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The objective of this book is to provide an introduction to the basic principles in the
analysis and design of communication systems. It is primarily intended for use as a text
for a first course in communications, either at a senior level or at a first-year graduate
level. ’

s TR AL A R T AL

BROAD TOPICAL COVERAGE

: Although we have placed a very strong emphasis on digital communications, we have
P - provided a review of important mathematical foundational topics and a solid iniroduc-
tion to analog communications. The major topics covered are: -

; . * Areview of frequency domain analysis of signals and systems, and the charac-
: terization of random processes (Chapters 2 and 4)

i * An introduction to analog signal transmission and reception (Chapters 3 and 5)
‘ * An introduction to digital communications (Chapters 6-10)

EMPHASIS ON DIGITAL COMMUNICATIONS

Our motivation for emphasizing digital communications is due to the technolo gical
developments that have occurred during the past five decades. Today, digital communi-
cation systems are in common use and generally carry the bulk of our daily information
' transtnission through a variety of communications media, such as wireline telephone
channels, microwave radio, fiber optic channels, and satellite channels. We are currently
witnessing an explosive growth in the development of personal communication systems

xi




xii Preface

and vltrahigh speed communication networks, which are based on digital transmission
of the information, whether it is voice, still images, or video. We anticipate that, in the
near future, we will witness a replacement of the current analog AM and FM radio and
television broadcast by digital transmission systems. :

The development of sophisticated, high-speed digital communication systems
has been accelerated by concuirent developments in Inexpensive high speed integrated
circuits (IC) and programmable digital signal processing chips. The developments in
Microelectronic IC fabrication have made possible the implementation of high-speed,
high precision A/D converters, of powerful error-correcting coders/decoders, and of
complex digital modulation techniques. All of these technological developments point
to a continuation in the trend toward increased use of digital communications as a
means for transmitting-information.

OVERVIEW OF THE TEXT

It is assumed that students using this book have a basic understanding of linear system
theory, both continuous and discrete, including a working knowledge of Fourier series
and Fourier transform techniques. Chapter 2 provides a review of basic material on sig-
nals and systems and establishes the necessary notation used in subsequent chapters.
It is also assumed that students have had a first course in probability. Such courses are
currently required in many undergraduate electrical engineering and computer engi-
neering programs. Chapter 4 provides a review of probability and random processes to
the extent that is necessary for a first course in communications. : o

Chapter 3 treats modulation and demodulation of analog signals. This treatment
includes amplitude modulation (AM), frequency modulation (FM), and phase modu-
lation (PM). Radio and television broadcasting and mobile radio cellular systems are
discussed as examples of analog communication systems. Chapter 5 continues the treat-
ment of analog communication systems by analyzing the effect of additive noise in the
demodulation of AM, FM, and PM signals. The phase-locked loop, which is used for
estimating the phase of a sinusoidal carrier in both analog and digital communication
systems is also described in Chapter 5. The chapter concludes with 2 treatment of the ef-
fect of transmission losses and the characterization of noise sources in communication
gystems. '

A logical beginning in the introduction of digital communication Systems analysis
and design s the characterization of information sources and source encoding. Chapter 6
is devoted to this topic. In this chapter we introduce thé reader to the modeling of
information sources, both discrete and continuous (analog), and the basic mathematical
concepts of entropy and mutual information. Qur discussion of source encoding for
discrete sources includes the Huffman coding algorithm and the Lempel-Ziv algorithm.
For the case of analog sources, we treat both scalar and vector quantization and describe
the common waveform-coding techniques, namely, PCM, DPCM, and DM. We also
describe the LPC-based source modeling method. As practical examples of the source-
coding methods described in this chapter we cite the digital speech transmission systems
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in the telephone plant, the digital audio recording systems as embodied in the compact
disc (CD) player and the JPEG image-coding standard.

Digital modulation and demodulation techniques are described in Chapter 7. Bi-
nary and nonbinary modulation methods are described based on a geometric representa-
tion of signals, and their error-rate performance is evaluated and compared. This chapter
also describes symbol synchronization methods for digita] communication systems.

Chapter 8 treats digital transmission through bandlimited AWGN channels. In this
chapter we derive the power-spectral density of linearly modulated baseband signals
and consider the problem of signal design for a bandlimited channel. We show that the
effect of channel distortion is to introduce intersymbol interference (ISI), which can
be eliminated or minimized by proper signal design. The use of linear and nonlinear
adaptive equalizers for reducing the effect of ISIis also described.

Chapter 9 treats the topic of channel coding and decoding. The capacity of a
communication channel is first defined, and the capacity of the Gaussian channel is
determined. Linear block codes and convolutional codes are introduced and appropriate
decoding algorithms are described. The benefits of coding for bandwidth constrained
channels are also described. The final section of this chapter presents three practical
applications of coding. .

The last chapter of this book treats topics in wireless communications. First, we
consider the characterization of fading multipath channels and describe the effects of
such channels on wireless digital communication systems. The design of signals that
are effective in mitigating this type of channel distortion is also considered. Second, we
describe the class of continuous-phase modulated signals, which are especially suitable
for digital cormmunication in wireless channels. Finally, we treat the class of spread-
spectrum signals, which are suitable for multi-user wireless communication systems.

EXAMPLES AND HOMEWORK PROBLEMS

We have included 2 large number of carefully chosen examples and homework prob-
lems. The text contains over 180 worked-out examples and over 480 problems. Ex-
amples and problems range from simple exercises to more challenging and thought-
provoking problems. A Solutions Manual is available free to all adopting faculty, which
is provided in both typeset form and as a diskette formatted in ITRX. Solutions are not
available for sale to students. This will enable instructors to print out solutions in any
configuration easily.

COURSE OPTIONS

This book can serve as a text in either a one- or two-semester course in communication
systems. An important consideration in the design of the course is whether or not the
students have had a prior course in probability and random processes. Another important
consideration is whether or not analog modulation and demodulation techniques are to
be covered. Here, we outline three scenarios. Others are certainly possible.
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1. A one-term course in analog and digital communication: Selected review sections : o _ .

from Chapters 2 and 4, all of chapters 3, 5, 7, and 8, and selections from chapters 6,
9, and 10, ) :

2. A one-term course in di gital communication: Selected review sections from Chap- : /E
ters 2 and 4, and Chapters 6-10. :

3. A two-term course sequence on analog and digital communications:
(@) Chapters 2-6 for the first course,
(b) Chapters 7-10 for the second course.

We wish to thank Gloria Doukakis for her assistance in the preparation of the , /n tr‘OdUGZ’l an o

manuscript.

John Proakis

Adjunct Professor, : -

University of California at San Diego : -
and Professor Emeritus, 4

: Masoud Salehi
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TABLE 1.1 MORSE CODE

A - N —

B 0 ——

C —— P —

D Q ——— 1 ——

E R = 2 ee——

F — S 3 _—

G —— T — 4 —_

H U —_ 5 ...

I Vo oaee— 6 —

] | — 7 —

K —— X - 8§ ——

L — Y —— 9 —_ .

M —— Z —— 0 ————

(a) Letters (b) Numbers

Pedod() —- — Wait sign (AS) —
Comma() ——rie Double dash (break) ———
Interrogation (7) S Error sign e
Quotation Mark (?) -—-..—. Fraction bar (/) —_——
Colon (3) ——— End of message (AR)  —.—.

Semicolon (;) ——— End of transmission (SK) -+ —-—
Parenthesis () .

(c) Punctuation and Special Characters

The Morse code was the precursor to the variable-length source-coding methods
that are described in Chapter 6. It is remarkable that the earliest form of electrical
commun%'caﬁons that was developed by Morse, namely telegraphy, was a binary digital
communication system in which the letters of the English alphabet were efficiently
encoded into corresponding variable-length code words having binary elements.

Nearly forty years later, in 1875, Emile Baudot developed a code for telegraphy
in which each letter was encoded into fixed-length binary code words of length 5. In
the Baudot code the binary code elements have. equal length and are designated as mark
and space. .

Animportant milestone in telegraphy was the installation of the first transatlantic
cable in 1858 that linked the United States and Europe. This cable failed after about four
weeks of operation. A second cable was laid a few years later and became operational
in July 1866. ' .

Telephony came into being with the invention of the telephone in the 1870s.
Alexander Graham Bell patented his invention of the telephone in 1876, and in 1877 es-
tablished the Bell Telephone Company. Barly versions of telephone communication sys-
tems were relatively simple and provided service over several hundred miles. Si gnificant
advances in the quality and range of service during the first two decades of the twentieth
century resulted from the invention of the carbon microphone and the induction coil.

Section 1.1 Historical Review 3

The invention of the triode amplifier by Lee De Forest in 1906 made it possible to
introduce signal amplification in telephone communication systems and, thus, to allow
for telephone signal transmission over great distances. For example, transcontinental
telephone transmission became operational in 1915.

Two world wars and the Great Depression during the 1930s must have been a
deterrent to the establishment of transatlantic telephone service. It was not until 1953,
when the first transatlantic cable was laid, that telephone service became available
between the United States and Europe.

Automatic switching was another important advance in the development of tele-
phony. The first autormatic switch, developed by Strowger in 1897, was an electrome-
chanical step-by-step switch. This type of switch was used for several decades. With the
invention of the transistor, electronic (digital) switching became economically feasible.
Afier several years of development at the Bell Telephone Laboratories, a digital switch
was placed in service in Ilinois in June 1960.

- During the past thirty years there have been numerous significant advances in tele-
phone communications. Fiber optic cables are rapidly replacing copper wire in the tele-
phone plant and electronic switches have replaced the old electromechanical systems.

Wireless Communications. The development of wireless communications
stems from the works of Oersted, Faraday, Gauss, Maxwell, and Hertz. In 1820, Oersted
demonstrated that an electric current produces a magnetic field. On August 29, 1831,
Michael Faraday showed that an induced current is produced by moving a magnet in the
vicinity of a conductor. Thus, he demonstrated that a changing magnetic field produces
an electric field. With this early work as background, James C. Maxwell in 1864
predicted the existence of electromagnetic radiation and formulated the basic theory
that has been in use for over a century. Maxwell’s theory was verified experimentally
by Hertz in 1887. )

In 1894, a sensitive device that could detect radio signals, called the coherer,
was used by its inventor Oliver Lodge to demonstrate wireless communication over a
distance of 150 yards at Oxford, England. Guglielmo Marconi is credited with the devel-
opment of wireless telegraphy. Marconi demonstrated the transmission of radio signals
at a distance of approximately 2 kilometers in 1895. Two years later, in 1897, he patented

- aradio telegraph system and established the Wireless Telegraph and Signal Company.

OnDecember 12, 1901, Marconi received aradio signal at Signal Hill in Newfoundland,
which was transmitted from Cornwall, England, a distance of about 1700 miles.

The invention of the vacuum tube was especially instrumental in the development
of radio communication systems. The vacuum diode was invented by Fleming in 1904
and the vacuum triode amplifier was invented by De Forest in 1906, as previously indi-
cated. The invention of the triode made radio broadcast possible in the early part of the
twentieth century. Amplitude modulation (AM) broadcast was initiated in 1920 when
radio station KDKA, Pittsburgh, went on the air. From that date, AM radio broadcast-
ing grew rapidly across the country and around the world. The superheterodyne AM
radio receiver, as we know it today, was invented by Edwin Armstrong during World
War 1. Another significant development in radio communications was the invention
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of Frequency modulation (FM), also by Armstrong. In 1933, Armstrong built and
. demonstrated the first FM communication system. However, the use of FM was slow
to develop compared with AM broadcast. It was not until the end of World War II that
FM broadcast gained in popularity and developed commercially. :

The first television system was built in the United States by V. X. Zworykin and
demonstrated in 1929. Commercial television broadcasting began in London in 1936
by the British Broadcasting Corporation (BBC). Five years later the Federal Commu-
nications Commission (FCC) authorized television broadcasting in the United States.

The Past Fifty Years. The growth in communications services over the past

fifty years has been phenomenal. The invention of the transistor in 1947 by Walter-

Brattain, John Bardeen, and William Shockley; the integrated circuit in 1958 by Jack
Kilby and Robert Noyce; and the laser by Townes and Schawlow in 1958, have made
possible the development of small-size, low-power, low-weight, and high-speed elec-
tronic circuits which are used in the construction of satellite communication systems,
wideband microwave radio systems, and lightwave communication systéms using fiber
optic cables. A satellite named Telstar I was launched in 1962 and used to relay TV
signals between Europe and the United States. Commercial satellite communication
services began in 1965 with the launching of the Early Bird satellite.

Curently, most of the wireline communication systems are being replaced by
fiber optic cables which provide extremely high bandwidth and make possible the
transmission of a wide variety of information sources, including voice, data, and video.
Cellular radio hasbeen developed to provide telephone service to people in automobiles,
buses, and trains. High-speed communication nietworks link computers and a variety
of peripheral devices literally around the world. : '

Today we are witnessing a significant growth in the introduction and use of per-
sonal communications services, including voice, data, and video transmission. Satellite
and fiber optic networks provide high-speed communication services around the world.
Indeed, this is the dawn of the modern telecommunications era.

There are several historical treatments in the development of radio and telecom-
Jnunications covering the past century. We cite the books by McMahon, entitled The
Making of a Profession—A Century of Electrical Engineering in America (EEE Press,
1984); Ryder and Fink, entitled Engineers and Electronics (JEEE Press, 1984); and
S. Millman, Ed., entitled A History of Engineering and Science in the Bell System—
Communications Sciences (1925-1980) (AT & T Bell Laboratories, 1984).

1.2 ELEMENTS OF AN ELECTRICAL COMMUNICATION SYSTEM

Electrical communication systems are designed to send messages or information from a
source that generates the messages to one or more destinations. In general, a communi-
cation system can be represented by the functional block diagram shown in Figure 1.1.
The information generated by the source may be of the form of voice (speech source),
a picture (image source), or plain text in some particular language, such as English,
Japanese, German, French, etc. An essential feature of any source that generates infor-
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Information
source and >  Transmitter
input transducer

Channel

Qutput Output

signal transducer Receiver

Figure 1.1 Functional block diagram of a communication systerm.

mation is that its output is described in probabilistic terms; i.e., the output of a source
is not deterministic. Otherwise, there would be no need to transmit the message.

A transducer is usually required to convert the output of a source into an elec-
trical signal that is suitable for transmission. For example, a microphone serves as the
transducer that converts an acoustic speech signal into an electrical signal, and a video
camera converts an image into an electrical signal. At the destination, a similar trans-
ducer is required to convert the electrical signals that are received into a form that is
suitable for the user; e.g., acoustic signals, images, etc.

The heart of the communication system consists of three basic parts, namely,
the transmitter, the channel, and the receiver. The functions performed by these three
elements are described next.

The Transmitter. The transmitter converts the electrical signal into a form that
is suitable for transmission through the physical channel or transmission medium. For
example, in radio and TV broadcast, the Federal Communications Commission FCO)
specifies the frequency range for each transmitting station. Hence, the transmitter must
translate the information signal to be transmitted into the appropriate frequency range
that matches the frequency allocation assigned to the transmitter. Thus, signals trans-
mitted by multiple radio stations do not inteifere with one another. Similar functions
are performed in telephone communication systems where the electrical speech signals
from many users are transmitted over the same wire.

In general, the transmitter performs the matching of the message signal to the
channel by a process called modulation. Usually, modulation involves the use of the
information signal to systematically vary either the amplitude, frequency, or phase of
a sinusoidal carrier. For example, in AM radio broadcast, the information signal that is
transmitted is contained in the amplitude variations of the sinusoidal carrier, which is
the center frequency in the frequency band allocated to the radio transmitting station.
This is an example of amplitude modulation, In FM radio broadcast, the information
signal that is transmitted is contained in the frequency variations of the sinusoidal
carrier. This is an example of frequency modulation. Phase modulation (PM) is yet a
third method for impressing the information signal on a sinusoidal carrier.
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In general, carrier modulation such as AM, FM, and PM is performed at the trans-
mitter, as indicated above, to convert the information signal to a form that matches the
characteristics of the channel. Thus, through the process of modulation, the information
signal is translated in frequency to match the allocation of the channel. The choice of
the type of modulation is based on several factors, such as the amount of bandwidth
allocated, the types of noise and interference that the signal encounters in transmission
over the channel, and the electronic devices that are available for signal amplification
prior to transmission. In any case, the modulation process makes it possible to accom-
modate the transmission of multiple messages from many users over the same physical
channel. S
In addition to modulation, other functions that are usually performed at the trans-
mitter are filtering of the information-bearing signal, amplification of the modulated
signal, and in the case of wireless transmission, radiation of the signal by means of a

transmitting antenna.

The Channel. The communications chanrel is the physical medium that is
used to send the signal from the transmitter to the receiver. In wireless transmission, the
channe] is usually the atmosphere (free space). On the other hand, telephone channels
usually employ a variety of physical media, including wirelines, optical fiber cables,
and wireless (microwave radio). Whatever the physical medium for signal transmission,
the essential feature is that the transmitted signal is corrupted in a random manner by 2
variety of possible mechanisms. The most common form of signal degradation comes
in the form of additive noise, which is generated at the front end of the receiver, where
signal amplification is performed. This noise is often called thermal noise. In wireless
transmission, additional additive disturbances are man-made noise, and atmospheric
noise picked up by a receiving antenna. Automobile ignition noise is an example of
man-made noise, and electrical lightning discharges from thunderstorms is an example
of atmospheric noise. Interference from other users of the channel is another form of
additive noise that often arises in both wireless and wireline communication systems.

In some radio communication channels, such as the ionospheric channel that is
used for long range, short-wave radio transmission, another form of signal degradation
is multipath propagation. Such signal distortion is characterized as a nonadditive signal
disturbance which manifests itself as time variations in the signal amplitude, usually
called fading. This phenomenon is described in more detail in Section 1.3.

Both additive and nonadditive signal distortions are usually characterized as ran-
dom phenomena and described in statistical terms. The effect of these signal distortions
must be taken into account on the design of the communication system.

In the design of a communication system, the system designer works with mathe-
matical models that statistically characterize the signal distortion encountered on phys-
ical channels. Often, the statistical description that is used in a mathematical model is
a result of actual empirical measurements obtained from experiments involving signal
transrnission over such channels. In such cases, there is a physical justification for the
mathematical model used in the design of communication systems. On the other hand,
in some communication system designs, the statistical characteristics of the channel

LY
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may vary signiﬁcanﬂy with time. In such cases, the system designer may design a
communication system that is robust to the variety of signal distortions. This can be ac-
complished by having the system adapt some of its parameters to the channel distortion
encountered.

_The Receiver. The function of the receiver is to recover the message signal
coptmned in the received signal. If the message signal is transmitted by carrier modu-
lauor}, the receiver performs carrier demodulation in order to extract the message from
the .s14nusoidal carrier. Since the signal demodulation is performed in the presence of
additive noise and possibly other signal distortion, the demodulated message signal is
gcnerally degraded to some extent by the presence of these distortions in the received
signal. As we shall see, the fidelity of the received message signal is a function of the
type of modulation, the strength of the additive noise, the type and strength of any other
additive ir.1te1ferencc, and the type of any nonadditive interference.

- Besides performing the primary function of signal demodulation, the receiver
also perfonns a number of peripheral functions, including signal filtering and noise
suppression.

1.2.1 Digital Communication System

Up to this point we have described an electrical communication system in rather broad
terms based on the implicit assumption that the message signal is a continzons time-
varying wavc_form. ‘We refer to such continuous-time signal waveforms as analog sig-
nals and to the corresponding information sources that produce such signals as analog
sources. Analog signals can be transmitted directly via carrier modulation over the
commtm%cat‘ion channel and demodulated accordingly at the receiver. We call such a
communication system an analog communication system.

Altemaﬁvely, an analog source output may be converted into a digital form and the
message can be transmitted via digital modulation and demodulated as a digital signal
at the receiver. There are some potential advantages to transmitting an analog signal by
means of digital medulation. The most important reason is that signal fidelity is better
controlled through digital transmission than analog transmission. In particular, digital
transm;’ssion allows us to regenerate the digital signal in long-distance transmission,
Fhu’s eliminating effects of noise at each regeneration point. In contrast, the noise added
in z.inalog transmission is amplified along with the signal when amplifiers are used
periodically to boost the signal level in long-distance transmission. Another reason
for choosing digital transmission over analog is that the analog message signal may
be highly redundant. With digjtal processing, redundancy may be removed prior to
modulati.on, thus conserving channel bandwidth. Yet a third reason may be that digital
communication systems are often cheaper to implement.

_ In some applications, the information to be transmitted is inherently digital; e.g.,
in the form of English text, computer data, etc. In such cases, the information source
that generates the-data is called a discrete (digital) source.

In a digital communication system, the functional operations performed at the
transmitter and receiver must be expanded to include message signal discretization at
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Figure 1.2 Basic .elements of a digital communication system.

the transmitter and message signal synthesis or interpolation at the recejver. Additional
functions include redundancy removal, and channel coding and decoding.

Figure 1.2 illustrates the functional diagram and the basic elements of a digital
communication system. The source output may be either an analog signal, such as audio
or video signal, or a digital signal, such as the output of a computer which is discrete in
time and has a finite number of output characters. In a digital communication system,
the messages produced by the source are usually converted into a sequence of binary
digits. Ideally, we would like to represent the source output (message) by as few binary
digits as possible. In other words, we seek an efficient representation of the source
output that results in little or no redundancy. The process of efficiently converting the
output of either an analog or a digital source into a sequence of binary digits is called
Source encoding or data compression. We shall describe source-encoding methods in
Chapter 6. -

The sequence of binary digits from the source encoder, which we call the -
formation sequence is passed to the channe] encoder. The purpose of the channel
encoder is to introduce, in a controlled manner, some redundancy in the binary infor-
mation sequence which can be used at the receiver to overcome the effects of noise
and interference encountered in the transmission of the signal through the channel.
Thus, the added redundancy serves to increase the reliability of the received data and
improves the fidelity of the received signal. In effect, redundancy in the information

trivial) encoding involves taking & information bits at a time and mapping each k-bit
sequence into a unique n-bit sequence, called a code word. The amount of redun-
dancy introduced by encoding the data in this manner js measured by the ratio n/%.
The reciprocal of this ratio, namely, k/n, is called the rate of the code or, simply, the
code rate.

The binary sequence at the output of the channel encoder is passed to the digital
modulator, which serves as the interface to the communications channel. Since nearly
all of the communication channels encountered in practice are capable of transmitting
electrical signals (waveforms), the primary purpose of the digital modulator is to map
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M =2° distinct waveforms s; (1), { =0, 1,...,M—1,one waveform for each of the 27
possible b-bit sequences. We call this M-ary modulation (M > 2). Note that a new b-bit
sequence enters the modulator every b/ R seconds. Hence, when the channe] bitrate R
is fixed, the amount of time available to transmit one of the M/ waveforms corresponding
to a b-bit sequence is & times the time period in a system that uses binary modulation.
~At the receiving end of a digital communications system, the digital demodularor
processes the channel-corrupted transmitted waveform and reduces each waveform toa
single number that represents an estimate of the transmitted data symbol (binary or M-
ary). For example, when binary modulation is used, the demodulator may process the
received waveform and decide on whether the transmitted bit is a Ooral.Insucha case,
we say the demodulator has made g binarydecision. As one alternative, the demodulator

levels, where 0 > 2. In general, if the digital communications System employs M-ary
modulation, wherem = 0, 1, . . . » M — 1 represent the M possible transmitted symbols,
each comresponding to b = log, M bits, the demodulator may make a Q-ary decision,
where O > M. In the extreme case where no quantization is performed, O = oo,
When there is no redundancy in the transmitted information, the demodulator

A measure of how well the demodulator and decoder perform is the frequency with
which errors occur in the decoded sequence. More precisely, the average probability
of a bit-error at the output of the decoder is a measure of the performance of the
demodulator-decoder combination, In general, the probability of error is a function of
the code characteristics, the types of waveforms used to transmit the information over
the channel, the transmitter power, the characteristics of the channel; i.e., the amount of
noise, the nature of the interference, etc., and the method of demodulation and decoding.

