wireless Communications

In order to represent a CPFSK signal, we begin with a PAM signal

vet) = L angT(t - nT)
n

{

0, t < 0

q(t) = 'j2T, 9::S t ::s T

2' t > T

The parameter h is called the modulation index. We observe that en represents the phase
accumulation (memory) from all symbols up to time (n -1)T. The signal q (t) is simply
the integral of the rectangular pulse, as illustrated in Figure 10.18.

H is instructive to sketch the set of all phase trajectories e(t; a) generated by all
possible values of the information sequence {an}' For example, with binary symbols,
an = ±1, ilie set of phase trajectories beginning attimet =aare shown in FigurelO.l9.

= Bn + 2rrhanq(t - nT)

where, h, en and q(t) are defined as

where the amplitudes are obtained by mapping k-bit blocks of binary digits from the
information sequence into the amplitude levels ±1, ±3, ... , ±(M - 1), and gT(t)
is a rectangular pulse of amplitude 1/2T and duration T. The signal vet) is used to
frequency modulate the carrier. Consequently, the frequency-modulated carrier is

u(t) = Iii-cos [2rrfct + 4rrTfa leo vCr) dr + <Po] (10.2.2)

where fa is the peak-frequency deviation and <Po is an arbitrary initial phase of the
carrier. Note that the instantaneous frequency of the carrier is fe + 2Tfav(t).

We observe that, although vet) contains discontinuities, the integral of vet) is
continuous. We may denote the phase of the carrier as

B(t; a) = 4rrTfa loo vCr) dr . (10.2.3)

where a denotes the sequence of signal amplitudes. Since B(t; a) is a continuous func­
tion of t, we have a continuous-phase signal.

The phase of the carrier in the interval, nT ::s t ::s (n + I)T, is determined by the
integral in Equation (10.2.3). Thus,
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(10.2.9)

(10.2.8)

4T3T2T

2rrm, ... , (p - l)rrm}
p pp
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Figure 10.21 State trellis for binary CPFSK with h = 1/2.
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and for m odd are

Since x; + x; = 1 at any time instant, the three-dimensional plot generated by xc(t; a)
and xs(t; a) appears as a trajectory on the surface of a cylinder of unit radius.

Simpler representations for the phase trajectories can be obtained by displaying
only the terminal values of the signal phase at the time instants t = n T. In this case, we
restrict the modulation index h to be rational. In particular, let us assume that h =m / p,
where m and p are relatively prime integers. Then, at the time instants t = nT, the
terminal phase states for m even are

rrm 2rrm (2p - l)rrm }

p p p

Hence, there are p temilnal phase states when m is even and 2p terminal phase states
when m is odd. For example, binary CPFSK with h =1/2 has four temilnal phase
states. The state trellis for this signal is illustrated in Figure 10.21. We emphasize that
the phase transitions from one state to another are not true phase trajectories. They
represent phase transitions to the terminal states at the time instants t = nT.

An alternative representation to the state trellis is the state diagram, which also
illustrates the state transitions at the time instants t = nT. This is an even more compact
representation of the CPFSK signal. Only the possible terminal phase states and their
transitions are displayed in the state diagram. Time does not appear explicitly as a
variable. For example, the state diagram for the CPFSK signal with h= 1/2 is shown
in. Figure 10.22.

Wireless Communications

Figure 10.20 Phase trajectory for
3T 4T quaternary CPFSK.

706

For comparison, the phase trajectories for quaternary CPFSK (an = ±1, ±3) are illus­
trated in Figure 10.20. These phase diagrams are called phase trees. We observe that
the phase·trees are piecewise linear as a consequence of the fact that the pulse gT(t)
is rectangular. Smoother phase trajectories and phase trees may be obtained by using
pulses that do not contain discontinuities. . , .

The phase trees shown in these figures grow with time. However, the phase of
the carrier is unique only in the range e = 0 to e = 2rr, or equivalently, from e = -rr to
e= rr. When the phase trajectories are plotted modulo 2rr, say in the range (-rr, rr), the .
phase tree collapses into a structure called aphase trellis. One wayto view the phase trel­
lis as a function of time is to plot the two quadrature components xc(t; a) ~ cos e(t; a)
andxs(t; a) = sin e(t; a) as (x, y) coordinates and to let time vary in a third dimension.
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(10.2.12)

(10.2.15)

(10.2.14)

Figure 10.24 Sinusoidal pulse shape.

Continuous Carrier-Phase ModulationSection 10.2

1
fl = Ie - 4Tb

1
12 = fe+ 4Tb

Hence, the two sinusoidal signals may be expressed as

8r(t) = sin'TT"t/2Tb .

. _,_ .. __.__.__.-r
\

The expression in Equation (10.2.11) indicates that the MSK (binary CPFSK)
signal is basically a sinusoid consisting ofone oftwo possible frequencies in the interval
nTb :::: t :::: (n + l)Tb, namely,

. Ui (t) = jZ~b cos [zrrfit + en + n; (_1)i-1] , i = 1,2 (10.2.13)

The frequency separation is 6,f =·12 - II = 1/2Tb. Recall that this is the minimum­
frequency separation for orthogonality of the two sinusoids, provided the signals are
detected coherently. This explains why binary CPFSK with h = 1/2 is called minimum­
shift keying (MSK). Note that the phase of the carrier in the nth signaling interval is the
phase state of the signal that results in phase continuity between adjacent intervals.

It is interesting to demonstrate that MSK is also a form of four-phase PSK. To
prove this point, let us begin with a four-phase PSK signal which has the form

u(t) =Iff{[j~~oo a2ngr(t - 2nTb)] cos 2rrfet

+ l~ooQ2n+lgr(t - ZnTb - Tb)] SinZrrfet}

where gr (t) is a sinusoidal pulse defined as

{
sin !!.!.. 0 _< t _< ZTJb

gr(t) = 2T.'
0, otherwise

and illustrated in Figure 10.Z4. First, we observe that the four-phase PSK signal consists
of two quadrature carriers, cos 2rr fet and sin Zrr fet, which are amplitude modulated at
a rate of one bit/ZTb interval. The even-numbered information bits {a2n} are transmitted

I::. ~
,
~

Chapter 10

Figure 10.23 Signal-space diagrams for
binary CPFSK with (a) h = 1/2 and (b)
h = 1/4.

Figure 10.22 State diagram for binary
CPFSK with h = 1/2..
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(b)

-1

-1

(a)

n-l
e(t; a) = ~ I: ak + rranq(t - nTb)

k=-oo

= en + ~ (' -~Tb) an, nTb:::: t ::::: (n + I)Tb (10.2.10)

which follows from Equation (10.2.4). The COIT~sponding carrier-modulated signal is

u(t) = )Z£b cos[2rrIet + en + rr(t - nTb)anIZTb]
Tb

= )Z£b cos [2Jr (fe + _I_all) t - mr an + en] (10.2.11)
Tb 4Tb 2

We should emphasize that a CPFSK signal cannot be represented by discrete
points in signal space as in the case of PAM, PSK, and QAM, because the phase
of the carrier is time-variant. Instead, the constant amplitude CPFSK signal may be
represented in two-dimensional space Oy a circle, where points on the circle repre­
sent the combined amplitude and phase:trajectory of the carrier as a function of time.
For example, Figure 10.23 illustrates the signal space diagrams for binary CPFSK
with h =1/2 and h = 1/4. The four dots at e =0, rr12, rr, 3rr12 and e =0, ±rr14,
±rr12, ±3rr14, rr for h = 1/2 and h = 1/4, respectively, represent the terminal phase
states previously shown in the state diagram.

Minimum-Shift Keying IMSK). MSK is a special form of binary CPFSK in
which the modulation index h = 1/2. Thus, the phase of the carrier for the MSK
signal is

708



711

(10.2.16)nT .:::: t .:::: (n + l)T

+900-phase shift

No data transactions

Continuous Carrier-Phase Modulation

~) \ nT~n ~ /\IL/\OVwvrv ~3Tb \j4T
b

I
I
I
I
I

180° phase shift
I
I
I

Figure 10.26 .Signal waveforms for (a) MSK, (b) offset QPSK (rectangular pulse),

and (c) conventlOnal QPSK (rectangular pulse). (From Gronemeyer and McBride'

© 1976 IEEE.) ,

n

e(t; a) = 211: L akhkq(t - kT),
k=-co
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phase fro~ .one symbol interval to the next. As a consequence of the continuous phase

~haractens.tIcs, th~ pow~r spectra of CPFSK signals are narrower than the correspond­

mg FSK SIgnals ~ which the phase is allowed to change abruptly at the beginning

?f eac~ symbol mterval. The spectral characteristics of CPFSK signals are given

m SectIOn 10.2.3. The demodulation and detection of CPFSK are described in Sec­

tion 10?.4, which deals with the demodulation and detection of the more general class

of contmuous-phase modulated signals. .

10.2.2 Continuous-Phase Modulation (CPMj

When the phase ofthe carrier is expressed in the form of Equation (10.2.4), CPFSK

?eco~es a specia~ case of a general class of continuous-phase modulated (CPM) signals

1ll which the camer phase is

Chapter 10

Figure 10.25 Representation of MSK

signal as a form of two staggered binary

PSK signals, each with a sinusoidal

envelope. Ca) In-phase signal components,

(b) quadrature signal component, and

Cc) MSK signal (a + b).
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by modulating the cosine carrier, while the odd-numbered information bits {a2n+l1 are

transmitted by amplitude modulating the sine carrier. Note that the modulation of the

two quadrature carriers is staggered in time by Tb and that the transmission rate for

each carrier is Ij2Tb. This type of four-phase modulation is called offset quadrature

PSK (OQPSK) or staggered quadrature PSK (SQPSK).

Figure 10.25 illustrates the SQPSK signal in terms of the two staggered

quadrature-modulated binary PSK signal. The corresponding sum of the two quadrature

signals is a constant-amplitude, continuous-phase FSKsignal, as shown in Figure 10.25.

It is also interesting to compare the waveforms for MSK with the waveforms

for staggered QPSK in which the pulse gT(t) is rectangular for 0 ::: t ::: 2Tb, and with

conventional quadrature PSK (QPSK) in which the baseband pulse is rectangular in the

interval 0 ::: t ::: 2Tb . We emphasize that all three of these modulation methods result

in identical data rates. The MSK signal is phase continuous. The SQPSK signal with

a rectangular baseband pulse is basically two binary PSK signals for which the phase

transitions are staggered in time by Tb seconds. Consequently, this signal contains

phase jumps of ±90° that may occur as often as every Tb seconds. On the other hand,

in conventional QPSK with constant envelope, one or both of the information symbols

may cause phase transitions as often as every 2Tb seconds. These phase jumps may be

±180° or ±90°. An illustration of these three types offour-phase PSK signals is shown

in Figure 10.26.
From the description given above, it is clear that CPFSK is a modulation method

with memory. The memory results from the phase continuity of the transmitted carrier
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ziT (O:s. t :s. LT)

get) =
0, 0 therwise.
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{
ziT (1 - cosr;) (0::: t ::: LT)

get) =
0, otherwise,

LREC

TABLE 10.2 SOME COMMONLY USED CPM PULSE SHAPES

GMSK

where {ad is the sequence of M -ary information symbols with possible values ±l
±3, ... , ±(M -1), {hd is a sequence of modulation indices, and q(t) is SOme arbitrar;
normalized waveform. Recall that for CPFSK, q(t) = t/2T for 0 :Sf :s T, q(t) = 0
for t < 0, and q(t) = 1/2 for t > T.

When hk = h for all k, the modulation index is fixed for all symbols. \¥hen the
modulation index varies from one symbol to another, .the CPM signal is called multi-h.
In such a case the {hk } are usually selected to vary in a cyclic pattern through the set of
indices.

The waveform q (t) is the integral of a pulse gT (t) of arbitrary shape; i.e.,

q(t) = l gr(r)dr: (10.2.17)

If gT(t) = 0 for t > T, the CPM signal is called afull-response CPM signal. If the
signal pulse gT (t) is nonzero for t > T, the modulated signal is called partial-response
CPM. In Figure 10.27 we illustrate several pulse shapes for gT (t) and the corresponding
q(t). It is apparent that there is an infinite number of CPM signals that can be obtained
by selecting different pulse shapes for gT(t) and by varying the modulation index h
and the number of symbols M.

The primary reason for extending the duration of the pulse get) beyond the time
interval 0 :s t :s T is to further reduce the bandwidth of the transmitted signal, as it is
demonstrated in Section 10.2.3. We note that, when the duration of the pulse gT(t) ex­
tends over the time interval O.:s t :s LT, where L > 1, additional memory is introduced
in the CPM signals and, hence, the number of phase states increases.

Three popular pulse shapes are given in Table 10.2. LREC denotes a rectangular
pulse ofduration LT , where L is a positive integer. In this C(lSe, L =1results in a CPFSK
signal, with the pulse as shown in Figure 10.27(a). The LREC pulse for L = 2 is shown
in Figure 10.27(c). LRC denotes a raised cosine pulse of duration LT. The LRC pulses
corresponding to L = 1 and L = 2 are shown in Figure 1O.27(b) and (d), respectively.

......_-_.._--{?"

"
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(l0.2.18)

(10.2.19)

h=-}

vet) = fFfj e j8 (t;a)

Figure 10.28 Signal-space diagram for CPFSK.

Continuous Carrier-Phase ModulationSection 10.2

10.2.3 Spectral CharaCteristics of CPFSK and CPM Signals

In this section, we consider the spectral characteristics of CPFSK and CPM signals

and present some results on their power-spectral density. The derivation of these results

may be found in more advanced digital communication textbooks; e.g., Anderson et al.

(1986) and Proakis (2001).

A CPM signal may be expressed in the general form

length of the phase trajectory (lengths of the arc) between two terminal phase states

increases with an increase in h. Anincrease in h also results in an increase of the signal

bandwidth, as shown in Section 10.2.3.

v2£su(t; a) = T cos[2n fe t + e(t; a)]

= Re{ .fFfje j [2rr j ,t+8(t;a)]}

where the carrier phase e(t; a) is given by Equation (10.2.16). Since the complex

exponential eJ2rrfct serves as a frequency translation of the complex-valued baseband

signal

it is sufficient to focus our attention on the spectral characteristics of the information­

bearing signal vet).

Unlike the computation of the power-spectral density for linear modulation meth­

ods such as PAM, PSK, and QAM, which was relatively straightforward, the computa­

tion of the power-density spectrum ofa CPM signal is much more tedious and involved.

The difficulties are due to the memory in the continuous-phase signal and to the expo­

nential relationship between vet) and e(t; a). Nevertheless, the general procedure used

in the derivation for the power-density spectrum of PAM, given in Section 8.2, may be

followed.

Chapter 10

BT=O.3 is the
one for GSM
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Figure 10.27 (continued) (e) GMSK pUlse shape.
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The third pulse given in Table 10.2 is called a Gaussian minimum-shift keying (GMSK)

pulse with bandwidth parameter B, which represents the -3-dB bandwidth of the

Gaussian pulse. Figure 1O.27(e) illustrates a set of GMSK pulses with time-bandwidth

products BT ranging from 0.1-1. We observe that the pulse duration increases as the

bandwidth of the pulse decreases, as expected. In practical applications, the pulse is

usually truncated to some specified fixed duration. GMSK with BT =0.3. is used in the

European digital cellular communication system, called GSM. From Figure 10.27(e)

we observe that when BT = 0.3, the GMSK pulse may be truncated at It 1 = 1.5T with

a relatively small error incurred for t > 1.ST.

In general, CPM signals cannotbe represented by discrete points in signal space as

in the case of PAM, PSK, and QAM, because the phase of the carrier is time-variant. As

we observed in the case ofCPFSK, we may employ phase trajectories (or phase trees) to

illustrate the signal phase as a function of time. Alternatively, we may use a state trellis

or a state diagram to illustrate the terminal phase states and the phase transitions from

one state to another. Finally, as in the case of CPFSK, we may represent a CPM signal

in signal space by a circle, where the points on the circle correspond to the combined

amplitude and phase of the carrier as a function of time. The terminal phase states are

usually identified as discrete points on the circle. For example, Figure 10.28 illustrates

the signal space diagrams for binary CPFSK with h = 1/4, 1/3, and 2/3. Note that the
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Figure 10.29 Power-density spectrum of binary CPFSK. (From Digital
Communications, 2nd Ed., by J. G. Proakis; © 1989 McGraw-Hill. Reprinted with
permission of the publisher.)

Section 10.2

(10.2.26)

(10.2.25)

(10.2.24)

(10.2.23)

(10.2.22)

(10.2.20)

(10.2.21)
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1
Su(j) = 4" [Sv(j - fe) + Sv(j + fc)]

sinrr[fT - (2n - I - M)hj2]
An (j) = --=--,.e------=--:--:-'-­

rr[fT - (2n - I - M)hj2]

. (f h(2n - 1 - M))
= smc T - 2

)
cos(2rrfT - anOl ) - f3 cos anm

EnOl (j = 1 + 13 2 - 213 cos 2rrfT

a nm = rrh (m + n - I - M)

sinMrrh
13 = ---:---:-

M sinrrh

The power-spectral density of CPFSK for M = 2 is plotted in Figure 10.29 as
function of the normalized frequency fT, with the modulation index h = 2/dT as a
parameter. Note that only one-half of the spectruin is shown in these graphs, because
the spectrum is symmetric in frequency. The origin fT = 0 corresponds to the carrier
frequency fe in the spectrum of the real-valued signal.

These graphs show that the spectrum of the CPFSK signal is relatively smooth
and well-confined for h < 1. As h approaches unity, the spectra become very peaked
and, for h = 1, where 1131 = 1, we find that impulses occur at M frequencies. When

The general procedure begins with the computation ofthe autocorrelation function
of the random process V (t), denoted as RvCt+" t). As in the case oflinearmodUlation
methods, the random process V (t) is cyclostationary and, hence, the autocorrelation
function is periodic with period T; i.e., RvCt + T + "t + T) = Rv(t + "t). By
averaging RvCt +" t) over a single period, we eliminate the time dependence t and
thus, we obtain the average autocorrelation function '

Rv(') = 2- ( RvCt + " t) dt
T )0

Finally, we compute the Fourier transform of Rv(') to obtain the power-spectral density
Sv(j) of the signal. The power-spectral density of the real-valued signal u(t; a) is then
found by translating Sv (j) in frequency by the carrier fc. Thus, we obtain

where

716

In the case of the CPFSK signal, this procedure yields the following expression
for the power-spectral density .
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S (f' = 4£ (Sin2n fTb)2 0228)v s 2nfT
b

(1 ..

The power-density spectra in Equations (10.2.27) and (10.2.28) are illustrated
in Figure 10.30. Note that the main lobe of MSK is 50% wider than that of SQPSK.
However, the sidelobes of MSK falloff considerably faster. As a consequence, MSK
is significantly more bandwidth efficient than SQPSK.

In the more general case of CPM signals, the use of smooth pulses such as raised
cosine pulses (LRC) of the form given in Table 10.2, where L = 1 for full response and
L > 1 for partial response, result in smaller bandwidth occupancy and, hence, in greater
bandwidth efficiency than the use of rectangular pulses. For example, Figure 10.31

h > 1, the spectrum becomes much broader. In communication systems that employ
CPFSK, the modulation index is selected to conserve bandwidth, so that h < l.

The special case of binary CPFSK with h = 1/2 (or fa = 1/4Tb) and f3 = 0,
corresponds to MSK. In this case, the power-spectral density obtained from Equa­
tion (10.2.22) through Equation (10.2.26) is

S ( = 32£, [ cos 2nfT ]2
v f) n 2 1 _ 16j2T2 (10.2.27)

In contrast, the power-density spectrum of SQPSK with a rectangular pulse gr(t) of
duration T = 2Tb is
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(10.2.34)

(10.2.32)

(10.2.33)

nT ::::: t ::::: (n + l)T

Figure 10.32 Power-spectral density for
M = 4 CPM for 3RC different
modulation indices (From Aulin et al.;
© 198IlEEE.)
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where, by definition,

sequence detector that searches the paths through the state trellis for the minimum
Euclidean distance path. The Viterbi algorithm is an efficient method for performing
this search. Let us establish the general state trellis structure for CPM and then describe
the metric computations.

The carrier phase for a CPM signal having a fixed modulation index h may be
expressed as

Section 10.2

.,.

(l0.2.30)

(10.2.29)

. (10.2.31)

Figure 10.31 Power-spectral density for
binary CPM with h = 1/2 and different
pulse shapes (From Aulin et al.; © 1981
lEEE.)
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r(t) = u(t) + n(t)

nCt) = nc(t) cos2nfct - ns(t) sin2Jrfct
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dB

where
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The optimum receiver for this signal consists of a corre1ator followed by a ML

The transmitted CPM signal may be expressed as

f{i-E:s
u(t) = - cos[2Jrfct + e(t; a)]. T

where e(t; a) is the carrier phase. The filtered received signal for an additive Gaussian
noise channel is

illustrates the power-spectral density for binary CPM with different partial-response
raised cosine (iRC) pulses and h = 1/2. For comparison, the spectrum ofbinary CPFSK
withh = 1/2 (MSK) is also shown. We note that, as L increases, thepulsegT(t) becomes
smoother and the corresponding spectral occupancy of the signal is reduced.

The effect of varying the modulation index in a CPM signal is illustrated in
Figure 10.32 for the case of M = 4 and a raised cosine pulse of the form given with
L = 3. Note that these spectral characteristics are similar to the ones for CPFSK,except
that the power spectra for CPM are narrower due to the smoother raised cosine pulse
shape.

10.2.4 Demodulation and Detection of CPM Signals
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where L is a positive integer. The signal pulse gT(t) = 0 for t < 0 and t :::: LT. For
L = 1 we have a full response CPM signal and for L > 1, we have a partial response
CPM signal. Note that en represents the phase of the carrier at t = nT and ¢ U; a)
represents the additional phase accumulation in the interval nT :::: t :::: (n + l)T.

When h is rational; i.e., h = mlp, where m and p are relatively prime integers,
the phases of the CPM signal at t = nT may be represented by a trellis. The number
of terminal phase states for L = 1 is p for m even and 2p for m odd, as previously
indicated by Equations (10.2.8) and (10.2.9). However, for L > 1 we have additional
phase states due to the partial-response characteristic of the signal pulse gT (t). These
additional terminal phase states can be determined by expressing the phase ¢ (t; a) in
Equation (10.2.34) as

Suppose the system is in phase state en = 3rr/4 and a"_1 = -1. Then S" = (3rr/4, -1)
and

Solution Since p = 4, m is odd (m = 3) and M = 2, we have Ns = 16 phase states.
The 2p phase states corresponding to e" are

± 3rr rr}
4'

rr
±­

2'
rr

±­
4'

For each of these phase states, there are two states that result from the memory due to the
partial response signal. Hence, the sixteen states Sn = (en, an-I) are

(0, +1), (0, -1), (rr/4, 1), (rr/4, -1), (-rr/4, 1), (-rr/4, -1),

(rr/2, I), (rr/2, -1), (-rr/2, 1), (-rr/2, -1), (3rr/4, 1), (3rr/4, -1),

(-3rr/4, 1), (-3rr/4, -I), (rr, 1), (rr, -1)

ilJ

(10.2.35)

and q(t) = 0 for t < 0, q(t) = 1/2 for t :::: LT, and

q(t) = l' gT(i) di

-'

,-

(10.2.41)

(10.2.42)

Hence, 8n+1 = (en+1, an) = (0, a,,). If a" = 1, thenSn+l =(0, I}. If an =-1, then Sn+l =
(0, -1). The state trellis is illustrated in Figure 10.33. A path through the state trellis
corresponding to the data sequence (1, -1, -1, -1, 1, 1) is i11ustrated in Figure 10.34.

Let us now focus on the demodulation and detection of CPM signals. Since all
signal waveforms have the same energy, we may base decisions at the detector on
correlation metrics. The crosscorrelation of the received signal ret) with each of the
possible transmitted signals yields the metrics

l
(n+l l T '

Cn(a, r) = -00 ret) cos[2rrfct + e(t; a)] dt

. l(n+l lT
= Cn-l(a, r) + ret) cos[2rrfct + en + ¢(t; a)] dt

nT

= 3rr/4+ (3rr/4)(-I) =0

In the ML sequence detector, the term Cn- 1(a, r) represents the metrics· of the
surviving sequences up to time nT. The term

l
(n+llT

Cn(en; a, r) = ret) cos[2rrfct + en + ¢U; a)] dt
nT

represents the additional increments to the correlation metrics contributed by the re­
ceived signal in the time interval nT ::: t :::: (n + l)T. We observe that there are ML
possible sequences a = (an, an-I,"" an-L+I) of symbols and either p or2p possible
phase states {Bn }. Therefore, there are either pML or 2pML different values of the
correlation metrics Cn(en; a, r) computed in each signal interval and each value is used
to increment the metrics corresponding to the surviving sequences from the previous

"to

(10.2.36)

(10.2.37)

(10.2.38)

(10.2.39)

(10.2.40)

n-I

¢(t;a)=2rrh 2: akq(t-kT)+2rrha"q(t-nT)
k=n-L+I

The first term on the right-hand side of Equation (10.2.36) is a function of the infor­
mation symbols (an-I, an-2, ... , an-L+I), which is called the correlative state vector,
and represents the phase contribution of signal pulses that have not reached their final
value. The second term on the right-hand side of Equation (10.2.36) represents the
phase contribution due to the most recent symbol a". Therefore, the state of the CPM
signal at t = nT may be expressed as the combined phase state en and the correlative
state vector (an-I, an-2, ... , an-L+I), which we denote as

for the partial-response signal of length LT. Thus, the number of states is

{
pML-I m even

Ns = 2pML - I m odd

when h = mjp.
The state transition from S" to Sn+l can be determined by determining the effect

ofthe new symbol an in the time interval n T :::: t :::: (n + 1)T . In general, we have

where

Example 10.2.1
Detennine the tenninal states of a binary signal having a modulation index h =3/4 and
a partial response pulse of L = 2. Also, sketch the state trellis.

1-



signal interval. A general block diagram that illustrates the computations of en (en; a, r)
for the Viterbi detector is shown in Figure 10.35.

In the ML sequence detector, the number of surviving sequences at each state of
the Viterbi search process is eitherpML-1 or 2pM L- I . For each surviving sequence, we
have M new correlation increments Cn(en; a, r) that are added to the existing metrics
to yield either pML or 2pML sequences with corresponding metrics. However, this
number is then reduced backto either pML-I or 2pML-I survivors with corresponding
metrics by selecting the most probable sequence of the M sequences merging at each
node of the trellis and discarding the other M - 1 sequences.
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Although we have described the ML sequence detector for exploiting the memory
inherent in the CPM signal, it is also possible to design symbol-by-symbol detection
algorithms based on the maximum a posteriori probability (MAP) criterion that also
exploit the signal memory. MAP-type detection algorithms have been devised for CPM
signals and can be found in the technical literature. The interested reader may refer to
the paper by Gertsman and Lodge'(1997) for the derivation of the MAP algorithm for
CPM and the evaluation of its performance. In essence, the MAP algorithm is designed
to minimize the symbol (bit) error probability and, consequently, it results in a slightly
smaller symbol (bit) errorprobability than the ML sequence detector. More importantly,

Section 10.2Chapter 10

Figure 10.33 State trellis for
partial-response (L = 2) CPM with
h = 3/4.
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Since the symbol energy is related to the energy/bit by the expression E$ = Eb logz M,
the squared Euclidean distance d"/j may also be expressed

2Eb log M {NT
di~ = T 2 Jo {I - cos[e(t; ai) - e(t; aj)]} dt (10.2.44)

The probability oferror for the Viterbi detector in an AWGN channel is dominated
by the term corresponding to the minimum Euclidean distance, which is defined as

Then, the symbol error probability is approximated as

PM ~ Ndmill Q ( V~~) (10.2.46)

where Ndmill is the number of minimum-distance paths. We note that for conventional
binary PSK with no memory, N = 1 and d;;;n = df2 =4Eb • Hence, Equation (10.2.46)
agrees with our previous result.

In general,d~ is a function ofthe modulation index h, the number of symbols M,
and the pulse shape gT(t). The choice of the modulation index h and the pulse shape
have a significant impact in determining the bandwidth occupied by the transmitted
signal. The class of raised cosine (LRC) pulses are especially suitable for use in the
design of bandwidth efficient CPM signals.

The value of d~n has been evaluated for a variety of CPM signals, including
full response and partial response, by Aulin and Sunberg (1981, 1984). For example,
Figure 10.36 illustrates the value ofd~ normalized by 4Eb as a function of the time­
bandwidth product 2WTb, where W is the 99% in-band power bandwidth. Since MSK
results inad~n = 4Eb, theMSKsignal serves as apoint ofreference (0 dB) in this graph.
Along any curve in Figure 10.36, the bandwidth W increases as the modulation index
h increases and the SNR gain increases as h increases. Furthermore, the bandwidth
efficiency increases with an increase in the symbol size M for fixed LRC pulse shape.
We observe fromthis figure, that there are several decibels to be gained by using partial
response signals and higher signal alphabets. The major price paid for this performance
gain is the added exponentially increasing complexity in the implementation of the
Viterbi detector for searching for the most probable path through the trellis. However,
reduced complexity Viterbi-type detectors can be implemented with a relatively small
loss in performance.

The performance results in Figure 10.36 illustrate that 3-4-dB gain relative to
MSK can be easily obtained with relatively no increase in bandwidth by use of raised
cosine partial response CPM and M = 4. Although these results are for raised cosine
signal pulses, similar gains can be achieved with other partial response signal shapes.
We emphasize that this gain in SNR is achieved by introducing memory into the signal

. modulation and exploiting this memory in the detection of the signal.
In a fading channel, the performance of CPM is no longer a function of the

Euclidean distance between pairs of merging phase trajectories as described above.

Chapter 10
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Figure 10.35 Computation of metric increments C,,(IJ,,; a, r).
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in the case ofcoded CPM, the MAP algorithm can be employed for both signal detection
and decoding, thus, making it possible to perform iterative demodula~on and decodi~g.

In such a case, the performance of the iterative MAP demodulatIon and decoding
algorithms is significantly better than that of a conventional ML sequence detector and

decoder.

10.2.5 Performance of CPM in. AWGN.and Rayleigh
Fading Channels

In determining the probability of error for the Viterbi detector of CPM s~gnals, we must
determine the minimum Euclidean distance of paths through the trellIS that separate
at a node and remerge at a later time at the same node. The distance between two
paths through the trellis depends on the phase difference between the paths, as we now

demonstrate. .
Suppose that we have two signals UiCt) and U j (t) corresponding to two phase

trajectories B(t; ai) and B(t; aj)' The sequences ai and aj mustb~different in ~eirfirst
.symbol. Then, the Euclidean squared distance between the two SIgnals over an mterval
of length NT, where liT is the symbol rate, is defined as

d'fj =1NT
[Ui(t)- UjU)fdt

NT . {NT (NT

= fa ulU)dt+ Jo u7 U)dt-2 Jo' Ui(t)Uj(t)dt

=2NE$ - 2C:$ )lNT cos[2rrfct + e(t; ai)Jcos[2rrfct + e(t, aj)] dt

= 2Es [NT {l _ cos[e(t; ai) _ au; af)]} dt (10.2,43)
T Jo
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In fact, uncoded CPM in a Rayleigh fading channel has performance characteristics
similar to conventional uncoded PSK, in which the error probability decays inversely
as the received SNR.

To improve the performance of CPM in the presence of fading, we must provide
signal diversity, which is most efficiently obtained through coding and interleaving the
coded symbols. Toward this goal, we may employ a linear block code or a convolutional
code followed by an interleaver prior to the continuous-phase modulator. The interleaver
must be sufficiently long so that any pair of coded symbols from the same code word
in a block code are separated in time by an amount that exceeds the coherence time

--""'~.....~

r
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Tct of the channel. Similarly, in the case of a convolutional code, two coded symbols
that fall within the constraint length of the code must be separated by the interleaver
by at least Tct • Thus, we achieve independent fading of the coded symbols and a level
of diversity equal to d!Jn or d/!ee with soft-decision decoding and d/Ju/2 or dflee/2 with
hard-decision decoding. Consequently, the resulting eITor probability decays inversely
as the SNR raised to the power d!Jn (dflee) or d!Jn/2 (dl:ee/2) for soft-decision decoding
and hard-decision decoding, respectively.

10.3 SPREAD-SPECTRUM COMMUNICATION SYSTEMS

In our treatment of signal design for digital communication over an AWGN channel,
the major objective has been the efficient utilization of transmitter power and channel
bandwidth. As we observed in Chapter 9, Channel coding allows us to reduce the trans­
mitter power by increasing the transmitted signal bandwidth through code redundancy
and, thus, to trade off transmitter power with channel bandwidth. This is the basic
methodology for the design of digital communication systems for AWGN channels.

In practice, one encounters other factors that influence the design of an efficient
digital communication system. For example, in multiple-access cornnmnication when
two or more transmitters use the same common channel to transmit information, the
interference created by the users of the channel limits the performance achieved by the
system. The system designer must take into account the existence of such interference
in the design of a reliable digital communication system.

Even in this complex design problem, the basic system design parameters are
transmitter power and channel bandwidth. To overcome the problems of intentional or
unintentional interference, we may further increase the bandwidth of the transmitted
signal, as described below, so that the bandwidth expansion factor Be = W/ R is much
greater than unity. This is one characteristic of a spread-spectrum signal. A second
important characteristic is that the information signal at the modulator is spread in
bandwidth by means of a code that is independent of the information sequence. This
code has the property of being pseudorandom; i.e., it appears to be random to receivers
other than the intended receiver that uses the knowledge of the code to demodulate
the signal. It is this second characteristic property that distinguishes a spread-spectrum
communication system from the conventional communication system that expand~ the
transmitted signal bandwidth by means of channel code redundancy. However, we
should emphasize that channel coding is an important element in the design of an
efficient spread-spectrum communication system.

Spread-spectrum signals for digital communications were originally developed
and used for military communications either (1) to provide resistance to jamming
(antijamprotection), or (2) to hide the signal by transmitting it at low power and,
thus, making it difficult for an unintended listener to detect its presence in noise (low
-probability of intercept). However, spread-spectrum signals are now used to provide
reliable communications in a variety of civilian applications, including digital cellular
communications and interoffice communications.
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Figure 10.36 Power bandwidth trade-off for partial-response CPM signals with
raised cosine pulses; W is the 99% in-band power bandwidth. (From Sundberg;
@ 1986 IEEE.)
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where {an = ±l, -co < n < co} and gr(t) is a rectangular pulse of duration Tb . This

signal is multiplied by the signal from the PN sequence generator, which may be

10.3.2 Direct-Sequence Spread-Spectrum Systems

Let us c0r:-sider th~ trans~ssio~ of a binary information sequence by means of binary

PSK. The mforrnatIonrate IS R bIts/sec and the bitintervalis Tb =11R sec. The available

channel bandwidth is Be Hz, where Be» R. At the modulator, the bandwidth of the

information signal is expanded to W = Be Hz by shifting the phase of the carrier

pseudor~dornlyat a rate of W times/sec according to the pattern of the PN generator.

The baSIC method for accomplishing the spreading is shown in Figure 10.38.

The information-bearing baseband signal is denoted as vet) and is expressed as

inte~ering si.gnal ma~ co~sist of a high-power sinusoid in the bandwidth occupied by

the ?llormatlOn-beanng SIgnal. Such a signal is narrowband. As a second example,

the mterference generated by other users in a multiple-access channel depends on the

type of spread-spectrum signals that are employed by the various users to transmit their

inf?rmation. If al~ users employ broadband signals, the interference may be charac­

tenzed as an eqUIvalent broadband noise. If the users employ frequency hopping to

!Senerate spread-spectrum signals, the interference from other users may be character­

IZed as narrowband. We shall consider these types of interference and some others in

Section 10.3.6.

. . Our discu.ssi~n ,:ill focus on the performance of spread-spectrum signals for

dIgItal COmmumcatlOn m the presence of narrowband and broadband interference. Two

types of digital modulation are considered, namely, PSK and FSK. PSK modulation is

appropriate for applications where phase coherence between the transmitted siQIlal and

the r~ce~ved signal can be maintained over a time interval that spans severat'symbol

(or bit) mtervals. On the other hand, FSK modulation is appropriate in applications

where phase coherence of the carrier cannot be maintained due to time variations in

the transmis:ion characte~sti~sof the communications channel. For example, this may

b~ the case I? a communIcatIons link between two high-speed aircraft or between a

high-speed aIrcraft and a ground-based terminal.

The PN sequence generated at the modulator is used in conjunction with the PSK

modulation to shift the phase of the PSK signal pseudorandomly, as described below

at a rate ~at is an integer multiple of the bit rate. The resulting modulated signal is

c~led a dIrect-sequence (DS) spread-spectrum signal. When used in conjunction with

billary.or M-~ (M > 2) FSK, the PN sequence is used to select the frequency of the

transIDltted SIgnal pseu~orandomly. The resulting signal is called afrequency-hopped

(FH) spread-spectrum sIgnal. Although other types of spread-spectrum signals can be

generated, o~r treatment will emphasize DS and FH spread-spectrum communication

systems, which are the ones generally used in practice.

(10.3.1)
00

v(t) = L angr(t - nTb)
n=-oo

Information ,--__---,
sequence

In this section we present the basic characteristics of spread-spectrum signals and

assess their performance in terms ofprobability of error. We concentrate our discussion

on two methods for spreading the signal bandwidth, namely, by direct sequence modu­

lation and by frequency hopping. Both methods require the use ofpseudorandom code

sequences whose generation is also described. Several applications of spread-spectrum

signals are presented.

10.3.1 Model of a Spread-Spectrum Digital
Communication System

The basic elements of a spread spectrum digital communication system are illustrated

in Figure 10.37. We observe that the channel encoder and decoder and the modulator

and demodulator are the basic elements of a conventional digital communication sys­

tem. In addition to these elements, a spread-spectrum system employs two identical

pseudorandom sequence generators, one which interfaces with the modulator at the

transmitting end and the second which interfaces with the demodulator at the receiving

end. These two generators produce a pseudorandom orpseudonoise (PN) binary-valued

sequence, which is used to spread the transmitted signal at the modulator and to despread

the received signal at the demodulator.

Time synchronization of the PN sequence generated at the receiver with the PN

sequence contained in the received signal is required in order to properly despread the

received spread-spectrum signal. In a practical system, synchronization is established

prior to the transmission of information by transmitting a fixed PN bit pattern which

is designed so that the receiver will detect it with high probability in the presence of

interference. After time synchronization of the PN sequence generators is established,

the transmission of information commences. In the data mode, the communication

system usually tracks the timing of the incoming received signal and keeps the PN

sequence generator in synchronism. The synchronization ofthe PN sequence generators

is treated in Section 10.3.7.
Interference is introduced in the transmission of the spread-spectrum signal

through the channel. The characteristics of the interference depend to a large extent

on its origin. The interference may be generally categorized as being either broadband

or narrowband (partial band) relative to the bandwidth of the information-bearing sig­

nal, and either continuous in time or pulsed (discontinuous) in time. For example, an

Figure 10.37 Model of spread-spectrum digital communications system.
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(a) PN signal

vet)

+1

~Tb I
-I -~

(b) Data signal

where {en} represents the binary PN code sequence of ±l's and pet) is a rectangu­
lar pulse of duration Te, as illustrated in Figure 10.38. This multiplication operation

. .

.. ----------7

733

f

(10.3.3)
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(e)

V(j)

u(t) = Aev(t)c(t) cos 2rrfet

I 0 I
-~ 1';,

(a)

CffiI
0

(b)

~,Clf)I
: 0

Spread-Spectrum Communication Systems

/
Figure 10.39 Convolution of spectra of the (a) data signal with the (b) PN code
signal.
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serves to spread the bandwidth of the information-bearing signal (whose bandwidth is
.R Hz, approximately) into the wider bandwidth occupied by PN generator signal c(t)
(whose bandwidth is liTe, approximately). The spectrum spreading is illustrated in
Figure 10.39, which shows, in simple terms, using rectangular spectra, the convolu­
tion of the two spectra, the narrow spectrum corresponding to the information-bearing
signal and the wide spectrum corresponding to the signal from the PN generator.

The product signal v(t)c(t), also illustrated in Figure 10.39, is used to amplitude
modulate the carrier A e cos 2rrfet and, thus, to generate the DSB-SC signal

(10.3.2)

Chapter 10

n=-oo

Wireless Communications

(c) Product signal

00

c(t) = L cnp(t - nTe)

Figure 10.38 Generation of a DS spread-spectrum signal.
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Since v(t)c(t) = ±1 for any t, it follows that the carrier-modulated transmitted signal
may also be expressed as .

u(t) = Accos[2rrfct + B(t)] (10.3.4)

where eCt) = 0 when v (t)c(t) = 1 and e(I) = rr when v(t)c(t) = -1. Therefore, the
transmitted signal is a binary PSK signal.

The rectangular pulse pet) is usually called a chip and its time duration Tc is
called the chip interval. The reciprocal 11 Tc is called the chip rate and corresponds
(approximately) to the bandwidth W of the transmitted si~nal. n;.e ratio. of the bit
interval Tb to the chip interval Te is usually selected to be an mteger III practlcal spread
spectrum systems. We denote this ratio as

Tb
L c = - (10.3.5)

Tc

Hence, L c is the number of chips of the PN code sequence/information ~i~. ~other

interpretation is that L c represents the number.of possible 1800 phase tranSIUons III the
transmitted signal during the bit interval Tb· .

The demodulation of the signal is performed as illustrated in Figure 10.40. The
received signal is first multiplied by a replica of the waveform c(t) generated by the
PN code sequence generator at the receiver, which is synchronized to the PN code in
the received signal. This operation is called (spectrum) despreading, since the effect of
multiplication by e(t) at the receiver is to undo the spreading operation at the transmitter.

Thus, we have

A cv(t)c2 Ct) cos 2nfct = Aev(t) cos 2rrfct (10.3.6)

since c2 Ct) = 1 for all t. The resulting signal Acv(t) cos2.rrfet i)c~llpies a ?and:vidth
(approximately) of R Hz, which is the bandwidth o~ th~ mformatIon-bear:mg SIgnal.
Therefore, the demodulator for the despread signal IS SImply the conventional cross
correlator or matched filter that was previously described in Chapter 7. Since the de­
modulator has a bandwidth that is identical to the bandwidth of the despread signal,
the only additive noise that corrupts the signal at the demodulator is the noise that falls
within the information-bandwidth of the received signal. .

Effect of Despreading on a Narrowband Interference. It is interesting
to investigate the effect of an interfering signal on the demodulation of the desired

where i (t) denotes the interference. The despreading operation at the receiver yields

735

(10.3.9)

(10.3.8)

(10.3.7)

(10.3,10)

(10.3.11)

i(t) = AI cos2rrfzt,

r(t)cCt) = AcvCt) cos2nfct + i(t)cCt)

s (t) = aagT(t)e(t) cos 2rr fet. 0::: t ::: Tb

Spread-Spectrum Communication Systems

ret) = Acv(t)e(t) cos 2rrfet + i (t)

Section 10.3

information-bearing signal. Suppose that the received signal is

where fz is a frequency within the bandwidth of the transmitted signal. Its multiplication
with e(t) results in a wideband interference with power-spectral density 10 = PI1W,
where PI = A712 is the average power of the interference. Since the desired signal is
demodulated by a matched filter (or correlator) that has a bandwidth R, the total power
in the interference at the output of the demodulator is

PI PI PI
10Rb = PIRblW = -- =--=-

WIR TblTc L c

The effect of multiplying the interference i (t) with c(t), is to spread the bandwidth of
i(t) to W Hz.

As an example, let us consider a sinusoidal interfering signal of the form

Probability of Error. To derive the probabillty of error for a DS spread­
spectrum system, we assume that the information is transmitted via binary PSK. Within
the bit interval 0 ::: t ::: Tb. the transmitted signal is

Therefore, the power in the interfering signal is reduced by an amount equal to the band­
width expansion factor WI R. The factor WI R = Tbl Te= L c is called the processing
gain of the spread-spectrum system. The reduction in interference power is the basic
reason for using spread-spectrum signals to transmit digital information over channels
with interference.

In summary, the PN code sequence is used at the transmitter to spread the
information-bearing signal into a wide bandwidth for transmission over the channel. By
multiplying the received signal with a synchronized replica of the PN code signal, the
desired signal is despread back to a narrow bandwidth while' any interference signals
are spread over a Vyide bandwidth. The net effect is a reduction in the interference power
by the factor WI R. which is the processing gain of the spread-spectrum system.

The PN code sequence {ell} is assumed to be known only to the intended .receiver.
Any other receiver that does not have knowledge of the PN code sequence cannot
demodulate the signal. Consequently. the use of a PN code sequence provides a degree
ofprivacy (or security) that is not possible to achieve with conventional modulation. The
primary cost for this security and performance gain against interference is an increase
in channel bandwidth utilization and in the complexity of the communication system.

Figure 10.40 Demodulation of DS
spread-spectrum signal.
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(10.3.19)

(10.3.20)

(10.3.21)

(10.3.22)

Figure 10.41 DS spread-spectrum signal demodulator.

Spread-Spectrum Communication Systems

Input ret)
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where, by definition,

1
(11+1)1;.

Vn.= i(t)cos(2n:jct+¢)dt
n];..

The probability of error depends on the statistical characteristics of the interfer­
ence component. Clearly,. its mean value is

Its variance is

But E[cnem] =8mn . Therefore,

where v = Vn, as given by Equation (10.3.19). To determine the variance of v, we must
postulate the fonn of the interference.

First, let us assume that the interference is sinusoidal. Specifically, we assume
that the interference is at the carrier frequency, and has the form

where PI is the average power and 8 1 is the phase of the interference, which we assume
to be random and uniformly distributed over the interval (0, 2n:). If we substitute for

(10.3.18)

(10.3.13)

(10.3.12)

(10.3.17)

(10.3.15)

(10.3.16)

Chapter 10Wireless Communications

L,-1

c(t) = L CnP(t - nTc)
n=O

i(t) = ic(t)cos2n:jct - isCt) sin2n:jct

y(Tb) = £b + Yi (Tb)

where Yi (Tb) represents the interference component, which has the fonn

Yi(n) = iT. c(t)i(t)gT(t) cos(2n:fct + ¢) dt

L,-1 i Tb

= L Cn pet - nTc)i (t)gT (t) cos(2n:jct + ¢) dt
n=O 0

j2£b L,-1

= ~ LCnvn
b n=O

where ao = ±1 is the infonnation symbol, the pulse gT (t) is defined as

{
ru;; 0:::: t :::: Tb

gT(t) = Y 7';'
0, otherwise

and c(t) is the output of-the PN code generator which, over a bit interval, is expressed
as

where Lc is the number of chips per bit, Tc is the chip interval, and {en} denotes the
PN code sequence. The code chip sequence {cn} is uncorrelated (white); i.e.,

E[cncm ] = E[cn]E[cm ] for n ::j: m (10.3.14)

and each chip is +1or -1 with equalprobability. These conditions imply that E (cn ) = 0
and E(c~) == 1. .