W
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As a final step, when an analog output is desired, the source decoder accepts
the output sequence from the channel decoder and, from knowledge of the source-
encoding method used, attempts to reconstruct the original signal from the source. Due
to channel-decoding errors and possible distortion introduced by the source encoder
and, perhaps, the source decoder, the signal at the output of the source decoder is an
approximation to the original source output. The difference or some function of the
difference between the original signal and the reconstructed signal is a measure of the
distortion introduced by the digital communications system.

1.2.2 Early Work in Digital Communications

Although Morse is responsible for the development of the first electrical digital commu-
nication system (telegraphy), the beginnings of what we now regard as modern digital
communications stem from the work of Nyquist (1924), who investigated the problem
of determining the maximum signaling rate that can be used over a telegraph channel
of a given bandwidth without intersymbol interference. He formulated a model of a
telegraph system in which a transmitted signal has the general form

s() =) a:g(t —nT)

where g(r) represents a basic pulse shape and {a,} is the binary data sequence of
{41} transmitted at a rate of 1/ 7 bits/sec. Nyquist set out to determine the optimum
pulse shape that was bandlimited to W Hz and maximized the bit rate 1/T updcr
the constraint that the pulse caused no intersymbol interference at the sampling times
k/T,k = 0,41, %2, .... His studies led him to conclude that the maximum puls_e
rate 1/T is 2W pulses/sec. This rate is now called the Nyquist rate. Moreoyer, this
pulse rate can be achieved by using the pulses g(z) = (sin27 Wr)/2x Wt. This pu_lsc
shape allows the recovery of the data without intersymbol interference at the sampling
instants. Nyquist’s result is equivalent to a version of the sampling theorem for band-
limited signals, which was later stated precisely by Shannon (1948). The sampling
theorem states that a signal s (¢) of bandwidth W can be reconstructed from samples
taken at the Nyquist rate of 2W samples/sec using the interpolation formula

n \ sin2wW(t —n/2W)
s = ZS(EW) 2 W —n]2W)

In light of Nyquist’s work, Hartley (1928) considered the issue of the amount
of data that can be transmitted reliably over a bandlimited channel when multiple
amplitude levels are used. Due to the presence of noise and other interference, Hartley
postulated that the receiver can reliably estimate the received signal amplitude to some
accuracy, say As. This investigation led Hartley to conclude that there is a maximum
data rate that can be communicated reliably over a bandlimited channel, when the
maximum signal amplitude is limited to Apax (fixed power constraint) and the amplitude

resolution is As.
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Amnother significant advance in the development of communications was the work

- of Wiener (1942) who considered the problem of estimating a desired signal waveform

5(z) in the presence of additive noise n(¢), based on observation of the received signal
r(t) = s(¢) +n(t). This problem arises in signal demodulation. Wiener determnined the
linear filter whose output is the best mean-square approximation to the desired signal
5(#). The resulting fitter is called the optimuam linear (Wiener) filter.

Hartley’s and Nyquist’s results on the maximum transmission rate of digital
information were precursors to the work of Shannon (1948a,b) who established the
mathematical foundations for information theory and derived the fundamental limits
for digital communication systems. In his pioneering work, Shannon formulated the
basic problem of reliable transmission of information in statistical terms, using prob-
abilistic models for information sources and communication channels. Based on such
a statistical formulation, he adopted a logarithmic measure for the information content
of a source. He also demonstrated that the effect of a transmitter power constraint, a
bandwidth constraint, and additive noise can be associated with the channel and incor-
porated into a single parameter, called the channel capacity. For example, in the case
of an additive white (spectrally flat) Gaussian noise interference, an ideal bandlimited
channe] of bandwidth W has a capacity C given by

P
C=WI 1
0g2< +WN

) bits/s
0

where P is the average transmitted power and N is the power-spectral density of the
additive noise. The significance of the channel capacity is as follows: If the information
rate R from the source is less than C (R < (), then it is theoretically possible to
achieve reliable transmission through the channel by appropriate coding. On the other
hand if R > C, reliable transmission is not possible regardless of the amount of signal
processing performed at the transmitter and receiver. Thus, Shannon established basic
limits on communication of information and gave birth to a new field that is now called
information theory.

Initially, the fundamental work of Shannon had a relatively small impact on the
design and development of new digital communications systems. In part, this was due to
the small demand for digital information transmission during the decade of the 1950s.
Another reason was the relatively large complexity and, hence, the high cost of digital
hardware required to achieve the high efficiency and the high reliability predicted by

~ Shannon’s theory.

Another important contribution to the field of digital communications is the work
of Kotelnikov (1947) which provided a coherent analysis of the various digital com-
munication systems based on a geometrical approach. Kotelnikov’s approach was later
expanded by Wozencraft and Jacobs (1965).

The increase in the demand for data transmission during the last three decades,
coupled with the development of more sophisticated integrated circuits, has led to the
development of very efficient and more reliable digital communications systems. In
the course of these developments, Shannon’s original results and the generalization
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of his results on maximum transmission limits over a channel and on bounds on the
performance achieved, have served as benchmarks relative to which any given commu-
nications system design is compared. The theoretical limits derived by Shannon and
other researchers that contributed to the development of information theory serve as
an ultimate goal in the continuing efforts to design and develop more efficient digital
communications systems.

Following Shanmon’s publications came the classic work of Hamming (1950) on
error detecting and error-correcting codes to combat the detrimental effects of channel
noise. Hamming’s work stimulated many researchers in the years that followed and a
variety of new and powerful codes were discovered, many of which are used today in
the implementation of modern communication systems. :

1.3 COMMUNICATION CHANNELS AND THEIR CHARACTERISTICS

As indicated in our preceding discussion, the communication channel provides the
commection between the transmitter and the receiver. The physical channel may be a
pair of wires that carry the electrical signal, oran optical fiber that carries the information
on a modulated light beam, or an underwater ocean channel in which the information
is transmitted acoustically, or free space over which the information-bearing signal is
radiated by use of an antenna. Other media that can be characterized as communication
channels are data storage media, such as magnetic tape, magnetic disks, and optical
disks.

One common problem in signal transmission through any channel is additive
noise. In general, additive noise is generated internally by components such as resistors
and solid-state devices used to implement the communication system. This s sometimes
called thermal noise. Other sources of noise and interference may arise externally to
the system, such as interference from other users of the channel. When such noise
and interference occupy the same frequency band as the desired signal, its effect can
be minimized by proper design of the transmitted signal and its demodulator at the
receiver. Other types of signal degradations that may be encountered in transmission
over the channel are signal attenuation, amplitude and phase distortion, and multipath
distortion.

The effects of noise may be minimized by increasing the power in the transmitted
signal. However, equipment and other practical constraints limit the power level in
the transmitted signal. Another basic limitation is the available channel] bandwidth. A
bandwidth constraint is usually due to the physical limitations of the medium and the
electronic components used to implement the transmitter and the receiver. These two
limitations result in constraining the amount of data that can be transmitted reliably

over any communications channel. Shannon’s basic results relate the channel capacity
to the available transmitted power and channel bandwidth.

Next, we describe some of the important characteristics of several comimunication

channels.

Wireline Channels. The telephone network makes extensive use of wire lines
for voice signal transmission, as well as data and video transmission. Twisted-pair wire-
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lines and coaxial cable are basically guid i i i
] ! guided electromagnetic channels which provide
relatively modest bandwidths. Telephone wire generally used to connect a custgmer to
a cen}ral office has a bandwidth of several hundred kilohertz (KHz). On the other hand
::g)a?al cable has a usable bandwidth of several megahertz (MHz). Figure 1.3 ﬂlusﬁate;
e frequency range of guided electromagnetic ch ich 1 i
oo e : gnetic channels which includes waveguides
Signals transmitted through such channels are distorted in b i

U oth amplitude and
phase and further cgrrupted by additive noise. Twisted-pair wireline channels are also
prone to crosstalk interference from physically adjacent channels. Because wireline
channels carry a large percentage of our daily communications around the country and

T — 7

Ultraviolet
1 + 10 Hz
Visible light

10°5m +
Infrared

e

100 mm T~ ~—

-r 100 GHz
lem +
Waveguide
T 10 GHz
10cm +
T N~— T N~ - 1 GHz
lm+ é‘
2
T100MHz §
[
0m Coaxial cable
channels
-~ 10 MHz
100m +
+ 1 MHz

lkm-—/.\—/'\—/\

-+ 100 kHz
10km +
Wireline
charnels +10kHz
100 km +
T 1kHz
L Figure 1.3 Frequency range for guided
TN— 1 i
wireline channels.



b R e e

14 Introduction Chapter 1

the world, much research has been performed on the characterization of their trans-
mission properties and on methods for mitigating the amplitude and phase distortion
encountered in signal transmission. In Chapter 8, we describe methods for designing
optimum transmitted signals and their demodulation, including the design of channel
equalizers that compensate for amplitude and phase distortion.

Fiber Optic Channels. Optical fibers offer the communications system de-
signer a channel bandwidth that is several orders of magnitude larger than coaxial
cable channels. During the past decade optical fiber cables have been developed which
have a relatively low signal attenuation and highly reliable photonic devices have been
developed for signal generation and signal detection. These technological advances
have resulted in a rapid deployment of optical fiber channels both in domestic telecom-
munication systems as well as for transatlantic and transpacific communications. With
the large bandwidth available on fiber optic channels it is possible for the telephone

companies to offer subscribers a wide array of telecommunication services, including -

voice, data, facsimile, and video.

The transmitter or modulator in a fiber optic communication system is a light
source, either a light-emitting diode (LED) or a laser. Information is transmitted by
varying (modulating) the intensity of the light source with the message signal. The light
propagates through the fiber as a light wave and is amplified periodically (in the case of
digital transmission, it is detected and regenerated by repeaters) along the transmission
path to compensate for signal attenuation. At the receiver, the light intensity is detected
by a photodiode, whose output is an electrical signal that varies in direct proportion to
the power of the light impinging on the photodiode.

1tis envisioned that optical fiber channels will replace nearly all wireline channels
in the telephone network in the next few years.

Wireless Electromagnetic Channels. In radio communication systems,
electromagnetic energy is coupled to the propagation medium by an antenna which
serves as the radiator. The physical size and the configuration of the antenna depend
primarily on the frequency of operation. To obtain efficient radiation of electromag-
netic energy, the antenna must be longer than 1/10 of the wavelength. Consequently, a
radio station transmitting in the AM frequency band, say at 1 MHz (corresponding to
a wavelength of A = ¢/f. = 300 m) requires an antenna of at least 30 meters.

Figure 1.4 illustrates the various frequency bands of the electromagnetic spectrum.
The mode of propagation of electromagnetic waves in the atmosphere and in free space
may be subdivided into three categories, namely, ground-wave propagation, sky-wave
propagation, and line-of-sight (LOS) propagation. Inthe VLF and ELF frequency bands,
where the wavelengths exceed 10 km, the earth and the ionosphereactasa waveguide for
electromagnetic wave propagation. In these frequency ranges, communication signals
practically propagate around the globe. For this reason, these frequency bands are

primarily used to provide navigational aids from shore to ships around the world. The -

channel bandwidths available in these frequency bands are relatively small (usually from
1-10% of the center frequency), and hence, the information that is transmitted through
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Figure 1.4 Frequency range for wireless electromagnetic channels. (Adapted from Ca.rléon,
Sec: Ed.; © 1975 McGraw-Hill. Reprinted with permission of the publisher.)

these channels is relatively slow speed and, generally, confined to digital transmission.
A dominant type of noise at these frequencies is generated from thunderstorm activity
around the globe, especially in tropical regions. Interference results from the many
users of these frequency bands.

Ground-wave propagation, illustrated in Figure 1.5, is the dominant mode of
propagation for frequencies in the MF band (0.3-3 MHz). This is the frequency band
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Figure 1.5 Tllustration of ground-wave
propagation.

Figure 1.6 Dlustration of sky-wave
propagation.

used for AM broadcasting and maritime radio broadcasting. In AM broadca‘st, the range
with ground-wave propagation of even the more powerful radio sta:tions is limited to
about 100 miles. Atmospheric noise, man-made noise, and thermal noise f'rox.n electronic
components at the receiver are dominant disturbances for signal transmlssxon‘ of ME
Sky-wave propagation, as illustrated in Figure 1.6, results_from transmitted sig-
nals being reflected (bent or refracted) from the ionosphere, which consists of several
layers of charged particles ranging in altitude from 30-250 miles above the surface of
the earth. During the daytime hours, the heating of the lower atmosphere by the sun
causes the formation of the lower layers at altitudes below 75 miles. These lower.laygrs,
especially the D-layer serve to absorb frequencies below 2 MHz, thu_g, sevc'srely limiting
sky-wave propagation of AM radio broadcast. However, during the night-time hours the
electron density in the lower layers of the ionosphere drops sharply and the frequency

absorption that occurs during the day time is significantly reduced. As a consequence,

powerful AM radio broadcast stations can propagate over large d@stances via sky-wave
over the F-layer of the jonosphere, which ranges from 90-250 miles above the surface
of the earth. . '

A frequently occurring problem with electromagnetic wave propagation via sky-
wave in the HF frequency range is signal multipath. Signal mult}p&:h occurs \fvhen
the transmitted signal arrives at the receiver via multiple propagation patb.s at d}ff:el‘-
ent delays. Signal multipath generally results in intersymbol intcrchcnge in a digital
communication system. Moreover, the signal components arriving via dltfferent prop-
agation paths may add destructively, resulting in a phenomenon called signal fading,

which most people have experienced when listening to a distant radio station at night,

when sky-wave is the dominant propagation mode. Additive noise at HF is a combina-
tion of atmospheric noise and thermal noise. . .

Sky-wave ionospheric propagation ceases to exist at frequencies above approx-
imately 30 MHz, which is the end of the HF band. However, it is possible to have
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ionospheric scatter propagation at frequencies in the range of 3060 MHz, resulting
from signal scattering from the lower ionosphere. It is also possible to communicate
over distances of several hundred miles by use of tropospheric scattering at frequencies
in the range of 40~300 MHz. Troposcatter results from signal scattering due to particles

- in the atmosphere at altitudes of 10 miles or less. Generally, ionospheric scatter and

tropospheric scatter involve large signal propagation losses and require a large amount
of transmitter power and relatively large antennas.

Frequencies above 30 MHz propagate through the ionosphere with relatively
little loss and make satellite and extraterrestrial communications possible. Hence, at
frequencies in the VHF band and higher, the dominant mode of electromagnetic propa-
gation is line-of-sight (LOS) propagation. For terrestrial communication systems, this
means that the transmitter and receiver antennas must be in direct LOS with relatively
little or no obstruction. For this reason television stations transmitting in the VHF and

- UHF frequency bands mount their antennas on high towers in order to achieve a broad

coverage area.

In general, the coverage area for LOS propagation is limited by the curvature of
the earth. If the fransmitting antenna is mounted at a height % feet above the surface
of the earth, the distance to the radio horizon, assuming no physical obstructions such
a mountains, is approximately d = +/2% miles. For example, a TV antenna mounted
on a tower of 1000 ft in height provides a coverage of approximately 50 miles. As

.another example, microwave radio relay systems used extensively for telephone and
video transmission at frequencies above 1 GHz have antennas mounted on tall towers
or on the top of tall buildings. '

The dominant noise limiting the performance of communication systems in the
VHF and UHF frequency ranges is thermal noise generated in the receiver front end and
cosmic noise picked up by the antenna. At frequencies in the SHF band above 10 GHz,
atmospheric conditions play a major role in signal propagation. Figure 1.7 illustrates
the signal attenuation in dB/mile due to precipitation for frequencies in the range of
10~-100 GHz. We observe that heavy rain introduces extremely high propagation losses
that can result in service outages (total breakdown in the communication system).

At frequencies above the EHF band, we have the infrared and visible light regions
of the electromagnetic spectrum which can be used to provide LOS optical commu-
nication in free space. To date, these frequency bands have been used in experimental
communication systerms, such as satellite-to-satellite links.

Underwater Acoustic Channels. Over the past few decades, ocean explo-
ration activity has been steadily increasing. Coupled with this increase in ocean ex-
ploration is the need to transmit data, collected by sensors placed underwater, to the
surface of the ocean. From there it is possible to relay the data via a satellite to a data
collection center.

* Electromagnetic waves do not Propagate over long distances underwater, exceptat
extremely low frequencies. However, the transmission of signals at such low frequencies
is prohibitively expensive because of the large and powerful transmitters required. The
attenvation of electromagnetic waves in water can be expressed in terms of the skin
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Figure 1.7 Signal attenuation due to precipitation. (From Ziemer and Tranter
(1990); © Houghton Mifflin Reprinted with permission of the publisher.)

depth, which is the distance a signal is attenuated by 1 /e. For sea water, the skin depth
8 = 250/./F, where f is expressed.in Hz and § is in meters. For example, at 10 kHz,
the skin depth is 2.5 m. In contrast, acoustic signals propagate over distances of tens
and even hundreds of kilometers.

A shallow water acoustic channel is characterized as a multipath channel due
to signal reflections from the surface and the bottom of the sea. Due to wave mo-
tion, the signal multipath components undergo time-varying propagation delays which
result in signal fading. In addition, there is frequency-dependent attenuation, which is
approximately proportional to the square of the signal frequency.

Ambient ocean acoustic noise is caused by shrimp, fish, and various mammals.
Near harbors, there is also man-made acoustic noise in addition to the ambient noise.

o

!
2
&
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In spite of this hostile environment, it is possible to design and implement efficient and
highly reliable underwater acoustic communication systems for transmitting digital
signals over large distances.

Storage Channels. Information storage and retrieval systems constitute a
very significant part of our data-handling activities on a daily basis. Magnetic tape,
including digital audio tape and video tape, magnetic disks used for storing large
amounts of computer data, and optical disks used for computer data storage, music
(compact disks), and video are examples of data storage systems that can be charac-
terized as communication channels. The process of storing data on a magnetic tape or
a magnetic or optical disk is equivalent to transmitting a signal over a telephone or
a radio channel. The readback process and the signal processing involved in storage
Systems to recover the stored information is equivalent to the functions performed by
a recejver in a telephone or radio communication system to recover the transmitted
information. -

Additive noise generated by the electronic components and interference from
adjacent tracks is generally present in the readback signal of a storage system, just as
is the case in a telephone or a radio communication system.

The amount of data that can be stored is generally limited by the size of the disk
or tape and the density (number of bits stored per square inch) that can be achieved
by the write/read electronic systems and heads. For example, a packing density of
10° bits/sq. in. has been recently demonstrated in an experimental magnetic disk storage
system. (Current commercial magnetic storage products achieve a much lower density.)
The speed at which data can be written on a disk or tape and the speed at which it can
be read back is also limited by the associated mechanical and electrical subsystems that
constitute an information storage system.

Channel coding and modulation are essential components of a well-designed
digital magnetic or optical storage system. In the readback process, the signal is de-
modulated and the added redundancy introduced by the channel encoder is used to
correct errors in the readback signal.

1.4 MATHEMATICAL MODELS FOR COMMUNICATION CHANNELS

In the design of communication systems for transmitting information through physical
channels, we find it convenient to construct mathematical models that reflect the most
important characteristics of the transmission medium. Then, the mathematical model
for the channel is used in the design of the channel encoder and modulator at the
transmitter and the demodulator and channel decoder at the receiver. Next, we provide
a brief description of the channel models that are frequently used to characterize many
of the physical channels that we encounter in practice.

The Additive Noise Channel. The simplest mathematical model for a com-
munication channel is the additive noise channel, illustrated in Figure 1.8. In this
model the transmitted signal s(#) is corrupted by an additive random noise process

L
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Channel
(%)
? r(f) = s(t} + n(t)
@) : Figure 1.8~ The additive noise channel.

n(t). Physically, the additive noise process may arise from electronic components and
amplifiers at the receiver of the communication system, or from interference encoun-
tered in transmission, as in the case of radio signal transmission.

If the noise is introduced primarily by electronic components and amplifiers at the
receiver, it may be characterized as thermal noise. This type of noise is characterized
statistically as a Gaussian noise process. Hence, the resulting mathematical model
for the channel is usually called the additive Gaussian noise channel. Because this
channel model applies to a broad class of physical communication channels and because
of its mathematical tractability, this is the predominant channel model used in our
communication system analysis and design. Channel attenuation is easily incorporated
into the model. When the signal undergoes attenuation in transmission through the

channel, the received signal is
r(t) = as(ty+n(t) ) (141
where a represents the attenuation factor.

The Linear Filter Channel. In some physical channels such as wireline tele-
phone channels, filters are used.to ensure that the transmitted signals do not exceed
specified bandwidth limitations and, thus, do not interfere with one another. Such chan-

nels are generally characterized mathematically as linear filter channels with additive

noise, as illustrated in Figure 1.9. Hence, if the channel input is the signal s(z), the
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Figure 1.9 The linear filter channel with additive noise.
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chaunel with additive noise.

channel output is the signal

r(@) =s@)*h(t) +n()
+o0
= /_ h(T)s(t —r)dr +at) (1.4.2)

where A(¢) is the impulse response of the linear filter and  denotes convolution,

The Linear Time-Variant Filter Channel. Physical channels such as under-
water acoustic channels and ionospheric radio channels which result in time-variant
multipath propagation of the transmitted signal may be characterized mathematically as
time-variant linear filters. Such linear filters are characterized by time-variant channel
impulse response h(t; r) where h(t; t) is the response of the channel at time ¢, due to
an impulse applied at time ¢ — . Thus, © represents the “age” (elapsed time) variable.
The linear time-variant filter channel with additive noise is illustrated Figure 1.10. For
an input signal s(¢), the channel output signal is

r)=s@ xh(t; ) +n@)
+o0

= A(z; st — 1) dt +n() (14.3)

-0

A good model for multipath signal propagation through physical channels, such as
the ionosphere (at frequencies below 30 MHz) and mobile cellular radio channels, is 2

 special case of Equation (1.4.3) in which the time-variant impulse response has the form

L
hzit) = a®i( — ) (1.4.4)

k=1

wher.c the {ax(¢)} represent the possibly time-variant attenuation factors for the L
multipath propagation paths. If Equation (1.4.4) is substituted into Equation (1.4.3),

. the received signal has the form

. .
r@®) = a®st — w) +n@) (14.5)

k=1

Hence, the received signal consists of L multipath components, where each component
is attenuated by {a;} and delayed by {z}.
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The three mathematical models described above adequately characterize a large
majority of physical channels encountered in practice. These three channel models are
used in this text for the analysis and design of communication systems.

1.5 ORGANIZATION OF THE BOOK

Before we embark on the analysis and design of communication systems, we provide
a brief review of basic frequency-domain characteristics of signals and linear systems
in Chapter 2. Emphasis is placed on the Fourier series and the Fourier transform repre-
sentation of signals and the use of transforms in linear systems analysis. The process
of sampling 2 bandlimited analog signal is also considered.

Tn Chapter 3, we treat the modulation and demodulation of analog signals. This
chapter provides detailed description of amplitude modulation (AM), frequency mod-
ulation (FM), and phase modulation (PM). As examples of analog signa! transmission
and reception, we consider radio and television broadcasting, and mobile radio cellular
communication systems. ‘

In Chapter 4, we present a review of the basic definitions and concepts in prob-
ability and random processes. These topics are particularly important in our study of
electrical communications, because information sources produce random signals at
their output and communication channels generally corrupt the transmitted signals in
a random manner, through the addition of noise and other channel distortion. Spe-
cial emphasis is placed on Gaussian random processes, which provide mathematically
tractable models for additive noise disturbances. Both time domain and frequency do-
main representations of random signals are presented.

Chapters 5 provides a treatment of the effects of additive noise in the demodulation
of amplitnde modulated (AM) and angle modulated (FM, PM) analog signals and a
comparison of these analog signal modulations in terms of their signal-to-noise ratio
performance. Also discussed in this chapter is the problem of estimating the carrier
phase using a phase-locked loop (PLL). Finally, we describe the characterization of
thermal noise and the effect of transmission losses in analog communication systems.

The remainder of the book is focused on digital communication systems.
Chapter 6 is devoted to the modeling and characterization of information sources and
source coding. In this chapter, we introduce a measure for the information content ofa
discrete source and describe two algorithms, the Huffman algorithm and the Lempel-
Ziv algorithm, for efficient encoding of the source output. The major part of the chapter
is devoted to the problem of encoding the outputs of analog sources. Several waveform-
encoding methods are described, including pulse-code modulation (PCM), differential
PCM, and delta modulation (DM). We also describe a model-based approach to ana-
log source encoding, based on linear prediction. As practical examples of the theory
presented in this chapter, we consider digital audio recording systems, digital audio
transmission in telephone systems, and the JPEG image-coding standard.

Chapter 7 treats modulation methods for digital signal transmission through
an additive white Gaussian noise channel. Various types of binary and nonbinary

Section 1.6 Further Reading 23

modulation methods are described based on a geometric representation of signals and
their performance is evaluated in terms of the probability of error. A link budget anal-
ysis for radio communication systems is also described. The final topic of this chapter
is focused on signal synchronization methods for digital communication systems.

In Chapter 8, we consider the problem of digital cormunication throughbandlim-
ited, additive white Gaussian noise channels. In particular, we describe the design of
bandlimited signal waveforms for such channels and the spectral characteristics of dig-
itally modulated signals. Digitally modulated signals with memory, their modulation,
‘and their spectral characteristics are also described. The effect of channel distortion on
the transmitted signals is characterized in terms of intersymbol interference (ISI), and
the design of adaptive equalizers for suppressing ISI is described.

Channel coding and decoding is the topic of Chapter 9. In this chapter, we describe
the concept of channel capacity, and derive the capacity of an additive white Gaussian
noise channel. Linear block codes and convolutional codes are considered forenhancing
the performance of a digital communication system in the presence of additive noise.
Decoding algorithms for both block codes and convolutional codes are also described.
The final topic of this chapter provides a treatment of trellis-coded modulation, which
is widely used in the implementation of high speed modems.

The last chapter of the book, Chapter 10, focuses on topics dealing with wireless
communications. We begin by characterizing channel fading and multipath effects in
wireless communication systems and describe the design of signals that are effective in
mitigating these channel distortions. Then, we describe the class of continuous-phase
modulated signals, which are especially suitable for digital communications in wireless
channels due to their constant amplitude and narrow bandwidth characteristics. Finally,
we treat the class of spread-spectrum signals, which are suitable for multi-nser wireless
communication systems. As examples of practical wireless communication systems,
we briefly describe two digital cellular communication systerns, the pan European GSM
system and the North-American IS-95 CDMA system.

In an introductory book of this level, we have not attempted to provide 2 large
number of references to the technical literature. However, we have included in each
chapter several supplementary references for further reading, including textbooks and
basic or tutorial treatments of important topics. References are cited by giving the
author’s name, with the year of publication in parentheses; e.g., Nyquist (1924).

1.6 FURTHER READING

We have already cited several historical treatments of radio and telecommunications
during the past century. These include the book by McMahon (1984), Ryder and Fink
(1984), and Millman (1984). The classical works of Nyquist (1924), Hartley (1928),
Kotelnikov (1947), Shannon (1948), and Hamming (1950) are particularly important
because they lay the groundwork of modern communication systems engineering.
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Frequency Domain Analysis
of Signals and Systems

In this chapter, we review the basics of signals and linear systems in the frequency
domain. The motivation for studying these fundamental concepts stems fTom the basic
role they play in modeling various types of communication systems. In particular signals
are used to transmit the information over a communication channel. Such signals are
usually called information-bearing signals.

In the transmission of an information-bearing signal over a communication chan-
nel, the shape of the signal is changed, or distorted, by the channel. In other words,
the output of the communication channel, which is called the received signal, is not an
exact replica of the channel input due to the channe] distortion. The communication
channel is an example of a system; i.c., an entity that produces an output signal when
excited by an input signal. A large number of communication channels can be mod-
eled closely by a subclass of systems called linear systems. Linear systems are a large
subclass of systems which arise naturally in many practical applications and are rather
easy to analyze. We have devoted this entire chapter to the study of the basics of 51gnals
and linear systems in the frequency domain.

2.1 FOURIER SERIES

24

The analysis of signals and linear systems in the frequency domain is based on represen-
tation of signals in terms of the frequency variable and this is done through employing
Fourier series and Fourier transforms. Fourier series is applied to periodic signals
whereas the Fourier transform can be applied to periodic and nonperiodic signals.
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Theorem 2.1.1.  [Fourier Series] Let the signal x(¢) be a periodic signal with
period Ty. If the following conditions (known as the Dirichlet conditions) are satisfied

1. x(2) is absolutely integrable over its period; i.e.,

To
/ [x®Midt < o0,
[

"2, The number of maxima and minima of x (¢) in each period is finite,
3. The number of discontinuities of x () in each period is finite,

then x (¢) can be expanded in terms of the complex exponential signals {e/*" B as

n=-—eQ
x:(t) = Z X, 2.1.1)
\ n=—o
where
1 a+Ty s
Xy = ——/ x(®)e 77w’ 4y (2.1.2)
TO o

for some arbitrary « and
if x(¢) is continuous at ¢

x(1)
x£(t) =9 x(tM) +x¢7) . (2.1.3)

3 if x(z) is discontinuous at ¢

Some observations concerning this theorem are in order.

The coefficients x, are called the Fourier seres coefficients of the signal x(z).
These are, in general, complex numbers.

The parameter « in the limits of the integral is arbitrary. It can be chosen to
simplify computation of the integral. Usually @ = 0 or & = —7;/2 are good
choices.

» For all practical purposes, x+(f) equals x(z). From now on, we will use x{z)
instead of x..(r) but will keep in mind that the Fourier series expansion, at points
of discontinuity of x(¢), gives the midpoint between right and left limits of the
signal.

The Dirichlet conditions are only sufficient conditions for the existence of the
Fourier series expansion. For some signals that do not satisfy these conditions,
we can still find the Fourier series expansion.

The quantity fp = — is called the fundamental frequency of the signal x(¢). We
observe that the frequenc;les of the complex exponential signals are multiples of
this fundamental frequency. The nth multiple of the fundamental frequency (for
positive n’s) is called the nth harmonic,

3
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- o Conceptually this is a very important result. It states that the periodic signal x(®)
. x(t) can be described by the period Ty (or fundamental frequency fp) and the e T e e T e e T e
- sequence of complex numbers {x,}; i.e., to describe x () it is sufficient to specify 1
- a countable set of (in general complex) numbers. This is a considerable reduction
B in complexity for describing x(2), since to define x(¢) for all £, we have to specify
its values on an uncountable set of points. ' !
- « The Fouri . . . —Ty -r I Ty t
. e Fourier series expansion can be expressed in terms of the angular frequency 2 2 Figure 2.2 Periodic signal x(r).
- wg = 21 fo, by
- wo [*tE —nnt ) Example 2.1.1
o = x(t)e . (2.1.4) Let x(r) denote the periodic signal depicted in Figure 2.2 and described analytically by
- +0oa
and t—nTy
x() = II 2.1,
. | - ® f\:m ( - ) 2.16)
- x(@y= Y xelm! (2.1:5) ‘
e —oo where
- i . . - 1
_ o In general, x, = Ix,,iefz"". |xn| gives the magnitude of the nth harmonic and Lolt<z
: /x, gives its phase. Figure 2.1 shows a graph of the magnitude and phase of TI(t) = % ] = %
- various harmonics in x(¢). This type of graph is called the discrete spectrum of 0. ofherwi
- the periodic signal x (¢). »  otherwise
B : is a rectangular pulse. Determine the Fourier series expansion for this signal.
_ PANY Solution We first observe that the period of the signal is Tp and
- +7 .
Xy = — t —ing dt
- . ’ 7 | x0T
i ) ] : ¥ :
- =1
¢ ! | | e L [TheorB s
- i 1 ® 1 3 ! [ I 1 To J_z
A A R S
- 1 L 1 1 1 ] 1 i1 - 1 T —jnZ +inEE
5 -4 -3 -2 ~1 0 1 2 3 4 = = T i [e"n — "5 ]
» 1 § nwT
- . a3 = —sm|[ —
£Lx, _ . mn T
; = ~sinc (”7) @2.1.7)
) ! Fsine (2 .
- i i
~ -4 H P T ' 3 ' where we have used the definition of the sinc function sinc(t) = sin(wt)/(rt). Therefore,
i ! 1 - L
. to-3 1 1 0 1 2 1 4 n +oo
1 ! 3 ® " _ _‘[_ ) E ke
5 ; i = 7 sine <T0> % 2.18)
i n=-—cQ
- * Figure 2.1 The discrete spectrum
of x(2). A graph of the Fourier series coefficients for is shown in Figure 2.3.




;
|
i

28 Frequency Domain Analysis of Signals and Systems Chapter 2
T
T 1
P12
1| 1)
11—
’, \‘ FOSII]C ('1'_,;)
1 1
r 1
1 T
1
1 A
i ]
i 3
1 A
Y112 02 4% k X
b Figure 2.3 The discrete spectrumn of the
rectangular pulse train.
Example 2.1.2
Determine the Fourler series expansion for the signal x(#) shown in Figure 2.4 and
described by
-+co
@)= Y (-D'I¢-n) (2.1.9)
n=—— .
Solution Here T, = 2 and it is convenient to choose & == —%. Then,
’ 3
1 z —jamt
Xp = 5 _%x(t)e ds

1 3

1 /2 _. 1 7z _.
A 2

i L
Z 2

1 a som 1
] -

[e"_z' —elT [e'j”aT” —e_j"%]

j2rn —Jjinn

1 sin (nn‘) 1 —ne g (nn)
— b D _—
nmw 2 nw 2

ﬁ (1 — cos(ur) sin (2°)

2
—2— n=4k+1
nw
2
—— n=4k+3
nw
0 n even
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Figure 2.4 Signal x(r).

From these values of x, we have the following Fourier series expansion for x(¢)
(@) = 2_(31'7” +e—-jm) _ _2_(ej3m + e—j3m) + l(ejsm +e—j5rn) —.
’ ™ 3 57

4 4 : 4
= —cos(nt) — — cos(3mwt) + — cos(Smt) — - - -
ks 37 Sm

o]

B~

(=DF

= 2k +

cos(2k + 1)zt (2.1.10)

£
—

2.1.1 Fourier Series for Real Signals: the Trigonometric
Fourier Series

If the signal x (t) is a real signal satisfying the conditions of the Fourier series theorem,
then there exist alternative ways to expand the signal. For real x(z), we have

1 a+-Tp oo g
X_p = ——/ x(@)e! %' dr
TO 14
1 retlh o
= [ / x()e T 4
o

Ty
=x 2.1.11)

n

*

This means that for a real, periodic x(z), the positive and negative coefficients are

.conjugates. Hence, |x,] has even symmetry and /x, has odd symmetry with respect

to the n = 0 axis. An example of the discrete spectrum for a real signal is shown in
Figure 2.5. . ) )

From x_, = x it follows that if we denote x, = ”—"—_Z—fﬂ, then x_, = ""*;—Jb" and
therefore, forn > 1,

o 30 AL -7 i2m 2 n b —j2m &
%87 xR = aLZ—]b—neﬂ"Tor-k i—jz"!“"ié R (2.1.12)

=g, cos <2n%t> + by sin <271 %z) 2.1.13)
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Since xg is real and given as xp = %, we conclude that

[o2]
5 2N b sin (20
x(t) = > + 2. [a,, cos (27r—T—ot> + b, sin (271' T t>]

This relation, which only holds for areal periodic signal x (7). is called the trigonometric
Fourier series expansion. To obtain a, and b,, we have

(2.1.14)

a, — jb 1 feth —jam it
xy =2 / x(He TR dt,
o

2 T

and, therefore,

n 'bn 1 a+To n ] a+To . . _7;1_
a—_{]——:—l—};[, x(t) cos 271?(): dt—ﬁ i x(#) sin 27[Tot dt

From this we obtain
2 a+Ty

n
= — ) cos 27r—t> dt
TO [ X( ) < TO

2 o ()
= — x(#)sin | 2m —1 ) dt
b TOA- ) 7

(2.1.15)

an

(2.1.16)

-~_ o ; s, L \ ' : ‘:«1,:.,:»-.‘ i .‘:.
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There exists still a third way to represent the Fourier series expansion of a real signal.
Noting that

%,/ 4 xR = 2z, | cos (271' %t + an> 2117
0

we have

x(O) =x+2)  |xa|cos <2n—%r+ sz> (2.1.18)

a=1

In summary, for a real periodic signal x(¢), we have three alternative ways to
represent the Fourler series expansion

+c0 -
x(t) = Z x0T

(2.1.19)
n=—co
a e n n .
= 7" + ; [a,, cos (27[?0:) + b, sin (m-TEf)J (2.1.20)
2 n
=x0+2 Y |%,]cos <27rFt + Zx,,) (2.1.21)
n=1 0
where the corresponding coefficients are obtained from
w+Tp - a b
= Ne T higr= 2 j 2 2.1.22
=g [ a0 =T @.122)
2 [ wet)d 2123
= — t —t I3 1.

an To/a x()cos(n%) ( )

2 a+Tp n
b, = %- i x(1) sin <2n'}gt> dt 2.1.24)

1
bl = 5 [a2 + b2 (2.1.25)
Lx, = —arctan <b—"> (2.1.26)
2]

2.2 FOURIER TRANSFORMS

The Fourier transform is the extension of the Fourier series to the general class of
signals (periodic and nonperiodic). Here, as in Fourier series, the signals are expressed
in terms of complex exponentials of various frequencies, but these frequencies are not
discrete. Hence, in this case, the signal has a continuous spectrum as opposed to a
discrete spectrum.

‘We can formally state the Fourier transform theorem as follows.
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Theorem 2.2.1. [Fourier Transform] If the signal x (¢) satisfies certain con-
ditions known as the Dirichlet conditions, namely, '

1. x(¢) is absolutely integrable on the real line; i.e.,
+00
/ lx()]dt < o0,

0
2. The number of maxima and minima of x(¢) in any finite interval on the real line
is finite,
3. The number of discontinuities of x(¢) in any finite interval on the real line is finite,

then, the Fourier transform (or Fourier integral) of x(#), defined by
+co .
X(f)= / x(2)e™ ¥t g (2.2.1)
—00

exists and the original signal can be obtained from its Fourier transform by
-+00 i
xa(t) = / X(F)et df 222)"
—c0

where x..(¢) is defined as in Theorem 2.1.1. |

We make the following observations concerning the Fourier transform.

« X(f)is in general a complex function. Its magnitude | X (f)| and phase LX(f)
represent the amplitude and phase of various frequency components in x{t). The
function X (f) is sometimes referred to as the spectrum! of the signal x(¢).

 To denote that X (f) is the Fourier transform of x(¢), the following notation is
frequently employed

X(f)=7=0)
To denote that x(¢) is the inverse Fourier transform of X (f), the following nota-
tion is used
x() =F X))
Sometimes the following notation is used as a shorthand for both relations
x(0) & X()

« If the variable in the Fourier transform is chosen to be w rather than f, then we
have

X (@) = / +°°x(t)e‘j"” dt

oo

tSometimes X (f) is referred to as voltage spectrum, as opposed to power spectrum to be defined
later.
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and

1 rHoo o
1) = — J o
x(®) o /_m X(w)e'” do

¢ The Fourier tran;fonn and the inverse Fourier transform relations can be written as

+co 400
Cx(r) =/ [/ x(t)e ST dr} eI gF

oo [ rieo
= / [ / eI g f} x(r)dr (22.3)
On the other hand,
+o0
x(t) = / 8¢t — )x{(x)dr 2.2.4)

where §(2) is the unit impulse, which is defined as a signal that is zero ev-
erywhere except at # = 0 and has unit area. Comparing Equation (2.2.3) with
Equation (2.2.4), we obtain

+o0
St —1) = / e/ g (2.2.5)
—~o0
or, in general,
+oo
8@2) = / =gy (2.2.6)
—co

Hence, the spectrum of §(z) is equal to unity over all frequencies.

Example 2.2.1
Determine the Fourier transform of the signal I1(z).
Solution We have

+oo
FIIW)] = / (e 4t

+3
[ e

1
—j2rf
sinwf

wf
= sinc(f) 227

[e=/7f ™1
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il

N R

YNy Y- Spn

Sine(f)
1

A R AN

-5 \_/-3 -1 1\/ NS s f Figure 2.6 T1(z) and its Fourier
transform.

Therefore,
FLE)] = sine(f)
Figure 2.6 illustrates the Fourier transform relationship for this signal.

Example 2.2.2 g . _
Find the Fourier transform of an impulse signal x(r) = 8(z).

Solution The Fourier transform can be obtained by

+o0
~ FL] = / 3(0)e~> " ar

- .28

where we have used the mftmg property of §(1).T This shows that all frequencies are
present in the spectrum of §(¢) with unity magnitude and zero phase. The: graphs of x(z)
and its Fourier transform are given in Figure 2.7. Similarly from the relation

+oa ’ '
/ s(Netdf =1

—00

we conclude that

F11=48(f)

TThe sifting property of §(¢) states that f:o x(2)8(t — 1) dt = x(tp).
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Figure 2.7 Impulse signal and its
f spectrum.
2.2.1 Fourier Transform of Real, Even, and Odd Signals

The Fourier transform relation can be written in general as
+o0

Flx ()] = / x(t)e 2SIt gy

—

+oo +00
=/ x(t)cos(2nfr)dr—j/ x(t) sin(2n f1) dr

For real x(z), both integrals

+co
/ x(t)cos(2r ft) dt

and

+co
/ x(1) sin(2r £1) dt

are real and therefore denote the real and imaginary parts of X (f), respectively. Since
cosine is an even function and sine is an odd function, we see that for real x(2) the real
part of X (f) is an even function of J and the imaginary part is an odd function of f.
Therefore, in general, for real x(t), the transform X () is a Hermitian function

X=X
This is equivalent to the following relations:
Re[X(~ )1 = Re[X ()]
Im[X(~f)] = ~Im[X ()]
X=DE=1X (O
LX(=f)=~L(X(f)
Typical plots of [X (f)] and /X (f) for a real x(z) are given in Figure 2.8.
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Figure 2.8 Magnitude and phase of the
spectrum of a real signal.

If in addition to being real, x(¢) is an even signal, then the integral
+-co .
/ x(t) sin(2w ft) dt
-0

vanishes because the integrand is the product of an even and odd signal and, therefore,
odd. Hence, the Fourier transform X (f) will be real and even. Similarly if x (#) is real
and odd, the real part of its Fourier transform vanishes and X (f) will be imaginary
and odd.

2.2.2 Basic Properties of the Fourier Transform
In this section, we summarize the basic properties of the Fourier transform.

Linearity Property. The Fourier transform operation is linear. That is, if x1(8)
and x; (¢) are signals possessing Fourier transforms X, ( f) and X,( f), respectively, the
Pourier transform of ax;(t) + fx2(2) is ¢ X1(F) + BXa2(f), where o and B are two
arbitrary (real or complex) scalars.

Duality Property. If
X(F) =Fx@)]
then
x(f) = F[X(-1)]
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and
x(—f) = FLX )]

Time Shift Property. A shift of £ in the time origin causes a phase shift of
—2n f 1y in the frequency domain. In other words,

Flx(t — 10)] = e Z G [x(1)]

Scaling Property. For any real a # 0, we have
Flx(at)] = iX <i> (2.2.9)

la| a

Convolution Property. If the signals x(r) and y(¢) both possess Fourier trans-
forms, then .

Flx®) xyO] =Fx(O]- FyO1 = X(f) - Y(f) (22.10)

Modulation Property. The Fourier transform of x(¢)e/2™* is X (f — f;), and
the Fourier transform of

x(t) cos(2m fot)
is
X(F = fO+iX(F + fo)

Parseval’s Property. If the Fourier transforms of the signals x(¢) and y(¢) are
denoted by X (f) and Y (f), respectively, then

/ x(6)y* (1) di = /_ XY df 22.11)

Rayleigh’s Property. If X (f) is the Fourier transform of x(z), then
o0 o
[mora= [ ixmpra
—c0 —o0

Autocorrelation Property. The (time) autocorrelation function of the signal
x(2) 1s denoted by R,(r) and is defined by

R:(1) = /oo x@)x*(t —1)dt (2.2.12)

The autocorrelation property states that
FIR(D] = X (NI (2.2.13)

Differentiation Property. The Fourier transform of the derivative of a signal
can be obtained from the relation

F {%x(r)} = j2nfX(f) (22.14)

E)‘
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Integration Property. The Fourier transform of the integral of a signal can be
determined from the relation

1
& {/_ x(r)dr] = j(;Tf]z + %X(O)é‘(f) ‘ (2.2.15)

Moments Property.  If F[x(r)] =X (f), then [ t"x(¢) dt, the nth moment of
x(2), can be obtained from the relation

o] n _ _L n dn
/_mz x(B)dt = (2n> df"X(f)

Table 2.1 gives a collection of frequently used Fourier transform pairs.

(2.2.16)

F=0

TABLE2.1 TABLE OF FOURIER TRANSFORMS

Time Domain (x (1))  Frequency Domain (X())
8() 1
1 8(f)
5@t — 1) ¢~/ f
el 85f=-fo
cos(27 fot) . $8UF = )+ 58(F + f)
sin(2r for) ~—%j5(f + fo+ ?_—'ja(f - fo)
1, [l < %
0@ =44 r=x*! sine(f)
0, otherwise
sinc(r) N
t+1, ~1=<t<0
A ={ —t+1, 0<r<1 sine®(f)
0, otherwise
sinc? () AP
e~ ¥u_1 (), a >0 E?;lsz
te™u_(t),a >0 IR ji,, T
et ey
e—m’ e—rrf’
1, t>0
sgn(®) =< ~1, t<0 1/(nf)
0, =0
-1 (1) 18N+ 77
&) j2nf
80 () (J2n fy
- —Jmsgn(f)
e st =nTy) FaRs(r-%)

m. A ottt
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2.2.3 Fourier Transform for Periodic Signals

In this section, we extend the results already obtained to develop methods for find-
ing the Fourier transform of periodic signals. We have already included the Fourier
transform for some periodic signals (see Table 2.1). These include e/ cos (2 fot),
sin(27 for), and 30—+ §(r — nTy). The common property of the Fourier transform of
all these periodic signals is that the Fourier transform consists of impulse functions in
the frequency domain. We will show in this section that this property holds for all peri-
odic signals and in fact there exists a close relationship between the Fourier transform
of a periodic signal and the Fourier series representation of the signal.

Let x(¢) be a perodic signal with period Ty, satisfying the Dirichlet conditions.
Let {x,} denote the Fourier series coefficients corresponding to this signal. Then

o0 .
: 27 &
x(t) = E P ks 1

n=—Q

By taking the Fourier transform of both sides and using the fact that

@[ej2"¥5’] =3 (f _ %)
0

we obtain

XH=3 xs <f - %) 2.2.17)

n=—00

From this relation we observe that the Fourier transform of a periodic signal x (1) consists
of a sequence of impulses in frequency at multiples of the fundamental frequency of the
periodic signal. The weights of the impulses are just the Fourier series coefficients of the
periodic signal. This relation gives a shortcut for computing Fourier series coefficients
of a signal using the properties of the Fourier transform. If we define the truncated
signal x7, (¢) as

(@) —2<r=<2
(1) {0, otherwise ( )
we see that
(2]
x()= ) xp(t —nly) (2.2.19)
n=—eco

Noting that x7, (t — nTp) = x5, (2) x 8(t — nTy), we have

x() =xp()x Y 8t —nTp) (2.2.20)

n=-—co
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Therefore, using the convolution theorem and Table 2.1, we obtain

1 & n
X(f) =X () {5’3 ";ma (f - %)J (2.2.21)
which simplifies to
1 & n n ,
X(f) = T n;m Xz, (F()) 8 ( f- 70) (2.2.22)
Comparing this result with
X(H= D xs ( f- %) (22.23)
n=-o 0
we conclude that
1 n
Xy = .]—’;XT‘? (—ﬁ) : (2.2.24)

This equation gives an alternative way to find the Fourier series coefficients. Given the
periodic signal x (¢), we carry out the following steps to find x,:
1. First, we find the truncated signal xg, ().