The received signal is assumed to be corrupted by an additive interfering signal
i (t). Hence,

where td represents the propagation delay through the channel and ¢; represents the
carrier-phase shift. Since the received signal ret) is the output of an ideal bandpass
filter in the front end of the receiver, the il1terference i (t) is also a bandpass signal, and
may be represented as

736

where icCt) and isCt) are the two quadrature components.
Assuming that the receiver is perfectly synchronized to the received signal, we

may set td = 0 for convenience. In addition, the carrier phase is assumedto be perfectly
estimated by a PLL. Then, the signal r Ct) is demodulated by first despreading through
multiplication by cCt) and then crosscorrelation with gT(t) cos(2n:jct + ¢;), as shown
in Figure 10.41. At the sampling instant t = Tb, the output of the correlator is
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(10.3.31)

Figure 10.42 Power-spectral density of
broadband interference.

(SNR)D = 2£b
10

power-spectral density 10 . Hence,

Section 10.3. Spread-Spectrum Communication Systems

1 (PI)L e = - - (SNR)D = 1000
2 Ps

Therefore, the processing gain r~quired is 1000 or, equivalently, 30 dB.

As a second case, le~ us consider the effect of an interference i (t) that is a zero­
m~an broadband random process with a constant power-spectral density over the band­
Width W of the spread-spectrum signal, as illustrated in Figure 10.42. Note that the
total interference power is

Example 10.3.1
The SNR required at the detector to achieve reliable communication in a DS spread­
spectrum communication system is 13 dB. If the interference-to-signal power at the re­
ceiver is 20 dB, determine the processing gain required to achieve reliable communication.

Solution We are given (PI/ PS)dB = 20 dB or, equivalently, PI!Ps = 100. We are also
given (SNR) D = 13 dB, or equivalently, (SNR) D = 20. The relation in Equation (10.3.29)
may be used to solve for L e . Thus,

we obtain the result

PI =1:Sii (f) dJ = W10 (10.3.32)

The v~riance of the interference component at the input to the detector is given by
Equat~on (10:3.21): To evaluate the moment E(vz), we substitute the bandpass repre­
sentatIOn of let), gIVen by Equation (10.3.16), into Equation (10.3.19). By neglecting
the dou?le frequency terms (terms involving cos 4rrJet) and making use ofthe statistical
properties of the quadrature components, namely EUe(t)] = E[(is (t)] = 0, and

Rdr) = E[ie(t)ie(t + r)] = EUs(t)isCt + r)]

sinrrWr
= 10 rrr (10.3.33)

E[v2] = {-1~ faT, RicCi! - t2) dt] dtz (10.3.34)

This is an integral of the autocorrelation function over the square defined by the region
o ::s t] ::s Te and 0 ::s t2 ::s Te, as shown in Figure 10.43. If we let r = t] - t2, E[v2]

(10.3.28)

(10.3.25)

(10.3.23)

Chapter 10Wireless Communications

2PsTb 2Ps
(SNR)D;::: PIT

e
= PIlLe . (10.3.29)

where L
e

= Tb/Te is the processing gain. Therefore, the spread-spectrum signal has
reduced the power of the interference by the factor L e ·

Another interpretation ofthe effect of the spread-spectrum signal on the sinuso.idal.
interference is obtained if we express PI Te in Equation (10.3.29) as follows. Smce

Te ~ l/W, we have '

P1Te = PI/W == 10 (10.3.30)

where 10 is the power-spectral density of an equivalent interference ~n a ~and,:"idth
W. Therefore, in effect, the spread-spectrum signal has spread the smusOId~l mt~r­
ference over the wide bandwidth W, creating an equivalent spectrally flat nOIse WIth

where Psis the average signal power. Then, ifwe substitute for t:b in Equation (10.3.27),

we obtain

i (t) in Equation (10.3.19), we obtain

l

(n+IlT, .
Vn ;::: j2P; cos(2JrJet + Ell) cos(2JrJet + ¢) dt

nT,

1 . l(n+]lT, T,;::: _.j2P; COS(El I - ¢) dt ;::: -5..,j2P; cosCEl I - ¢)
2 nT, 2

Since Ell is a random variable, Vn is also random. Its mean value is zero; i.e.,

E[v
n

] = Te -.,fiP; r2rr

~ cos (Ell - ¢) dElI;::: 0 (10.3.24)
2 )0 2rr

Its mean-square value is

[ '] Te
2
PI 1 12rr

2 dE V- = -- - cos (Ell - ¢) Ell
n 2 2rr 0

T?PI
=-4-

We may now substitute for E(v2 ] into Equation (10.3.21). Thus, we obtain

E [Y1(Tb)] = £b;Te
(10.3.26)

The ratio of {E[y(Tb)]}2 to E[yl(Tb)] is the SNR the detector. In this case we have.

.. £; 2£b
(SNR)D = t:

b
P

I
T

e
/2 = P1T

e
(10.3.27)

To see the effect of the spread-spectrum signal, we express the transmitted energy £b

as
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WIR
PI/Ps

Figure 10.44 Plot of the function l(a) given in (10.3.30).
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sinusoidal interference results in a somewhat larger degradation in the performance of
the DS spread-spectrum system compared to that of a broadband interference.

The probability of error for a DS spread-spectrum system with binary PSK mod­
ulation is easily obtained from the SNR at the detector, if we make an assumption on
the probability distribution of the sample Yi (Tb). From Equation (10.3.18) we note that
Yi (Tb) consists of a sum L e uncorre1ated random variables {en Vn , 0 ::s n ::s L e - 1},
all of which are identically distributed. Since the processing gain L e is usually large
in any practical system, we may use the Central Limit Theorem to justify a Gaussian
probability distribution for Yi(T). Under this assumption, the probability of error for
the sinusoidal interference is

where 10 is the power-spectral density of an equivalent broadband interference. A
similar expression holds for the case of a broadband interference, where the SNR at the
detector is increased by the factor II lea).

The Interference Margin. We may express ¥o in the Q-function in Equa­
tion (10.3.39) as

(10.3.36) .'

(10.3.35)

Chapter 10

Figure 10.43 Region of integration of
the autocorreiation function Ree (rl, (2).

Wireless Communications

Cb PI Te .
E [Yl(Tb)] = -2,- lea)

Therefore, the SNR at the detector is
2Cb

(SNR)D = lol(a) .,

If we compare Equation (10.3.31) with Equation (10.3.38) we observe that the S~·.. '
for the case of the broadband interference is larger due to the factor 1(a). Hence,~:

can be reduced to the single integral (see Figure 10.43)

1 fTc
E(v2 ) = - (Tc -lrI)Rne(r)dt

4 -Te

= 10TefTc '(1-!.:l) sinrrWr dr
4 _~ ~ rrr

= PITe fT, (1 _ !.:l) sinrrWr dr
4W -Te Te rrr

Since Te ~ al W, where a > 0, the above integral may be expressed as

1"( X) sinrrxl(a) =2 1-- --dx
o a rrx

and it can be numerically evaluated for any value of a. Figure 10.44 illustrates lea).
Note that lea) :::: 1 for any value of a and that lea) -+ 1 as a -+ 00.

By combining the results in Equations (10.3.21), (10.3.35) and (10.3.36), we
conclude that the variance of the interference component Yi(Tb) for the broadband

interference is
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Performance of Coded Spread-Spectrum Signals. As shown in Chapter 9,
when the transmitted information is coded by a binary linear (block or convolutional)
code, the SNR at the output of a soft-decision decoder is increased by the coding gam,
defined as

743Spread-Spectrum Communication SystemsSection 10.3

LsdB = 2010g (4~d)

where the wavelength A = 100 meters. Hence,

LsdB = 20 log(8rr x 104
) = 108 dB

The average received signal power at the intended receiver is PR .Ifwe wish to hide
the presence of the signal from receivers that are in the vicinity of the intended receiver,
the signal is transmitted at a power level such that PRIPN « 1. The intended receiver
can recover the weak information-bearing signal from the background noise with the
aid of the processing gain and the coding gain. However, any other receiver which has
no knowledge of the PN code sequence is unable to take advantage of the processing
gain and the coding gain. Consequently, the presence of the information-bearing signal
is difficult to detect. We say that the transmitted signal has a low probability of being
intercepted (LPI) and it is called an LPI signal.

The probability oferror given in Section 10.3.2 applies as well to the demodulation
and decoding of LPI signals at the intended receiver.

Example 10.3.3
A DS spread-spectrum signal is designed so that the power ratio PRIPH at the intended
receiver is 10-2

; (a) if the desired cblNo = 10 for acceptable performance, determine
the minimum value of the processing gain; and (b) suppose that the'DS spread-spectrum

, signal is transmitted via radio to a receiver at a distance of 2000 KIn. The transmitter
antenna has a gain of 20 dB, while the receiver antenna is omnidirectional. The carrier
frequency is 3 MHz, the available channel bandwidth W = 105 Hz and the receiver has a
noise temperature of 300 K. Determine the required transmitter power and the bit rate of
the DS spread-spectrum system.

,Solution (a) We may write cblNo as

~ = P~~b = PR~:Tc = (:~J Lc = (;;) Lc

Since cblNo = 10 and PRI PH = 10-2
, it follows that the necessary processing gain is

L c = 1000.
(b) The expression for the received signal power is

PRdB = PTdB - L sdB + GTdB

Therefore,

where LsdB is the free-space path loss and GTdB is the antenna gain. The path loss is

PTdB = PRdB + 108 - 20

= PRdB + 88

The received power level can be obtained from the condition PRI PH = 10-2, First of all,
PH = WNo, where No = kT = 4.1 x 10-21 WIHz and W = 105 Hz, Hence,

PN = 4.1 X 1O- 16 W

(10.3.42)

(10.3.41)

Chapter 10Wireless Communications

coding gain = Rcd:!nn

where Rc is the code rate and d:!nn is the minimum Hamming dist~nceof the co?e.
Therefore, the effect of coding is to increase the interference margm by the codmg
gain. Thus, Equation (10.3.41) may be modified as

(PI) ='(W) +(CG)dB-([/b) (10.3.43)
Ps dB ,R dB 0 dB

where (CG)dB denotes the coding gain.

10.3.3 Some Applications of DS Spread-Spectrum Signals

In this subsection, we briefly describe the use of DS spread-spectrum si~als in three
applications. First, we consider an application in which the signa~ is transmItted at very
low power, so that a listener trying to detect the presence of.the SIgnal ~oU~d encoun~er

great difficulty. A second application is multiple-access radIO commumcations..A thi~d

application involves the use of a DS spread-spectrum signal to resolve the mult1path m
a time-dispersive radio channeL

low-detectability SIgnal T~ansmission. In this application, the information­
bearing signal is transmitted at a very low power level relative to the background channel
noise and thermal noise that is generated in the front end of a receiver; If the DS spr~~d­
spectrum signal occupies a bandwidth W an~ the power-s?ectral ~ensityof the additIve
noise is No WlHz, the average noise power m the bandWIdth W IS PN = W No·

The ratio (PI I PS)dB is called the inteiference margin. This is the relative power advan­
tage that an interference may have without disrupting the communication system.

Example 10.3.2
Suppose we require an (cblIo)dB = 10 dB to achieve reliable communication. What is
the processing gain that is necessary to provide an interference margin of 20 dB?

Solution Clearly, if WIR = 1000, then (WI R)dB = 30 dB and the interference margin
is (PI I PS)dB = 20 dB. This means that the, average interference power at the receiver
may be 100 times the power Ps of the desired signal and we can still maintain reliable
communication.

Also, suppose we specify a required [bl/o to achieve a desired level of performance. '
Then, using a logarithmic scale, we may express Equation (10.3.40) as

PI W (Cb)1010g - = 10 log - - 10 log -
Ps R fo
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PTdB = PRdB + 88 = -86 dBW

or, equivalently, PT = 2.5 X 10-9 W. The bit rate is R = WILe = 105/103 = 100 bps.

Code Division Multiple Access. The enhancement in performance obtained
from a DS spread-spectrum signal through the processing gain and the coding gain
can be used to enable many DS spread-spectrum signals. to occupy the SaIne channel
bandwidth provided that each signal has its own pseudorandom (signature) sequence.
Thus, it is possible to have several users transmit messages simultaneously over the .
same channel bandwidth. This type ofdigital communication in which each transmitter­
receiver user pair has its own distinct signature code for transmitting over a common
channel bandwidth is called code division multiple access (CDMA).

In the demodulation of each DS spread-spectrum signal, the signals from the
other simultaneous users of the channel appear as additive interference. The level of
interference varies as a function of the number of users of the charinel at any given time.
A major advantage of CDMA is that a large number of users can be accommodated
if each user transmits messages for a short period of time. In such a multiple access
system, it is relatively easy either to add new users or to decrease the number of users
without reconfiguring the system.

Next, we determine the number ofsimultaneous signals that can be accommodated
in a CDMA system. For simplicity, we assume that all signals have identical average
powers. In many practical systems, the received signal power level from each user is
monitored at a central station and power control is exercised over all simultaneous users
by use of a control channel that instructs the users on whether to increase or decrease
their power level. With such power control, if there are Nu simultaneous users, the
desired signal-to-noise interference power ratio at a given receiver is

Ps ·ps
-~- = (10.3.44)

PH (Nu-l)Ps Nu -1

From this relation, we can determine the number of users that can be accommodated
simultaneously. The following example illustrates the computation.

Example 10.3.4
Suppose that the desired level of performance for a user in a CDMA system is an error
probability of 10-6, which is achieved when cbllo = 20 (13 dB). Determine the maxi­
mum number of simultaneous users that can be accommodated in a CDMA system if the
bandwidth-to-bit-rate ratio is 1000 and the coding gain is Red;:;n = 4 (6 dB).

Solution From the relationships given in Equations (10.3.43) and (10.3.44), we have

Cb WIR H- = --Redmin =20
10 NIl -1
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If we solve for Nil we obtain

Section 10.3

WIR H
Nu = -wRedmin + 1

For WI R = 1000 and Rcd//un =4, we obtain the result that Nil = 201.

In determining the maximum number of simultaneous users of the channel, we
implicitly assumed that the pseudorandom code sequences used by the various users
are uncorre1ated and that the interference from other users adds on a power basis
only. However, orthogonality of the pseudorandom sequences among the Nu users is
generally difficult to achieve, especially if Nil is large. In fact, the design of a large set
of pseudorandom sequences with good correlation properties is an important problem
that has received considerable attention in the technical literature. We shall briefly treat
this problem in Section 10.3.5.

. CDMA is a viable method for providing digital cellular telephone service to mo­
bile users. In Section 10.4 we describe the basic characteristics of the North American
digital cellular system that employs CDMA.

Communication Over Channels with Multipath. In Section 10.1, we de­
scribed the characteristics of fading multipath channels and the design of signals for
effective communication through such channels. Examples offading multipath channels
include ionospheric propagation in the HF frequency band (3-30 MHz) where the iono­
spheric layers ~erve as signal reflectors, and in mobile radio communication systems,
where the mulapath propagation is due to reflection from buildings, trees, and the other
obstacles located between the transmitter and the receiver.

Our discussion on signal design in Section10.1.5 focused on frequency selective
channels, where the signal bandwidth W is larger than the coherence bandwidth Bob of
the channel. If W > Beb, we considered two approaches to signal design. One approach
is to subdivide the available bandwidth W into N subchannels such that the bandwidth
per channel N< Bcb' In this way, each subchannel is frequency nonselective and the
signals in each subchannel satisfy the condition that the symbol interval T » Tm, where
Tm is the multipath spread of the channel. Thus, intersymbol interference is avoided.
A second approach is to design the signal to utilizethe entire signal bandwidth W and
transmit it on a single carrier. In this case, the channel is frequency selective and the
multipath components with differential delays of Wor greater become resolvable.

DS spread spectrum is a particularly effective way to generate a ;yideband signal
for resolving multipath signal components. By separating the multipath components,
we may also reduce the effects of fading. For example, in LOS communication systems
where there is a direct path and a secondary propagation path resulting from signal
reflecting from buildings and surrounding terrain, the demodulator at the receiver may
synchronize to the direct-signal component and ignore the existence of the multipath
component. In such a case, the multipath component becomes a form of interference
(ISI) on the demodulation of subsequent transmitted signals.

. lSI can be avoided ifwe are willing to reduce the symbol rate+such that T » Tm•

In this case, we employ a DS spread-spectrum signal with bandwidth IV to resolve the

Chapter 10Wireless Communications

or, equivalently, PRdB = -174 dBw. Therefore,

and
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Figure 10.45 Performance of DS binary

PSK with pulse interference.
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. The error rate performance given by (10.3.45) for f3 = 1.0: 0.1, and 0.01 along

WIth the worst-case performance based on f3* is plotted in Figure 10.45. When we

c~mpare the errorrate ~or continuous wideband Gaussian noise interference (f3 = 1)

WIth w.orst-case pulse Interference, we find a large difference in performance; e.g.,

approxImately 40 dB at an error rate of 10-6• This is, indeed, a large penalty.

. "Vole should point out that practical consideration may prohibit an interferer from

achievmg small values of f3 at a high peak power. Nevertheless, the error probability

g~ven by Equa?on (10.3.47) serves as an upper bound on the performance of uncoded

bmary PSK WIth worst-case pulse interference. Clearly, the performance of the DS

spread-spectrum system in the presence of pulse interference is poor.

. If ~e. simply add coding to the DS spread-spectrum system, the performance

I~ ~NR IS Improved by an amount equal to the coding gain, which in most cases is

hrmted to less than 10 dB. The reason that the addition of coding does not improve the

performance significantly is that the interfering signal pulse duration (duty cycle) may

be selected to affect many consecutive coded bits. Consequently, the code word error

probability is high due to the burst characteristics of the interference.
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fa. > 0.71
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¥.- < 0.71
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P(f3) = f3Q ({¥k)
= f3Q ( 2f3 W/R)

PI / Ps
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multipath. Thus, the channel is frequency selective and the appropriate channel model is

the tapped-delay-line model with time-varying coefficients as shown in Figure 10.4. The

optimum demodulator for this channel is a filter matched to the tapped-delay channel

model called the RAKE demodulator, as previously described in Section 10.1.5.

10.3.4 Effect of Pulsed Interference and Fading

In Section 10.3.2, we evaluated the effectiveness of a DS spread-spectrum system in the

presence of narrowband and broadband interference. We observed that the processing

gain and the coding gain provide the means for suppressing the detrimental effects of

these types of interference. In this section, we consider the effect of pulsed interference

and the effect of fading on the performance of a DS spread-spectrum system.

Let us consider an interfering signal that consists of short bursts of spectrally fiat

Gaussian noise that covers the entire signal bandwidth. We call this type ofan interfering

signal pulsed inteiference. It may occur in a CDMA digital cellular system in which

a mobile transmitter located near a base station is transmitting at a high power; i.e.,

operating without power control. Suppose that the interferer is average-power limited,

with an average power PI in the signal bandwidth W. Hence, 10 = PI/ W. The interferer

transmits pulses at a power level PI / f3 for f3 percent of the time. Thus, the probability

that the interferer is transmitting at a given instant is f3. For simplicity, we assume that an

interference pulse spans an integer number of bits (or symbols). When the interferer is

not transmitting, the transmitted bits are assumed to be received error-free, and when the

interferer is transmitting, the probability of error for an uncoded DS spread-spectrum

system is

where W/ R is the processing gain arid PI / Ps is the interference-to-signal power ratio.

Let us consider the value of the duty cycle f3 that maximizes the probability

of error for the communication system. Upon differentiating Equation (10.3.45) with

respect to f3, we find the worst-case pulse interference occurs when

{

0.71 fa. > 0.71
f3* = c./lo Io-

1, ¥.- < 0.71

and the corresponding probability of error is

{

0.082 = 0.082P, / P,
c./lo WjR"

P? ==
- Q(If)=Q(
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ClO·3.48)
L

ReCm) = L CnCn+m ' 0:::: m :::: L - 1
n=1

where L is the period of the sequence. Since the sequence {cn} is periodic with period L,
the autocorrelation sequence {ReCm)} is also periodic with period L.

Ideally, aPN sequence should have an autocorrelation function thathas correlation
properties similar to white noise. That is, the ideal autocorrelation sequence for (en}
IS ReCO) = Land ReCm) = 0 for 1 :::: m :5 L - 1. In the case of m-sequences, the

Figure 10.47 General m-stage shift register with linear feedback.

._-- -..----,r-:,-

short, has a length L = 2"' - 1 bits and is generated by an m-stage shift register with
linear feedback as illustrated in Figure 10.47. The sequence is periodic with period L.
Each period has a sequence of 2",-1 ones and 2",-1 - 1 zeros. Table 10.3 lists shift
register connections for generating maximum-length sequences.

In DS spread-spectrum applications, the binary sequence with elements {O, I} is
mapped into a corresponding binary sequence with elements {-I, I}. We shall call the
equivalent sequence {cn } with elements {-I, I} a bipolar sequence. .

An important characteristic of a periodic PN sequence is its autocorrelation func­
tion which is usually defined in terms of the bipolar sequences {cn} as

Section 10.3 Spread-Spectrum Communication Systems 749

TABLE 10.3 SHIFT-REGISTER CONNECTIONS FOR GENERATING ML SEQUENCES

Stages connected Stages connected States connected
m to modulo-2 adder In to modulo-2 adder m to modulo-2 adder

2 1,2 13 1,10,11,13 24 1,18,23,24
:,

3 1,3 14 1,5,9, 14 25 1,23
4 1,4 15 1,15 26 1,21,25,26
5 1,4 16 1,5, 14, 16 27 1,23,26,27
6 1,6 17 1,15 28 1,26
7 1,7 18 1, 12 29 1,28
8 1,5,6,7 19 1, 15, 18, 19 30 1,8,29,30
9 1,6 20 1,18 31 1,29

10 1,8 21 1,20 32 1,11,31,32
11 1,10 22 1,22 33 1,21
12 1,7,9, 12 23 1,19 34 1,8,33,34

m stages

Output

Chapter 10Wireless Communications

Figure 10.46 Block diagram of communication system.

In order to improve the performance of the coded DS spread-spectrum system,
we should interleave the coded bits prior to transmission over the channel. The effect
of interleaving is to make the coded bits that are affected by the interferer statistically
independent. Figure 10.46 illustrates a block diagram of a DS spread-spectrum system
that employs coding.and interleaving. By selecting a sufficiently long interleaver so that
the burst characteristics of the interferenc;e are eliminated, the penalty in performance
due to pulse interference is significantly reduced; e.g., to the range of 3-5 dB for
conventional binary block or convolutional codes.

Signal fading has a similar effect on the performance. of th~ ~S spread-spectrum
system. In a frequency nonselective channel, when the SIgnal IS .m a de~p fade, ~e
communication system experiences a burst of errors. By use of codmg and mterleavmg
the coded bits so that the fading on the bits in any code word is statistically independent
(through interleaving, the bits in a burst of errors belong to different code wor~s), the
error-rate performance of the system decreases as the inverse of .the ~~ raIsed to
the power of the diversity provided by the code. This order of dIversIty IS equal to
the Hamming distance d:!an of the block code (or d/1eeof the convolutional code) for
soft-decision decoding and d:!an/2 for hard-decision decoding.