2. Then, we determine the Fourier transform of the truncated signal using Table 2.1
and the Fourier transform theorems and properties.

3. Finally, we evaluate the Fourier transform of the truncated signal at f =
obtain the nth harmonic and multiply by 7.

Example 2.2.3
Determine the Fourier series coefficients of the signal x(¢) shown in Figure 2.2 on page 27.

n
T to

Solution We follow the preceding steps. The truncated signal is .
t
an@) =11 (—)
T
and its Fourier transform is
X1,(f) = wsinc(zf)

Therefore,

%y = —sinc (’”) (2.2.25)

2.3 POWER AND ENERGY

The energy and power of a signal are representatives of the energy or power delivered
by the signal when the signal is interpreted as a voltage or current source feeding a
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1 ohm resistor. The energy content of a signal x(¢), denoted by &, is defined as

& = /oo %)) dr

and the power content of a signal is
D s N
P, = Tlgrolo T /_% |x(2)|*dt

A signal is energy-type if £, < 0o and is power-type if 0 < P, < 00. A signal cannor
be both power- and energy-type because for energy-type signals P, = 0 and for power-
type signals £, = co. A signal can be neither energy-type nor power-type. An example
of such a signal is given in Problem 2.30. However, most of the signals of interest are
either energy-type or power-type. All periodic signals (with the exception of x () = 0)
are power-type and have power

Py = 2 / e [x(£)]* dt
Ty Ja
where T is the period and « is any arbitrary real number.
2.3.1 Energy-Type Signals
For an energy-type signal x(z), we define the autocorrelation function R, (7) as

Ry(t) = x(2) *» x*(—7)

= /oo x(®)x*(@ —)dt

= / ” x(t 4+ T)x* @) dt (2.3.1)

By setting © = 0in the definition of the autocorrelation function of x (£), we obtain the
energy content of it; i.e.,

& =/°° |x ()] de

-00

= R, (0) (2.3.2)

Now using the autocorrelation theorem of the Fourier transform (see Section 2.2.2) we
find the Fourier transform of R, (z) to be | X (f)|>. Using this resuit, or equivalently, by
employing Rayleigh’s theorem, we have

A =/°° |x(0)* dt

—0Q

= [" x(res 233)

This relation gives two methods for finding the energy in a signal. One method uses
x(t), the time domain representation of the signal, and the other method uses X (), the
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frequency representation of the signal. G,(f) = F[R,(r)] = | X (F)I? is called energy
spectral density of the signal x(¢), and represents the amount of energy per hertz of
bandwidth present in the signal at various frequepcies.

2.3.2 Power-Type Signals

For the class of power-type signals a similar development is possible. In this case we
define the time-average autocorrelation function of the power-type signal x(2) as

R.(t) = T]j_{xgo % /;1 x(x* (¢ —1t)dr 23.4)

Now, obviously, the power content of the signal can be obtained from

4
7

1 s
Px-—Tlgrgo}—/_ Ix ()2 dt

= R.(0) ' (2.3.5)

Wi

We define S, (f), the power-spectral density or the power spectrum of the signal x ()
to be the Fourier transform of the time-average autocorrelation function.

S:(f) = F[R:(0)] (2.3.6)

Subsequently, we will justify this definition. Now we can express the power content of
the signal x (¢) in terms of S, (f) by noting that R, (0) = ff; Se(f)df;ie.,

Px = R;(0)
= /m Se(f)df (2.3.7)

If a power-type signal x(¢) is passed through a filter with impulse response A (z),
the output is

y(@) = /oo x(T)h(t ~ 1) dT

and the time-average autocorrelation function for the output signal is

S O S
Ry = Jim 7 [yt - s

z
7

Substituting for y(¢), we obtain

Ry(x) = :}_1{1;%/_2 [/_:h(u)x(t —u)du} {/_wh*(vv)x*(t -7 —v)dv} dt
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By making a change of variables w = ¢ — u and changing the order of integration we

obtain
Rxw=/ [ RGOE*(v)

1 fE ;
X Tlir%o-f‘/_g—u[x(w)x u+w—1—v)dwldudv
2 / / Re(t + v — w)h(w)h* (W) du dv
—c0J —c0

i3 /°° [Ry (T +v) % h(r + )] h*(v) dv

= Re(1) % h(zY x B* (—1) (2.3.8)

where in (a) we have used the definition of R, and in () and (c) we have used the
definition of the convolution integtal. Taking the Fourier transform of both sides of this
equation, we obtain

S§,(f) = S(HHHH*(F)
=S (NIH? (2.3.9)

We have already seen that periodic signals are power-type signals. For periodic
signals, the time-average autocorrelation function and the power spectral density sim-
plify considerably. Let us assume that the signal x(¢) is a periodic signal with period
Ty having the Fourier series coefficients {x,}. To find the time-average autocorrelation
function we have

1 T
Rx(r)=T1_i£130}—/zx(t)x*(t—f)dt
-7

kTg.

=k1_i>rgok_ﬁ/_g¢x(t)x*(t_f)dt

PR

2
— H * —
_klgrgo k_To [% x(t)x*( — 1) dt

13
= Er}/qu(t)x (t — 1) dt (2.3.10)

This relation gives the time-average autocorrelation function for a periodic signal. If
we substitute the Fourier series expansion of the periodic signal in this relation, we
obtain
1 /PR = e jgmis
. ¥ J2w T jomiFty
R. (%) =7 /_% D3 mxp T RTITR 4y (2.3.11)

n=—00 M=—00
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Now using the fact that,
T

1 [T jpenm
— e o dt =8y
Th /-2

we obtain
o0

Re(@) = Y 2™ 5" 23.12)

n=—oQ

From this relation we see that the time-average autocorrelation function of a periodic
signal is itself periodic with the same period as the original signal, and its Fourier series
coefficients are magnitude squares of the Fourier series coefficients of the original
signal.

To determine the power-spectral density of a periodic signal, it is enough to find
the Fourer transform of R, (z). Since we are dealing with a periodic function, the
Fourier transform consists of impulses in the frequency domain. This is what we expect
because a periodic signal consists of a sum of sinusoidal (or exponential) signals, and
therefore the power is concentrated at discrete frequencies (the harmonics). Therefore,
the power spectral density of a periodic signal is given by

Se(fy= > |xl? ( f- %) (2.3.13)

B=—00

To find the power content of a periodic signal, we have to integrate this relation over
the whole frequency spectrum. When we do this, we obtain

o] .
Pr= > |xmf (2.3.14)

n=-—0Q

This relation is known as Rayleigh’s relation for periodic signals (also see Prablem 2.6). -

If this periodic signal passes through an LTI system with frequency response H ( f), the
output will be periodic, and the power spectral density of the output can be obtained by
employing the relation between the power spectral densities of the input and the output

of a filter. Thus,

S, (A =HPOP S 1xals (f~ %)

n=--0o

n
“(z)
Ty
and the power content of the output signal is
n
(%)
Ty

(==}
Py= ) fxl

n=-—00

<o

= > |xl

n=—cQ

2 n
8 ( f- ?5) (2.3.15)

2
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2.4 SAMPLING OF BANDLIMITED SIGNALS

The sampling theorem is one of the most important results in the analysis of signals,
which has widespread applications in communications and signal processing. This
theorem and the numerous applications that it provides clearly show how much can
be gained by employing the frequency domain methods and the insight provided by
frequency domain signal analysis. Many modern signal processing techniques and the
whole family of digital communication methods are based on the validity of this theorem
and the insight provided by it. In fact, this theorem, together with results from signal
quantization techniques, provide a bridge that connects the analog world to digital
techniques. '

The idealeading to the sampling theorem is very simple and quite intuitive. Let us
assume Fhat we have two signals x; () and x5 (¢) as shown in Figure 2.9. x; (1) is a smooth
signal; it varies very slowly, and its main frequency content is at low frequencies. In
contrast, x(#) is a signal with rapid changes due to the presence of the high frequency
components. We are to approximate these signals with samples taken at regular intervals
Ty and Ty, respectively. To obtain an approximation of the original signal we can use,

x®

i:i Lo
o
[=]
.
.
-

@

%0

®

Figure 2.9 Sampling of signals.
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for example, linear interpolation of the sampled values. It is obvious that the sampling
interval for the signal x; () can be much larger than the sampling interval necessary
to reconstruct signal x, (f) with comparable distortion. This is a direct consequence of
the smoothness of the signal x; () compared to x(#). Therefore, the sampling interval
for the signals of smaller bandwidth can be made larger, or the sampling frequency can
be made smaller. The sampling theorem is, in fact, a precxse statement of this intuitive
reasoning. It basically states that

1. If the signal x(z) is bandlimited to W, i.6., if X (f) = 0 for | f| > W, then it is
sufficient to sample at intervals 7; = 2_1V7 » '

2. If we are allowed to employ more sophisticated interpolating signals compared
to linear interpolation, we are able to obtain the exact original signal back from
the samples as long as the previous condition is satisfied.

As seen here, the importance of the sampling theorem lies in the fact that it

. provides both a method of reconstruction of the original signal from the sampled values

and also gives a precise upper bound on the sampling interval (or equivalently, a lower
bound on the sampling frequency) required for distortionless reconstruction.

Theorem 2.4.1. [Sampling] Let the signal x(¢) be bandlimited with bandwidth
W;ie,let X(f) = 0for |f| = W Let x(¢) be sampled at multiples of some basic
sampling interval Ty, where T < 55 2W’ to yield the sequence {x (nTo)}}2° . Then it is
possible to reconstruct the original signal x (¢) from the sampled values by the recon-
struction formula ’

x(@®) = Z 2W Tex (nT)sinc[2W' (¢ - nTy)] (24D

n=-=cg
where W' is any arbitrary number that satisfies

1
WSW'§———W
T,

5

In the special case where T = zw’ the reconstructlon relation sunphﬁes to

[=e] +00
x() = n;mx(nz})sinc (-Jf— - n> = n;mx (2—’1“—;)31110 [2W(t - ZTHWH

Proof. Let x5(t) denote the result of sampling the orlgmal signal by impulses at

nT, time instants. Then
o0

i) = Y x(mT)8(t —nTy) | 242)
We can write x;(¢) as _ »
wO =20 Y s¢—-nL) (243)

n=-—c
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X

X5

;tl:.

i
P N
|

Figure 2.10 Frequency domain representation of the sampled signal.

Now if we find the Fourier transform of both sides of the above relation and apply the
dua] of the convolution theorem to the right-hand side, we obtain

(N =X()=¥F [ > 8- nTgJ (2.44)
n=—0Q
Now using Table 2.1 to find the Fourder transform of § e 8(¢ — nT}), we obtain
¥ [ > 80— "Tx)J Z 8 (f - —-) (2.4.5)
n=—00 T n=—0o0

By substituting Equation (2.4.5) into Equation (2.4.4), we obtain

Xs(f) = X(f)*— Z a(f——)

T n=—00

— Z X ( f- —> (2.4.6)
I n=—o0

where in the last step we have employed the convolution property of the impulse signal.!
This relation shows that Xs(f), the Fourier transform of the 1mpulse sampled signal
is a replication of the Fourier transform of the original signal at a —— - Tate. Figure 2.10
shows this srcuanon

NowifT; > 2w , then the replicated spectrum of x () overlaps, and reconstruction
of the original signal is not possible. This type of distortion that results from under—
sampling is known as aliasing error or aliasing distortion. However, if Ty < 5z 2W’ no

tThe convolution property of the impulse signal states that x (£) * 8(r — fo) = x(* — to).
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overlap occurs, and .by emp%oying an appropriate filter we can reconstruct the original
signal back. To obtain the original signal back, it is sufficient to filter the sampled signal
by a lowpass filter with frequency response characteristic

1. H(f) =T, for | f] < W.
2. H(f) =0for|f| > %~W

Fo?: W<lfl< Ti ~ W, the filter can have any characteristics that makes its implemen-
tation easy. Of course, one obvious (though not practical) choice is an ideal lowpass
filter with bandwidth W’ where W’ satisfies W<W < Tl - Wiie.,

_ f
H(f)=TI (W) (2.4.7)
with this choice we have .
- f '
X(f)=X:(AHTn (2W,> (2.4.8)

Taking inverse Fourier transform of both sides, we obtain

x(t) = x5(t) x 2W'TysincQW'r)

= (Z x(nT})8(s —nn)) * 2W'T, sinc(2W's)

=—00

[ee]
= Z 2W'Tx (nTy) sinc QW' (t — nTy)) - 24.9
n=-—co

This relation shows that if we use sinc functions for interpolation of the sampled
valueg, Wwe can reconstruct the original signal perfectly. The sampling rate f; = 'z‘iv‘ is
the minimum sampling rate at which no aliasing occurs. This sampling rate is known as
the Nyquist sampling rate. If sampling is done at the Nyquist rate, then the only choice
for the reconstruction filter is an ideal lowpass filter and W' = W = % Then,

o0

3 x (%) Sinc@Wt — n)

n=-—00

> x(nT) sinc (Ti - n) 2.4.10)

n=-—oc0 s

x(t)

It

i

In practical systems, sampling is done at a rate b gher than the Nyquist rate. This
allow's for the reconstruction filter to be realizable and easier to build. In such cases
the distance between two adjacent replicated spectra in the frequency domain; i.e.,

: (T% —W)— W= f, —2W, is known as the guard band.

Note that there exists a strong similarity between our development of the sampling
theorem and our previous development of the Fourier transform for periodic signals (or
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Fourier series). In the Fourier transform for periodic signals, we started with a (time)
periodic signal and showed that its Fourier transform consists of a sequence of im-
pulses. Therefore, to define the signal, it was enough to give the weights of these
impulses (Fourier series coefficients). In the sampling theorem, we started with an
impulse-sampled signal, or a sequence of impulses in the time domain, and showed
that the Fourier transform is a periodic function in the frequency domain. Here again,
the values of the samples are enough to define the signal completely. This similarity
is a consequence of the duality between the time and frequency domains and the fact
that both the Fourier series expansion and reconstruction from samples are orthogonal
expansjons, one in terms of the exponential signals and the other in terms of the sinc
functions. This fact will be further explored in the problems.

2.5 BANDPASS SIGNALS

In this section, we examine time domain and frequency domain characteristics of a
class of signals frequently encountered in communication system analysis. This class
of signals is the class of bandpass or narrowband signals. The concept of bandpass
signals is a generalization of the concept of monochromatic signals, and our analysis of
the properties of these signals follows that used in analyzing monochromatic signals.

_ Definition 2.5.1. A bandpass or narrowband signal is a signal x(¢) whose fre-
quency domain representation X (f) is nonzero for frequencies in a usually small neigh-
bothood of some high frequency fo; i.e., X(f)=0for |f — fol > W, where W < Jo-
A bandpass system is a system which passes signals with frequency components in
the neighborhood of some high frequency fo; ie., H(f) =1 for |f — fo] < W and
highly attenuates frequency components outside of this frequency band. Alternatively,
we may say that a bandpass system is one whose impulse response is a bandpass signal.

Note that in the above definition, f need not be the center of the signal bandwidth,
or be located in the signal bandwidth at all. In fact, all the spectra shown in Figure 2.11
satisfy the definition of a bandpass signal.

With the above precautions, the frequency f; is usually referred to as the central
Jfrequency of the bandpass signal. A monochromatic signal is a bandpass signal for
which W =0. A large class of signals used for information transmission, the modulated
signals, are examples of bandpass signals or at least closely represented by bandpass -
signals. Throughout this section, we assume that the bandpass signal x (¢) is real valued:

To begin our development of bandpass signals, let us start with the tools used in
the analysis of systems or circuits driven by monochromatic (or sinusoidal) signals. Let
x(2) = Acos(2n for + 0) denote a monochromatic signal. To analyze a circuit driven
by this signal we first introduce the phasor corresponding to this signal as X = Ae/?,

 which contains the information about the amplitude and phase of the signal but does not

have any information concerning the frequency of it. To find the output of a linear time
invariant circuit driven by this sinusoidal signal, it is enough to multiply the phasor of
the excitation signal by the value of the frequency response of the system computed at



50 Frequency Domain Analysis of Signals and Systemns Chapter 2
XN
A A

~Jo~W ~fo =RtV W fy fHtW f
XN

—J fo f
X(f)

AN VA
~fo b/} f

Figure 2.11 Examples of narrowband signals.

the input frequency to obtain the phasor corresponding to the output. From the output
phasor, we can find the output signal by noting that the input and output frequencies
are the same. To obtain the phasor corresponding to the input, we first introduce the
signal z(¢) as

7(r) = Ae/@rfor+6)
= Acos2n fot + 0) + jAsinQu for + 6)
=x() + jx (1)

where x, (1) = A sin(27 fyt + 6) is a 90° phase shift version of the original signal and
the subscript stands for guadrature. Note that z(r) represents a vector rotating at an
angular frequency equal to 27z fy as shown in Figure 2.12, and X, the phasor is obtained
from z(z) by deleting the rotation at the angular frequency of 27 fo, or equivalently by

Im

2mfy
Ael?

Figure 212 Phasor of a monochromatic
Re  signal.

e
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rotating the vector corresponding to z(z) at an angular frequency equal to 277 f in the
opposite direction, which is equivalent to multiplying by e~/27fot or

X = z()e I

In the frequency domain, this is equivalent to shifting Z(f) to the left by f.
Also note that the frequency domain representation of Z (f) is obtained by deleting the
negative frequencies from X () and multiplying the positive frequencies by 2.

To obtain a parallel development for narrowband signals, we start with a signal
corresponding to z(z). We define z(t) for narrowband signals in the same way that z(1)
was defined for monochromatic signals; i.e., by multiplying the positive frequencies in

* X(f) by 2 and deleting the negative frequencies. By doing this we have

Z(f)=2u1(NX() 25.0)

The signal z{¢) defined by the above relation is called the analytic signal corresponding
to x(2), or pre-envelope of x(t). To obtain the time domain representation of z(¢), we
first start with finding a signal whose Fourier transform is u_1(f). From Table 2.1 we
know that

1 . 1
Flu_1 ()] = '2:3(f) + }?f

Applying the duality theorem, we obtain
1 J
[ —— e 2.5.
#3004+ 5] =uan 252)

Now, using the convolution theorem, we have

z(t) = <5(t) + L) *x(t)
at

1
= x(0)+j— *x()

=x(t)+ j2() | (2.5.3)

where
1
ty=—xx(@) (2.5.4)
: Tt .
Comparing this result with the corresponding monochromatic result

z{t) = AcosQ2m fot + 6) +J Asin(2r for + o) (2.5.5)
(1) 20

we see that £(¢) plays the same role as A sin(2n fyr +6). X(t) is called the Hilber:
transform of x(t). The name “transform” is somewhat misleading because there is no
change of domain involved, (as is the case for Fourier, Laplace, and Z transforms, for
example). In fact, Hilbert transform is a simple filter (seen from the fact that it can be
expressed in terms of a convolution integral). To see what the Hilbert transform does
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in the frequency domain we note that

5] = ssmip

—=j >0
={0 f=0
+j f<0

e/3 f>0-
=<0 =0
els f<0
= o~/ Esenlfy (2.5.6)

This means that the Hilbert transform is equivalent to a ~Z% phase shift for positive
frequencies and +% phase shift for negative frequencies and can be represented by a
filter with transfer function H (f) = —jsgn(f). This filter is called a quadrature filter,
emphasizing its role in providing a 90° phase shift. In the problems, we will investigate
some of the most important properties of the Hilbert transform.

To. obtain the equivalent of a “phasor” for the bandpass signal we have to shift
the spectrum of z(2); i.e., Z(f), to the left by fo to obtain a signal denoted by x;(¢),
which is the lowpass representation of the bandpass signal x(t). Hence,

XD =Z(f + fo) =2u_1(f + f)X(F + o) (257

and
x(1) = ()Nt _ (2.5.8)

Figure 2.13 shows Z(f) and X;(f) corresponding to a bandpass signal x (¢).

As seen x;(r) is a lowpass signal, meaning that its frequency components are
located around the zero frequency, or X;( F) =0 for [f]>W where W < f,. xp(t)
plays the role of the phasor for bandpass signals. In general, x;(¢) is a complex signal
having x.(¢) and x; (¢) as its real and imaginary parts respectively; i.e.,

x(8) = xe(8) + jx,(2) (2.5.9)

" xc(t) and x,(¢) are lowpass signals, called in-phase and quadrature components of the

bandpass signal x(¢). Substituting for x;(r) and rewriting z(¢), we obtain
2(t) = x(0) + j2 (1) |
= x;(r)e/ 2ot
= (xe(t) + jxs())e’ ¥t
= (re(#) cos (27 fot) ~ (1) sin(2r fot))
+ 7 (e (2) sin@r fot) + x5 (2) cos (27 for) (2.5.10)
Equating the real and imaginary parts, we have

x(2) = x(t) cos(2m fiyr) ~ x5 () sin(2rw fot) (2.5.11)
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Figure 2.13  Z(f) and Xj(f) corresponding to x(f).

and
R(t) = x.(t) sin(2m fot) + x,(¢) cos(27x fot) 2.5.12)

These relations give x(¢) and £(¢) in terms of two lowpass quadrature component
signals x.(¢) and x; () and are known as bandpass to lowpass transformation relations.
If we define V(¢), the envelope of x(t) as

V() = 1/x2(0) + x2() (2.5.13)

and ©(z), the phase of x(¢), as

x5 ()
= 2.5.14
@ () = arctan 0 ( )
we can write
%) = V()el®® (2.5.15)

which looks more like the familiar phasor relation X = Ae/. The only @ifference; is
that in this case the envelope (V (¢)) and phase (© (¢)) are both (slowly) time-varying
functions. Therefore, in contrast to the monochromatic phasor which has constant
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Im

146)]

[~163)

Figure 2.14 The phasor of a bandpass
Re  signal. - - .

amplitude and phase, the envelope and phase of a bandpass signal vary slowly with
time, and therefore the vector representation of it moves on a curve in the complex
plane (see Figure 2.14).

Substituting x; () = V(1)e/9® in z() in Equation (2.5.10), we obtain
z(t) = x(7) + j2(2)
= x ()l
— V(t)eje)(t)ej?ﬂfof
= V) cosQrfor + O@)) + jV (1) sin@rfor + ©())  (2.5.16)
from which we have o
x(t) = V(@) cosnfor + ©(2)) (2.5.17)
and
£() = V(@) sin@Rnfor + O (1)) (2.5.18)

These relations show why V () and @ (¢) are called the envelope and phase of the signal
x(#). Figure 2.15 shows the relation between x(8), V(£), and @(z).

Im

RO

Figare 2.15 The envelope and phase of

x(1) Re 3 bandpass signal.
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Example 2.5.1 .
Show that X (f) can be written in terms of Xi(f) as
XD = 30X(F = f) + X} (= f ~ fo)] (2.5.19)

Solution To obtain X () from X;(f), we do exactly the inverse of what we did to get
Xi(f) from X (f). First we shift Xi(f) to the right by fo to get Z(f). We have

ZH=X(f - fo)

To get X (f) from Z(f), we have to multiply the positive frequencies by a factor of 1

. . . . 2 and
reconstruct the negative frequencies. Since x(2) is assumed to be real valued, its Fo

transform has Hermitian symmetry (see Section 2.2. 1). Therefore, if we write
XN =X () +X-(f)

where X4 (f) denotes the positive frequency part of X (f)and X_(f) denotes the negative
frequency part, we have

urier

X-(H=Xi-p

Since

XN =1X(f - fo)

we obtain

X)) =3 - f) + X} (~f ~ f)]

The relation between the various signals discussed in this section are summarized
in Table 2.2, :

Transmission of Bandpass Signals through Bandpass Systems. In the
same way that phasors make analysis of systems driven by monochromatic signals
easier, lowpass equivalents of bandpass signals can be employed to find the outputs of
bandpass systems driven by bandpass signals. Let x(¢) be a bandpass signal with center
frequency fo, and let A(¢) be the impulse response of an LTI system. Let us assume that
h(2) is narrowband with the same center frequency as x(¢). To find ¥(2), the output of
the system when driven by x(¢), we use frequency domain analysis. In the frequency
domain, we have Y(f) = X (FYH(f). The signal »(2) is obviously a bandpass signal,
and therefore it has a lowpass equivalent y;(z). To obtain Y,(f) we have

BN =+ Y+ )
=+ RXG A+ WH ) (2:5.20)

By writing H(f) and X (/) in terms of their lowpass equivalents, we obtain

() =2u1(f + f)X(f + fo)
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TABLE 2.2 SUMMARY OF BANDPASS TO
LOWPASS TRANSLATION RELATIONS

x() = x(t) cos(2m fgr) — x;(¢) sin(@x for)
{ 2() = x.(t) sin(27 fot) + x5 (r) cos(2r fot)
{ x(1) = Relx {)e*" ]

£() = Im[x (1)e/ 5]

{ x(1) = Refz(1)]

() = Im[z()] <
{ x(t) = V() cos(@n for + ©)

2(t) = V(@) sin@r fot + ©)

X (1) = x(t) cos(2r for) + 2 () sin (2w for)
{ x5 () = 2(t) cos(2m for) — x(¢) sin(27 fot)
{ %c(t) = Refx; (1]

xs(t) = Im[x; ()]

x(£) = Refz(r)e~/2h']

{ % () = Im(z()e~/7 5]

x(8) = V() cos ®¢)
{x,(t) = V() sin®()

{8y = (x(£) + jR{t))e~ 1T Nt

x1(t) = 2(6) + j,(0)

x(t) = z(t)e T

x(t) = V(£)e/®®

z(f) =x(t) + j&(n)

2() = (xc(0) + jxs (2))e/ >Nt

2(t) = xi(£)es> ot
() = V(t)ej(anol+E)U))

{ V) = /720 + 220

©(t) = arctan % — 27 fot

{ VE) = /520 + 20

)
B(t) = arctan =0

V) =Ix)l
O@) = Lx()
{V(t) = |zl
O@) = Lz(t) — 2m fior

and

H(f)=2u(f + OH( + fo
By multiplying these two relations and noting that (.1 (f))? = u_1(f), we have
Xi(NH() =4u(f + X+ fOH + fo)
Finally, by substituting in the relation for ¥, (f), we obtain
Yi(f) = X HI) (2.521)
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or, in time domain, we have
i) = Lx 8y x by (1) (2.5.22)

This relation shows that to obtain the output y(), we can carry out the convolution
at low frequencies to obtain y;(¢), and then transform to higher frequencies using the
relation '

y(t) = Re[y(1)e/ /"] (2.5.23)

2.6 FURTHER READING

‘There exist numerous references covering analysis of LT systems in the time and

frequency domain. Oppenheim, Willsky, and Young (1983) contains wide coverage of
time and frequency domain analysis of both discrete-time and continuous-time systems.
Papoulis (1962) and Bracewell (1965) provide in-depth analysis of the Fourier series
and transform techniques. A more advanced treatment of linear systems based on linear
operator theory can be found in Franks (1969).

PROBLEMS

13

2.1 Let {¢; ()}, be an orthogonal set of N signals; i.e.,

/w¢i(t)¢;f(r)dr={é’ 27 1sijsw

i=j
and let x(z) be an arbitrary signal. Let £(z) = Z?’:x a;¢; (¢) be a linear approx-

imation of x(#) in terms of {¢; (t)}?_’:l. We are interested in finding o;’s such
that .

&= /co x@) — 2@ dt

is minimized.

1. Show that the minimizing o;’s satisfy

o = /oo x()p; (1) dt

2. Show that with the above choice of ¢;’s we have

H o N ’
= [ BORd -3 el
- i=1



58 Frequency Domain Analysis of Signals and Systems Chapter 2

2.2 Determine the Fourier series expansion of the following signals.

@) = Al —2n)

C () =0 A —n)

Lx3(t) =" forn<r<n+1

. x4(t) = cost + cos 2.5t

Cxs() =30 A —nyu_1(t —n)
L x6(0) = 2 (=1)"8(t — nT)
() =38R 8t ~nT)

. xg(t) = [cos 27 fot | (Full-wave rectifier output)
. x9(?) = cos2m fyt 4 [cos 2m for| (Half-wave rectifier output)

j

o 0o S~ A B W

2.3 Show that for real x(¢), we have

ap 2 n
X (1) = ) + Zan cos (27[—2701‘)

n=1

x,(2) = Za,, sin (27[ —%t)

n=}
where %, (t) and x,(z) denote the even and odd parts of x(z), defined as
x(8) +x(~1)
2
x(r) = x(—1)
2

2.4 Determine the Fourier series expansion of each of the periodic signals shown in
Figure P-2.4. For each signal, also determine the trigonometric Fourier series.

2.5 Let x,, and y, represent the Fourier Series coefficients of x (r) and y(¢), respec-
tively. Assuming the period of x(¢) is Tp, express y, in terms of x, in each of the
following cases '

L y@®) =x@—1)

2. y(t) = x(t)el 7St
3. y@®) =x(at),a#0
4. y(t) = £x()

2.6 Let x(¢) and y(¢) be two periodic signals with period 7, and let x,, and y, denote
the Fourier series coefficients of these two signals. Show that

x(t) =

X (t) =

o

1 a+Tp N B
Fo/ Oy Odi= Y 5"

=00
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x(® x(2)

(a) )
x(®) x(¥)
2
~il | l—; ; r e
S T T ool
| | | ! ] I I ] I |
T T T T 3
- v ' T 7 ¢ + F 7
(c) (@
x{®) x(8)
|
| !
_rr_rTi T T t
2 7| ry 7 ]--- I..
—1 .ar r t

@

Figure P-2.4

This relation is known as Parseval’s relation for Fourier series. Show that
Rayleigh’s relation for periodic signals [see Equation (2.3.14)] is a special case
of this relation.

2.7 Show that for all periodic physical signals that have finite power, the coefficients
of the Fourier series expansion x, tend to zero as n — oo.

2.8 Use Parseval’s relation in Problem 2.6 to prove the following identity.

1 P

1 1
I — e =
+34+54+ +(2n+1)4+ 96
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2.9 In this problem, we present the proof of the Cauchy-Schwartz inequality.

1. Show that for nonnegative {o}i; and {8},

Funs[ ] ]

‘What are the conditions for equality?
2. Let {x;}7_; and {y;}"_; be complex numbers. Show that

szy, < Z xiy7] = lexlly,

i=] i==]
What are the conditions for equality?
3. From (1) and (2), conclude that

D oxy < [Z,inZ:! [Zly:lzJ
i=] i=1 f=1

What are the conditions for equality?

4. Generalize the above results to integrals and prove the Cauchy—-Schwartz
inequality

i

< [/_w IX(t)Izdtr [/_ |y<r>12dr}i

What are the conditions for equality?

/oo x(@®)y*(t) dt

—c0

2.10 Determine the Fourier transform of each of the following signals (e is positive).
Lx(t)= 1+;x’

- @ =3) +T1(t +3)

AQ@E+3)+AGBE-2)

sinc®s

tsinct

. 1C0s 27 fot

e~ cos(Bt)

8. te™ cos{Bt)

2.11 Show that the Fourier transform of 1 58(t+ ) +18(t — 1)is cos(:r 7). Prove the
followmg transform pairs

Fleos(rt)] = %6 (f + -21-) + %5 (f — %)

N e

Problems

and

Flsin(rr)] = %5 <f . %) _ %5 <f _ %)

2.12 Determine the Fourier transform of the signals shown in Figure P-2,12:

x(2) x(® T
______ 2 2
I i
1\ /i
] |
1 1
I 1 i
i i
} #
) 2 1 -2 -1 1 2
(@) (b}
x(1) x(0) L
14~ A
/ ! x'
[}
l | L
: 11 2
1 1

sin (2mfyt)

Figure P-2.12

2.13 Prove the scaling property of the Fourier transform.
2.14 Prove the convolution property of the Fourier transform.
2.15 Prove the time shift property of the Fourier transform.

2.16 Prove the Parseval’s theorem and conclude Rayleigh’s theorem from it.

N

N

)

3
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2.17 Use the convolution theorem to show that
sinc(t) % sinc(r) = sinc(z)

2.18 Prove that convolution in the frequency domain is equivalent to multiplication in
the time domain; that is,

Fx Oy = X(F) % V()

2.19 Let x(t) be an arbitrary signal and define () =372 x(t—nTy).
1. Show that x;(z) is a periodic signal.
2. How can you write x; (¢) in terms of x(and 3572 8(t —nTp)?
3. Find the Fourier transform of x1{¢) in terms of the Fourier transform of x(1).

2.20 Using the properties of the Fourier transform, evaluate the following integrals
(@ is positive)
1. [%, sinc®(t) dt
2. [ e~¥sinc(r) dt
3. [;7 e ¥sinc?(t) dt
4. [ e cos(Bt) dr
2.21 Alinear time-invariant system with impulse response A (¢) = e=*y_ 1(¢) is.driven
by the input x(t) = e~Fty_, (#). It is assumed that o, 8 > 0. Using frequency

domain analysis, find the output of the system. Is the output power-type or energy-
type? Find its power or energy.

2.22 Let x(¢) be periodic with period Ty, andlet 0 < & < Tp. Define

@), e<t<a+T
0, otherwise

X (t) = {

and let X, (f) denote the Fourier transform of x4 (2). Prove that X, ( }—;) is inde-
pendent of the choice of a.

2.23 By computing the Fourier series coefficients for the periodic signal 372 8(¢—
nT;), show that

[+ 1 [ee] -
Z B(I—nfl‘s):}- Z "%

n=—00 S p=—co

Using this result, prove that for any signal x(z) and any T, the following identity
holds - :

[ee]

$: ot £ 2(2) o

n=—00 5 p=—co
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From this, conclude the following relation known as Poisson’s sum formula,

o 1 (o) n
x(nTy) = — X| =
L=z % x(z)
2.24 Using Poisson’s sum formula in Problem 2.23, show that

L YR o = e €M forall @ >0

200 sinc(g) = K foral X e {1,2,..)

3. Y sind(£) =K forall K €{1,2,...}
2.25 The response of an 17T system t0 e *u_y(2), (¢ > 0, is 8(2). Using fre-

quency domain analysis techniques find the response of the system to x(¢) =
e~ cos(Btyu_; (r).

2.26 Find the output of an LTI system with impulse response A (¢) when driven by the
input x(¢) in each of the following cases.
LA =s@)+80 x(t) = e~ (@ >0)
A =e"ua@)  x()=ePu@), (@ f>0)
(Treat the special case o = B separately.)
3. h{t) = e~ cos(Bt)u_1(t) () =ePui(1), (o, B >0
(Treat the special case o = separately.)
A0 = Mu () x() = e Pu_i(r), (o B>0)
(Treat the special case @ = separately.)

5. h(r) =sinc(t)  x(2) = sinc?(r)
2.27 Can the response of an LTI system to x(r) = sine(r) be y(t) = sinc?(r)? Justify
your answer.
2.28 Let the response of an LTI system to T1(r) be A(z).

1. Can you find the response of this system to x(¢) = cos 27+ from the infor-
mation provided?

2. Show that A () =TI(t) and ha(t) =TI(t) + cos 27t can both be impulse

responses of this systern, and therefore having the response of a system to
T1(r) does not uniquely determine the systemn.

3. Does the response of an LTI System to u_; (t) uniquely determine the 5ys-
tem? How about the Tesponse to e~%'u_;(z) for some o > 07 In general,
what conditions must the inputx (r) satisfy so that the system can be uniquely
determined by knowing its corresponding output?

2.29 Classify the following signals into energy-type, power-type, and neither energy-
type nor power-type signals. For cnergy-type and power-type signals, find the
energy or the power content of the signal.

L x1(f) = e costu_y ()

2. x(t) = e "cost
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3. x3(t) = sgn(r)
4. x4(t) = Acos2m fit + Bcos 2 fot
2.30 Using the definition of power-type and energy-type signals,

1. Sho;v that x(£) = Ae/ @7fo!+9) i5 3 power-type signal and its power content
is A%,

2. Show that the unit step signal u_; (¢) (the unit step function) isa power-type
signal and find its power content.

3. Show that the signal

-1
x(n:{éﬁ © 0

is neither an energy- nor a power-type signal.

2.31 Determine whether these signals are energy-type or power-type. In each case,
find the energy or power-spectral density and also the energy or power content of
the signal. ]

1 x(t) = e cos(Bu1(t) «,B>0

2. x(t) = sinc(?)

dx) =32 Al —2n)

4, x(@) = u-1(t)

5.x()=1 '

2.32 Find the energy spectral density and the energy content, or power-spectral density
and the power content of the output of the following LTI systems when driven by
the signals of the previous problem.

1 A() = e "u_1(1)
2. h(t) = sinc(6t)
3.0 =4

2.33 Show that if x7() denotes the truncated signal corresponding to the power-type
signal x(z); that is,

() -L<i=<%
1) =
*r () {0, otherwise

and if Sy, (f) denotes the energy spectral density of x7(f), then S:(f), the
power-spectral density of x(t), can be expressed as

Sar
St = im 220

2.34 Show that if the input to an LTI system is energy-type and the impulse response -

of the system is also energy-type, then the output is also energy-type. Can you

Problems : 65

give an example of an LTT system with an energy-type signal as its input such
that the corresponding output signal is not energy-type? ]

2.35 Foralowpass signal with a bandwidth of 6000 Hz, what is the minimum sampling
frequency for perfect reconstruction of the signal? What is the minimum required
sampling frequency if 2 guard band of 2000 Hz is required? What is the minimum
required sampling frequency and the value of X for perfect reconstruction if the
reconstruction filter has the following frequency response

K, |1 < 7000
H(f) = K- KUEZ0% 7000 < | f] < 10000
0, otherwise

2.36 Let the signal x(r) = Asinc(1000r) be sampled with a sampling frequency of
‘2000 samples per second. Determine the most general class of reconstruction
filters for perfect reconstruction of this signal.

2.37 The lowpass signal x(z) with a bandwidth of W is sampled with a sampling
interval of T; and the signal

(=}

%)= > x(nT)p(t —nTy)

n=-~0o0
is generated, where p(¢) is an arbitrary shaped pulse (not necessarily time-limited
to the interval [0, T} ).
1. Find the Fourier transform of x,(#).
2. Find the conditions for perfect reconstruction of x(t) from x ().
3. Determine the required reconstruction filter.

2.38 The lowpass signal x () with a bandwidth of W is sampled at the Nyquist rate
and the signal

0= Y (~1)'x(l)8¢ —nly) -

==
is generated.

1. Find the Fourier transform of x;(¢).
2. Can x() be reconstructed from x; (¢) by using an LTI system? Why?
3. Canx(¢) bereconstructed from x; (¢) by using a linear time-varying system?
How?
2.39 Alowpass signal x(#) with bandwidth W is sampled with 2 sampling interval T;
and the sampled values are denoted by x(n7;). A new signal x; () is generated
by linear interpolation of the sampled values; i.e.,
t —nT;
Ts

& ({n+ DT;) — x(nTy)) nT; <t < (n+ DT,

%) = x(nTy) +
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1. Find the power spectrum of x; (¢).

2. Under what conditions can the original signal be reconstructed from the
sampled signal and what is the required reconstruction filter?

2.40 A lowpass signal x(#) with bandwidth of 50 Hz is sampled at the Nyquist rate
and the resulting sampled values are

-1, -4<n<0
x(nT) =<1, O<n<4
0, otherwise
1. Find x(.005).

2. Is this signal power-type or energy- type? Find its power or energy content.

2.41 Let W be arbitrary and x(¢) be a lowpass signal with bandwidth W.

1. Show that the set of signals {¢, (1)} _, Where ¢, = sinc(@W? — n) rep-

resent an orthogonal signal set. How should these signals be weighted to
generate an orthonormal set?

2. Conclude that the reconstruction from the samples relation
(=]

x(t)= Y x(nT,)sincQWt —n)

n=-=cQ
is an orthogonal expansion relation.
3. From above, show that foralln .

/oo x(t) sinc@RWt —n)dt = Kx(nTy)

and find XK.

2.42 In the development of the sampling theorem, we have assumed that samples are
taken at multiples of 7;. What happens if we sample regularly with 7; as sampling
interval but the first sample is taken at some 0 < #, < T,? Using this result show
that

x(0) = Y x(to+kT)sinc2W (i + kT3))

2.43 Prove that B
xc(t) = x(t) cos(2m for) + £(t) sin(27 for)
x5 {t) = Z(t) cos(m fot) — x(t) sin(@x fot)
2.44 Show that
X () = 31X + XF (D]

2.45 A lowpass signal x(¢) has a Fourier transform shown in Figure P-2.45(a). This
signal is applied to the system shown in Figure P-2.45(b). The blocks marked by
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XN
1
i )
I i
I t
I i
| i
|
—~W _ _%/_ % w f
@
sin (2mfyt)
x(D * X3(1) 2 cos 2mfpd)
0 x()
LPF AR
=W, W]
4

sin (27fyt)

(&)
Figure P-2.45

% represent Hilbert transform blocks and it is assumed that W « f5. Determine
the signals x; (#) for 1 <i <7,andplot X;(f)forl <i < 7.

2.46 Show that the Hilbert transform of an even signal is odd and the Hilbert transform
of an odd signal is even. .

2.47 Show that the energy content of a signal is equal to the energy content of its
Hilbert transform.

2.48 Show that the signal x (¢) and its Hilbert transform are orthogonal; i.e.,

./cQ xA)x()dr =

-0

2.49 Let x(¢) represent a bandpass signal and m(¢) denote a lowpass signal with non-
overlapping spectra. Show that the Hilbert transform of ¢(#) = m(#)x(¢) is equal
to m(B)X ().

2.50 Show that if X ()| =0 = 0, then £(r) = —x(2).

2.51 Let x(¢) denote a lowpass signal. Determine the Hilbert transform of x(z)
cos(2m fot), where fj is much larger than the bandwidth of x (z).

2.52 Show that the Hilbert transform of A sinQ2x fot + 0) is —A cos2rm for + ).

2.53 Show that the Hilbert transform of the signal /2™ is equal to — jsgn( fp)e/ 20!,
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2.54 Show that

9”[%960)} = 21| f|F[x ()]

2.55 Show that the Hilbert transform of the derivative of a signal is equal to the
derivative of its Hilbert transform.

2.56 The bandpass signal x(f) = sinct cos 2 Jot is passed through a bandpass filter
with impulse response 4(z) = sinc? (1) sin 27 fyt. Using the lowpass equivalents
of both the input and the impulse response, find the lowpass equivalent of the
output and from it find the output y (). :

2.57 The real narrowband signal x(¢), whose frequency components are in the neigh-
borhood of some f; (and — Jo), is passed through a filter with transfer function
H(f) and the output is denoted by y(¢). The magnitude of the transfer function is

denoted by A(f) and its phase is denoted by 6¢( f). It is assumed that the transfer -

function of the filter is smooth enough such that in the bandwidth of the input
signal the magnitude of the transfer function is essentially constant and its phase
can be approximated by its first order Taylor series expansion; i.e.,

A(Sf) = A(fo)
0(F) = 0(fo) + (f = f0)0' ()l =1,

1. Show that Y,(f), the Fourier transform of the lowpass equivalent of the -

output, can be written as :
B0 ™ XA OO Do)
2. Conclude that
YO~ AGo) + Valt — t5) cosr fyt — 1)
where V. (¢) is the envelope of the input x (¢) and

__Lasp
¢ = TonTgp M=k

__1up
f 2 f f=f

3. The quantities 1, and Ip are called envelope delay (or group delay) and phase
delay, respectively. Can you interpret their role and Justify this nomencla-
ture?

2.58 'We have seen that the Hilbert transform introduces a 90° phase shift in the com-
ponents of a signal and the transfer function of a quadrature filter can be written
as

H(f) = { ’

7
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We can generalize this concept to a new transform that introduces a phase shift
of § in the frequency components of a signal, by introducing

-Jjé —
o ={5" 120

and denote the result of this transforin byxe(t);ie, Xo(f) = X (FIHs(f), where
Xo(f) denotes the Fourier transform of xg(t). Throughout this problem assume
that the signal x(¢) does not contain any DC components.

1. Find hy(2), the impulse response of the filter representing the transform
described above.

2. Show that %g(t) is a linear combination of x (¢) and its Hilbert transform.

3. Show that if x(r) is an energy-type signal, xp (¢) will also be an energy-type
signal and its energy content will be equal to the energy content of x(f).

2.59 Let m(f) =sinc®(¢) and let x(t)=mt)cos2nfyt — i (¢) sin 27 f,¢ represent a
bandpass signal.
1. Find the pre-envelope, z(¢), and the lowpass equivalent signal to x ().

2. Determine and plot the Fourier transform of the signal x (). What is the
bandwidth of x(z)?

3. Repeat for x(¢) = m(t) cos 27 for + #i(t) sin 2nf,t.
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Analog Signal Transmission
and Reception

A large number of information sources are analog sources. Analog sources can be
modulated and transmitted directly or can be converted to digital data and transmitted
using digital modulation techniques. The nonon of analog to digital conversion will be
examined in detail in Chapter 6.

Speech, image, and video are examples of analog sources of information. Each
of these sources is characterized by its bandwidth, dynamic range, and the nature of
the signal. For instance, in case of audio, and black and white video, the signal has
just one component measuring the pressure or intensity, but in case of color video, the
signal has four components measuring red, green, and blue color components, and the
intensity.

In spite of the general trend toward digital transmission of analog signals, there
is still today a significant amount of analog signal transmission, especially in audio
and video broadcast. In this chapter, we treat the transmission of analog signals by
carrier modulation. The treatment of the performance of these systems in the presence
of noise is being deferred to Chapter 5. We consider the transmission of an analog signal

by impressing it on either the amplitude, the phase, or the frequency of a sinusoidal

carrier. Methods for demodulation of the camer—modulated 81gna1 to recover the analog
information signal are also described.

3.1 INTRODUCTION TO MODULATION

The analog signal to be transmitted is denoted by m(¢), which is assumed to be alowpass
signal of bandwidth W, in other words, M (f) = 0, for | f| > W. We also assume that
the signal is a power-type signal (see Section 2.3) whose power is denoted by Py,
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where

The message signal m(z) is transmitted throngh the communication channel by
impressing it on a carrier signal of the form

c(t) = Accos(2mfet + &c) (3.1.1)

where A, is the carrier amplitude, £ is the carrier frequency, and ¢, is the carrier phase.
We say that the message signal m () modulates the carrier signal ¢(r) in eitheramplitude,
frequency, or phase, if after modulation, the amplitude, frequency, or phase of the signal
become functions of the message signal. In effect, modulation converts the message
signal m(t) from lowpass to bandpass, in the neighborhood of the center frequency .

Modulation of the carrier ¢(z) by the message signal m(z) is performed in order to
achieve one or more of the following objectives: (1) The lowpass signal is translated in
frequency to the passband of the channel so that the spectrum of the transmitted band-
pass signal will match the passband characteristics of the channel; (2) to accommodate
for simultaneous transmission of signals from several message sources, by means of
frequency-division multiplexing (see Section 3.2.6); and (3) to expand the bandwidth
of the transmitted signal in order to increase its noise immunity in transmission over a
noisy channel, as we will see in our discussion of angle-modulation noise performance
in Chapter 5. We will see that objectives (1) and (2} are met by all of the modulation
methods described next. Objective (3) is met by employing angle modulation to spread
the signal m(z) over a larger bandwidth.

In the following sections of this chapter we consider the transmission and recep-
tion of analog signals by carrier-amplitude modulation (AM), carrier-frequency mod-

‘ulation (FM) and carrier-phase modulation (PM). Comparisons will be made among

these modulation methods on the basis of their bandwidth requirements and their imple-
mentation complexity. Their performance in the presence of additive noise dlsturbances
and their power efficiency, will be treated in Chapter 5.