10.3.5 Generation of PN Sequences

A pseudorandom or pseudonoise (PN) sequence is a code s~que~ce of l's ~nd O'~ whose
autocorrelation has the properties similar to thqse of white nOl~e. In this sect:on, we .
briefly describe the construction of some PN sequences and t~elI a~tocorrel.atlon and
crosScorrelationproperties. For a comprehensive treatment ofthIS subject, the mterested
reader may refer to the book by Golomb (1967) and the paper by Sarwate and pursley

(1980). .
By far the most widely known binary PN code sequences are the maxlffium-Iength

shift-register sequences. A maximum-length shift-register sequence, or m-sequence for
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(10.3.50)

Gold
Sequence

rg-lR >L ---
max_ NL-l

Figure 10.48 Generation of Gold sequences oflength 31.

+
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Kasarni (1966). Gold sequences are constructed by taking a pair of specially selected
m-sequences, called preferred m-sequences, and forming the modulo-2 sum of the two
sequences, for each of L cyeliely shifted versions of one sequence relative to the other
sequence. Thus, L Gold sequences are generated as illustrated in Figure 10.48. For
m odd, the maximum value of the crosscorrelation function between any pair of Gold
sequences is Rmax = .J2L. Eor m even, Rmax = .JI.

Kasami (1966) described a method for constructing PN sequences by decimating
anm-sequence. In Kasami's method ofconstruction, every 2mj2+1 bit ofanm-sequence
is selected. This method of construction yields a smaller set ofPN sequences compared
with Gold sequences, but their maximum crosscorrelation value is Rmax = .JI.

It is interesting to compare the peak value ofthe crosscorrelation function for Gold
sequences and for Kasarni sequences with a known lower bound for the maximum
crosscorrelation between any pair of binary sequences of length L. Given a set of
N sequences of period L, .a lower bound on their maximum crosscorrelation is

which, for large values of L and N, is well approximated as Rmax 2: .JI. Hence, we
observe that Kasarni sequences satisfy the lower bound and, hence, they are optimal.
On the other hand, Gold sequences with m odd have a Rmax = .J2L. Hence, they are
slightly suboptimal.

Besides the well-known Gold sequences and Kasami sequences, there are other
binary sequences that are appropriate for CDMA applications. The interested reader is
referred to the papers by Scholtz (1979), Olsen (1977), and Sarwate and Pursley (1980).

Finally, we should point out that although we discussed the periodic crosscorrela­
tion function between pairs of periodic sequences, many practical CDMA systems use
an information bit duration that encompasses only a fraction of a periodic sequence. In

(10.3.49)

TABLE 10.4 PEAK CROSSCORRELATIONS OF m SEQUENCES AND GOLD SEQUENCES

m sequences

Gold sequences
Peak cross-

m L = 2m- I Number correlation Rmax Rm../R(O) Rmu Rm;n/R(O)

3 7 2 5 0.71 5 0.71

4 15 2 9 0.60 9 0.60

5 31 6 11 ·0.35 9 0.29

6 63 6 23 0.36 17 0.27

7 127 18 41 0.32 17 0.13

8 255 16 95 0.37 33 0.13

9 511 48 113 0.22 33 0.06

10 1023 60 383 0.37 65 0.06

11 2047 176 287 0.14 65 0.03

12 4095 144 1407 0.34 129 0.03

{
L,

Re(m) = -1,

For long m-sequences, the size of the off-peak values of Re (m) relative to the peak value
Re(O); i.e., the ratio Re(m)1Re(O) = -IIL, is small and, from a practical viewpoint,
inconsequential. Therefore, m-sequences are very close to ideal PN sequences when
viewed in terms of their autocorrelation function.

In some applications, the crosscorrelation properties of PN sequences are as im­
portant as the autocorrelation properties. For example, in CDMA each user is assigned
a particular PN sequence. Ideally, the PN sequences among users should be mutually
uncorrelated so that the level of interference experienced by one user from transmis­
sions of other users adds on a power basis. However, the PN sequences used in practice
by different users exhibit some correlation.

To be specific, let us consider the class of m-sequences. It is known that, the
periodic cross correlation function between a pair of m-sequences of the same period,
can have relatively large peaks. Table 10.4 lists the peak magnitude Rmax for the pe­
riodic crosscorrelation between pairs of m-sequences for 3 ::s m ::s 12. Also listed in
Table 10.4 is the number of m-sequences of length L = 2m

- 1 for 3 ::s m ::s 12.
We observe that the number of m-sequences oflength L increases rapidly with m. We
also observe that, for most sequences, the peak magnitude Rmax of the crosscorrelation
function is a large percentage of the peak value of the autocorrelation function. Conse­
quently, m-sequences are not suitable for CDMA communication systems. Although it
is possible to select a small subset ofm-sequences that have relatively smaller crosscor­
relation peak value than Rmax , the number of sequences in the set is usually too small

for CDMA applications. . .. . .
Methods for generating PN sequences with better penodic crosscorrelauon

properties than m-sequences have been developed by Gold (1967, 1968) and by

autocorrelation sequence is
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Figure 10.50 An 'example of an PH
pattern.
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as the signal is hopped from one frequency to the another over a wide bandwidth.
Consequently, FSK modulation with noncoherent demodulation is usually employed
in FH spread-spectrum systems.

The frequency-hopping rate, denoted as Rh, may be selected to be either equal to
the symbol rate, or lower than the symbol rate, or higher than the symbol rate. If Rh is
equal to or lower than the symbol rate, the FH system is called a slow-hopping system.
IfRh is higher than the symbol rate; i.e., there are multiple hops/symbol, the FH system
is called afast-hopping system. However, there is a penalty incurred in subdividing an
information symbol into several frequency-hopped elements, because the energy from
these separate elements is combined noncoherently.

FH spread-spectrum signals may be used in CDMA where many users share a
common bandwidth. In some cases, anFH signal is preferred over aDS spread-spectrum
signal because of the stringent synchronization requirements inherent in DS spread­
spectrum signals. Specifically, in a DS system, timing and synchronization must be
established to within a fraction of a chip interval Tc = 11 W. On the other hand, in an
FH system, the chip interval Te is the time spent in transmitting a signal in a particular
frequency slot of bandwidth B «W. But this interval is approximately 11B, which
is much larger than liW. Hence, the timing requirements in an FH system are not as
stringent as in a DS system.

Next, we shall evaluate the performance of FH spread-spectrum systems under
the condition that the system is either slow hopping or fast hopping.

o

Chapter 10Wireless Communications
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Figure 10.49 Block diagram of an HI spread-spectrum system.
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such a case, it is partial-period crosscorrelation between two sequences that is impor­
tant. The partial-period crosscorrelation properties of periodic PN sequences has been
widely investigated and discussed in the technical literature.

10.3.6 Frequency-Hopped Spread Spectrum

In frequency-hopped (PH) spread spectrum, the available channel bandwidth W is
subdivided into a large number of nonoverlapping frequency slots. In any signaling
interval the transmitted signal occupies one or more of the available frequency slots.
The selection of the frequency slot (s) in each signal interval is made pseudorandomly
according to the output from a PN generator.

A block diagram of the transmitter and receiver for an PH spread-spectrum system
is shown in Figure 10.49. The modulation is either binary or M -ary FSK (MFSK). For
example, if binary FSK is employed, the modulator selects one of two frequencies,
say fa or f1> corresponding to the transmission of a 0 for a 1. The resulting binary
FSK signal is translated in frequency by an amount that is determined by the output
sequence from a PN generator, which is used to select a frequency fe that is synthesized
by the frequency synthesizer. This frequency is mixed with the output of the FSK
modulator and the resultant frequency-translated signal is transmitted over the channel.
For example, by taking m bits from the PN generator, we may specify 2m - 1 possible
carrier frequencies. Figure 10.50 illustrates an FH signal pattern.

At the receiver, there is an identical PN sequences generator, synchronized with
the received signal, which 'is used to control the output of the frequency synthesizer.
Thus, the pseudorandom frequency translation introduced at the transmitter is removed
at the demodulator by mixing the synthesizer output with the received signal.' The
resultant signal is then demodulated by means of an FSK demodulator. A signal for
maintaining synchronism of the PN sequence generator with the FH received signal is
usually extracted from the received signal.

Although binary PSK modulation generally yields betterperformance than binary
FSK, it is difficult to maintain phase coherence in the synthesis of the frequencies used
in the hopping pattern and, also, in the propagation of the signal over the channel
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where Pv = Evl fa is the SNRfbit.
As in the case of a DS spread-spectrum system, we observe that Ev, the energy/bit,

can be expressed as Ev = PSTb = PsiR, where Ps is the average transmitted power
and R is the bit rate. Similarly, fa = PI! W, where PI is the average power of the
broadband interference and W is the available channel bandwidth. Therefore, the SNR
Pb can be expressed as

Slow Frequency-Hopping Systems. Let us consider a slow frequency­
hopping system in which the hop rate Rh = 1 hop/bit. We assume that the interfer­
ence on the channel is broadband and is characterized as AWGN with power-spectral
density fa. Under these conditions, the probability of error for the detection of non­
coherently demodulated binary FSK is

1
Pb = - e-Pbl2 (10351)2 . .

Eb WIR
Pb = - = -- (10.3.52)

fa PI/Ps

. where WI R is the processing gain and PI I Ps is the interference margin for the FH
spread-spectrum signal.

Slow FH spread-spectrum systems are particularly vulnerable to partial-band
interference that may result in FH CDMA systems. To be specific, suppose that the
partial-band interference is modeled as a zero-mean Gaussian random process with a
flat power-spectral density over.a fraction of the total bandwidth Wand zero in the
remainder of the frequency band. In the region or regions where the power-spectral
density is nonzero, its value is SIC!) = lol{J, where 0 < {J :s 1. In other words, the
interference average power PI is assumed to be constant.

Let us consider the worst-case partial-band interference by selecting the value of
{J that maximizes the error probability. In an uncoded slow-hopping system with binary _
FSK modulation and noncoherent detection, the transmitted frequencies are selected
with uniform probability in the frequency band W. Consequently, the received signal
will be corrupted by interference with probability {J. When the interference is present,
the probability of error is 1/2 exp(-!3PbI2) and when it is not, the detection of the
signal is assumed to be error free. Therefore, the average probability of error is

Pv({J) = ~ e-j3PbI2

2

{J (!3 WIR)= -exp --- (10.3.53)
2 2PI/Ps,

Figure 10.51 illustrates the error rate as a function of Pb for several values of {J.
By differentiating P/i(!3), and solving for the value of!3 that maximizes Pb(!3), we find
that

Figure 10.51 Perfonnance of binary FSK with partial-band interference.
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The corresponding error probability for the worst-case partial-band interference is

Pb _ {e-1
!Pb, Pb?:' 2

- le-Pb/2 (10.3.55)
2 ,Pb < 2

which is also shown in Figure 10.51. Whereas the error probability decreases exponen­
tially for full-band interference as given by Equation (10.3.51), the error probability for
worst-case partial-band interference decreases only inversely with [b! 10. This result is
similar to the error probability for DS spread-spectrum signals in the presence of pulse
interference. It is also similar to the error probability for binary FSK in a Rayleigh
fading channel.

In our discussion ofsignal design for efficient and reliable communication over a
fading channel in Section 10.1, we found that diversity, which can be obtained by simple
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repetition of the transmitted information bit on different frequencies (or by means of
block or convolutional coding), provides a significant improvement in performance
relative to uncoded signal transmission. It should not be surprising that the same type
of signal coding is also effective on partial-band interference channels. In fact, it has
been shown by Viterbi and Jacobs (1975) that by optimizing the code design for the
partial-band interference, the communication system can achieve an average bit-error
probability of

··1
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(10.3.59)

(10.3.60)

(10.3.61)

(10.3.62)

N 1
Gb I
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DM1 = L -+Vlk
k=l N

N

"DMz = L IV2kf
k=l

K=!. N~i (2N -1)
I ., ~ r

" I. r=O
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N

Ph = L (~)pm(1- p)N-m
m=(N+IJ/2

where p is given by Equation (10.3.57). We should note that the error probability Ph for
hard-decision decoding of the N chips will be higher than the error probability for a single
hoplbit FSK system, which is given by Equation (10.3.51), when the SNRlbit Pb is the
same in the two systems (see Problem 10.20).
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The alternative to hard-decision decoding is soft-decision decoding in which
the magnitudes (or magnitudes squared) of the corresponding matched-filter outputs
are summed over the N chips and a single decision is made based on the frequency
giving the largest output. For example, if binary orthogonal FSK is used to transmit
the information, the two soft-decision metrics for the N chips based on square-law
combining are

is the SNRlchip and Eh is the total bitenergy. The decoder decides in favor of the transmitted
frequency that is larger in at least (N +1)/2 chips. Thus, the decision is made on the basis
of a majority vote given the decisions on the N chips. Consequently, tlle probability of a
bit error is

The errOr probability for soft-decision decoding given by Equation (10.3.61) is
lower than that for hard-decision decoding given by Equation (10;3.59) for the same
ChiNo. The difference in performance is the loss in hard-decision decoding. However,
Equation (10.3.62) is higher than the error probability for single-hop FSK, which is
given by Equation (10.3.51) for the AWGN channel. The difference in performance
between Equation (10.3.51) and Equation (10.3.61) for the same SNR is due to the(10.3.58)

(10.3.57)

(10.3.56)
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Pb _ EblN
N - No

1P = _ e-Pb / 2N

2

where

Therefore, the probability of error achieved with the optimum code design decreases
exponentially with an increase in SNR and is within 3 dB of the performance obtained
in an AWGN channel. Thus, the penalty due to partial-band interference is reduced
significantly.

Fast Frequency-Hopping Systems. In fast FH systems, the frequency-hop
rate Rh is some multiple of the symbol rate. Basically, each (M-ary) symbol interval
is subdivided into N subintervals, which are called chips and one of M frequencies
is transmitted in each subinterval. Fast frequency-hopping systems are particularly
attractive for military communications. In such systems, the hop rate R" may be"selected
sufficiently high so that a potential intentional interferer does not have sufficient time
to detect the presence of the transmitted frequency and to synthesize a jamming signal
that occupies the same bandwidth.

To recover the information at the receiver, the received signal is first de-hopped
by mixing it with the hopped carrier frequency. This operation removes the hopping
pattern and brings the received signal in all subintervals (chips) to a common frequency
band that encompasses the M possible transmitted frequencies. The signal in each
subinterval is then passed through the M matched filters (or correlat9rs) tuned to the
M possible transmitted frequencies which are" sampled at the end of each subinterval
and passed to the detector. The detection of the FSK signals is noncoherent. Hence,
decisions are based on the magnitude of the matched filter (or correlator) outputs.

Since each symbol is transmitted over N chips, the decoding may be performed
either on the basis ofhard decisions or soft decisions. The following example illustrates
the decoding based on hard decisions.

Example 10.3.5
Suppose that binary FSKis used to transmit binary symbols, and each symbol is transmitted
over N frequency hops, where N is odd. Determine the probability of error for an AWGN
channel if hard-decision decoding is used.

Solution The probability of error for noncoh~rent detection of binary FSK for each
hop is
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10.3.7 Synchronization of Spread-Spectrum Systems

Time synchronization of the receiver to the received spread-spectrum signal may be
separated into two distinct phases. There is an initial acquisition phase, during which
time the receiver establishes time synchronization by detecting the presence of a special
initial acquisition sequence. The initial acquisition phase is followed by the transmission
of data, during which period the receiver must track the signal timing.

Acquisition Phase. In a DS spread-spectrum system, the PN code sequence
must be synchronized in time to within a small fraction of the chip interval Tc = 11 w.

noncoherent (square-law) combining at the decoder. This loss is usually called the
noncoherent combining loss of the system.

If soft-decision decoding is used in the presence of partial-band interference, 'it is
important to scale (or normalize) the matched-filter outputs in each hop, so that a strong
interference that falls within the transmitted signal band in any hop does not dominate
the output of the combiner. A good strategy in such a case is to normalize, or clip, the
matched-filter outputs from each hop if their values exceed some threshold that is set
near (slightly above) the mean of the signal-pIus-noise power level. Alternatively, we
may monitor the noise power level and scale the matched filter outputs for each hop by
the reciprocal of the noise power level. Thus, the noise power levels from the matched
filter outputs are normalized. Therefore, with proper scaling, a fast FH spread-spectrum
system will not be as vulnerable to partial-band interference because the transmitted
information/bit is distributed (or spread) over N frequency hops.
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The problem of initial synchronization may be viewed as one in which we attempt to
synchronize the receiver clock to the transmitter clock. Usually, extremely accurate
and stable time clocks are used in spread-spectrum systems in order to reduce the time
uncertainty between the receiver clock and the transmitter clock. Nevertheless, there is
always an initial timing uncertainty that is due to propagation delay in the transmission
of the signal through the channel. This is especially a problem when communication is
taking place between two mobile users. In any case, the usual procedure for establishing
initial synchronization is for the transmitter to send a known pseudorandom sequence
to the receiver. The receiver is continuously in a search mode looking forthis sequence
in order to establish initial synchronization.

Suppose that the initial timing uncertainty is Tu seconds and the chip duration
is Te · Since initial synchronization takes place in the presence of additive noise and,
perhaps other interference, it is necessary to dwell for Td = NTc sec in order to test
synchronism at each time instant, where N is some positive integer. If we search over
the time uncertainty interval in (coarse) time steps of Tcl2, then the time required to
establish initial synchronization is

Figure 10.52 A sliding correlalor for DS signal acquisition.

Tu
Tinitsync = --Td = 2NTu

Tc l2

Clearly, the synchronization sequence transmitted to the receiver must be at least as long
as 2NTc sec in order for the receiver to have sufficient time to perform the necessary
search in a serial fashion.

In principle, matched filtering or crosscorrelation are optimum methods for es­
tablishing initial synchronization in the presence of additive Gaussian noise. A filter
matched to the known data waveform generated from the known pseudorandom se­
quence continuously compares its output with a predetermined threshold. When the
threshold is exceeded, initial synchronization is established and the demodulator enters
the "data receive" mode.

Alternatively, we may implement a sliding correlator as shown in Figure 10.52.
The correlator cycles through the time uncertainty, usually in discrete-time intervals
of Tc /2 seconds or less. The crosscorrelation is performed over the time interval NTc ,

where N is the number of chips in the synchronization sequence, and the correlator

Chapter 10Wireless Communications758

Applications of FH Spread Spectrum. FH spread spectrum is a viable al­
ternative to DS spread spectrum for protection against narrowband and broadband
interference that is encountered in CDMA. In CDMA systems based on frequency
hopping each transmitter-receiver pair is assigned its own pseudorandom frequency­
hopping pattern. Aside from this distinguishing feature, the transmitters and receivers
of all users may be identical; i.e., they have identical encoders, decoders, modulators,
and demodulators.

CDMA systems based on FH spread-spectrum signals are particularly attractive
for mobile (land, air, sea) users because tiII)ing (synchronization) requirements are not
as stringent as in a DS spread-spectrum system. In addition, frequency-synthesis tech­
niques and associated hardware have been developed that make it possible to frequency­
hOop over bandwidths that are significantly larger, by one or more orders of magnitude,
t.l}an those currently possible with DS spread-spectrum signals. Consequently, larger
processing gains are possible by FR, which more than offset the loss in performance
inherent in noncoherent detection of the FSK-typesignals.

PH is also effective against intentional interference. As we have described above,
an FH M -ary (M ::: 2) FSK system that employs coding, or simply repeats the informa­
tion symbol on multiple hops (repetition coding), is very effective against a partial-band
interference. As a consequence, the interferer's threat is reduced to that of an equiva­
lent broadband noise interference whose transmitter power is spread across the channel
bandwidth W.
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Figure 10.54 Alternative system for
acquisition of an FH signal.
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which is shown in Figure 10.54, is based on a serial search and is akin to the sliding
correlator for DS spread-spectrum signals.

The sliding correlator for DS signals and its counterpart shown in Figure 10.54
for FH signals basically perform a serial search that is generally time consuming. As
an alternative, one may. employ some degree of parallelism by having two or more
such correlators operating in paralle~ and searching over nonoverlapping time slots. In
such a case, the search time iii reduced at the expense of a more complex and costly
implementation.

During the search mode, there ll).ay be false alarms that occur occasionally due
to additive noise and other interferen~e. To handle the occasional false alarms, it is
necessary to have fill additional method pr circuit that checks to confirm that the received
signal at the outp~t of the correlator remains above the threshold. With such a detection
strategy, a large n9ise pulse that causes the matched-filter output to exceed the threshold
will have only a transient effect on synchronization, since the matched-filter output will
fall below the threshold once the large noise pulse passes through the filter. On the other
hand, when a signal is present, the correlator or matched-filter output will remain above
the threshold for the duration of their transmitted signal. Thus, ifconfirmation fails, the
search forsigrial synchronization is resumed.

In the above discussion, we considered only time uncertainty in establishing initial
synchronization. However, another aspect of initial synchronization is frequency uncer­
tainty. If the transmitter and, or, the receiver are mobile, the relative velocity between
them results in a Doppler frequency shift in the received signal relative to the transmit­
ted signal. Since the receiver does not know the relative velocity, a priori, the Doppler

Received
signal

Sync
pulse

Chapter 10

Threshold
detector

· Wireless Communications

Envelope
detector

Envelope
detector

Filter
tuned to

1M

Figure 10.53 System for acquisition of an FH signal.

Filter
tuned to

I,

Filter
Envelopetuned to +

Received h detector

signal

Filter
Envelopetuned to

f, detector

760

output is compared with a threshold to determine if the known signal sequence is
present. If the threshold is not exceeded, the known reference sequence is advanced by
Tc /2 sec and the correlation process is repeated. These operations are performed until
a signal is detected or until the search has been performed over the time uncertainty
interval Tu . In the case of the latter outcome, the search process is repeated.

A similar procedure may be used for FH signals. In this case, the problem is to
synchronize the PN code sequence generated at the receiver that controls the hopped­
frequency pattern. To accomplish this initial synchronization, a known frequency­
hopped signal is transmitted to the receiver. The initial acquisitionsystem at the receiver
looks for this known FH signal pattern. For example, a bank of matched filters tuned
to the transmitted frequencies in the known pattern may be employed. Their outputs
must be properly delayed, envelope or square-law detected, weighted, if necessary, and
added to produce the signal output which is compared with a threshold. A signal present
(signal acquisition) is declared when the threshold is exceeded. The search process is
usually performed continuously in time until a threshold is exceeded. A block diagram
illustrating their signal acquisition scheme is given in Figure 10.53. As an alternative,
a single matched-filter and envelope detector may be used preceded by a frequency­
hopping pattern generator and followed by a threshold detector. This configuration,
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Figure 10.57 Tau-dither loop.

To demodulator

Figure 10.56 DLL for PN code tracking.
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which is fed to the demodulator. We observe that this implementation of the DLL for
tracking the DS signal is equivalent to the early-late gate bit-tracking synchronizer
previously described in Section 7.8.1.

An ~terr:a~ve method for time tracking a DS signal is to use a tau-dither loop
(TDL), whIch IS Illustrated by the block diagram in Figure 10.57. The TDL employs
only. a single ."arm". instead of the two "arms" shown in Figure 10.56. By providing
a SUItable gatmg. waveform, it is possible to make this single "arm" implementation
appear to be eqUlvalent to the two "arm" realization. In this case, the crosscorrelator
output is regUlarly sampled at two values of delay, by stepping the code clock forWard
and backward in time by an amount 8. The envelope of the crosscorrelation that is

I

Figure 10.55 lnitial search for the Dopplerfrequency offset in a DS system.
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. Tracking. Once the signal is acquired, the initial synchronization process is
stopped and fine synchronization and tracking begins. The tracking maintains the
PN code generator at the receiver in synchronism with the received signal. Tracking
includes fine-chip synchronization.