3.2 AMPLITUDE MODULATION {AM])

In amplitnde modulation, the message signal m(z) is impressed on the amplitude of
the carrier signal ¢(z). There are several different ways of amplitude modulating the
carrier signal by m(¢), each of which results in different spectral characteristics for
the transmitted signal. Next, we describe these methods, which are called (1) double-
sideband, suppressed carrier AM, (2) conventional double-sideband AM, (3) single-
sideband AM, and (4) vestigial-sideband AM.

3.2.1 Double-Sideband Suppressed Carrier AM

A double-sideband, suppressed carrier (DSB-SC) AM signal is obtained by multiplying
the message signal m(r) with the carrier signal c(z). Thus, we have the amplitude
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modulated signal
u(t) = m@)c@)
= A.m(t) cos@r fut + ¢.)

Bandwidth Requirements. The spectrum of the modulated signal can be
obtained by taking the Fourier transform of u(t).

UuiH)= [m(f)] *F[Accosmfet + ¢c)]
= M(f) wle [e”"a(f f e %8(f + fo)]

[M(f fe* + M(f + foe™7%]
Figure 3.1 illustrates the magmtude and phase spectra for M(f) and U(f).

ey 6]
A

{UCA

=W —f  —f+W 0 £~ £ f+W

ZU(f)

Figure 3.1 Magnitude and phase spectra of the message signal m(¢) and the DSB
AM modulated signal u(t).
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‘We observe that the magnitude of the spectrum of the message signal m(z) has
been translated or shifted in frequency by an amount f,.. The phase of the message signal
has been translated in frequency and offset by the carrier phase ¢.. Furthermore, the
bandwidth occupancy of the amplitude-modulated signal is 2W, whereas the bandwidth
of the message signal m () is W. Therefore, the channel bandwidth required to transmit
the modulated signal u () is B, = 2W.

The frequency content of the modulated signal 1 () in the frequency band | f| > f:
is called the upper sideband of U(f), and the frequency content in the frequency band
| I < feiscalled the lower sideband of U f).1tis iraportant to note that either one of the
sidebands of U (f) contains all the frequencies that are in M (f). That is, the frequency
content of U (f) for f > f. corresponds to the frequency content of M(f) for f >0,
and the frequency content of U(f) for f < — f; corresponds to the frequency content
of M(f) for f <0. Hence, the upper sideband of U (f) contains all the frequencies in
M(f). A similar statement applies to the lower sideband of U (f). Therefore, the lower

_sideband of U (f) contains all the frequency content of the message signal M (f). Since

U(f) contains both the upper and the lower sidebands, it is called a double-sideband
(DSB) AM signal.

The other characteristic of the modulated signal u(t) is that it does not contain
a carrier component. That is, all the transmitted power is contained in the modulating
{(message) signal m(¢). This is evident from observing the spectrum of U (f). We note
that, as long as m(¢) does not have any DC component, there is no impulse in U(f) at
f = fz, which would be the case if a carrier component was contained in the modulated
signal u(¢). For this reason, u(¥) is called a suppressed-carrier signal. Therefore, u(t)
is a DSB-SC AM signal.

Example 3.2.1
Suppose that the modulating signal m(¢) is a sinusoid of the form

m(t) = acos 27 fimt I K fe

Determine the DSB-SC AM sigpal and its upper and lower sidebands.
Solution The DSB-SC AM is expressed in the time domain as

u(t) =m(t)c(?) = Acacos2m fint cos2rfet + @.)

Aca
= ";‘—cos[ij(fc‘fm + fudt + @c]
In the frequency domain, the modulated signal has the form
Uy = [e"’"a(f Fet Fu) +€71%8(F + fo = fu)]

+ A—} [e7%8(f = fo— fu) + €~%3(F + fot Fi)]

This spectrum is shown in Figure 3.2(a).



74 Analog Signal Transmission and Reception Chapter 3
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~fefu —fe ~fet i 0 e~ Im fe J;+J‘;Jx
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1T,

~fe=ta 0 Jet fu
©

Figure 3.2 (a) The (magnitude) spectrum of a DSB-SC AM signal for a sinusoidal
message signal and (b) its lower and (c) upper sidebands.

The lower sideband of u(r) is the signal
Aca
ue(t) = == cos[2(fe — fu)t + ¢

and its spectrum is illustrated in Figure 3.2(b). Finally, the upper sideband of u(z) is the
signal .

4 .
nat) = 5% cosl2n(f, + fu)t 4 4]

and its spectrum is illustrated in Figure 3.2(c).

Power Content of DSB-SC Signals. In order to compute the power content

of the DSB-SC signal, without loss of generality we can assume that the phase of the
signal is set to zero. This is because the power in a signal is independent of the phase
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of the signal. The time-average autocorrelation function of the signal u(z) is given by

1 T/2
R,(t) = lim — / u(u@ —t)de
T—oo T J_1p2

1 T2
= lim — Afm(t)m(t — 1) cos2rfet) cosRu f.(t — 7)) dt
T—oo T ~T/2

A2 1 (T2
= —% lim —/ m(t)m(t — v){cos(4n fot — 2w ft) + cos(2n foT)] dt
2 T—oo T ~T/2

2

A .
7‘Rm () cos(2m f.T) (3.2.1)
where we have used the fact that

T/2
lim m@m(t — v)cos(dn fot — 2nf,t)dt =0
/2

T—oo f_T

This is because

/oo m®)m(t — v)cos(4n f.t - 2nf,.t) dt

9 [ Ftne N 0 costan s — 2o df
= /oo eI (1) [M(f - 225)8“1'2”!?* L MG+ 22]cc)ej2nf;r o

@o

where in (a) we have used Parseval’s relation [see Equation (2.2.11)] and in (b) we
have used the fact that M (f) is limited to the frequency band [-W, W}and W « f,
hence, there is no frequency overlap between M(f) and M(f £ 2f.).

By taking the Fourier transform of both sides of Equation (3.2.1), we can obtain
the power-spectral density of the modulated signal as

A2
S.(f)=9%F [—;—Rm(‘r) COS(ZT[fCT)jI

AZ

This shows that the power-spectral density of the DSB-SC signal is the power-spectral
density of the message shifted upward and downward by £, and scaled by A2/4. To
obtain the total power in the modulated signal, we can either substitute 7 = 0 in the
time-average autocorrelation function as given in Equation (3.2.1), or we can integrate
the power-spectral density of the modulated signal given in Equation (3.2.2) over all
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frequencies. Using the first approach from Equation (3.2.1), we have

AZ
Py = 7€Rm (v)cosmfet)lzo

AZ
= SR
5 ©

A2
= —25 P, (3.2.3)
where P, = R, (0) is the power in the message signal. ‘
Example 3.2.2
In Example 3.2.1, determine the power-spectral density of the modulated signal, the power
in the modulated signal, and the power in each of the sidebands.

Solution The message signal is m(t) = a cos 27 f,¢, its power-spectral density is given

by
a2 a?

Sm(f) = Za(f - fm) + Ia(f + fm) (3'24)
Substituting in Equation (3.2.2) we obtain the power-spectral density of the modulated sig-
nal as :

AZd?
Su(f) = 166 B =T —f)+(f+ fn = )+ 8(f = fu + F) +3(f + fu + f0)]
The total power in the modulated signal is the integral of S, (f) and is given by
00 ’ A?.aZ
Po= [ sner=
-ca

Because of symmetry of sidebands the powers the upper and lower sidebands, P,; and
Pis, are equal and given by
Aga2
e
It can also be observed from the power-spectral density of the DSB-SC signal [see
Equation (3.2.2)] that the bandwidth of the modulated signal is 2W, twice the bandwidth
of the message signal, and that there exists no impulse at the carrier frequency + f. in

Pys = Py =

the power-spectral density. Therefore, the modulated signal is suppressed carrier (SC). -

Demodulation of DSB-SC AM Signals. Inthe absence of noise, and with the

assumption of an ideal channel, the received signal is equal to the modulated signal; i.e.,
r(@) =u() '

= Am(t) cos2r f.t + @) (3.2.5)

Suppose we demodulate the received signal by first multiplying 7 (z) by a locally
generated sinusoid cos(2m ff + ¢), where ¢ is the phase of the sinusoid, and then
passing the product signal through an ideal lowpass filter having a bandwidth W. The
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multiplication of » (¢) with cos(2r £t + ¢) yields
r{t) cos(2mfit + ¢) = Acm(t) cosRrfot + @) cos(2r fit + &)
= %Acm(z‘) cos(¢. — @) + %Acm(z‘) cos(4m fut + & + ¢c)

The lowpass filter rejects the double frequency components and passes only the lowpass
components. Hence, its output is

Ye(t) = 3Am(r) cos(¢e — @) (3.2.6)

Note that m(¢) is multiplied by cos(¢, — ¢). Thus, the desired signal is scaled
in amplitude by a factor that depends on the phase difference between the phase ¢,
of the carrier in the received signal and the phase ¢ of the locally generated sinusoid.
‘When ¢, # ¢, the amplitude of the desired signal is reduced by the factor cos(d. — ¢).
If ¢, — ¢ = 45°, the amplitude of the desired signal is reduced by +/Z and the signal
power is reduced by a factor of two. If ¢, — ¢ = 90°, the desired signal component
vanishes.

The above discussion demonstrates the need for a phase-coherent or synchronous
demodulator for recovering the message signal m(z) from the received signal. That is,
the phase ¢ of the locally generated sinusoid should ideally be equal to the phase ¢, of
the received carrier signal.

A sinusoid that is phase-locked to the phase of the received carrier can be generated
at the receiver in one of two ways. One method is to add a carrier component into the
transmitted signal as illustrated in Figure 3.3.

‘We call such a carrier component “a pilot tone.” Its amplitude A, and, hence, its
power Af, /2 is selected to be significantly smaller than that of the modulated signal
(). Thus the transmitted signal is double-sideband, but it is no longer a suppressed
carrier signal. At the receiver, a narrowband filter tuned to frequency £, is used to filter
out the pilot signal component and its output is used to multiply the received signal as
shown in Figure 3.4. ' »

The reader may show that the presence of the pilot signal results in adc component
in the demodulated signal, which must be subtracted out in order to recover m{t).

The addition of a-pilot tone to the transmitted signal has the disadvantage of
requiring that a certain portion of the transmitted signal power must be allocated to the
transmission of the pilot. As an alternative, we may generate a phase-locked sinusoidal

m(f) N I . Transmilt.ad modulated
X + signal
o =4 lA,
A cos2mf t
. . Figure 3.3 Addition of a pilot tone to 2
Oscillator . DSB AM signal.
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Received ®
signal N Lowpass -
() \>_</ filter
Narrowband
filter tuned Figure 3.4 Use of a pilot tone to
tof demodulate 2 DSB AM signal.

carrier from the received signal r(¢) without the need of a pilot signal. This can be
accomplished by use of a phase-locked loop (PLL) as described in Section 5.2.

3.2.2 Conventional Amplitude Modulation

A conventional AM signal consists of a large carrier component in addition to the
double-sideband AM modulated signal. The transmitted signal is expressed mathemat-
ically as

u(t) = Al +m(@)] cos(z‘}r fut + ) B2.7)

where the message waveform is constrained to satisfy the condition that |m(2)| < 1.
We observe that Am(t) cos(2rf,r + ¢.) is a double-sidéband AM signal and
A, cos(2m ft + ¢.) is the carrier component. Figure 3.5 illustrates an AM signal in the
time domain.

Aslong as [m(#)| < 1, the amplitude A [I+m()]is always positive. This is the
desired condition for conventional DSB AM that makes it easy to demodulate, as
described next. On the other hand, if m(¢) < —1 for some ¢, the AM signal is said to
be overmodulated and its demodulation is rendered more complex. In practice, m(t) is
scaled so that its magnitude is always less than unity.

It is sometimes convenient to express m{t) as

m(t) = am, ()

where m, (¢) is normalized such that its minimum value is —1. This can be done, for

Envelope

u() T \/ A

UW’

/ Figure 3.5 A conventional AM signal in
~d.- the time domain.
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example, by defining
m(t)
max|m ()}
The scale factor a is called the modulation index. Then the modulated signal can be
expressed as

my(t) =

u(t) = A {1 +amy ()] cos 2w fit (3.2.8)
Let us consider the spectral characteristics of the transmitted signal u(z).

Bandwidth of Conventional AM Signal. If m(z) is a deterministic signal
with Fourier transform (spectrum) M (f), the spcctrum of the amplitude-modulated
signal u(z) is

unN==% [amn(r)l * FA  cos2rfet + Pc)] + F[Ac cos@nfet + ¢c)]

= aby (1)« 2 [P*S(F — £+ eI + 1)
+%wwq—m+wwu+m]

UG = S aMy(f ~ F) + e~ £)

+ €-j¢EaMn (F+fo+ e—j¢c5(f + fc)]

Obviously, the spectrum of a conventional AM signal occupies a bandwidth twice the
bandwidth of the message signal.

Example 3.2.3
Suppose that the modulating signal r1,(¢) is a sinusoid of the form

ma(t) = coS 2 fut  fn L fo

Determine the DSB AM signal, its upper and Iower sidebands, and its spectrum, assuming
a modulation index of a.

Solution From Equation (3.2.7), the DSB AM signal is expressed as
u(r) = Al +acos2x ft]cos(ufet + ¢¢)
- f )T+ ¢c]

= Accos@2rf.t + .

+ fmdt + éc]
The lower sideband component is
Aca
uy(8) = == cos2x (fe = fm)t + 0]

while the upper sideband component is

u, (1) = Aga cos[2n (fe + fm)t + bc]
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The spectrum of the DSB AM signal u(?) is

U = 52 (%80 — )+ e I5(F + 1]

+% [e#5(F = fot fu) + € 8(f + fo = )]

+ L[5 — fom fu) + €IS + ot f)]

The spectrum [U(f)| is shown in Figure 3.6. It is interesting to note that the power
of the carrier component, which is A2/2, exceeds the total power (A2a2/2) of the two

sidebands.
(/;c) ol - (,;)

(%) *)

(%)

~fe=in /e ~Jetfm Q Jfe=Tm Je fetfa

Figure 3.6 Spectrum of a DSB AM signal in Example 3.2.3. .

Power for Conventional AM Signal. Conventional AM signal is similar to
DSB when m(z) is substituted with 1 + am, (). As we have already seen in the DSB-SC
case, the power in the modulated signal is [see Equation (3.2.3)]

A’l
P, = Tc P

where P, denotes the power in the message signal. For the conventional AM

1 T/2
P, = lim — / 1 + am, ())* dt
TJorp

T—co
1 IR
= lim / (
Tooo T J_r /2
where we have assumed that the average of m, (¢) is zero. This is a reasonable assump-

tion for many signals including audio signals. Therefore, for conventional AM
Pn=1+a*P,,

1+ a*mi()) dt

and, hence,

AL A
2 2 _

The first component in the the preceding relation is due to the existence of the carrier and

this component does not carry any information. The second component is the informa-
tion carrying component. Note that the second component is usually much smaller_ than

P= a’Py,
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the first component (|m, ()] < 1, and for signals with large dynamic range, P, < 1).
This shows that the conventional AM systems are far Iess power efficient compared with
DSB-SC systems. The advantage of conventional AM is that it is easily demodulated.

Demodulation of Conventional DSB AM Signals. The major advantage of
conventional AM signal transmission is the ease with which the signal can be demodu-

- lated. There is no need for a synchronous demodulator, Since the message signal m(r)

satisfies the condition |m ()| < 1, the envelope (amplitude) 14+m(z) > C. If we rectify
the received signal, we eliminate the negative values without affectin g the message sig-
nal as shown in Figure 3.7. The rectified signal is equal to u(¢) when u(?) > 0 and zero
when u(#) < 0. The message signal is recovered by passing the rectified signal through
a lowpass filter whose bandwidth matches that of the message signal. The combination
of the rectifier and the lowpass filter is called an envelope detector.

-~ Envelope

Figure 3.7 Envelope detection of conventional AM signal.

Ideally, the output of the envelope detector is of the form
d@t) = g1 + gam(t) (3.2.9)

where g1 represents adc component and g, is a gain factor due to the signal demodulator.
The dc component can be eliminated by passing d(r) through a transformer, whose
output is gam(t). )

The simplicity of the demodulator has made conventional DSB AM a practical
choice for AM radio broadcasting. Since there are literally billions of radio receivers,
an inexpensive implerentation of the demodulator is extremely important. The power
inefficiency of conventional AM is justified by the fact that there are few broadcast
transmitters relative to the number of receivers. Consequently, it is cost effective to
construct powerful transmitters and sacrifice power efficiency in order to simplify the
signal demodulation at the receivers.

3.2.3 Single-Sideband AM

In Section 3.2.1 we showed that a DSB-SC AM signal required a channel bandwidth
of B, = 2 W Hz for transmission, where W is the bandwidth of the baseband signal.
However, the two sidebands are redundant. Next, we demonstrate that the transmission
of either sideband is sufficient to reconstruct the message signal m(¢) at the receiver.
Thus, we reduce the bandwidth of the transmitted to that of the baseband signal.
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m® (<)
A cos 27f,t
Hilbert u?)
transform : <+>'——‘>
90°
A
¢ .
(o) csin 2mf.¢
Figure 3.8 Generation of a
&/

single-sideband AM signal.

First, we demonstrate that a single-sideband (SSB) AM signal is represented

mathematically as
u(t) = Aom@) cos2n fot = Aan(t)sin2m fot (3.2.10)

where (2 is the Hilbert transform of m(¢) that was introduced in Section 2.5, and the
plus-or-minus sign determines which sideband we obtain. We recall that the Hilbert
transform may be viewed as a linear filter with impulse response A(t) = 1/mt and
frequency response ’ )

—j, >0
H( =< ], f<0 (3.2.11) -
0, f=0

Therefore, the SSB AM signal u(z) may be generated by using the system configuration
shown in Figure 3.8. '
. The method shown in Figure 3.8 for generating a SSB AM signal is one that

employs a Hilbert transform filter. Another method, illustrated in Figure 3.9, generates ,
aDSB-SC AM signal and then employs a filter which selects either the upper sidcband» :

or the lower sideband of the double-sideband AM signal.

o) fx\ Bandpass 0
filter .

A cos2mf.t - Figure 3.9 Generation of a

single-sideband AM signal by filtering one

- of the sidebands of a DSB-SC AM signal.

Spectral Characteristics of the Single Sideband Signal. Let m(r) be

signal with Fourier transform (spectrum) M (). An upper single-sideband amplitade- *
modulated signal (USSB AM) is obtained by eliminating the lower sideband of a DSB -
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amplitude-modulated signal. Suppose we eliminate the lower sideband of the DSB AM
signal, upgp(t) = 2A.m(t) cos 27 fet, by passing it through a highpass filter whose
transfer function is given by

L Ul f
B = {0, otherwise

Obviously H (f) can be written as

H(f) =u(f = fo) +ua(=f - fo)

where u_1(-) represents the unit step function. Therefore the spectrum of the USSB
AM signal is given by

Us(f) =AM(f = fur(f — f) + AM(f + fui(—=f - fo)
or equivalently

Uu(F) = AcM(Ducs(Pyeyop + AM(Pos(=Ppyye (3212)

Taking inverse Fourier transform of both sides of Equation (3.2.12) and using the

- modulation property of the Fourier transform, we obtain

Uy (1) =Acm(t) * F 7 u_y (177 + Am(s) x F 7 uoy (=l (3.2.13)
By noting that

AN
% |50+ 5] =uap

1 J
F 60— —=—| = -
[2 ® 2m} u(=1) (32.14)
and substituting Equation (3.2.14) in Equation (3.2.13), we obtain
1, 77 1 j .
L) = A ¢ Z8(t o infa i IR B v~ 4 13
u, () m(t) x [2 ()+2m‘]e +Acm(z‘)*[28(t) Znt]e

A ; A .
= —2—‘[m(z) + jRO T + —2£[m (2 — jA(r)je /¥t (3.2.15)
where we have used the identities
m(t) «8(t) = m(t)
1
m(t) * — = m(t)
Tt
Using Euler’s relations in Equation (3.2.15), we obtain

u, (1) = Acm(t) cos 2r fot — A (t) sin2m fot (3.2.16)
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which is the time-domain representation of an USSB AM signal. The expression for
the LSSB AM signal can be derived by noting that ‘

uy (t) + ug(t) = upss (¥)
or
Aam(r) cos2m fut — Ah(E) sin2m fut + ug(r) = 2A.m(¢) cos 2w fet
and, therefore,
uy(2) = Acm(t) cos 2w fot + A (2) sin 27 fot C (3217

Thus, the time domain representation of a SSB AM signal can in general be expressed
as

usse(t) = Agm(t) cos 2w fot F A (L) sin 2m f ot (3.2.18)
where the minus sign corresponds to the USSB AM signal and the plus sign corresponds
to the LSSB AM signal.

Example 3.2.4 .
Suppose that the modulating signal is a sinusoid of the form

m(t) = cos2n fnt, fu € fe
Determine the two possible SSB AM signals
Solution The Hilbert transform of m(¢) is
() = sin2m fut (3.2.19)
Hence,
u(t) = A, oS 2 fut 08 27 fot F Ac sin2m frut sin2s fet (3.2.20)
If we take the upper (—) sign we obtain the upper sideband signal
’ u, () = Accos2w (fe + fudt
On the other hand, if we take the lower (4} sign in Equation (3.2.20) we obtain the lower
sideband signal
ug(t) = Accos2r (fe — findt

The spectra of u, (¢) and u,(t) were previously given in Figure 3.2.

Demodulation of SSB AM Signals. To recover the message signal m(z) in
the received SSB AM signal, we require a phase coherent or synchrqnous dem.odulfi
tor, as was the case for DSB-SC AM signals. Thus, for the USSB signal as given in

Equation (3.2.18), we have
r(t) cos 2m fot == u(t) cos(2m fot + @)
= 1A.m(t) cos ¢ + 3 A (t) sin ¢ + double frequency terms (3 221)
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By passing the product signal in Equation (3.2.21) through an ideal lowpass filter, the
double-frequency components are eliminated, leaving us with

Ye(t) = LAm(t) cos ¢ + LAm(t) sin b (3.2.22)

Note that the effect of the phase offset is not only to reduce the amplitude of the
desired signal m (¢) by cos ¢, but it also results in an undesirable sideband signal due to
the presence of 7(¢) in yg(¢). The latter component was not present in a DSB-SC signal
and, hence, it was not a factor. However, it is an important element that contributes to
the distortion of the demodulated SSB signal.

The transmission of a pilot tone at the carrier frequency is a very effective method
for providing a phase-coherent reference signal for performing synchronous demodu-
lation at the receiver. Thus, the undesirable sideband signal component is eliminated.
However, this means that a portion of the transmitted power must be allocated to the
transmission of the carrier.

The spectral efficiency of SSB AM makes this modulation method very attractive
for use in voice communications over telephone channels (wire lines and cables). In
this application, a pilot tone is transmitted for synchronous demodulation and shared
among several channels. :

The filter method shown in Figure 3.9 for selecting one of the two signal sidebands
for transmission is particularly difficult to implement when the message signal m(f) has
a large power concentrated in the vicinity of f = 0. In such a case, the sideband filter
must have an extremely sharp cutoff in the vicinity of the carrier in order to reject the

second sideband. Such filter characteristics are very difficult to implement in practice.

3.2.4 Vestigial-Sideband AM

The stringent frequency-response requirements on the sideband filter in 2 SSB AM
system can be relaxed by allowing a part, called a vestige, of the unwanted sideband
to appear at the output of the modulator. Thus, we simplify the design of the sideband
filter at the cost of a modest increase in the channel bandwidth required to transmit the
signal. The resulting signal is called vestigial-sideband (VSB) AM.

To generate a VSB AM signal we begin by generating a DSB-SC AM signal
and passing it through a sideband filter with frequency response H (f) as shown in
Figure 3.10. In the time domain the VSB signal may be expressed as

u(®) =[A.m(t) cos2i f 1] h(t) (3.2.23)

N\ Sideband u(e)
X

filter > V3B AM signal
\ H(f)

A cos2af,t
Figure 3.10 Generation of VSB AM
signal.
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u(t) Ideal Am(s)
(=) lowpass [—>"
filter
cos 271f,t [fi=w

Figure 3.11 Demodulation of VSB
signal.

where h(t) is the impulse response of the VSB filter. In the frequency domain, the
corresponding expression is

V() = SIS = f+ MU + FH () (3.2.24)

To determine the frequency-response characteristics of the filter, let us consider
the demodulation of the VSB signal u(z). We multiply u(z) by the carrier component
cos 27 f,t and pass the result through an ideat lowpass filter, as shown in Figuare 3.11.
Thus, the product signal is

v(2) = u(r) cos2m fet
or, equivalently,
V() =30 - )+ U+ fl (3.2.25)
If we substitute for U () from Equation (3.2.24) into Equation (3.2.25), we obtain

Ac
V(f)= —4—[M(f =2f )+ MDA = fo)
A :
+ T[M (f)+M(f +2f1H(f + fo) (3.2.269)
The lowpass filter rejects the double-frequency terms and passes only the components

in the frequency range | /| < W. Hence, the signal spectrum at the output of the ideal
lowpass filter is

Ve(f) = %M(f)[H(f ~f)+H({f + fo)] (3227

We require that the message signal at the output of the lowpass filter be undistorted.
Hence, the VSB filter characteristic must satisfy the condition

H(f = f)+H(f + fo) = constant, |f] =W (3.2.28)

This condition is satisfied by a filter that has the frequency-response characteristic
shown in Figure 3.12. We note that H (f) selects the upper sideband and a vestige of
the lower sideband. It has odd symmetry about the carrier frequency £, in the frequency

range fr — fa < f < fo+ fa, Where fo is a conveniently selected frequency that is
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H(f)
1 i
] i i i
P R
— — 1 I 1
oW ~f=f; T ~fetfa 0 —fc—faTﬂ‘Ffa f+W r
~fe fe

H(f = fy+H(f+ 1)

Figure3.12 VSB filter characteristics.

H(f)
)
i
: | m
-5 ]‘ W 0 £-W ffm; f
~1 , £

Flgule 3.13 Irequency response of VSB filter for selecting the lower sideband of
g

some s?nall ﬁaction gf W;ie., _ﬁ, <« W. Thus, we obtain an undistorted version of the
transmitted 31gnal.‘ Figure 3.13 illustrates the frequency response of a VSB filter that
selects the lower sideband and a vestige of the upper sideband.

. In pra_lctice., the VSB filter is designed to have some specified phase characteristic,
Lo avoid dlstomop of the message signal, the VSB filter should be designed to have
linear phase over its passband f, ~ f, < | fI<fe+W.
Example 3.2.5

Suppose that the message signal is given as

m(t) = 10+ 4 cos 2t + 8cosdmt + 10 cos 207t

Specify the frequency-response characteristic of a VSB filter that passes the upper sideband
and the first frequency component of the lower sideband.



88 Analog Signal Transmission and Reception Chapter 3
H(f)
1
I ! ——?—+—a—-—-——- | i
i L
: | ) __2__a___._ ;H ) :
| 1 L |
£—10 -5 0 T, 24, 10+f f

Figure 3.14 Frequency response characteristics of VSB filter in Example 3.2.5.

Solution The spectrum of the DSB-SC AM signal u(t) = m(t) cos 27 f,¢ is

U =580 - +8(F + fN+2B8(f — fo—D+8(f + fe + 1)]
H4(f = Fe =D+ + L+ D]+ 50 — fo — 10 +3(f + fc +10)]

The VSB filter can be designed to have unity gain in therange 2 < | f — f.] < 10, a gain
of1/2at f = f.,againof1/2+caat f = f,+ 1,andagainof 1/2—cat f = f, 1,
where « is some conveniently selected parameter that satisfies the condition 0 < o < 1/2,
Figure 3.14 illustrates the frequency-response characteristic of the VSB filter.

3.2,5 Implementation of AM Modulators and Demodulators

There are several different methods for generating AM modulated signals. We shall
describe the methods most commonly used in pracfice. Since the process of modula-
tion involves the generation of new frequency components, modulators are generally
characterized as nonlinear and, or, time-variant systems. '

Power-Law Modulation. Let us consider the use of a nonlinear device such
as a P-N diode which has a voltage-current characteristic as shown in Figure 3.15.
Suppose that the voltage input to such a device is the sum of the message signal

m(t) and the carrier A, cos2m £z, as illustrated in Figure 3.16. The nonlinearity will’

generate a product of the message m(¢) with the carrier, plus additional terms. The
desired modulated signal can be filiered out by passing the output of the nonlinear
device through a bandpass filter.

To elaborate on this method, suppose that the nonlinear device has an input-output
(square-law) characteristic of the form : :

vo(t) = ayv; (1) + agv?(r) (3.2.29)

Figure 3.15 Voltage-current
0 v characteristic of P-N diode.

. its output is
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m(s) i Bandpass u(t)
) Nonlinear
device runizgif) 7
A cos 2mf.t

Figure 3.16 Block diagram of power-law AM modulator,

where v; () is the input signal, vg(¢) is the -output signal, and the parameters (a3, az)
are constants. Then, if the input to the nonlinear device is

v (1) =m () + A cos2n fit, (3.2.30)

Uo(t) = ai[m () + A cos 2w fot] + ay[m(t) + A, cos cos 2 f,t]?

' 2
=mm®+wﬁm+@ﬁw§Mﬁ+&@P+ﬁ%m}whﬁ
aj

(3.2.31)

The output of the bandpass filter with bandwidth 2W centered at f = feylelds
. 2
u@:&mb+§%@%m%ﬁ (32.32)
1

where 2a;|m(t)|/a; < 1 by design. Thus, the signal generated by this method is a
conventional DSB AM signal.

Switching Modulator.  Another method for generating an AM modulated sig-
nal is by means of a switching modulator. Such a modulator can be implemented by
the system illustrated in Figure 3.17(a). The sum of the message signal and the carrier;
ie., v;(t) given by Equation (3.2.30), are applied to a diode that has the input-output
voltage characteristic shown in Figure 3.17(b), where A, » m(t). The output across
the load resistor is simply

%®={w@,do>o (32.33)

0, c(t) <0
This switching operation may be viewed mathematically as a multiplication of

the input v; () with the switching function s(t); i.e.,
vo(f) = [m(t) + Ac cos2m £.t1s(£) (3.2.34)

where s(¢) is shown in Figure 3.17(c).
Since 5(¢) is a periodic function, it is represented in the Fourier series as

RO ol o )i
=3 ng;j;tjfcm[nﬁ4<n— )] (3:2.35)

SN

RN W
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4T i
A cos 27f,1
R, vo(£)
m(®)
@
]
“
(b)

s(®)

1

1

Figure 3.17 Switching modulator and periodic switching signal.

Hence,

wo(t) = [m () + Accos 27 £21s(0)

Ac
|

m(t)} cos 27 f,t + other terms (3.2.36)
T A

The desired AM modulated signal is obtained by passing vo(?
with center frequency f = fc and bandwidth 2W. Atits ou

conventional DSB AM signal - H

tput, we have the desired

A
o) = _2£ [1 + A

) through a bandpass filter . °

4 m(t)] cos 2w fet (3.237) :

m)
s e

——rﬁ(t)
—]
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AM A (1 + m(n)] cos 2mf,t
modulator
+ =
: N (: u(t)= 2A,m(2) cos 2mf,t
A.cos 2mf,t -
modulator Figure 3.18 Block diagram of a

A 1 — m(t)] cos 2mf ¢ balanced modulator.

Balanced Modulator. A relatively simple method to generate a DSB-SC AM
signal is to use two conventional AM modulators arranged in the configuration il-
lustrated in Figure 3.18. For example, we may use two square-law AM modulators
as described above. Care must be taken to select modulators with approximately
identjcal characteristics so that the carrier component cancels out at the summing
junction.

Ring Modulator. Another type of modulator for generating a DSB-SC AM
signal is the ring modulator illustrated in Figure 3.19. The switching of the diodes is
controlled by a square wave of frequency f., denoted as c(z), which is applied to the
center taps of the two transformers. When ¢(¢) > 0, the top and bottom diodes conduct,
while the two diodes in the crossarmus are off, In this case, the message signal m () is
multiplied by +1. When ¢(z) < 0, the diodes in the crossarms of the ring conduct, while .
the other two are switched off. In this case, the message signal m(2) is multiplied by —1.
Consequently, the operation of the ring modulator may be described mathematically as

il i 'é‘ H
© g D

)
N
Square-wave carrier

atf=f,

Figure 3.19 Ring modulator for generating DSB-SC AM signal.
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a multiplier of m(¢) by the square-wave carrier ¢(2); i.e.,

vo(t) = m()e(t) (32.38)

as shown in Figure 3.19.
Since c(t) is a periodic function, it is represented by the Fourier series

=2 i D™ s @n — ] (3.2.39)

mis an—1 ¢ -
Hence, the desired DSB-SC AM signal u(r) is obtained by passing vo(¢) through a
bandpass filter with center frequency f. and bandwidth 2W.

From the discussion above, we observe that the balanced modulator and the ring
modulator systems, in effect, multiply the message signal m(z) -with the carrier to
produce a DSB-SC AM signal. The multiplication of m (z) with A, cos w,? is called a
mixing operation. Hence, a mixer is basically a balanced modulator.

The method shown in Figure 3.8 for generating a SSB signal requires two mixers;
i.e., two balanced modulators, in addition to the Hilbert transformer. On the other hand,
the filter method illustrated in Figure 3.9 for generating a SSB signal requires a single
balanced modulator and a sideband filter.

Letus now consider the demodulation of AM signals. We begin with a description
of the envelope detector.

Envelope Detector. As previousiy indicated, conventional DSB AM signals

are easily demodulated by means of an envelope detector. A circuit diagram for an
envelope detector is shown in Figure 3.20. It consists of a diode and an RC circuit,
which is basically a simple lowpass filter.

During the positive half-cycle of the input signal, the diode is conducting and
the capacitor charges up to the peak value of the input signal. When the input falls
below the voltage on the capacitor, the diode becomes reverse-biased and the input
becomes disconnected from the output. During this period, the capacitor discharges
slowly through the load resistor R. On the next cycle of the carrier, the diode conducts
again when the input signal exceeds the voltage across the capacitor. The capacitor
charges up again to the peak value of the input signal and the process is repeated
again. :

G C = §R miz)

Figure 3.20 An envelope detector.
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The t.ime constant RCmust be selected so as to follow the variations in the envelope
of the carrier-modulated signal. In effect,
1

1
— K RC K —
e w

In such a case, the capacitor discharges slowly through the resistor and, thus, the output
of the envelope detector closely follows the message signal.

Demodulation of DSB-SC AM Signals. As previously indicated, the de-
modulation of a DSB-SC AM signal requires a synchronous demodulator. That is, the
demodulator must use a coherent phase reference, which is usually generated by means
ofa phase-locked loop. (PLL) (see Section 5.2), to demodulate the received signal.

The general configuration is shown in Figure 3.21. A PLL is used to generate
a phase-coherent carrier signal that is mixed with the received signal in a balanced
modulator. The output of the balanced modulator is passed through a lowpass filter of
bandwidth W that passes the desired signal and rejects all signal and noise components
above W Hz. The characteristics and operation of the PLL are described in Section 5.2.

® Balanced Lowpass m(e)

modulator filter

Phase-locked
loop

Figure3.21 Demodulator for DSB-SC AM signal.

. Demodulation of SSB Signals. The demodulation of SSB AM signals also
requires the use of a phase coherent reference. In the case of signals such as speech,
that have relatively little or no power content at d ¢, it is straightforward to generate the
SSB signal, as shown in Figure 3.9, and then to insert a small carrier component that is
Fran§mitted along with the message. In such a case we may use the configuration shown
in Figure 3.22 to demodulate the SSB signal. We observe that 2 balanced modulator

()

Balanced Lowpass m{t)
modulator filter

Estimate
carrier
component

Figure 3.22 Demodulation of SSB AM signal with a carrier component.
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is used for the purpose cf frequency conversion of the bandpass signal to lowpass or
baseband. ‘

Demodulation of VSB Signals. In VSB a carrier component is generally
transmitted along with the message sidebands. The existence of the carrier component
makes it possible to extract a phase-coherent reference for demodulation in a balanced
modulator, as shown in Figure 3.22.

In some applications such as TV broadcast, a large carrier component is transmit-
ted along with the message in the VSB signal. In such a case, it is possible to recover
the message by passing the received VSB signal through an envelope detector.

3.2.6 Signal Multiplexing

We have seen that amplitude modulation of a sinusoidal carrier by a message signal
m(¢) translates the message signal in frequency by an amount equal to the carrier fre-
quency f,.If we have two or more message signals to transmit simultaneously over the
communications channel, it is possible to have each message signal modulate a carrier
of a different frequency, where the minimum separation between two adjacent carriers s
either 2W (for DSB AM) or W (for SSB AM), where W is the bandwidth of each of the
message signals. Thus, the various message signals occupy separate frequency bands
of the channel and do not interfere with one another in transmission over the channel.

The process of combining a number of separate message sigrials into a com-
posite signal for transmission over a common channel is called multiplexing. There
are two commonly used methods for signal multiplexing: (1) time-division multiplex-
ing and (2) frequency-division multiplexing. Time-division multiplexing is usually
used in the transmission of digital information and will be described in Chapter 6.
Frequency-division multiplexing (FDM) may be used with either analog or digital
signal transmission. :

In FDM, the message signals are separated in frequency as described above. A
typical configuration of an FDM system is shown in Figure 3.23. This figure illustrates
the frequency-division multiplexing of X ‘message signals at the transmitter and their
demodulation at the receiver. The lowpass filters at the transmitter are used to ensure
that the bandwidth of the message signals is limited to W Hz. Each signal modulates a
separate carrier; hence, K modulators are required. Then, the signals from the K mod-
ulators are summed and transmitted over the channel. For SSB and VSB modulation,
the modulator outputs are filtered prior to summing the modulated signals.

At the receiver of an FDM system, the signals are usually separated by passing
through a parallel band of bandpass filters, where each filter is tuned to one of the
carrier frequencies and has a bandwidth that is sufficiently wide to pass the desired
signal. The output of each bandpass filter is demodulated and each demodulated signal
is fed to a lowpass filter that passes the baseband message signal and eliminates the
double frequency components. :

FDM is widely used in radio and telephone communications. For example, in tele-
phone communications, each voice-message signal occupies a nominal bandwidth of
3 kHz. The message signal is single-sideband modulated for bandwidth efficient
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Message
signals

D o

my(8) @ Modulator }-——

BPF -~ Demodulator myll)

Frequency Frequency
synthesizer synthesizer
Transrnitter Receiver

Figure 3.23 Frequency-division multiplexing of multiple signals.

transmission. In the first level of multiplexing, 12 signals are stacked in frequency,
with a frequency separation of 4 kHz between adjacent carriers. Thus, a composite
48-kHz channel, called a group channel, is used to transmit the 12 voice-band signals
simultaneously. In the next level of FDM, a number of group channels (typically five or
six) are stacked together in frequency to form a supergroup channel, and the composite
signal is transmitted over the channel. Higher-order multiplexing is obtained by com-
bining several supergroup channels. Thus, an FDM hierarchy is employed in telephone
communication systems.

Quadrature-Carrier Multiplexing. A totally different type of multiplexing
allows us to transmit two message signals on the same carrier frequency, using two
quadrature carriers A.cos2rm fot and A, sin 27 fet. To elaborate, suppose that m (2)
and my(t) are two separate message signals to be transmitted over the channel. The
signal m;(¢) amplitude modulates the carrier A, cos 2z f ¢ and the signal m,(¢) am-
plitude modulates the quadrature carrier A, sin2n f¢¢. The two signals are added and
transmitted over the channel. Hence, the transmitted signal is

u(t) = A;m(t) cos 2mfot + Acmy () sin2m fot (3.2.40)

Therefore, each message signal is transmitted by DSB-SC AM. This type of signal
multiplexing is called quadrature-carrier multiplexing.

Figure 3.24 illustrates the modulation and demodulation of the quadrature-carrier
multiplexed signals. As shown, a synchronous demodulator is required at the receiver
to separate and recover the quadrature-carrier modulated signals.

Quadrature-carrier multiplexing results in a bandwidth-efficient communication
system that is comparable in bandwidth efficiency to SSB AM.
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7 | Balanced Balanced Lowpass | ™)
modulator modulator filter
4
Acos 2zf .t C
G— Channel PLL
—90° phase, —90° phase]
shift shift
A,sin 27f
t 3
m8) | Balanced Balanced Lowpass mat)
modulator modulator filter
Transmitter Receiver

Figure 3.24 Quadrature-carrier multiplexing.

3.3 ANGLE MODULATION

In the previous section we considered amplitude modulation of the carrier as a means
for transmitting the message signal. Amplitude-modulation methods are also called
linear-modulation methods, although conventional AM is not linear in the strict sense.
Another class of modulation methods are frequency and phase modulation which
are described in this section. In frequency-modulation (FM) systemns, the frequency of
the carrier f. is changed by the message signal and in phase-modulation (PM) systems
the phase of the carrier is changed according to the variations in the message signal. -
Frequency and phase modulation are obviously quite nonlinear, and very often they
are jointly referred to as angle-modulation methods. As our analysis in the following
sections will show, angle modulation, due to its inherent nonlinearity, is more complex
to implement, and much more difficult to analyze. In many cases only an approximate
analysis can be done. Another property of angle modulation is its bandwidth-expansion
property. Frequency and phase-modulation systems generally expand the bandwidth
such that the effective bandwidth of the modulated signal is usually many times the
bandwidth of the message signal.t With a higher implementation complexity and a
higher bandwidth occupancy, one would naturally raise a question as to the usefulness of
these systems. As our analysis in Chapter 5 will show, the major benefit of these systems
is their high degree of noise immunity. In fact these systems trade-off bandwidth for
high noise immunity. That is the reason that FM systems are widely used in high-fidelity )
music broadcasting and point-to-point communication systems where the transmitter

power is quite limited.

1Strictly speaking, the bandwidth of the modulated signal, as it will be shown later, is infinite. That
is why we talk about the gffective bandwidh. .
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3.3.1 Representation of FM and PM Signais

An angle-modulated signal in general can be written as
u(t) = A cos(6(2))

6(t) is the phase of the signal, and its instantaneous frequency f;(¢) is given by

1 d

Since u(t) is a bandpass signal, it can be represented as

u(t) = A cos@rfiut + ¢ (1) (3.3.2)
and, therefore, .
1d .

fit) = fe + EEEW) (3.3.3)

If m(z) is the message signal, then in a PM system we have
o) = kpm(t) 3.3.4)

and in an FM system we have
£O = fo=kpm®) = — 25 335

27 dt (33

Whel'e k ar ld k are PhaSe and freq uency de viation constants. ] TOIN. ﬂle ab() Ve relation-
P ol
f It 1 tion

k
b () = { m(0): PM (3.3.6)

2k fim m(t)dr, FM

'Equation' (3.3.6) sho“{s the' close and interesting relation between FM.and PM sys-
tems. This close relationship makes it possible to analyze these systems in parallel

and oply emphasize their main differences. The first interesting result observed from
Equatlon (3.3.6) is that if we phase modulate the carrier with the integral of a message
it is equivalent to frequency modulation of the carrier with the original message Eg)r;
the other hand, in Equation (3.3.6) the relation can be expressed as '

kpdm@), PM

d

—¢(1) = {

p ' (3.3.7)
t 2/751\1-710), FM

which shows th'at if we frequency modulaf the carrier with the derivative of a mes-
sage, the result is equivalent to phase modulation of the carrier with the message itself.
Figure 3.25 shows the above relation between FM and PM. Figure 3.26 illustrates a
square-wave signal and its integral, a sawtooth signal, and thei i

ot s : gnal, eir corresponding FM and
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Figure 3.26 FM and PM of square and sawtooth waves.

Chapter 3

Section 3.3 Angle Modulation 99

The demodulation of an FM signal involves finding the instantaneous frequency
of the modulated signal and then subtracting the carrier frequency from it. In the
demodulation of PM, the demodulation process is done by finding the phase of the signal
and then recovering m(¢). The maximum phase deviation in a PM system is given by

APrax = kp max[[m(1)]] (33.8)
and the maximum frequency-deviation in an FM system is given by
Afmax = ky max[im(r)[] (3.3.9)

Example 3.3.1
The message signal
. m(t) = acos(2m fint)

is used to either frequency modulate or phase modulate the carrier A cos(2m f ). Find
the modulated signal in each case.

Solution In PM we have
o) =k,m(t) = kyacos2rfat) (3.3.10)

‘and in FM we have

10) =2nkf/

—cC

i

m(t)dr = kaasin(Zﬂfmr) (3.3.11)

Therefore, the modulated signals will be

Accos@rfet +kpacos(rfnt)), PM.
u(t) = Fea (3.3.12)
A cos (2mfut + —f'L,sin(27rf,,1t)), FM
By defining
Bo =kpa (3.3.13)
kra
==L (3.3.14)
br=",
we have
A-cos(2rfet + Bpcos(Rmfnt)), PM
u(t) = { ccos@rfet+ By \ (27 fnt)) (33.15)
Accos@@rfot + By sin(2m fnt)), FM

The parameters 8, and S are called the modulation indices of the PM and FM systems
respectively.

We can extend the definition of the modulation index for a general nonsinusoidal signal
m(t) as )
Bp = kp max[|m(#)[] (3.3.16)

_ kymaxlm ()]

W (3.3.17)

Bs
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where W denotes the bandwidth of the message signal m(t). In terms of the maximu
phase and frequency deviation Agpax and A fipae, we have :

Bp = APmax (33.18)
D fomax :
By = 7 (3.3.19)

Narrowband Angie Modulation.! If in an angle-modulation system the
deviation constants k, and ky and the message signal m(¢) are such that for all ¢
we have ¢ (f) < 1, then we can use a simple approximation to expand u(f) as

u{t) = Accos2mforcos () — A, sin2m fotsing (¢)
=~ Apcos2m fot — A (t) sin2mfet (3.3.20)
This last equation shows that in this case the modulated signal is very similar to a con-
ventional AM signal. The only difference is that the message signal m(f) is modulated
on a sine carrier rather than a cosine carrier. The bandwidth of this signal is similar to

the bandwidth of a conventional AM signal, which is twice the bandwidth of the mes-
sage signal. Of course this bandwidth is only an approximation to the real bandwidth

of the FM signal. A phasor diagram for this signal and the comparable conventional -
AM signal are given in Figure 3.27. Note that compared to conventional AM, the nar--

rowband angle-modulation scheme has far less amplitude variations. Of course, the.
angle-modulation system has constant amplitude and, hence, there should be no ampli-
tude variations in the phasor-diagram representation of the system. The slight variations

here are due to the first-order approximation that we have used for the expansions of
sin(¢ (1)) and cos(¢ (¢)). As we will see in Chapter 5, the narrowband angle-modulation:
method does not provide any better noise immunity compared to a conventional AM:

system. Therefore, narrowband angle modulation is seldom used in practice for com-
mumnication purposes. However, these systems can be used as an intermediate stage for
generation of wideband angle-modulated signals as we will discuss in Section 3.3.3.

TAlso known as low-index angle modulation.
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3.3.2 Spectral Characteristics of Angle-Modulated Signals

Du-e to the igherent nonlinearity of angle-modulation systems the precise characteri-
zation of their spectral properties, even for simple message signals, is mathematically
mu'a.ctable. Therefore, the derivation of the spectral characteristics of these signals usu-
ally involves the study of very simple modulating signals and certain approximations
Then the results are generalized to the more complicated messages. We will study thé
spe.:ctrali charzj.ctedstics of an angle-modulated signal in three cases: when the modu-
lgtlng signal is a sinusoidal signal, when the modulating signal is a general periodic
signal, and when the modulating signal is a general nonperiodié signal.