For it DS spread-spectrum signal, tracking is usually performed by means of a
tracking loop, called a delay-locked loop (DLL), as shoWn in Figure 10.56. In this
tracking loop, the received signal is applied to two multipliers, where it is multiplied
by two outputs from the local PN code generator which are delayed relative to each
other by an amount of 28 ::: Te . Thus, the product signals are the crosscorrelations
between the received signal and the PN sequence at the two values of delay. These
products are bandpass filtered, envelope (or square~law)detected, and then subtracted.
This difference signal is applied to the loop filter that drives the voltage-controlled
clock (VCC). The VCC output serves as the clock for the PN code signal generator.

If the synchronism is not exact, the filtered output from one correlator will exceed .
the other and the VCC will be appropriately advanced or delayed. At the equilibrium
point, the two filtered-correlator outputs will be equally displaced from the peak value,
and the PN code generator output will be exactly synchronized to the received signal

frequency-shift is unknown and must be d~termined by means of a frequency-search
method. Such a search is usually accomplished in parallel over a suitably quantized
frequency uncertainty interval and serially over the time uncertainty interval. A block
diagram of this scheme for DS spread-spectrum signals is shown in Figure 10.55.
Appropriate Doppler frequency-search methods can also be devised for FH signals.
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Figure 10.59 Tracking method for PH signals. (From paper by Pickholtz et a1.;
© 1992IEEE. Reprinted with permission.)
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Figure 10.60 Waveforms for the tracking method of FH signals shown in
Figure 10.59.
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A tracking method for PH spread-spectrum signals is illustrated in Figure 10.59.
This method is based on the premise that, although initial acquisition has been achieved,
there is a small timing error between the received signal and the received clock. The
bandpass filter is tuned to a single intermediate frequency and its bandwidth is of the
order of liTe, where Te is the chip interval. Its output is envelope detected and then
multiplied by the clock signal to produce a three-level signal, as shown in Figure 10.60,

Chapter 10

Figure 10.58 Autocorrelation function
(a) and tracking error signal (b) for DLL.
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sampled at ±8 has an amplitude modulation whose phase relative to the tau-dither
modulator determines the sign of the tracking error.

One advantage of the TDL is the less costly implementation resulting from elimi­
nation of one of the two arms that are employed in the conventional DLL. A second and
less apparent advantage is that the TDL does not suffer from performance degradation
that is inherent in the DLL when the amplitude gain in the two arms is not properly
balanced.

Both the DLL and the TDL generate an error signal by sampling the signal
correlation function at ±8 off the peak, as shown in Figure 10.58(a). This generates an
error signal as shown in Figure 10.5S(b). The analysis of the performance of the DLL
is similar to that for the PLL, previously described in Section 5.2. 1£ it were not for the
envelope detectors in the two arms of the DLL, the loop resembles a Costas loop. In
general, the variance of the time-estimation error in theDLL is inversely proportional to
the 100pSNR, which depends on the input SNR to the loop and on the loop bandwidth.
Its performance is somewhat degraded as in the squaring PLL by the nonIinearities
inherent in the·envelope detectors, but this degradation is relatively small.
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Figure 10.63 GSM frame structure.

TDMA fonnat supporting 8 simultaneous users

User 2 User 3

Digital Cellular Communication Systems

User 1

Superframe:

Multiframe:

Frame:

Tirneslot:

Signal
power

Section 10.4

design plan, such as the frequency plans shown in Figure 10.61, where the frequency
reuse factor is either N = 4 or N = 7. We observe that larger values of N increase the
distance dr between two base stations using the same set of frequencies, thus, reducing
co-channel interference. On the other hand, a large value of N reduces the spectral
efficiency of the cellular system, since fewer frequencies are assigned to each cell. The
maximum radius for a cell is 35 KIn.

Each 200 KHz-frequency band accommodates 8 users by creating 8 TDMA
nonoverlapping time slots, as shown in Figure 10.62. The eight time slots constitute a
frame of duration 4.615 msec, and each time slot has a time duration of 576.875 f-Lsec.
The information data from the users is transmitted in bursts at a rate of 270.833 Kbps.
Figure 10.63 illustrates the basic GSM frame structure, in which 26 frames are grouped

Chapter 10

N=7
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10.4.1 The GSM System

GSM was developed in Europe for the purpose of providing a common digital cellular
communication system that would serve all.of Europe. It is now widely used in many
parts of the world. The GSM system employs the frequency band 890-915 MHz for
signal transmission from mobile transmitters to base-station receivers (uplink or reverse
link) and the frequency band 935-960 MHz for transmission from the base stations to
the mobile receivers (downlink or forward link). The two 25 MHz-frequency bands are
each subdivided into 125 channels, where each channel has a bandwidth of 200 KHz. To
reduce interference from transmissions in adjacent cells, different sets of frequencies
are assigned to adjacent base stations imd frequencies are reused according to some

which drives the loop filter. Note that when the chip transitions from the locally gen­
erated sinusoidal waveform do not occur at the same time as the transitions in the
incoming received signal, the output of the loop filter will be either negative or posi­
tive, depending on whether the VCC is lagging or advanced relative to the timing of
the input signal. This error signal from the loop filter will provide the control signal for
adjusting the VCC timing signal so as to drive the frequency synthesized FH signal to
proper synchronism with the received sigiJ.al.

Figure 10.61 Frequency reuse in cellular system with reuse factor N = 4or
N=7.
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In this section, we present an overview of two types of digital cellular communication
systems that are currently in use. One is the GSM (Global System for Mobile Commu­
nication) system that is widely used in Europe and other parts of the world. It employs
time-division multiple access (TDMA) to accommodate multiple users. The second is
the CDMA system based on Interim Standard 95 (IS-95) that is widely used in North
America and some countries in ihe Far East.

10.4 DIGITAL CElLULAR COMMUNICATION SYSTEMS
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10.4.2 CDMA System Based on IS-95

As described in Section 10.3, the enhancement in performance obtained from a DS
spread-spectrum signal through the processing gain and coding gain can be used to
enable many DS spread-spectrum signals to simultaneously occupy the same channel
bandwidth, provided that each signal has its own distinct pseudorandom sequence.

to form a multiframe and 51 multiframes are grouped tofoTIll a superframe. The framing
hierarchy is convenient in facilitating synchronization and network control. To reduce
the effect of fading and interference and, thus, provide signal diversity, the carrier
frequency is hopped at the frame rate of (nominally) 217 hops/sec.

The functional block diagram of the transmitter and receiver in the GSM system is
shown in Figure 10.64. The speech coder is based on a type of linear predictive coding
(LPC) called residual pulse-excited (RPE) linear-predictive coding (RPE-LPC). RPE­
LPC delivers 260 bits in each 20 msec time interval, hence, a bit rate of 13 Kbps. The
most significant bits are encoded by a rate 1/2, constraint length L = 5 convolutional
encoder, and the coded and uncoded bits are block interleaved to produce data at a
rate of 22.8 Kbps. Thus, the 260 information bits are transformed into 456 coded bits
in each 20 msec time interval. The coded bit stream is encrypted and, then, organized
for burst transmission in time slots that carry 114 coded bits and some overhead bits,
as shown in Figure 10.63, including a sequence of 26 bits which is used to measure
the characteristics of the channel in each time slot. Therefore, the 456 coded bits are
transmitted in four consecutive bursts, where each burst contains 114 coded bits and
occupies one time slot.

The modulation used to transmit the bits in each time slot is GMSK with BT =
0.3, which is a signal pulse that is illustrated in Figure 1O.27(e). The output of the
GMSK modulator is translated in fr:equency to the desired carrier frequency, which is
hopped to a different frequency in each frame.

At the receiver, the received signal is dehopped and translated to baseband, thus
creating in-phase (I) and quadrature (Q) signal components, which are sampled and
buffered. The 26 known transmitted bits are used to measure the channel characteristics
and, thus, to specify the matched filter to the channel corrupted signal. The data bits are
passed through the matched filter and the matched-filter output is processed by a channel
equalizer, which may be realized either as a decision-feedback equalizer (DFE) or an
ML sequence detector that is efficiently implementedvia the Viterbi algorithm. The bits
in a burst at the output of the equalizer are deassembled, deencrypted, deinterleaved,
and passed to the channel decoder. The decoded bits are used to synthesize the speech
signal that was encoded via RPE-LPC.

In addition to the time slots (channels) that are used for transmission of the digi­
tized speech signals, there are additional channels that are allocated to various control
and synchronization functions, such as paging, frequency correction, synchronization,
and requests for access to send messages. These control channels are additional time
slots that contain known sequences of bits for performing the control functions.

Table 10.5 provides a summary of the basic parameters in the GSM system.
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TABLE 10.5 SUMMARY OF PARAMETERS IN GSM SYSTEM

Direct-sequence CDMA has been adopted as one multiple-access method for digital
cellular voice communications in North America. This first generation digital cellular
(DMA) communication system was developed by Qualcomm, and has been standard­
ized and designated as IS-95 by the Telecommunications Industry Association (TIA)
for use in the 800 MHz- and 1900 MHz-frequency bands. A major advantage of CDMA
{lver other multiple-access methods is that the entire frequency band is available at each
base station; i.e., the frequency reuse factor N = 1.

The nominal bandwidth used for transmission from a base station to the mobile
receivers (forward link) is 1.25 MHz, and a separate channel, also with a bandwidth
of 1.25 MHz, is used for signal transmission from mobile receivers to a base station
(reverse link). The signals transmitted in both the forward and the reverse links are DS
spread-spectrum signal having a chip rate of 1.2288 x 106 chips/sec (Mchips/s).

Forward link. A block diagram of the modulator for the signals transmitted
from a base station to the mobile receivers is shown in Figure 10.65. The speech coder
is a code-excited linear-predictive (CELP) coder which generates data at the variable
rates of9600, 4800, 2400, and 1200bits/s, where the data rate is a function of the speech
activity of the user, in frame intervals of 20 ms. The data from the speech coder are
encoded by a rate 1/2, constraint length L = 9 convolutional code. For lower speech
activity, where the data rates are 4800,2400, or 1200 bits/s, the output symbols from
the convolutional encoder are repeated either twice, four times, or eight times so as
to maintain a constant bit rate of 9600 bits/so At the .lower speech activity rates, the
transmitter power is reduced by either 3,6, or 9 dB, so that the transmitted energy/bit
remains constant for all speech rates. Thus, a lower speech activity results in a lower
transmitter power and, hence, a lower level of interference to other users.

The encoded bits for each frame are passed through a block interleaver, which is
needed to overcome the effects of burst errors that may occur in transmission through
the channel. The data bits at the output of the block interleaver, which occur at a rate

of 19.2 kbits/s, are scrambled by multiplication with the output of a long code (period
N = 242 -1) generator running at the chip rate of 1.2288 M chips/s, but whose output is
decimated by a factor of 64 to 19.2 kchips/s. The long code is used to uniquely identify
a call of a mobile station on the forward and reverse links.

Each user of the channel is assigned a Hadamard (also called Walsh) sequence
of length 64. There are 64 orthogonal Hadamard sequences assigned to each base
station, and, thus, there are 64 channels available. One Hadamard sequence (the all­
zero sequence) is used to transmit a pilot signal, which serves as a means for measuring
the channel characteristics, including the signal strength and the carrier phase offset.
These parameters are used at the receiver in performing phase-coherent demodulation.
Another Hadamard sequence is used for providing time synchronization. One channel,
and possibly more if necessary, is used for paging. That leaves up to 61 channels for
allocation to different users.

Each user, using the Hadamard sequence assigned to it, multiplies the data se­
quence by the assigned Hadamard sequence. Thus, each encoded data bit is multiplied
by the Hadamard sequence of length 64. The resulting binary sequence is now spread
by multiplication with two PN sequences oflength N = 215 , so as to create in-phase
(1) and quadrature (Q) signal components. Thus, the binary data signal is converted to
a four-phase signal and both the I and Q components are filtered by baseband spectral­
shaping filters. Different base stations are identified by different offsets of these PN
sequences. The signals for all the 64 channels are transmitted synchronously so that,

Pilot channel
and other
traffic
channels in
same cell

Figure 10.65 Block diagram of 18-95 forward link.

19.2 kcps

Decimator

Block
interleaver

Long code
generator

1.2288Mcps

ate.1, L=9
2

Convolution
encoder

with
repetion

Data

Mask

9.6 kbps
4.8 kbps
2.4 kbps
1.2 kbps

89Q-915MHz
935-960 MHz
125
200KHz
TDMA
8
270.8 Kbps
13KHz
RPE-LPC
22.8 kbps
OMSK with BY = 0.30
Matched filter + equalizer
Block
217 hops/sec

Specification

Uplink frequency band
Downlink frequency band
Number of carners/band
B'andwidth/carrier
Multiple-access method
Number of users/carrier
Data rate/carrier
Speech-coding rate
Speech encoder
Coded-speech rate
Modulation
Demodulation
Interleaver
Frequency-hopping rate

System Parameter
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in the absence of channel multipath distortion, the signals of other users received at
any mobile receiver do not interfere because of the orthogonality of the Hadamard
sequences.

At the receiver, a RAKE demodulator is used to resolve the major multipath
signal components, which are then phase-alignedand weighted according to their signal
strength using the estimates of phase and signal strength derived from the pilot signal.
These components are combined and passed to the Viterbi soft-decision decoder.

Reverse link. The modulator for the reverse link from a mobile transmitter
to a base station is different from that for the forward link.. A block diagram of the
modulator is shown in Figure 10.66. An important consideration in the design of the
modulator is that, signals transmitted from the various mobile transmitters to the base
station are asynchronous and, hence, there is significantly more interference among
users. Second, the mobile transmitters are usually battery operated and, consequently,
these transmissions are power limited. To compensate for these major limitations, a
L = 9, rate 1/3 convolutional code is used in the reverse link. Although this code has
essentially the same coding gain in an AWGN channel as the rate 1/2 code used in
the forward link, it has a much higher coding gain in a fading channel. As in the case
of the forward link, for lower speech activity, the output bits from the convolutional
encoder are repeated either two, or four, or eight times. However, the coded bit rate is
28.8 kbitsls.

For each 20-ms frame, the 576 encoded bits are block-interleaved and passed to
the modulator. The data are modulated using an 111 = 64 orthogonal signal set using
Hadamard sequences of length 64. Thus, a 6-b.it block of data is mapped into one of the
64 Hadamard sequences. The result is a bit (or chip) rate of 307.2 kbits/s at the output
of the modulator. We note that 64-ary orthogonal modulation at an error probability of
10-6 requires approximately 3.5 dB less SNRlbit than binary antipodal signaling.

To reduce interference to other users, the time position of the transmitted code
symbol repetitions is randomized so that, at the lower speech activity, consecutive bursts
do not occur evenly spaced in time. Following the randomizer, the signal is spread by
the output of the long code PN generator, which is running at a rate of 1.2288 Mchips/s.
Hence, there are only four PN chips for every bit of the Hadamard sequence from the
modulator, so the processing gain in the reverse link is very small. The resulting 1.2288
Mchips/s binary sequences oflength N = 215 , whose rate is also 1.2288 Mchips/s, create
I and Q signals (a QPSK signal) which are filtered by baseband spectral-shaping filters
and then passed to quadrature mixers. The Q-channel signal is delayed in time by one­
half PN chip relative to the I -channel signal prior to the baseband filter. In effect, the
signal at the output of the two baseband filters is an offset QPSK signal.

Although the chips are transmitted as an offset QPSK signal, the demodulator
employs noncoherent demodulation of the 111 = 64 orthogonal Hadamard waveforms
to recover the encoded data bits. A computationally efficient (fast) Hadamard transform
is used to reduce the computational complexity in the demodulation process. The output
of the demodulator is then fed to the Viterbi detector, whose output is used to synthesize
the speech signal.

Table 10.6 provides a summary of the basic parameters in the IS-95 system.

773
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TABLE 10.6 SUMMARY OF PARAMETERS IN IS-95 SYSTEM

10.5 FURTHER READING

In this chapter, we focused our topics dealing with wireless communications. First, we
treated digital transmission on fading multipath channels. Our treatment of this topic
was indeed very brief and focused primarily on the Rayleigh fading channel model. For
the most part, this is due to the wide acceptance of this model for describing the fading
effects on many radio channels and to its mathematical tractability. Although other
statistical models, such as the Ricean fading model, may be more appropriate for char­
acterizing fading on some real channels, such as microwave LOS, the general approach
for providing reliable communications by means of signal diversity is still applicable.

More extensive and advanced treatments on fading channels are found in books
by Schwartz et al. (1966) and Proakis (2001). The pioneering work on the charac­
terization of fading multipath channels and on signal and receiver design for reliable
digital communications over such channels was done by Price (1954, 1956). This early
work was followed by additional significant contributions from Price and Green (1958,
1960), Kailath (1960, 1961), and Green (1962). Diversity transmission and diversity­
combining techniques under a variety of channel condltions have been treated in the
papers by Pierce (1958), Brennan (1959), Turin (1961,1962), Pierce and Stein (1960),
Barrow (1963), Bello and Nelin (1962a,b, 1963), Price (1962a,b), and Lindsey (1964).

CPFSK and CPM are especially suitable for wireless digital communications be­
cause these types ofdigital modulations are bandwidth efficient and have the additional
desirable property of having a constant envelope. Therefore, high efficiency nonlinear

System Parameter

Uplink frequency band
Downlink frequency band
Number of carrierslband
Bandwidth/carrier
Multiple-access method
Number of users/carrier
Chip rate
Speech coder
Speech rate
Interleaver
Channel encoder

Modulation

Demodulation

Signature sequences
PN sequence

Specification

824-849 MHz
869-894 MHz
20
1.25 MHz
CDMA
60
1.2288 Mcps
Variable rate CELP
9600, 4800, 2400, l200bps
Block
R = 1/2, L = 9(D)
R =1/3, L = 9(U)
BPSK with QPSK Spreading (0)

64-ary Orthogonal with QPSK
Spreading (D)

RAKE matched filter with
maximal-ratio combining

Hadamard (Walsh) of length 64
N = 242 - 1 (Long code)
N = 215 (Spreading codes)

I
I

power amplifiers can be used in transmission of the signals. CPFSK and CPM have
been treated extensively in the technical journals and in textbooks. A thorough treat­
ment of CPM can be found in the book by Anderson et al. (1986). The journal papers by
AuIin and Sundberg (1981, 1982a,b, 1984) and by AuIin et al. (1981) provide detailed
analysis of the performance characteristics of CPM. The tutorial paper by Sundberg
(1986) gives a very readable overview of CPM, its demodulation and its performance
characteristics. This paper also contains a comprehensive list of references.

Our third topic of this chapter was a brief, introductory treatment of spread­
spectrum modulation and demodulation and the performance evaluation of this type of
signaling in the presence of several different types of interference. Historically, the pri­
mary application ofspread-spectrum modulation has been in the design of secure digital
communications systems for military use. However, in the last two decades we have
seen a trend toward commercial use of spread-spectrum modulation, especially its use
in mobile cellular communications, in multiple-access communications via satellites,
and in interoffice radio communications.

A historical account on the development of spread-spectrum communications
covering the period 1920-1960 is given in apaper by Scholtz (1982). Tutorial treatments
of spread-spectrum modulation that deal with basic concepts are found in papers by
Scholtz (1977) and Pickboltz et al. (1982). These papers also contain a large number
of references to the previous w.ork. Two tutorial papers by Viterbi (1979, 1985) contain
a basic analysis of the performance characteristics of DS and FH spread-spectrum
signals.

Comprehensive treatments of various aspects concerning the analysis and design
of spread-spectrum signals and systems, including synchronization techniques, are
found in books by Simon et al.. (1985), Ziemer and Peterson (1985), and Holmes (1982).
Also, special issues of the IEEE Transactions on Communications (August 1977, May
1982) are devoted to spread-spectrum communications. These special issues contain a
collection ofpapers devoted to a variety of topics, including multiple-access techniques,
synchronization techniques, and performance analysis with various types of channel
interference. A number of important papers that have been published in IEEE journals
have been reprinted in book form by the IEEE press, (see Dixon, ed. (1976) and Cook
et al. (1983»).

In the last section of this chapter, we presented two examples of digital cellular
communication systems designed for voice transmission. One system, called GSM, is
based on TDMA to accommodate multiple users, while the second system employs
CDMA.

PROBLEMS

10.1 In the transmission and reception of signals to and from moving vehicles, the
transmitted signal frequency is shifted in direct proportion to the speed of the
vehicle. The so-called Dopplerfrequency shift imparted to a signal that is received
in a vehicle traveling at a velocity v relative to a (fixed) transmitter is given by
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thefo=ula

V
Iv =±­

A

where A is the wavelength, and the sign depends on the direction (moving toward
or moving away) that the vehicle is traveling relative to the transmitter. Suppose
that a vehicle is traveling at a speed of 100 kmJhr relative to a base station
in a mobile cellular communication system. The signal is a narrowband signal
transmitted at a carrier frequency of 1 GHz.

1. Dete=ine the Doppler frequency shift.

2. "What should be the bandwidth of a Doppler frequency tracking loop if the
loop is designed to track Doppler frequency shifts for vehicles traveling at
speeds up to 100 km/hr?

3. Suppose the transmitted signal bandwidth is 1 MHz centered at 1 GHz.
Dete=ine the Doppler frequency spread between the upper and lower
frequencies in the signal.

10.2 A multipath fading channel has a multipath spread of Tnt = 1 s and a Doppler
spread Ed = 0.01 Hz. The total channel bandwidth at bandpass available for sig­
nal transmission is W = 5 Hz. To reduce the effect of intersymbol interference,
the signal designer selects a pulse duration of T = 10 sec.

1. Determine the coherence bandwidth and the coherence time.

2. Is the channel frequency selective? Explain.

3. Is the channel fading slowly or rapidly? Explain.

4. Suppose that the channel is used to transmit binary data via (antipodal)
coherently detected PSK in a frequency diversity mode. Explain how you
would use the available channel bandwidth to obtain frequency diversity .
and determine how much diversity is available.

5. For the case in (4), what is the approximate SNR requiTed/diversity to
achieve an error probability of 1O-6? .

10.3 The probability of error for binary DPSK and binary FSK with noncoherent
detection in an AWGN channel is

] a't: h . thwhere c = 1 for DPSK and c = 2' for FSK, and Pb = y, were O!]s e at-
tenuation factor. By averaging Pb over the Rayleigh distributed variable O!, as
indicated by Equation (10.1.25), verify the expression for the probability oferror
for DPSK and FSK in a Rayleigh fading channel.

lOA A communication system employs dual antenna diversity and binary orthogonal
FSK modulation. The received signals at the two antennae are

TI (t) = O!]s(t) + nl (t)

rz (t) = O!zs (t) + nz (t)

where al and az are statistically i.i.d.Rayleigh random variables, and n] (t) and
nz (t) are statistically independent, zero-mean white Gaussian random processes
with power-spectral density No/2 WlHz. The two signals are pemodulated,
squared, and then combined (summed) prior to detection.

1. Sketch the functional block diagram of the entire receiver including the
demodulator, the combiner, and the detector.

2. Plot the probability of error for the detector and compare the result with the
case of no diversity.

10.5 A binary communication system transmits the same info=ation on two diversity
channels. The two received signals are

r] = ±.Jtb+ nl

rz = ±.Jtb+ nz

where E(nl) = E(nz) = 0, E(ni) = 01 and E(n~) = O'{,andnl and nz are
uncorrelated Gaussian variables. The detector bases its decision on the linear
combination of rl and rz; i.e.,

1. Dete=ine the value of k that minimizes the probability of error.

2. Plot the probability of error for O'f = 1, O'{ = 3 and either k = 1 or k is the
optimum value found in (1). Compare the results.

10.6 Suppose the binary antipodal signals ±s(t) are transmitted over a fading channel
and the received signal is

ret) = ±as(t)+net), 0::: t ::: T

where net) is zero-mean white Gaussian noise with autocorrelation function
!f8(r). The energy in the transmitted signal is E= J[ Is(t)IZdt. The channel
gain a is specified by the PDF pea) =0.18(a) +0.98 (a - 2).

1. Dete=ine the average probability of error Pe for the demodulator which
employs a filter matched to set).

2. "What value does Pe approach as -fro approaches infinity?

3. Suppose the same signal is transmitted over two statistically independently
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fading channels with gains Gil and Gi2, where

peak) = 0.18(Cik) + O.98(Cik - 2), k = 1,2

The noises on the two channels are statistically independent and identically
distributed. The demodulator employs a matched filter for each channel and
simply adds the two filter outputs to form the decision variable. Determine
the average Pe.

4. For the case in (3) what value does Pe approach as fa approaches infinity?

10.7 In a MSK signal, the initial state for the phase is either 0 or Jr radians. Determine
the terminal phase state for the following four input pairs of input data: (a) 00,
(b) 01, (c) 10, (d) 11.

10.8 A continuous~phase FSK signal with h = 1/2 is represented as

s (t) = ± ru; cos (!!.!..-) cos2Jrfct ± ru; sin (!!.!..-) sin2JrfctVT; 2Tb VT; 2Tb

o:5 t :5 2Tb

where the ± signs depend on the information bits transmitted.

1. Show that this signal has a constant amplitude.

2. Sketch a block diagram of the modulator for synthesizing the signal.

3. Sketch a block diagram of the demodulator and detector for recovering the
information.

10.9 Sketch the phase-tree, the state trellis, and the state diagram for partial-response
CPM with h = ~ and

{

I 0:5 t :5 2T
g(t)= 4T'

0, otherwise

10.10 Determine the number of terminal phase states in the state trellis diagram for (a)
a full response binary CPFSK with either h = ~ or ~ and (b) a partial response
L = 3 binary CPFSK with either h = ~ or. ~.

10.11 A rate 1/2 convolutional code with dfree = 10 is used to encode a data sequence
occurring at a rate of 1000 bits per second. The modulation is binary PSK. The
DS spread spectrum sequence has a chip rate of 10 MHz.

1. Determine the coding gain.

2. Determine the processing gain.

3. Determine the intelference margin assuming an [bllo = 10.

10.12 Demonstrate that a DS spread-spectrum signal without coding provides no
improvement in performance against additive white Gaussian noise. .

10.13 A total of 30 equal-power users are to share a corrimon communication channel
by CDMA. Each user transmits information at a rate of 10 kbps via DS spread

spectrum and binary PSK. Deterrnine the minimum chip rate in order to obtain
a bit-error probability of 10-5. Additive noise at the receiver may be ignored in
this computation.

10.14 A CDMA system is designed based on DS spread spectrum with a processing
gain of 1000 and binary PSK modulation. Determine the number ofusers, if each
user has equal power and the desired level of performance is an error probability
of 10-6

• Repeat the computation if the processing gain is changed to 500.
10.15 A DS spread-spectrum system transmits at a rate of 1000 bps in the presence

of a tone interference. The interference power is 20 dB greater than the desired
signal and the required [bllo to achieve satisfactory performance is 10 dB.

1. Determine the spreading bandwidth required to meet the specifications.

2. In the case ofa pulse interference, determine the pulse duty cycle that results
in worst-case performance and the corresponding probability of error.

10.16 A DS spread-spectrum system is used to resolve the multipath signal component
in a two-path radio signal propagation scenario. Ifthe path length ofthe secondary
path is 300 m longer· than that of the direct path, determine the minimum chip
rate necessary to resolve the multipath component.

10.17 A CDMA system consists of 15 equal-power users that transmit information at
a rate 10,000 bps each using a DS spread-spectrum signal operating at a chip
rate of 1 MHz. The modulation is binary PSK.

1. Determine the cbllo, where 10 is the spectral density of the combined
interference.

2. What is the processing gain?

3. How much should the processing gain be increased to allow for doubling
the number of users without affecting the output SNR?

10.18 An FH binary orthogonal FSK system employs a m = 15 stage linear feedback
shift register that generates a maximal length sequence. Each state of the shift
register selects one of N nonoverlapping frequency bands in the hopping pattern.
The bit rate is 100 bits/sec and the hop rate is once/bit. The demodulator employs
noncoherent detection.

1. Deterrnine the hopping bandwidth for this channel.

2. What is the processing gain?

3. What is the probability of error in the presence of AWGN?

10.19 Consider the FH binary orthogonal FSK system described in Problem 10.18.
Suppose that the hop rate is increased to two hops/bit. The receiver uses square­
law combining to combine the signal over the two hops.

1. Determine the hopping banpwidth for the channel.

2. What is the processing gain?

3. What is the error probability in the presence of AWGN?
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10.20 In a fast FH spread-spectrum system, the information is transmitted via FSK,
withnoncoherent detection. Suppose there are N = 3 hopslbit, with hard-decision
decoding of the signal in each hop.

1. Determine the probability of error for this system in an AWGN channel
with power-spectral density ~ and an SNR= 13 dB (total SNR over the
three hops).

2. Compare the result in (1) with the error probability of an FH spread­
spectrum system that hops oncelbit.

10.21 A slow FH binary FSK system with noncoherent detection operates at an EbI 10 =
10, with a hopping bandwidth of2 GHz, and a bit rate of 10 Kbps.

1. What is the processing gain for the system?

2. In the case of a partial-band interference, what is the bandwidth occupancy
for worst-case performance?

3. What is the probability oferror for the worst-case partial-band interference?

10.22 A DS binary PSK spread spectrum has a processing gain of 500. What is the
interference margin against a continuous tone interference if the desired error
probability is 1O-5?

10.23 Repeat Problem 10.22 for a pulsed noise interference with a duty cycle of 1%.
10.24 Consider the DS spread-spectrum signal

Figure P-IO.27

10;28 For the multipath delay problem shown in Figure PI0-27, determine the number
of taps in a RAKE demodulator that would be needed to span the multipath for
channels (a) and (b). Of the total number of RAKE taps, how many will contain
signal components and how many will have no signal for channel (b)?

10.29 A widely used model for the Doppler power spectrum of a mobile radio channel
is the so-called Jake's model, given as

where fm = vfolc is the maximum Doppler frequency, v is the vehicle speed
in mis, fo is the carrier frequency, and c is the speed of light (3 x 108 mls).
Determine 1,,, for an automobile traveling at 100 Krn!hr, for a train traveling
at 200 Krn!hr and plot S(f) for the two vehicles for a cellular cornnmnication
system with a carrier frequency of 900 MHz. What are the spread factors of the
channel for the two vehicles if the multipath delay profile is the one shown in
Figure PlO-27? .

where Cn is a periodic m-sequence with a period L = 127 and pet) is arectangular
pulse ofduration Tc = 1 f-Lsec. Determine the power-spectral density of the signal
c(t).

10.25 Suppose that {cli} and {c2d are two binary (0, 1) periodic sequences with periods
L 1 and L 2, respectively. Determine the period of the sequence obtained by
forming the modulo-2 sum of {cld and {c2d.

10.26 An m = 10 maximum-length shift register is used to generate the pseudorandom
sequence in a DS spread-spectrum system. The chip duration is Tc = 1 f-Lsec, and
the bit duration is Tb = LTc, where L is the length (period) of the m-sequence.

1. Determine the processing gain of the system in dB.

2. Determine the interference margin if the required Ebl10 = 10 and the inter­
ference is a tone interference with an average power l av •

10.27 Figure PlO-27 illustrates the average power multipath delay profile for (a) sub­
urban and urban areas and (b) hilly terrain area, in cellular communication. In
a GSM system, the bit rate is 270.8 Kbps and in IS-95 system (forward link)
the bit rate is 19.2 Kbps. Determine the number of bits affected by Intersymbol
interference in the transmission of the signal through the channels (a) and (b)
for each cellular system.

{

1 1

S(f) = nf,,, ..)1-(//1,,,]2'
0,

If I ~ fm

otherwise
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In multichannel communication systems that employ binary signals for transmitting
infonnation over an AWGN channel, the decision metric can be expressed as a special
case of the general quadratic for

Appendix A

The Probability of Error
for Multichannel Reception

of Binary Signals

(A3)

N= 1

simply the probability that DM1 - DM2 < 0, where

DMI - DM2 = t [IVlk +~ 1

2

-l v2d]

where Vlk and V2k are complex-valued Gaussian random variables that represent the
noises of the outputs of the correlators. We again note that Equation (A3) is a special
caseof~e generalquadraticforrninEquation (AI), where A = -B = 1, C = 0, Xk =
(Vlk + N';) and Yk = 1J2k.

The probability of error is just the probability that Q < 0; i.e.,

P2 = P(Q < 0) = I: fQ(q) dq (A4)

where fQ(q) is the PDF of Q.
The derivation for the error probability P2 may be found in the technical literature

and in the book by Proakis (2001). This derivation is lengthy and is not repeated here.
The expression for the probability of error resulting from this derivation is

P2 = Q(a, b) _ Io(ab) exp ( _ a
2

: b
2

)

+ 1o(ab)exp[-(a
2 +b

2)/2] I:(2N -1) (V2)k
(l + v2IvI)2N-1 k=O k V1

exp[- (a2 + b2
) /2]~

+ (1 / 2N-l L-- In (ab) (A.5)
+V2 Vl) n=1

X{N%;n CN
k-

1
) [(~r c~r<- (~r c~rN-I-kJ) N> 1

VI =

v2IVI ( a
2 + b

2
)P2 = Q(a, b) - 10 (ab) exp ---

1+ V2/VI 2

where the parameters a, b, VI, V2 are defined as

a = [2V?V2(iXIV2 - ( 2)] 1/2
(VI + V2)2

b = [2VIV?(iX1Vl +iX2)]I/2
(VI + V2)2,

(AI)

(A2)

N

Q = 2)AIXkI2 + BIYkl2 + CXkY: + C'X%Yk)
k=1

in complex-valued Gaussian random variables. A, B, and C are constants satisfying
the condition Icf - AB > 0; Xk and Yk are a pair of (possibly) correlated, complex­
valued Gaussian random variables of the fonn Xk = Xkr + j Xki and Yk = Ykr +
j Yki ; and N represents the number of independent channels over which the signal is
received.

For example, in binary DPSK detection, which is described in Section 7.6.4, the
decision metric is given as

Re(rkr:_I) = ~(rkr:_1 + r:rk-I)

where rk is the output of the demodulation filter. We note that Equation (A2) is a special
case of Equation (AI) which is obtained from Equation (A.I) by setting N = 1, A =
B = 0, Xk = rk, Yk = rk-l> and C = 1/2. . <

As another example, we have the case of fast frequency-hopped, binary FSK, in
which case the output of the two square-law combiners is given by Equation (10.3.60?,
where N is the number of frequency-hopped chips/symbol. The probability of error, IS

- 782
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A/L;c;c + B /Lyy + C/L;y + C* /hxy
w=--------:;--"--::---

2(/L;c;c/Lyy -1/Lxy I2)(ICI2 - AB)
2 - 2 - 2 -==*- - =* *

alk = (ICI - AB)(IXkl /hyy + IYkl /Lxx - XJk/Lxy - XkYk/Lxy)

aik = Mxd + B11\12 + cX;;1\ + c*xkY";
X k = E(Xk); Yk = E(Yk)

/Lxx = E[(Xk - Xk)2], /Lyy = E[(Yk - Yd]
/Lxy = E[(Xk - Xk)(Yk - Yk)] References

(A.6)

The function Q(a, b), is defined as

(00 .r2+a2

Q(a, b) = Jb xe--2-Jo(ax) dx

We note that in the special case where a = 0,

Q(O, b) = ~e-b2/2

Finally, In (x) is the modified Bessel function of order n.

(A.7)

(A.8)
ADLER, R. L., COPPERSMITH, D., AND HASSNER, M. (1983), "Algorithms for Sliding Block

Codes," IEEE Trans. Infoml. Theory, vol. IT-29, pp. 5-22, January.

ANDERSON, J. B., AULlN, T., AND SUNDBERG, C. W. (1986), Digital Phase Modulation, Plenum,
New York.

AULlN, T., RYDBECK, N., AND SUNDBERG, C. W. (1981), "Continuous Phase Modulation­
Part II: Partial Response Signaling," IEEE Trans. Commun.; vol. CoM-29, pp. 210-225, March.

AULlN, T., AND SUNDBERG, C. W. (1981), "Continuous Phase Modulation-Part I: Full Response
Signaling," IEEE Trans. Commun., vol. CoM-29, pp. 196-209, March.

AULlN, T., AND SUNDBERG, C. W. (1982a), "On the Minimum Euclidean Distance for a Class of
Signal Space Codes," IEEE Trans. Inform. Theory, vol. IT-28, pp. 43-55, January.

AULlN, T., AND SUNDBERG, C. W. (1982b), "Minimum Euclidean Distance and Power Spectrum
for a Class of Smoothed Phase Modulation Codes with Constant Envelope," IEEE Trans. Commun.,
vol. CoM-30, pp.1721-I729, July.

AULlN, T., AND SUNDBERG, C. W. (1984), "CPM-An Efficient Constant Amplitude Modulation
Scheme," Int. 1. Satellite Commun., vol. 2, pp. 161-186.

BAHAI, A. R S., AND SALTZBERG, B. R (1999), Multi-Carrier Digital Communications-Theory
and Applications ofOFDM, Kluwer, Plenum, New York.

BARL, L. R, COCKE, J., JELINEK, E, AND RAYN, J. (1974), "Optimal Decoding of Linear Codes
for Minimizing Symbol Error Rate," IEEE Trans. Infoml. Theory, vol. IT-20, pp. 284-287, March.

BARROW, B. (1963), "Diversity Combining ofFading Signals with Unequal Mean Strengths," IEEE
Trans. Commun. Sys., voL CS-ll, pp. 73-78, March.

BELLO, P. A., AND NELlN, B. D. (1962a), "Predetection Diversity Combining with Selectively
Fading Chairnels," IRE Trans. Commun. Sys., vol. CS-10, pp. 32-44, March.

785

.._-~.



786 References References 787

BELLO, P. A, AND NELIN, B. D. (1962b), "The Influence of Fading Spectrum on the Binary Error
Probabilities of Incoherent and Differentially Coherent Matched Filter Receivers," IRE Trans.
Commun. Sys., vol. CS-11, pp. 170-186, June.

BELLO, P. A, AND NELIN, B. D. (1963), "The Effect of Frequency Selective Fading on the Binary
Error Probabilities of Incoherent and Differentially Coherent Matched Filter Receivers," IEEE
Trans. Commun. Sys., vol. CS-11, pp. 170-186; June.

BENEDETTO, S., BIGLIERI, E., AND CASTELLANI, V. (1987), Digital Transmission Theory,
Prentice-Hall, Englewood Cliffs, N.J.

BERGER, T., AND TUFfS, D. W. (1967), "OptimumPulse Amplitude Modulation, Part I: Transmitter­
Receiver Design and Bounds from Infonnation Theory," IEEE Trans. Inform. Theory, vol. IT-B,
pp. 196-208.

BERGER, T. (1971), Rate Distortion Theory: A Mathematical Basisfor Data Compression, Prentice­
Hall, Englewood Cliffs, N.J.

BERLEKAMP, E. R. (1968), Algebraic Coding Theory, McGraw-Hill, New York.

BERROU, C., GLAVIEUX, A, AND THITIMAJSHIMA, P. (1993), "Near Shannon Limit Error
Correcting Coding and Decoding: Thrbo Codes;' Proc. IEEE Int. Con! Commun., pp. 1064-1070,
May, Geneva, Switzerland.

BINGHAM, J. A C. (1990), "Multicarrier Modulation for Data Transmission: An Idea Whose Time
Has Come," IEEE Commun. Mag., vol. 28, pp. 5-14. May.

BLAHUT, R. E. (1983), Theory and Practice of Error Control Codes, Addison-Wesley, Reading,
Mass.

BLAHUT, R. E. (1987), Principles and Practice ofInformation Theory, Addison-Wesley, Reading,
Mass.

BLAHUT, R. E. (1990), Digital Transmission ofInformation, Addison-Wesley, Reading, Mass.

BOSE, R. C., AND RAY-CHAUDHURI, D. K (1960a), "On a Class ofError CorrectiJig Binary Group
Codes," Inform. Control, vol. 3, pp. 68-79, March.

BOSE, R. C., AND RAY-CHAUDHURI, D. K (1960b), "Further Results in Error Correcting Binary
Group Codes," Inform. Control, vol. 3, pp. 279-290, September.

BOYD, S. (1986), ''Multitone Signals with Low Crest Factor," IEEE Trans. Circ. Sys., vol. CAS-33,
pp. 1018-1022.

BRACEWELL, R. (1965), The Fourier Transform and Its Applications, 2nd Ed., McGraw-Hill,
New York.

BRENNAN, D, G. (1959), "Linear Diversity Combining Techniques," Proc. IRE, vol. 47, pp. 1075­
1102, June.

CARLSON, A. B. (1986), Communication Systems,. 3rd Ed., McGraw-Hill, New York.

CHANG, R. W. (1966), "Synthesis of Bandlimited Orthogonal Signals for Multichannel Data Trans­
mission," Bell Sys. Tech. J., vol-45, pp. 1775-1796, December.

CHOW, J. S., CIOFFI, J. M., AND BINGHAM, J. A. C. (1995), '~ Ffactical Discrete Multitone
Transceiver Loading Algorithm for Data Transmission over Spectrally Shaped Channels," IEEE
Trans. Commun., vol. 43, pp. 357-363, October. . .

CLARKE, K K, AND HESS, D. T. (1971), Communication Circuits: Analysis and Design, Addison­
Wesley, Reading, Mass.

COOK, C. E., ELLERSICK, F. W., MILSTEIN, 1. B., AND SCHILLING, D. 1. (1983), Spread
Spectrum Communications, IEEE Press, New York.

COUCH, 1. w., IT (1993), Digital and Analog Communication Systems, 4th Ed., Macmillan,
New York.

COVER, T. M., AND THOMAS, J. A (1991), Elements of Information Theory, Wiley-Interscience,
New York.

DAVENPORT, W. B., Jr., AND ROOT, W. 1. (1958), Random Signals and Noise, McGraw-Hill,
New York.

DELLER, J. P., PROAKIS, J. G., AND HANSEN, H. 1. (2000), Discrete-Time Processing of Speech
Signals, IEEE Press, Piscataway, N.J.

DIXON, R. C. (1976), Spread Spectrum Techniques, IEEE Press, New York.

DOELTZ, M. 1., HEALD, E. T., AND MARTIN, D. 1. (1957), "Binary Data Transmission Techniques
for Linear Systems," Proc. IRE, vol-45, pp. 656--661, May.

ELIAS, P. (1954), "Error-Free Coding," IRE Trans. Inform. Theory, vol. IT-4, pp. 29-39, September.

ELIAS, P. (1955), "Coding for Noisy Channels," IRE Conv. Rec., vol. 3, pt. 4, pp. 37-46.

FANO, R. M. (1963). '~HeuristicDiscussion ofProbabilistic Decoding," IEEE Trans. Inform. Theory,
voI.1T-9, pp. 64-74, April.

FORNEY, G. D., Jr. (1966), Concatenated Codes, MIT Press, Cambridge, Mass.

FORNEY, G. D., Jr. (1972), "Maximum-Likelihood Sequence Estimation of Digital Sequences in the
Presence ofIntersymbol Interference," IEEE Trans. Inform. Theory, vol. 18, pp. 363-378, May.

FORNEY, G. D., Jr. (1988a), "Coset Codes 1: Intrqduction and Geometrical Classification," IEEE
Trans. Inform. Theory, voL IT-34, pp. 671-680, September.

FORNEY, G. D., Jr. (198Sb), "Coset Codes IT: Binary Lattices and Related Codes," IEEE Trans.
Infonn. Theory, vol. IT-34, pp. 671-680, September.

FRANASZEK, P. A (1968), "Sequence-State Coding for Digital Transmission," Bell Sys. Tech. J.,
vol. 27, p. 143.

FRANASZEK, P. A. (1969), "On Synchronous Variable Length Coding for Discrete Noiseless Chan­
nels," Inform. Control, vol. 15, pp. 155-164.

FRANASZEK, P. A. (1970), "Sequence-State Methods for Run-Length-Limited Coding," IBM 1. Res.
Dev., pp. 376-383, July.

FRANKS, 1. E. (1969), Signal Theory, Prentice-Hall, Englewood Cliffs, N.J.

FRANKS, 1. E. (1980), "Carrier and Bit Synchronization in Data Communication-A Tutorial Re­
view," IEEE Trans. Commun., vol. COM-28, pp. 1107-1121, August.

FREIMAN, C. E., AND WYNER, AD. (1964), "Optimum Block Codes for Noiseless Input Restricte'd
Channels," Inform. Control, vol. 7, pp. 398-415.

GABOR, A. (1967), "Adaptive Coding for Self Clocking Recording," IEEE Trans. Elect. Comput.,
vol. EC-16, p. 866.

GALLAGER, R. G. (1968), Information Theory and Reliable Communication, Wiley, New York.

GARDNER, F. M. (1979), Phaselock Techniques, Wiley, New York.

GERSHO, A, AND GRAY, R. M. (1992), Vector Quantization and Signal Compression, Kluwer,
Boston.

GERST, 1., AND DIAMOND, J. (1961), 'The Elimination ofIntersymbol Interference by Input Pulse
Shaping," Proc. IRE, vol. 53, July.

GIBSON, J. D. (1993), Principles of Digital and Analog Communications, 2nd Ed., Macmillan,
New York.



788 References References 789

GIBSON, J. D., BERGER, T., LOOKABAUGH, T., LINDBERG, D., AND BAKER, R. 1. (1998),
Digital Compressionfor Multimedia: Principles and Standards, Morgan Kaufmann, San Francisco,
Calif.

GOLAY, M. J. E. (1949), "Notes on Digital Coding," Proc. IRE, vol. 37,p. 657, June.

GOLD, R. (1967), "Maximal Recursive Sequences with 3-Valued Recursive Cross Correlation Func­
tions," IEEE Trans. Inform. Theory, vol. IT-14, pp. 154-156, January.

GOLOMB, S. W. (1967), Shift Register Sequences, Holden-Day, San Francisco, Calif.

GRAY, R. M., AND DAVISSON, 1. D. (1986), Random Processes: A Mathematical Approach for
Engineers, Prentice-Hall, Englewood Cliffs, N.J. ..

GREEN, P. E., Jr. (1962), "Radar Astronomy Measurement Techniques," MIT Lincoln Laboratory,
Lexington, Mass., Tech. Report No. 282, December. .

GRONEMEYER, S. A., AND McBRIDE, A. L. (1976), ''MSK and Offset QPSK Modulation," IEEE
Trans. Commun., vol. COM-24, pp. 809-820, August.

GUPTA, S. C. (1975), "Phase-Locked Loops," Proc. IEEE, vol. 63, pp. 291-306, February.

HAGENAUER, J., AND HOEHER, P. (1989), "A Viterbi Algorithm with Soft Decision Outputs and
Its Applications," Proc. IEEE Globecom Conj, pp. 1680-1686, November, Dallas, Tex.

HA1vIM.ING, R. W. (1950), "Error Detecting and Error Correcting Codes," Bell Sys. Tech. J., vol. 29,
pp. 147-160, April.

HARTLEY, R. V. (1928), "Transmissio~ of Information;' Bell Sys. Tech. 1, vol: 7, p. 535.

HAYKIN, S. (2000), Communication Systems, 4th Ed., Wiley, New York.

HEEGARD, C., AND WICKER, S. B. (1999), Turbo Coding, Kluwer, Boston.

HELLER, 1 A. (1975), "Feedback Decoding ofConvolutional Codes," inAdvances in Communication
Systems, vol. 4, A. J. Viterbi (Ed.), Academic, New York.

HELSTROM, C. W. (1991), Probability and Stochastic Processes for Engineers, Macmillan,
New York.

HOCQUENGHEM, A. (1959), "Codes Correcteurs d'Erreurs," Chiffers, voL 2, pp. 147-156.

HOLMES, J. K. (1982), Coherent Spread Spectrum Systems, WJ.1ey-Interscience, New York.

HUFFMAN, D. A. (1952), "A Method for the Construction of Minimum Redundancy Codes," Proc.
IRE, vol. 40, pp. 1098-1101, September.

JACOBY, G. V. (1977), "A New Look-Ahead Code for Increased Data Density," IEEE Trans. Mag­
netics, vol. MAG-13, pp. 1202-1204.

JAYANT, N. S., AND NOLL. P. (1984), Digital Coding ofWaveforms, Prentice-Hall, Englewood Cliffs,
N.J.

JELINEK, F. (1969), "Fast Sequential Decoding Algorithm Using a Stack," IBM 1 Res. Dev., vol. 13,
pp.675-685,NovembeL

JONES, A. E., WILKINSON, T. A., AND BARTON, S. K. (1994), '{Block Coding Schemes for
Reduction of Peak-to-Mean Envelope Power Ratio of Multicarrier Transmission Systems," Elect.
Lett., vol. 30, pp. 2098-2099, December.

KAILATH, T. (1960), "Correlation Detection ofSignals Perturbed by a Random Channel," IRE Trans.
Inform. Theory, vol. IT-6, pp. 361-366, June.

KAlLATH, T. (1961), "Channel Characterization: Time-Variant Dispersive Channels," in Lectures on
Communication Theory, Chapter 6, E. Baghdadi (Ed.), McGraw-Hill, New York.

K.ARABED, R., AND SIEGEL, P. H. (1991), "Matched-Spectral Null Codes for Partial-Response
Channels,"IEEE Trans. Inform. Theory, vol. IT-37, pp. 818-855, May.

KASAMI, T. (1966), "Weight Distribution Formula for Some Class of Cyclic Codes," Coordinated
Science Laboratory, University of Illinois, Urbana, Ill., Tech. Report No. R-285, April.

KOTELNIKOV, V. A. (1947), "The Theory of Optimum Noise Immunity," Ph.D. Dissertation, Molo­
tov Energy Institute, Moscow. Translated by R. A. Silverman, McGraw-Hill, New York, 1959.

KRETZMER, E. R. (1966), "Generalization of a Technique for Binary Data Communication," IEEE
Trans.Commun. Tech., vol. COM-14, pp. 67-68, February.

LARSON, K. J. (1973), "Short Convolutional Codes with Maximal Free Distancefor Rates 1/2, 1/3,
1/4," IEEE Trans. Inform Theory, vol. IT-19, pp. 371-372, May.

LENDER, A. (1963), "The Duobinary Technique for High Speed Data Transmission," AlEE Trans.
Commun. Elect., vol. 82, pp. 214-218.

LEON-GARCIA, A. (1994), Probability and Random Processesfor Electrical Engineering, 2nd Ed.,
Addison-Wesley, Reading Mass.

LIN, S., AND COSTELLO, D. J., Jr. (1983), Error Control Coding: Fundamentals and Applications,
Prentice-Hall; Englewood Cliffs, N.J.

LINDE, J., BUZO, A., AND GRAY, R. M. (1980), "An Algorithm for Vector Quantizer Design," IEEE
Trans. Commun., vol. COM-28, pp. 84-95, January.

LINDSEY, W. C. (1964), "Error Probabilities for Ricean Fading Multichannel Reception of Binary
and N-ary Signals," IEEE Trans. Inform. Theory, vol. IT-10, pp. 339-350, October.

LINDSEY, W. C. (1972), Synchronization Systems in Communications, Prentice-Hall, Englewood
Cliffs, N.J.

LINDSEY, W. c., AND CRIE, C. M. (1981), "A Survey ofDigital Phase-Locked Loops," Proc. IEEE,
vol. 69, pp. 410-432.

LINDSEY, W. c., AND SIMON, M. K. (1973), Telecommunication Systems Engineering, Prentice­
Hall, Englewood Cliffs, N.J.

LLOYD, S. P. (1957), "Least Square Quantization in PCM," Reprinted in IEEE Trans. Inform. Theory,
vol. IT-28, pp. 129-137, March 1982.

-LUCKY, R. W. (1965), "Automatic Equalization for Digital Communication," Bell Sys. Tech. J., vol.
45, pp. 255-286, April.

LUCKY, R. W. (1966), "Techniques for Adaptive Equalization for Digital Communication," Bell Sys.
Tech. J., vol. 45, pp. 255-286.

LUCKY, R. w., SALZ, l, AND WELDON, E. J., Jr. (1968), Principles of Data Communication,
McGraw-Hill, New York.

LYON, D. 1. (1975a), ''Timing Recovery in Synchronous Equalized Data Communication," IEEE
Trans. Commun., vol. COM-23, pp. 269-274, February.

LYON,D. L. (1975b), "Envelope-Derived Timing Recovery in QAM and SQAM Systems," IEEE
Trans. Commun., vol. COM-23, pp. 1327-1331, November.

MAcWILLIAMS, F. J., AND SLOANE, J. J. (1977), The Theory of Error Correcting Codes, North
Holland, New York.

MARKEL, J. D., AND GRAY, A. H., Jr. (1976), Linear Prediction of Speech, Springer-Verlag,
New York.

MASSEY, J. 1. (1963), Threshold Decoding, MIT Press, Cambridge, Mass.



790 References References 791

MAX, J. (1960), "Quantizing for Minimum Distortion," IRE Trans. Inform. Theory, vol. IT-6,
pp. 7-12, March.

McMAHON, M. A. (1984), The Making of a Profession-A Century of Electrical Engineering in .
America, IEEE Press.

MENGALI, U., AND D'ANDREA, A. N. (1997), Synchronization Techniques for Digital Receivers,
Plenum Press, New York.

MEYR, H., AND ASCHEID, G. (1990), Synchronization i~ Digital Communication, Wiley­
Interscience, New York.

MILLMAN, S., Ed. (1984), it History of Engineering and Science in the Bell Syst~m­
Communications Sciences (1925-1980), AT&T Bell Laboratories.

MUELLER, K. H., AND MULLER, M. S. (1976), "Timing Recovery in Digital Synchronous Data
Receivers," IEEE Trans. Commun., vol. COM-24, pp. 516-531, May.

NELSON, R. (1995), Probability, Stochastic Processes and Queueing Theory: The Mathematics of
Computer Modeling, Springer Verlag.

NORTH, D. O. (1943), "An Analysis of the Factors Which Detennine SignallNoise Discrimination
in Pulse-~arrierSystems," RCA Tech. Report No.6, PTR-6C.

NYQillST, H. (1924), "Certain Factors Affecting Telegraph Speed," Bell Sys. Tech. J., vol. 3,
p.324.

NYQillST, H. (1928), "Certain Topics in Telegraph Transmission Theory," AlEE Trans., vol. 47,
pp.617-644.

ODENWALDER, J. P. (1970), "Optimal Decoding ofConvolutional Codes," Ph.D. Dissertation, Dept.
of Systems Sciences, UCLA, Los Angeles.

OLSEN, J. D. (1977), "Nonlinear Binary Sequences with Asymptotically Optimum Periodic Cross
. Correlation," Ph.D. Dissertation, University of -Southern California, Los Angeles.

OMURA, J. (1971), "Optimal Receiver Design for Convolutional Codes and Channels with Memory
via Control Theoretical Concepts," Inform. Sci.., vol. 3, pp. 243-266.

OPPENHEIM, A. v., WILLSKY, A. S., AND YOUNG, 1. T. (1983), Signals and Systems, Prentice­
Hall, Englewood Cliffs, N.J.

PAPOULIS, A. (1962), The Fourier Integral and Its Applications, McGraw-Hill, New Y~rk.

PAPOULIS, A. (1991), Probability, Random Variables, and Stochastic Processes, 3rd Ed., McGraw­
Hill, New York.

PETERSON, W. W., AND WELDON, E. J., Jr. (1972), Error Correcting Codes, 2nd Ed., MIT Press,
Cambridge, Mass.

PETERSON, R. L., ZIEMER, R. E., AND BORTH, D. E. (1995), Introduction to Spread Spectrum
Communications, Prentice-Hall, Englewood Cliffs NJ.

PICKHOLTZ, R. L., SCHILLING, D. L., AND MILSTEIN, L. B. (1982), "Theory of Spread Spectrum
Comrnunications-A Tutorial," IEEE Trans. Commun., vol. COM-30; pp. 855-884, May.

PIERCE, J. N. (1958), ''Theoretical Diversity Improvement in Frequency Shift Keying," Proc. IRE,
vol. 46,pp. 903-910, May.

PIERCE, J. N., AND STEIN, S. (1960), "Multiple Diversity with Non-Independent Fading," Proc.
IRE, vol. 48, pp. 89-104, January.

POPOVIC, B. M. (1991), "Synthesis of Power Efficient Mnltitone Signals with Flat Amplitude
Spectrum," IEEE Trans. Commun.. vol. 39, pp. 1031-1033, July.

PRICE, R. (1954), ''The Detection of Signals Perturbed by Scatter and Noise," IRE Trans. Inform.
Theory, vol. PGIT-4, pp. 163-170, September.

PRICE, R. (1956), "Optimum Detection of Random Signals in Noise with Application to Scatter
Mu1tipath Communication," IRE Trans. Inform. Theory, vol. IT-2, pp. 125-135, December.

PRICE, R. (1962a), "Error Probabilities for Adaptive Multichannel Reception of Binary Signals,"
MIT Lincoln Laboratory, Lexington, Mass., Tech. RepOli No. 258, July.

PRICE, R. (1962b), "Error Probabilities for Adaptive Multichannel Reception of Binary Signals,"
IRE Trans. Infonn. Theory, vol. IT-8, pp. 308-316, September.

PRICE, R., AND GREEN, P. E., Jr. (1958), ''A Communication Technique for Multipath Channels,"
Proc. IRE, vol. 46, pp. 555-570, March.

PRICE, R., AND GREEN, P. E., Jr. (1960), "Signal Processing in Radio Astronomy-'-Communication
via Fluctuating Multipath Media," MIT Lincoln Laboratory, Lexington, Mass., Tech. Report
No. 2334, October.

PROAKIS, J. G. (2001), Digital Communications, 4th Ed., McGraw-Hill, New York.

RABINER, L. R., AND SCHAFER, R. W. (1978), Digital Processing ofSpeech Signals, Prentice-Hall,
Englewood Cliffs, N.J.

REED, 1. S., AND SOLOMON, G. (1960), "Polynomial Codes over Certain Finite Fields," SIAM 1.,
vol. 8, pp. 300-304, June.

RYDER, J. D., AND FINK, D. G. (1984), Engineers and Electronics,IEEE Press.

SAKRlSON, D. J. (1968), Communication Theory: Transmission ofWaveforms and Digitaiinforma­
tion, New York, Wiley.

SALTZBERG, B. R. (1967), ''Performance of an Efficient Data Transmission System," IEEE Trans.
Commun., vol. COM-IS, pp. 805-811, December.

SARWATE, D. V., AND PURSLEY, M. B. (1980), "Crosscorrelation Properties of Pseudorandom and
Related Sequences," Proc. IEEE, vol. 68, pp. 2399-2419, September.

SCHOLTZ, R. A. (1977), "The Spread SpectnuiJ, Concept:' IEEE Trans. Commun., vol. COM-25,
pp. 748-755, August.

SCHOLTZ, R. A. (1979), "Optimal CDMA Codes," 1979 National Telecommunications Con! Record,
Washington, D.C., pp. 54.2.1-54.2.4, November.

SCHOLTZ, R. A. (1982), "The Origins of Spread Spectrum,': IEEE Trans. Commun., vol. COM-30,
pp. 822-854,Ma~

SCHOUHAMER IMMlNK, K. A. (1991), Coding Techniques for Digital Recorders, Prentice-Hall,
Englewood-Cliffs, N.J.

SCHWARTZ, M., BENNETT, W. R., AND STEIN, S. (1966), Communication Systems and Techniques,
McGraw-Hill, New York.

SHANMUGAM, K. S. (1979), Digital and Analog Communication Systems, Wiley, New York.

SHANNON, C. E. (1948a), "A Mathematical Theory of Conununication," Bell Sys. Tech. J., vol. 27,
pp. 379-423, July. .

SHANNON, C. E. (1948b), "A Mathematical Theory of Conununication," Bell Sys. Tech. 1., vol. 27,
pp. 623--656, October.

SIMON, M. K., OMURA, J. K., SCHOLTZ, R. A., AND LEVITT, B. K. (1985), Spread Spectrum
Communications vol. I, II, III, Computer Science Press, Rockville, Md.

" ~-- ._...-._----_._--_.---~



792
References References 793

SMITH, J. W. (1965), "The Joint Optimization of Transmitted Signal and Receiving Filter for Data
Transmission Systems," Bell Sys. Tech. J., vol. 44, pp. 1921-1942, December.

STAR~, H., AND WOODS, !. W. (1994), Probability, Random Processes and Estimation Theory for
Engzneers, 2nd Ed., Prentlce-Hall, Upper Saddle River, N.1.

STENBIT, 1. P. (1964), "Table of Generators for BCH Codes," IEEE Trans. Inform. Theory, vol. IT- ro,
pp. 390-391, October.

STIFFLER, J. 1. (1971), Theory of Synchronous Communications, Prentice-Hall, EngleWood
Cliffs, N.J.

STREMLER, F. G. (1990), Introduction to Communication Systems, 3rd Ed., Addison-Wesley
Reading,Mass.. . '

SUNDBERG, C. W. (1986), "Continuous Phase Modulation," IEEE Commun. Mag., vol. 24,
pp. 25-38, April. .

TANG, D. L., AND BARL, L. R. (1970), "Block Codes for a Class ofConstrained Noiseless Channels"
Infonn. Control, vol. 17, pp. 436-461. '

TAROKH, v., ~ESHADRl, N.,. AND CALDERBANK., A. R. (1998), "Space-Time Codes for High
Data Rate Wrreless CommUillcatlons: Performance Analysis and Code Construction," IEEE Trans.
Infonn. Theory, vol. 44, pp. 744-765, March. .

TAROKH, V, JAFARKHANI, H., AND CALDERBANK, A. R. (1999), "Space-Time Block Codes
from Orthogonal Designs," IEEE Trans. Inform. Theory, vol. IT-45, pp. 1456-1467, July.

TAROKH, v., AND JAFARKHANI, H. (2000), "On the Computation and Reduction of the Peak-to­
Average Power Ratio in Multicarrier Communications," IEEE Trans. Commun., vol. 48, pp. 37-44,
January.

TAUB, H., AND SCHILLING, D. L. (1986), Principles ofCommimication Systems, 2nd Ed., McGraw-
Hill, New York. ..

TELLADO, J., AND CIOFFI, J. M. (1998), "Efficient Algorithms for Reducing PAR in Multicarrier
Systems," Proc. 1998 IEEE Int. Symp. Inform. Theory, p. 191, August 16-21, Cambridge, Mass.
Also in Proc. 1998 Globecom, Nov. 8-12, Sydney, Australia.

TUFTS, D. W. (1965), "Nyquist's Problem-The Joint Optimization of Transmitter and Receiver in
Pulse Amplitude Modulation," Proc. IEEE, vol. 53, pp. 248-259, March.

TURIN, G. L. (1961), "On Optimal Diversity Reception," IRE Trans. Inform. Theory, vol. IT-7,
pp. 154-166, March. .

TURIN, G. L. (1962), "On Optimal Diversity Reception n," IRE Trans. Commun. Sys., vol. CS-12,
pp. 22-31, March.

UNGERBOECK, G. (1974), ''Adaptive Maximum Likelihood Receiver for Carrier Modulated Data
Transmission Systems," IEEE Trans. Commun., voL COM-22, pp. 624-636, May.

UNGERBOECK, G. (1982), "Channel Coding with MultilevellPhase Signals," IEEE Trans. Inform.
Theory, vol. IT-28, pp. 55-67, January.

VITERBI, A. J. (1966), Principles ofCoherent Communication, McGraw-Hill, New York.

VITERBI, A. 1. (1967), "Error Bounds for Convolutional Codes and an Asymptotically Optimum
Decoding Algorithm," IEEE Trans. Infonn. Theory, vol. IT-13, pp. 260-269, April.

VITERBI, A. J. (1979), "Spread Spectrum Communication-Myths and Realities," IEEE Commun.
Mag., vol. 17, pp. 11-18, May.

VITERB1, A. J. (1985), ''When Not to Spread Spectrum-A Sequel," IEEE Commun. Mag., vol. 23,
pp. 12-17, April.

VITERBI, A. J., AND JACOBS,!. M. (1975), "Advances in Coding and Modulation for Noncoherent
Channels Affected by Fading, Partial Band, and Multiple-Access Interference," in Advances in
Communication Systems, vol. 4, A. J. Viterbi, (Ed.), Academic, New York.

WEI, L. F. (1984), "Rotationally Invariant Convolutional Channel Coding with Expanded Signal
Space. Part I: 1800

, Part II: Nonlinear Codes," IEEE J. Selected Areas Commun.., vol. SAC-2,
pp. 659-687. September.

WEINSTEIN, SW. B., AND EBERT, P. M. (1971), "Data Transmission by Frequency Division Multi­
.plexing Using the Discrete Fourier Transform," IEEE Trans. Commun., vol. COM-19, pp. 628-634,
October.

WIDROW, B. (1966), ''Adaptive Filters; I: Fundamentals," Tech. Report No. 6764-6, Stanford Elec­
trouic Laboratories, Stanford Uuiversity, Stanford, Calif., December.

WIENER, N. (1949), The Extrapolation, Interpolation, and Smoothing ofStationary Time-Series with
Engineering Applications, Wiley, New York. (The original work appeared in an MIT Radiation
Laboratory Report, 1942).

WILKINSON, T. A., AND JONES, A. E. (1995), "Minimization of the Peale-to-Mean Envelope Power
Ratio of Multicarrier Transmission Systems by Block Coding," Proc. IEEE Vehicular Tech. Con!,
pp. 825-829, July.

WONG, E., AND HAJEK, B. (1985), Stochastic Processes in Engineering Systems. Springer-Verlag,
New York.

WOZENCRAFT, J. M. (1957), "Sequential Decoding for Reliable Commuuication," IRE Nat!. Conv.
Rec., vol. 5, pI. 2, pp. 11-25.

WOZENCRAFT, J. M., AND JACOBS, 1. M. (1965), Principles of Communication Engineen"ng,
Wiley, New York.

WOZENCRAFT, J. M., AND REIFFEN, B. (1961), Sequential Decoding, MIT Press, Cambridge,
Mass.

WULICH, D. (1996), "Reduction of Peale-to-Mean Ratio of Multicarrier Modulation Using Cyclic
Coding," Elect. Lett., vol. 32, pp. 432-433, February.

ZIEMER, R. E., AND PETERSON, R. L. (1985), Digital Communications and Spread Spectrum
Systems, Macmillan,. New York.

ZIEMER, R. E., AND TRANTER, W. H. (1990), Principles ofCommunications: Systems, Modulation,
and Noise, Houghton Mifflin, Boston. .

ZIGANGIROV, K. S. (1966), "Some Sequential Decoding Procednres," Problemy Peredachi In/or­
matsii, vol. 2, pp. 13-25.

ZIV, J., AND LEMPEL, A. (1977), "A Uuiversal Algorithm forSequential Data Compression;" IEEE
Trans. Inform. Theory, vol-IT23, pp. 337-343.

ZIV, 1., AND LEMPEL, A. (1978), "Compression of Individual Sequences via Variable Rate Coding,"
IEEE Trans. Inform. Theory, vol. IT-24, pp. 530-536.



A posteriori probability, 383
A priori probability, 383
Additive white Gaussian noise

channel (AWGN) capacity,
583-585

Aliasing distortion, 47
AM, 3, 5,71-96,217-225

conventional (see
conventional AM)

demodulators, 93-94
double-sideband (see DSB-SC)
modulators, 88-92
modulators, balanced, 91
modulators, power law, 88-89
modulators, ring, 91-92
modulators, switching, 89-90
radio broadcasting, 115-116
single-sideband (see SSB)
vestigialcsideband (see VSB)

AMI code, 568-569
Amplitude modulation (AM)

(see AM)
Amplitude shift keying (ASK), 349
Analog modulation, 70--143,

217-266
Analog-modulation systems,

comparison, 251-252
Analytic signal, 151
Angle modulation, 96-115, 234-251

balanced discriminator, 1l0,
112,117
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indirect method; 108-110
low-index, 100
modulators and demodulators,

107-115
narrowband, 100
by a periodic message, 105

Antenna, 14
effective area, 439
effective isotropically radiated

power (EIRP), 439
gain, 438
illumination efficiency factor, 440

ASK, 349
Autocorrelation function, 41,165

properties, 168
of random processes, 165
time-average, 42

Automatic volume control
(AVC), 116

Balanced discriminator, 110,
112,117

Balanced modulator, 91
Bandlimited channels, 474-482

signal design for, 490
Bandlimited processes, 192
Bandpass-lowpass translation

table, 56
Bandpass processes, 194-201

in-phase component, 195
quadrature component, 195

Bandpass signals, 49-57,
347-349

analytic signal, 151
envelope, 53
in-phase component, 52
lowpass representation, 52
phase, 53
quadrature component, 52
transmission through

bandpass systems,
55-57

Bandwidth
conventional AM, 79
DSB-SC, 72-74
PM, 101-105
PCM,304
SSB,82-84
VSB,86-87

Bayes rule, 146
BCH codes, 620-623
BCJR algorithm, 642
Bessel function, 101,231,402
Binary antipodal signaling, 345

error probability, 405
optimal receiver, 385

Binary-coded signals, 367
Binary entropy function, 271
Binary equiprobable signaling, error

probability, 406
Binary orthogonal signaling, error

probability, 407

Index

Binary-symmetric channel
(BSC),577

crossover probability, 577
Biorthogonal signaling, 353, 365

error probability, 428
Black-and-white TV, 120--123
Boltzmann's constant, 189,253
Broadcasting

AM,115-116
PM,116-119
TV, 120--128

Burst error correcting codes, 614

CAP, 574
Capacity

of AWGN channel, 583-585
of channels, 579, 581
ofDMC, 582
of ruulength-Iimited codes, 512

Carrier-amplitude modulation, 347
carrier-phase recovery, 387
demodulation and detection, 386
optimum detector, 388

Carrier demodulation, 7
Carrier-phase modulation, 354

carrier-phase estimation, 390
demodulation and detection, 388
differential phase modulation and

demodulation, 394·
Carrier-phase recovery

for carrier-amplitude
modulation, 387

for·carrier-phase modulation, 388
forQAM,397

Carriedess
amplitude or phase modulation

(CAP), 574
PSK, 573
QAM,573

Carson's rule, 107
Catastrophic convolutional

codes, 628
Cauchy-Schwartz inequality, 60,

155, 169, 378
CDF,147
CDMA, 744,753,754,758,769-774
CELP,770
Central limit theorem, 159
Channel, 7
Channel encoder, 8
Channel equalization

(see equalization)
Channel

additive noise, 19-20
AWGN, 340, 578
bandiimited, 474-482
band1imited bandpass, 480
binary symmetric (ESC), 577

capacity, 11, 579, 581
characterization, 12
discrete memory1ess (DMC), 577
fading multipath, 674-703
fiber optic, 14
linear filter, 20--21
linear time-variant filter, 21-22
mathematical model, 19-22
modeling, 576
Rayleigh fading, 681
reliability function, 595
Ricean fading, 681
storage, 19,508-515
underwater acoustic, 17-19
wireless, 14-17
wireline,12-l4

Chebychev inequality, 204
Chip, 734
Chip interval, 734
Chip rate, 734
Chrominance signal, 125
Code

AMI, 568-569
BCH, 620--623
burst error correcting, 614
concatenated, 623, 640
Convolutional (see Convolutional

codes)
cyclic (see Cyclic codes)
dual, 604
eight-to-fourteen modulation

(EFM),520
fixed-to-variable length, 276-179
Hamming, 605
linear block, 601--623
Miller, 515
Morse, 2
prefix, 277
product, 639
Reed-Solomon, 620--623, 640,

659--661
runlength-limited,510-515
space-time, 700--703
Turbo, 640--646
Uniquely decodable, 277

Code division multiple access
(CDMA), 744, 753, 754, 758,
769-774

Code excited linear prediction
(CELP),770

Coding
bandwidth expansion ratio, 600
block, 600
for compact discs, 520--521,

658--661
convolutional, 600, 623--638
for deep-space

communication, 656

795

forrellable transmission, 591
for telephone-line modems, 657

Coding forreliable
communication, 591

Coding gain, 600
.for TCM, 654

Coding rate, 598
Coherence bandwidth, 683
Coherence time, 683
Coherent demodulator, 219
Coherer,3
Color TV; 125-128
Compact disc (CD), 319-323

coding for, 520--521, 658-<561
Compander

A-Jaw, 305
jk-law,304
optimal, 305

Companding, 304
Comparison

of analog modulation systems, ,
251-252

of digital modulation systems,
432-436

Concatenated codes, 623, 640
Conditional PDF, 155
Conditional probability, 146
Continuous-phase FSK (see CPFSK)
Continuous-phase modulation

(see CPM)
Controlled lSI, 497

symbol-by-symbol detection, 501
Conventional AM, 78-81, 221-226

bandwidth, 79
demodulation, 81, 92-93
effect of noise, 221-226
modulation index, 79

.power content, 80
SNR,222
threshold effect, 223

Convolutional codes, 623-638
catastrophic, 628
decoding, 629--634
encoding, 625
error probability bound, 634--637
Fano algorithm, 634
feedback decoding, 634
first error event, 635
free distance, 627
generator sequences, 624
majority logic decoding, 634
recursive systematic, 641
sequential decoding, 634
stack algorithm, 634
state transition diagram, 624
transfer function, 626
trellis diagram, 625
Viterbi algorithm, 629--634
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Convolutional codes (continued) coherent, 219 DPSK,395 noncoherent PSK, 430-432 modulation by indirect method, Full-response CPM, 712with good distance conventional AM, 81, 92-93 error probability, 417-418 PAM with zero lSI, 500 108-110 Fundamental frequency, 25properties, 637 DSB-SC, 76-78, 93 DSB, SNR, 220 PCM,726-728 modulation index, 99Correlation coefficient, 155 FSK, 398 DSB-SC, 71-78, 218-220, 347 phase-coherent PSK, 413-417 nalTowband, 100 Gaussian processes, 186-188Correlation metrics, 384 PCM signals, 720-726 bandwidth, 72-74 QAM.418-423 pre-emphasis and de-emphasis Gaussian random variable, 149Correlation-type demodulator, 370 QAM signals, 396 demodulation, 76-78, 93 simplex signaling. 429-430 filtering, 248-251 Generator matrixCoset, 609 SSB, 84--85, 93 effect of noise, 218-220 spread-spectrum DS radio broadcasting, 116-119 for cyclic codes, 618Coset leader, 609 synchronous, 219 power content, 74--76 systems, 735 representation, 97-100 for linear block codes, 603Costas loop, 233 VSB,94 Dual code, 604 symbol-by-symbol detection in SNR, 243 Generator polynomial for cyclicCovariance, 155 Demodulation gain, 263 Duobinary signaling, 497, 502-503 partial response threshold effect, 244--247 codes, 616CPFSK, 703-711 Detection detection, 526 signaling, 504 threshold extension, 247 GMSK, 712, 714, 769. modulation index, 704 carrier-amplitude modulation, error probability, 528'-530 union bound, 426 PM stereo, 118-119 Gold sequences, 750peak-frequency deviation, 704 386 Euclidean distance Fourier series, 24--31 . Gram-Schmidt procedure, 341phase tree, 706 carrier-phase modulation, 388 Early-late gate, 443 metric, 523 Fourier series, theorem, 25 Granular noise, 310phase trellis, 706 duobinary signaling, 526 Effective noise temperature, 255 minimum, 599 Fourier series, trigonometric form, Group delay, 68state diagram, 707 PCM signals, 720-726 EFM code, 520, 658, 660 Event, 145 29-31 GS¥,766-769CPM,711-729 QAM signals, 396 ElRP,439 Excess bandwidth, 495 Fourier transform, 31-40 Guard band, 48demodulation and detection, Deviation constant, PM, 97 Encoding Eye pattern, 490-491 autocolTelation property, 37720-726 DFPLL, 392, 397, 398 convolutional codes, 625
convolution, 37 Hadamard sequences, 360, 463, 771full response, 712 DFr, 558-560 cyclic codes, 619 Fading channels differentiation property, 37 HammingMAP demodulation, 725 Differential encoding, 516 differential, 516 Doppler frequency spread, 678 duality, 36 code, 605partial response, 712 Differential peM, 307 Energy-spectral density, 42 Doppler shift, 675 integration property, 38 distance, 602performance in AWGN Differential PSK (DPSK), 395 Energy-type signals, 41-42 Fading multipath channels, 674--703 inverse, 32 distortion, 286channels, 726 Digital audio recording, 319 Entropy, 270 channel model, 676 linearity, 36 weight, 602performance in Rayleigh fading Digital audio telephony, 317 conditional, 272 coherence bandwidth, 683 modulation property, 37 Hard-decision decoding, 608--612channels, 728 Digital cellular communication joint, 271 coherence time, 683 moments property, 38 Harmonics, 25spectral characteristics, 715-720 systems, 766-774 Entropy rate, 273 equal gain combining, 691 Parseval's theorem, 37 Hilbert transfonn, 51-52, 82-84, 106Cross-correlation function, 174 GSM,766-769 Envelope frequency nonselective, 683 for periodic signals, 39-40 Huffman coding, 276Cross-spectral density, 184 IS-95, 769-774 of bandpass signals, 53 frequency selective, 683 properties, 36-38Crossover probability, 577 Digital demodulator, 9 delay, 68 maximum ratio combining, 691 Rayleigh's theorem, 37 IDFr, 558-560,575Cumulative distribution function Digital modulation systems, detector, 81, 92-93, 403 multipath spread, 678 for real signals. 35 IF,115-116(CDF),147 comparison, 432-436 Equal gain combining, 691 overspread, 683 scaling, 37 Image frequency, 116Cyclic codes, 615-<i23 Digital modulator, 8 Equalization, 538-556 performance in frequency table, 38 Information source,encoding, 619 Discrete cosine transform adaptive, 540, 546-556 nonselective, 686 theorem, 32 cliscrete-memoryless,269generator matrix, 618 (DCT),323 decision-feedback (DFE), RAKE demodulation, 694, time shift, 37 Informationgenerator polynomial, 616 Discrete Fourier transform 550-555 772,774 Free distance of convolutional sources, 268Cyclostationary processes, 167,484 (DFT), 558-560 fractionally spaced, 543 Rayleigh fading, 681 codes, 627 theory, 11Discrete-memoryless channel linear, 540--550 Ricean fading, 681 Free-space path loss, 257 Innovation process, 313Data compression, 8, 274 (DMC),577 MMSE, 544--546 signal design, 684 Frequency-division multiplexing In-phase component of bandpasslossy, 282 capacity, 582 preset, 540 spread factor, 683 (FDM),94 signals, 52DCT,323 Discrete-memoryless source symbol-spaced, 542 square-law combining, 694 Frequency hopping (FH), 752-758 In-phase process, 195Decoding (DMS),269 zero forcing. 541, 543-544 tapped delay line model, 678 fast, 753, 756-758 Interleavers, 614, 641convolutional codes, 629-<i34 Discrete-multitone modulation Equalizers (see equalization) underspread, 683 slow, 753-756 Intermediate frequency (IF), 115-116hard-decision, 608-<i 12 (DMT),560 Equivalent discrete-time channel Fast Fourier transform (FFT), 557 Frequency modulation (PM) (see PM Intersymbol interference (lSI),soft-decision, 606--608 Distortion model,539 FCC, 4, 5,129 and angle modulation) 480-482, 490-507. 538-555Deep-space communication, coding amplitude, 534 Ergodic processes. 160 FDM, 94, 556 Frequency nonselective fading Ionospheric propagation. 674for, 656 delay, 534 Error probability FFr,557 multipath channels, 683 IS-95,769-774Delay-locked loop (DLL), 762 phase, 534 bandpass PAM, 411-413 First-error-event,635 Frequency selective fading lSI, 480-482, 490-507, 538-555Delay modulation, 519 slope overload, 311 binary antipoda~ 405 Fixed-to-variable length channels, 683 controlled, 497Delta modulation, 310 squared-error, 286 binary equlprobable, 406 codes, 276-279 Frequency-shift keying (see FSK)adaptive, 311 Distortion-rate function, 289 binary orthogonal, 407 FM, 4, 5, 96-115, 234-251, 591 Fries formula, 256 Jointly Gaussian randomgranular noise, 310 DLL,762 convolutional codes, 634-637 bandwidth, 101-105 FSK,363 variables, 158slope overload distortion, 311 DMS,269 DPSK,417-418 demodulation by balanced demodulation and detection, 398 JPEG image coding, 323-327Demodulation DMT,560 duobinary signaling, 528-530 discriminator, 110, 112, 117 error probability in noncoherentAM, 93-94 Doppler frequency spread, 678 M-ary biorthogonal, 428 demodulation with feedback. detection, 430-432 Kasami sequences, 751carrier-amplirnde Doppler shift, 675, 775 M -ary orthogonal, 423-426 111,113 noncoherent detection, 399modulation, 386 Double-sideband suppressed carrier M-ary PAM, 408-411 deviation constant, 97 optimum detector, 401 Law of large numbers, 159carrier-phase modulation, 388 modulation (see DSB-SC) MLSD, 528-530 effect of noise, 234--251 orthogonality condition, 364 Lempel-Ziv algorithm. 280

. _._--~~._------.-------' -



798 Index Index 799

cross-spectral density, 184
cyclostationary, 167,484
discrete time, 161
ergodicity, 169
frequency-domain analysis,

177-186
Gaussian, 186-188
jointly wide-sense stationary, 174
mean, 165
power and energy, 171
power-spectral density, 177
sample function, 160
sampling theorem, 192-194
stationarity, 166
statistical description, 162
strictly stationary, 167
through linear systems, 174,183
white, 188
wide-sense stationary (WSS), 167

Random variables, 147
Bernoulli,149
binomial, 149
CDF,147
characteristic function, 154
continuous, 147
discrete, 147
functions of, 153, 156
Gaussian, 149
jointly Gaussian, 158
mean, 153
PDF, 147
Poisson, 204
Rayleigh, 158,205
Ricean, 208
uniform, 149
variance, 154

Rate-distortion
function, 285, 589
theorem, 287

Rayleigh fading, 681
Rayleigh random variable, 158,205
Rayleigh's relation, 44
Rayleigh's theorem, Fourier

transform, 37
RDS,521
Reactance tube, 108
Rectangnlar pulse, 27, 34
Recursive systematic convolutional

codes, 641
Reed-Solomon codes, 620-623, 640,

659-661
Reliability function, 595
Reliable transmission, 581
Repeaters

analog, 258
digital, 437

Ricean fading, 681
Ricean random variable, 208

Raised cosine pulse shape, 495
rollofffactor, 495

RAKE demodulation, 694,772,774
Random experimen~ 145
Random processes, 159-201

autocorrelation function, 165
bandlimited, 192
bandpass, 194-201
continuous time, 161
cross-correlation function, 174

Prohability mass function
(PMF),148

Probability measure, 145
Probability space, 145
Product codes, 639
Propagation

ground wave, 15-16
ionospheric, 674
line of sight (LOS), 14, 17, 675
sky wave, 16

Pseudonoise sequences (PN), 729,
748-752

PSK,355
carrierless, 573
constellation, 356
differential, 395
error probability, 413-417

Pulse amplituoe modulation
(PAM), 345

Pulse-code modulation (see PCM)

Q-function, 151
bounds, 151, 206
table, 152

QAM,357
block diagram, 358
carrier-phase estimation, 397
carriedess, 573
constellation, 359
demodulation and detection, 396
error probability, 418-432
power-spectral density, 488

QPSK,355
Quadrature amplitude modulation

(see QAM)
Quadrature component of bandpass

signals, 52
Quadrature filter, 52
Quadrature phase shift keying

(QPSK),355
Quadrature process, 195
.Quantization, 290

noise, 294
nonuniform, 297
scalar, 291
uniform, 294
vector, 300

effect of transmission errors,
590-591

nonuniform, 304
SQNR,303
uniform, 302

PDF, 147
conditional, 155

Peak-frequency deviation in
CPFSK, 704

Peak-to-average power ratio
(PAR), 557, 685

Phase delay, 68
Phase-locked loop (see PLL)
Phase modulation (PM) (see angle

modulation and FM)
Phase of bandpass signals, 53
Phase-shift keying (see PSK)
Phase tree in CPFSK, 706
Phase trellis in CPFSK, 706
Planck's Constant, 189,253
PLL, 1!l, 113-115, 225-234, 388

decision feedback (DFPLL), 392,
397,398

effect of noise, 229-231
linear model, 227
squaring loop, 231

PM, SNR, 243
PMF,148
PN sequences, 729, 748-752
Poisson random variable, 204
Poisson's sum formula, 63,450
Posterior probability, 382
Power

in conventional AM, 80
in DSB-SC, 74-76

Power and energy, 40-44
Power-law modulator, 88-89
Power-spectral density, 42

digitally modulated signals,
482-490

digitally modulated signals with
memory, 530-534

NRZI signaling, 531-533
QAM,488
for random processes,

177-182
Power spectrum, 42
Power-type signalS, 41-44
Precoding, 50I, 516
Pre-emphasis and de-emphasis

filtering, 248-251
Prefix condition, 277
Probability

a posteriori, 383
a priori, 383

- conditional, 146
Probability density function

(pDF), 147

PAM
constellation, 349
error probability, 408-411
error probability with zero

lSI, 500
optimal transmitter and receiver

filters, 534-538
power-spectral density, 488
transmission through bandlimited

channels, 478
PAR, 557, 685
Parity cbeck matrix, for linear block

codes, 604
Parseval's relation

for Fourier Series, 59
for Fourier transform, 37

Parseval's theorem, Fourier
transform, 37

Partial response cbannels, MLSD;
525,528

Partial response CPM, 712
Partial response signaling, 497

probability of error in
symbol-by-symbol
detection, 504

symbol-by-symbol detection, 501
Path memory truncation, 525,

528,633
PCM,302

bandwidth, 304

OFDM, 55&-560, 685, 690
based on FFT, 557-560

Offset QPSK (OQPSK), 710
On-off signaling, 456
Optimum detector, 381

binary antipodal signaling, 385
for carrier-amplitude

modulation, 388
FSK, 401

Orthogonal signals, 352, 360
bound on the error probability,

592-595
Orthogonality condition, 214
Orthonormal basis, 342

Noise fignre, 256
Noisy channel coding

theorem, 579-581
Noncoherent detection, FSK, 399
NRZ signaling, 508, 516-518
NRZI signaling, 508-510, 516-525

power-spectral density, 531-533
NTSC, 120
Nyquist criterion for zero

ISI,492
Nyquist pulse shaping, 492
Nyquist rate, 10,48,494

Narrowband FM, 100
Narrowband signals (see bandpass

signals)
Noise

effect on conventional AM,
221-226

effect on DSB-SC, 218-220
effect on FM, 234-251
effect on SSB; 220-221
granular, 310

Noise-equivalent bandwidth, 190,
231,255

Levinson-Durbin algorithm, 315
Linear block codes, 601-623

BCH codes, 620-623
coset, 609
coset leader, 609
cyclic codes, 615-623
dual code; 604 .
error detection and

correction, 612
generator matrix, 603
hard-decision decoding, 608-612
parity check matrix, 604
Reed-Solomon codes, 620-623
soft-decision decoding, 606-608
standard array, 609
syndrome, 610
systematic, 604

Line-of-sight radio transmission
(LOS),675

Linear predictive coding (LPC), 312,
316,318

Link budget analysis, 438
Lloyd-Max conditions, 298
LMS algorithm, 548
Loop, Costas, 233
LOS, 675
Lossy data compression, 282
Low probability of being intercepted

(LPD,743
Lowpass representation of bandpass

signals, 52
LPC, 312, 316, 318
LPI,743
Luminance signal, 12

Gaussian (GMSK), 712, 714, 769
power-spectral density, 719

Mixers, 92
MLSD, 521-530, 540

error probability, 528-530
for partial response

signals, 525-528
path memory truncation, 525, 528

MLSR sequences, 748-752
Mobile cellular transmission, 675
Mobile radio channels, propagation

model,681 .
Mobile radio systems, 128-130

base station, 129
Mobile telephone switching office

(MTSO),129
Modems, coding for, 657
Modified dnobinary pulse, 498
Modulation

M-ary, 9
sigma-delta, 322
signals with memory, 508

Modulation codes, 507, 510-525
trellis, 515, 523-525

Modulation index
conventional AM, 79
CPFSK, 704
FM,99

Modulators, AM, 88-92
Monochromatic signal, 50
Morse code, 2
MTSO, 129
Multicarrier modulation, 55&-560
Multidimensional signal

waveforms, 360
M-ary modulation, 9 Multipath spread, 678
In-sequences, 748-752 Multiple antenna systems, 697-703
Magnetic recording, 508-515 Multiplexing, 94, 317
MAP decoding, BOR algorithm, 642 ,_. frequency-division (FDM),
MAP demodulation for CPM, 725 94, 556
Matched-filter, 375 Orthogonal frequency-division

frequency domain (OFDM), 55&-560
interpretation, 378 quadrature carrier, 95

output SNR, 378 time division (TDM), 318
properties, 376 Mutual information, 283

Maximum a posteriori (MAP)
algorithm, 642

criterion, 382
Maximum-length shift-register

sequences (MLSR),
748-752

Maximum-likelihood (ML)
criterion, 383

sequence detector (see MLSD)
Maximum ratio combining, 691
Miller Code, 515, 517-520
Minimum-shift keying (MSK),

708-711
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Ring modulator, 91-92
Rolloff factor, for raised cosine pulse

shape waveform, 495
Runlength-limited codes, 51D-515

capacity, 512
Running digital sum (RDS), 521

Sample space, 145
Sampling theorem, 10,45-49

for random processes, 192-194
SDM, 322
Self-information, 270
Sequences, 751

Gold, 750
Hadamard, 360, 463, 771
m, 729, 748-752
MLSR, 729, 748-752
PN, 729, 748-752

Set partitioning principle, 649
Shannon, C. E., 10-11,276,579
Sifting property, 34
Sigma-delta modulation (SDM), 322
Sigma field, 145
Signal design

for bandlimited channels, 490
for controlled lSI, 497
for fading multipath

channels, 684
for zero lSI, 492

signal-to-noise ratio (see SNR)
Signal to quantization noise ratio

(seeSQNR)
Signals

bandpass, 49-57, 347-349
binary-coded, 367
biorthogonal, 353, 365
energy-type, 41-42
monochromatic, 50
power-type, 41-44
two-dimensional,350-360

Signum signal, 38
Simplex signaling, 366

error probability, 429-430
Sine signal, 27, 34
Single-sideband modulation

(see SSB)
Sliding correlator, 759
Slope-overload distortion, 311
SNR

bandlimited AWGN channel, 476
baseband, 218
conventional AM, 222
DSB,220
PM, 243
PM,243
SSB,221
threshold, 244-245

Soft-decision decoding, 606-608

Soft output Viterbi algorithm
(SOVA),642

Source-coding theorem, 275
SOYA algorithm, 642
Space-time codes, 700-703
Spectrum

continnous, 31
discrete, 26

Spread factor, 683
Spread-spectrum systems, 729-766

direct-sequence CDS), 731-752
error probability for DS, 735
frequency-hopped (PH), 752-75&
interference margin, 742
pulsed interference, 746
synchronization, 758-766

SQNR
bounds on, 590
definition, 294
in nonuniform peM, 338
inPCM,303

Square-law combining, 691
Squared-error distortion, 286
SSB, 81-85, 220-221

bandwidth, 82-84
demodulation, 84-85, 93
effect of noise, 220-221
SNR,221

Staggered QPSK (SQPSK), 710
Standard array, 609
State diagram

convolutional codes, 624
CPFSK,707

Stationary processes, 166
cyc!ostationary, 167,484
strictly, 167
wide-sense (WSS), 167

Stirling's approximation, 580
Stochastic gradient algorithm, 548
Stochastic processes, 159-201
Subset decoding, 654
Sufficient statistics, 373
Superheterodyne receiver, 3,

115-116
image frequency, 116

Switching modulator, 89-90
Symbol-by-symbol detection in

controlled lSI systems, 501
Symbol synchronization, 442

for carrier-modulated signals, 451
early-late gate, 443
maximum-likelihood

method, 448
minimum mean-square-error

method,445
spectral line method, 449
for spread-spectrum systems,

758-766

Index

Synchronous demodulator, 219
Systematic linear block codes, 604

Tau-dither loop (TDL), 763
TCM,646-c655

coding gain, 654
decoding, 654
set partitioning, 649

TDL,763
TDM,318
Television broadcasting, 120-128
Thermal noise, 6, 12, 189,253-256
Threshold effec~ AM, 223

FM,243-244
Threshold extension in PM, 247
TIming recovery (see symbol

synchronization)
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Total probability theorem, 146
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for modulation codes, 515,
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error floor, 646
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Two-dimensional signals,
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Union bound on error
probability, 426

Uniquely decodable codes, 277
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Variance, 154
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Viterbi algorithm, 523-525, 554,
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path memory truncation, 525,
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demodulation, 94
fi.lter characteristics, 86

!
I

Index

Walsh-Hadamard sequences, 360,
463,771

Waveform coding, 302
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WSS,167
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