Angle I\.Ilodu.latio.n by a Sinusoidal Signal. Letus begin with the case where
the message signal is a sinusoidal signal. As we have seen, in this case for both FM and
PM, we have .

u(t) = AccosQrf.t + B sin2n fut) (3.3.20D
vs'/here B is the modulation index that can be either Bp or Bs. Therefore, the modulated
signal can be written as

u(t) = Re(A e/ glPsin2nfut) (3.3.22)
S;nce sml27r ]f,,,t is periodic with petiod T, = -fl—, the same is true for the complex
ponential signal
ejﬂ sin2m f, ¢

’I'herefgre, it can be expanded in a Fourier series representation. The Fourier series
coefficients are obtained from the integral

L
Jn

¢ =  fa ejﬁsiHZFﬁufe—jnZIrfmt dt
0 :
u=én'f,,,t ! o J(Bsinu—nu
=" —ru)
- /0 € du (33.23)

T_his Iatter integral i:s a well-known integral known as the Bessel function of the first
kind of order n and is denoted by J,(8). Therefore, we have the Fourier series for the
complex expongntial as

. 0
pJBsnnfut _ Z Jn(ﬂ)ejz”"f"” (3.3.24)

n=—Cco

By substituting Equation (3.3.24) in Equation (3.3.22), we obtain

o -
Cu{f)=Re (Ac Z Jn(ﬁ)eﬂ””ﬁn‘eﬁnf‘r>

n=—o00

> Acu(B)cos @ (f. +nf)e) (3.3.25)

n==0Q
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Equation (3.3.25) shows that even in this very simple case, where the modulati{xg signal
is a sinusoid of frequency fy,, the angle-modulated signal contains all frequencies of the
form f.+nf, forn =0, £1, &2, . ... Therefore, the actual bandwidth of the modulat.ed
signal is infinite. However, the amplitude of the sinusoidal components (:.)f frequenc?les
f. & nf, for large n is very small. Hence, we can define a finite 6_]7:66‘1‘!}16 bandwidth
for the modulated signal. A series expansion for the Bessel function is given by -

e} (—l)k(g)nﬂk

=y i) (3.3.26)
(B ; kl(k +n)! v
The above expansion shows that for small 8, we can use the approximation
ﬂn
In(B) ™ 5 (3.3.27)

Thus for a small modulation index 8, only the first sideband corresgonding ton ——T‘ 1
is of importance. Also, using the above expansion, it is easy to verify the following
symmetry properties of the Bessel function. :

‘ 7.(8), nmeven
T-n(B) = {-Jn(ﬂ), n odd

Plots of J,(B) for various values of n are given in Figure 3.28, and a table of the values
of the Bessel function is given in Table 3.1.

Plots of Bessel Functions J,(8)
1 T l ] ] 1 T T 1 l
Jo(B)

0.8 =

5B -

0.6 —
I Z(B) ]3( ﬁ)

]4(B) JS(B) Js(ﬁ) -77(6)

02—

Figure 3.28 Bessel functions for various values of .

(3.3.28) |
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TABLE 3.1 TABLE OF BESSEL FUNCTION VALUES

n B =01 B=02 B=05 g=1 8=2 B=5 B=38 B=10

0 0.997 0.990 0.938 0765 0224  —0.178 0.172 —0.246
1 0.050 0.100 0.242 0440 0577  —0328 0.235 0.043
2 0.001 0.005 0.031 0.115 0353 0047  -0.113 0.255
3 0020 0129 0365  —0.291 0.058
4 0.002 0034 039r  —0.105  —0220
5 0.007 0.261 0.186  —0234
6 0.001 0.131 0338  —0.014
7 0.053 0.321 0.217
8 0.018 0223 0318
9 0.006 0.126 0.292

10 : 0.001 . 0.061 0.207

11 . 0.026 0.123

12 0.010 0063

13 0.003 0.029

14 0.001 0.012

15 0.004

16 0.001

(From Ziemer and Tranter; © 1990 Houghton Mifflin, reprinted by permission.)

Example 3.3.2

Let the carrier be given by ¢(r) = 10 cos(27 f,¢) and let the message signal be cos(20mt).
Further assume that the message is used to frequency modulate the carrier with k = 50.
Find the expression for the modulated signal and determine how many harmonics should
be selected to contain 99% of the modulated signal power.

Solution The power content of the carrier signal is given by

= — =50 (3.3.29)

2
The modulated signal is represented by

t

u(t) = 10 cos (2rrf¢r+27rkf/

-0

cos(20m 1) dr)

30
= 10cos <271fo + o sin(207rt)>
= 10 cosQ2n f.t + 5 sin(207 1)) (3.3.30)
The modulation index is given by

max{{m(#)(] _

5 3331
T ( )

B=ks
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and, therefore, the FM-modulated signal is

D Acda(B) cos@r(f. +nfm)e)

n=—c0

u(r)

il

n=-—go

Itis seen that the frequency content of the modulated signal is concentrated at frequencies
of the form f, + 10n for various n. To make sure that at least 99% of the total power is
within the effective bandwidth, we have to choose k large enough such that

n=k 2
Z w > 0.99 x 50 (3.3.33)

n=—k

This is a nonlinear equation and its solution (for k) can be found by trial and error and by

using tables of the Bessel functions. Of course, in finding the solution to this equation we
have to employ the symmetry properties of the Bessel function given in Equation (3.3.28),
Using these properties we have

k .
50 [15(5) +2>° J,,Z(S)} >49.5 (3334)

n=1

Starting with small values of k and increasing it, we see that the smallest value of k for

which the left-hand side exceeds the right-hand sideis ¥ = 6. Therefore, taking frequencies
fe £ 10k for 0 < k < 6 guarantees that 99% of the power of the modulated signal has
been included and only one per cent has been left out. This means that, if the modulated
signal is passed through an ideal bandpass filter centered at f, with a bandwidth of at least
120 Hz, only 1% of the signal power will be eliminated. This gives us a practical way to
define the effective bandwidth of the angle-modulated signal as being 120 Hz. Figure 3.29
shows the frequencies present in the effective bandwidth of the modulated signal.

In general the effective bandwidth of an angle-modulated signal, which contains at least
98% of the signal power, is given by the relation

Be=2(8+1)fn ' (3.3.35)

B,=120Hz

U l‘L v H*Tl%‘”ﬁfoj L

Figure 3.29 The harmonics present inside the effective bandwidth of
Example 3.3.2.

-
|

I

R

>

o

A

—

-

Loy oL

> 104,(5) cos(@ (fe + 10m)r) (3332)
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where f is the modulation index and f,, is the frequency of the sinusoidal mess age
signal. Itis instructive to study the effect of the amplitude and frequency of the sinusoidal
message signal on the bandwidth and the number of harmonics in the modulated signal.
Let the message signal be given by

m(t) = acos(2m frt) (3.3.36)
The bandwidtht of the modulated signal is given by
20kpa+1) fm, PM

B, =28+ D fm= 5 (’_‘L" + 1) f M 3.3.37)
or
_ Z(kp(l +Dfu, PM
B. = {Z(kfa + 1), M (3.3.38)

Equation (3.3.38) shows that increasing a, the amplitude of the modulating signal, in
PM and FM has almost the same effect on increasing the bandwidth B,. On the other
hand, increasing f,, the frequency of the message signal, has a more profound effect
in increasing the bandwidth of 2 PM signal as compared to an FM signal. In both PM
and FM the bandwidth B, increases by increasing f,,, but in PM this increase is a
proportional increase and in FM this is only an additive increase, which in most cases
of interest, (for large B) is not substantial. Now if we look at the number of harmonics
in the bandwidth (including the cartier) and denote it with M., we have

2|kyal +3, PM

M.=2|p}+3= 3.3.39
c=2[p] ) [ ;% J 43, BM ( )
Increasing the amplitude a increases the number of harmonics in the bandwidth of the
modulated signal in both cases. However, increasing f,,, has no effect on the number of
harmonics in the bandwidth of the PM signal and decreases the number of harmonics in
the FM signal almost linearly. This explains the relative insensitivity of the bandwidth
of the FM signal to the message frequency. On the one hand, increasing f,, decreases the
number of harmonics in the bandwidth and, at the same time, it increases the spacing

“between the harmonics. The net effect is a slight increase in the bandwidth. In M,

however, the number of harmonics remains constant and only the spacing between
them increases. Therefore, the net effect is a linear increase in bandwidth. Figure 3.30
shows the effect of increasing the frequency of the message in both FM and PM.

Angle Modulation by a Periodic Message Signal. To generalize the pre-
ceding results, we now consider angle modulation by an arbitrary periodic message
signal m (). Let us consider a PM-modulated signal where

u(t) = Accos(@r f,t + Bm(z)) (3.3.40)

tFrom now on, by bandwidth we mean effective bandwidth unless otherwise stated.
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Figure 3.30 The effect of increasing bandwidth of the message in FM and PM.

We can write this as

u(t) = ARe[e/> e/ (3.3.41)

We are assuming that m () is periodic with period T, =% Therefore, e/Am¢) will be
a periodic signal with the same period, and we can find its Fourier series expansion as

o) 5
2IBm®) Z cpel¥nint (3_.3.42)
n=-o0
where
Tn
0 = L / BT ISt g
" Tm 0
2
wmmiot L / " U g, (3.3.43)
2 Jo .
and

o
u(r) = ACRC{ Z cnejz"’f"‘eﬂ””ﬁ"’}

= A, i Icx] cos@r{fe + nfmit + LCz) (3.3.44)

Tt is seen again that the modulated signal contains all frequencies of the form f, +nfm-

Section 3.3 Angle Modulation 107

The detailed treatment of the spectral characteristics of an angle-modulated signal
for a general nonperiodic deterministic message signal m (¢) is quite involved due to the
nonlinear nature of the modulation process. However, there exists an approxirmate rela-
tion for the effective bandwidth of the modulated signal, known as the Carson’s rule, and
given by

B.=2(8+1)W (3.345)
where f§ is the modulation index defined as

_ {kp max{im ()|}, PM

) maxim (o)) (3.3.46)
S M

~and W is the bandwidth of the message signal m(z). Since in wideband FM the value

of B is usually around 5 or more, it is seen that the bandwidth of an angle-modulated
signal is much greater than the bandwidth of various amplitude-modulation schemes,
which is either W (in SSB) or 2W (in DSB or conventional AM).

3.3.3 Implementation of Angle Modulators
and Demodulators

Any modulation and demodulation process involves the generation of new frequencies
that were not present in the input signal. This is true for both amplitude and angle-
modulation systems. This means that, if we interpret the modulator as a system with
the message signal m(z) as the input and with the modulated signal u(¢) as the output,
this system has frequencies in its output that were not present in the input. Therefore,
a modulator (and demodulator) can not be modeled as a linear time-invariant system
because a linear time-invariant system can not produce any frequency components in
the output that are not present in the input signal.

Angle modulators are, in general, time-varying and nonlinear systems. One
method for generating an FM signal directly is to design an oscillator whose frequency
changes with the input voltage. When the input voltage is zero, the oscillator gener-
ates a sinusoid with frequency £, and when the input voltage changes, this frequency
changes accordingly. There are two approaches to designing such an oscillator, usually
called a VCO or voltage-controlled oscillator. One approach is to use a varactor diode.
A varactor diode is a capacitor whose capacitance changes with the applied voltage.
Therefore, if this capacitor is used in the tuned circuit of the oscillator and the message
signal is applied to it, the frequency of the tuned circuit, and the oscillator, will change
in accordance with the message signal. Let us assume that the inductance of the inductor
in the tuned circuit of Figure 3.31 is Ly and the capacitance of the varactor dicde is
given by ' ‘

C(t)=Co +kom(t) (3.3.47)
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To oscillator circuit

+ C, L
o T Figare 331 Varactor diode

B b implementation of an angle modulator.
Whenm() = 0, the frequency of the tuned circuitis given by f, =
for nonzero m(t), we have

1 )
Nt In general,

1
T 2 Lo G )

1 1
- 27/ LQCQ /1 + %%m(t)
1

= fe

fi®

(3.3.48)
14+ %%m(z)

Assuming that
ko
=—m(t) 1
€ Com( ) <

and using the approximations

THe~1+ % ' (3.3.49)
SRV (33.50)
1+e
we obtain
ko
) A _ 3.3.51
@)y~ 7, (1 2Cgm(z)> ( )

which is the relation for a frequency-modulated signal.
A second approach for generating an FM signal is by use of a reactance tube, -
In the reactance-tube implementation, an inductor whose inductance varies with the
applied voltage is employed and the analysis is very similar to the analysis presented :
for the varactor diode. It should be noted that although we described these methods for
generation of FM signals, dueto the close relation between FM and PM signals, basically -
the same methods can be applied for generation of PM signals (see Figure 3.25).
Another approach for generating an angle-modulated signal is to first gener-
ate a narrowband angle-modulated signal, and then change it to a wideband signal,
This method is usually known as the indirect method for generation of FM and PM
signals. Due to the similarity of conventional AM signals, generation of narrowband
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Figure 3.32  Generation of narrowband angle-modulated signal.

arrowband angle-modu]ated signal.

or. The next step is
1o use the narrowband angle-modulated signal to generate a wideband angle-modulated

signal. Figure 3.33 shows the block diagram of a System that generates wideband angle-
arrowband angle-modulated signals. The first stage of such

Un(t) = A cosQrf.t + o)) (33.52)

the output of the frequency multiplier (output of the bandpass filter) is given by

y(t) = A, COs(2nf t + ne(r)) (3.3.53)
In general, this is, of course, a wideband angle-modulated s
DO guarantee that the carrier frequency of this signal, n Ty
frequency. The last stage of the modul

gnal. However, there is
will be the desired carrier
ator performs an up or down conversion to shift
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Output
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Frequency
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Figure 333 Indirect generation of angle-modulated signals.
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the modulated signal to the desired center frequency. This stage consists of a mixer and
a bandpass filter. If the frequency of the local oscillator of the mixer is frq and we are
using a down converter, the final wideband angle-modulated signal is given by

u(t) = Accos@r(nfe — frot +ne @) (3.3.34)

Since we can freely choose n and fio, we can generate any modulation index at any

desired carrier frequency by this method.
FM demodulators are implemented by generating an AM signal whose amplitude

is proportional to the instantaneous frequency of the FM signal, and then using an AM -

demodulator to recover the message signal. To implement the first step; i.e., transform-
ing the FM signal into an AM signal, it is enough to pass the FM signal through an
LTI system whose frequency response is approximately a straight line in the frequency
‘band of the FM signal. If the frequency response of such a system is given by

B,
H(N)=Votk(f = f) forlf —fl <= (3.3.55)
and if the input to the system is
t
u(t) = Accos <2nfct +2nkf/ m(t) dr) , ' (3.3.56)
’ —0

then, the output will be the signal ‘
¢
V(1) = A (Vo + kkpm(2)) cos <2nfct + 2mky / m{z) dr) (3.3.57)
o0

The next step is to demodulate this signal to obtain A¢(Vp + kk rm(t)), from which the
message m(z) can be recovered. Figure 3.34 shows a block diagram of these two steps.

There exist many circuits that can be used to implement the first stage of an FM de-
modulator; i.e., FMto AM conversion. One such candidate isa simple differentiator with

[H(f)| =2nf (3.3.58)

Another candidate is the rising half of the frequency characteristics of a tuned
¢ircuit as shown in Figure 3.35. Such a circuit can be easily implemented, but usually
the linear region of the frequency characteristic may not be wide enough. To obtain
a linear characteristic over a wider range of frequencies, usually two circuits tuned
at two frequencies, fi and f3, are connected in a configuration which is known as a
balanced discriminator. A balanced discriminator with the corresponding frequency
characteristics is shown in Figure 3.36.

The FM demodulation methods described here that transform the FM signal into
an AM signal have a bandwidth equal to the channel bandwidth B, occupied by the FM
signal. Consequently, the noise that is passed by the demodulator is the noise contained

within B..

Qutput

AM signal ' signal
At

PMsignal | mveio AM
—
converter demodulator

Figure 3.34 A general FM demodulator.

Section 3.3 Angle Modulation M

12068

Figure 3.35 A tuned circuit used in an
FM demodulator.

A totally different approach to FM signal demodulation is to use feedback in the
FM demodulator to narrow the bandwidth of the FM detector and, as will be seen in
Chapter 5, to reduce the noise power at the output of the demodulator. Figure 3.37
illustrates a system in which the FM discrimination is placed in the feedback branch
of a feedback system that employs a voltage-controlled oscillator (VCO) path. The
bandwidth of the discriminator and the subsequent lowpass filter is designed to match
the bandwidth of the message signal m(¢). The output of the lowpass filter is the
desired message signal. This type of FM demodulator is called an FM demodulator with
feedback (FMFB). An alternative to FMFB demodulator is the use of a phase-locked
loop (PLL), as shown in Figure 3.38. The input to the PLL is the angle-modulated
signal (we neglect the presence of noise in this discussion)

u(t) = A.cos[2x for + ¢ ()] (3.3.59)
where, for FM,

i3

b () =2k / m(t) dr (3.3.60)

The VCO generates a sinusoid of a fixed frequency, in this case the carrier frequency
fe, in the absence of an input control voltage.

Now, suppose that the control voltage to the VCO is the output of the loop filter,
denoted as v(z). Then, the instantaneous frequency of the VCO is

L@ = fe + k() (3.3.61)

where k, is a deviation constant with units of Hz/volt. Consequently, the VCO output

. may be expressed as

Yolt) = Ay sin[2r fo2 + ¢,(1)] (3.3.62)
where
. t
$u(0) = 2nk, / v(e) dr (3.3.63)
[4]

The phase comparator is basically a multiplier and filter that rejects the signal
component centered at 2 f. Hence, its output may be expressed as

e(t) = %A,,Ac sinf¢p (1) — ¢, (1)1 (3.3.64)
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where the difference, ¢ (t) — ¢, (#) = ¢, (), constitutes the phase error. The signal e(¢)
is the input to the loop filter.

Let us assume that the PLL is in lock, so that the phase error is small. Then,
sinfg (1) — ¢y ()] = ¢ (1) — ¢y (1) = ¢ () (3.3.65)

Under this condition, we may deal with the linearized model of the PLL, shown in
Figure 3.39. We may express the phase error as

t
De(t) = ¢(r) — 2k, / v(z)dt (3.3.66)
0 .
or, equivalently, either as
d¢(t)+2k (t)—d ( | (3.3.67

2 7e TRyU(L) = st ) 3.67)

¢+~ 6O Loop filter *®

_ / g g

$.(0)
2k, :/ 7y dT
‘ jo( )

Figure3.39 Linearized PLL.
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Qr as
Sl d
2 4. + 2k, /0 bRzl — D) dr = THO) (3.3.68)

The Fourier transform of the integro-differential equation in Equation (3.3.68) is

(2m)®.(f) + 27k @(SIG(f) = (2 HP(f) (3.3.69)

and, hence,

1
B(f) = ——— D
D=1T¥Eem

AThe corresponding equation for the control voltage to the VCO is

V()= 2.(N)G(f)

G ,
=— Y & (3.3.71)
1+ (;’ffL)G(f)_ )

Now, suppose that we design G(f) such that

PACR) I (3.3.72)

i

in the frequency band | f| < W of the message signal. Then from Equation (3.3.71),
we have

V(f):%l—fcb(f)' (3.373) -

or, equivalently,

1 4
v(¢)=ma¢0)

= ]fkim ) (33.74)

Since the control voltage of the VCO is proportional to the message signal, v{¢) is the
demodulated signal. ' ) .
We observe that the output of the loop filter with frequency response G(f) is
the desired message signal. Hence, the bandwidth of G(f) should be the same as the
bandwidth W of the message signal. Consequently, the noise at the output of the loop
filteris also limited to the bandwidth W. On'the other hand, the output fro.m the VCOis
a wideband FM signal with an instantaneous frequency that follows the instantaneous

frequency of the received FM signal.

o (3.370) .
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The major benefit of using feedback in FM signal demodulation is to reduce the
threshold effect that occurs when the input signal-to-noise-ratio to the FM demodulator
drops below a critical value. The threshold effect is treated in Chapter 5.

3.4 RADIO AND TELEVISION BROADCASTING

Radio and television broadcasting is the most familiar form of communication via
analog signal transmission. Next, we describe three types of broadcasting, namely, AM

~ radio, FM radio, and television.

3.4.1 AM Radio Broadcasting

Commercial AM radio broadcasting utilizes the frequency band 535-1605 kHz for
transmission of voice and music. The carrier frequency allocations range from 540-
1600 kHz with 10-kHz spacing.

Radio stations employ conventional AM for signal transmission. The baseband
message signal m(¢) is limited to a bandwidth of approximately 5 kHz. Since there are
billions of receivers and relatively few radio transmitters, the use of conventional AM
for broadcast is justified from an economic standpoint. The major objective is to reduce
the cost of implementing the receiver.

The receiver most commonly used in AM radio broadcast is the so called super-
heterodyne receiver shown in Figure 3.40. It consists of a radio frequency (RF) tuned
amplifier, a mixer, a local oscillator, an intermediate frequency (IF) amplifier, an enve-
lope detector, an audio frequency amplifier, and a loudspeaker, Tuning for the desired
radio frequency is provided by a variable capacitor, which simultaneously tunes the RF
amplifier and the frequency of the local oscillator.

In the superheterodyne receiver, every AM radio signal is converted to a common
IF frequency of fir = 455 kHz. This conversion allows the use of a single tuned
IF amplifier for signals from any radio station in the frequency band. The IF ampli-
fier is designed to have a bandwidth of 10 kHz, which matches the bandwidth of the
transmitted signal.

RF IF Audio
amplifier > Mixer [~ amplifier > Detector [ frequency

amplifier
¥, p

N Speaker

N Automatic
N volume comntrol

N
K Local
~ oscillator
N

Figure 3.40 Superheterodyne AM receiver.
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‘The frequency conversion to IF is performed by the combination of the RF am-
plifier and the mixer. The frequency of the local oscillator is

fro=fe+ fiF

where f; is the carrier frequency of the desired AM radio signal. The tuning range of
the local oscillator is 955-2055 kHz. By tuning the RF amplifier to the frequency f, and

mixing its output with the Jocal oscillator frequency fro = f; + fir, we obtain two

signal components, one centered at the difference frequency f;r and the second centered
at the sum frequency 2 £, + f7 . Only the first component is passed by the IF amplifier.
At the input to the RF amplifier we have signals picked up by the antenna
from all radio stations. By limiting the bandwidth of the RF amplifier to the range
B < Brr < 2 frr where B, is the bandwidth of the AM radio signal (10 kHz), we can

reject the radio signal transmitted at the so-called image frequency, f! = fro + fir. .

Note that when we mix the local oscillator output, cos 27 fi, o t, with the received signals

rn(t) = A1 +my(t)]cos2x fct
ra(t) = Ac[l + my(t)]cos2m fit (3.4.1)

where fo = fro— firand f! = fLo-+ fir, the mixer output consists of the two signals

y1{#) = Al +mi(t)]cos 2w frpt + double frequency term
¥2(#) = A [l + ma(2)] cos2m fi gt 4 double frequency term (3.4.2)

where m (¢) represents the desired signal and m(¢) is the signal transmitted by the ra-
dio station transmitting at the carrier frequency f) = fro + fir. In order to prevent the
signal r,(¢) from interfering with the demodulation of the desired signal r;(#), the RF
amplifier bandwidth is designed to be sufficiently narrow so that the image frequency
signal is rejected. Hence, Brr < 2 f r is the upper limit on the bandwidth of the RF am-
plifier. In spite of this constraint, the bandwidth of the RF amplifier is still considerably
wider than the bandwidth of the IF amplifier. Thus, the IF amplifier, with its narrow
bandwidth, provides signal rejection from adjacent channels and the RF amplifier pro-
vides signal rejection from image channels. Figure 3.41 illustrates the bandwidths of
the RF and IF amplifiers and the requirement for rejecting the image frequency signal.

The output of the IF amplifier is passed through an envelope detector which
produces the desired audio-band message signal m(¢). Finally, the output of the envelope
detector is amplified and the amplified signal drives a loudspeaker. Automatic volume
control (AVC) is provided by a feedback control loop which adjusts the gain of the IF
amplifier based on the power level of the signal at the envelope detector.

3.4.2 FM Radio Broadcasting

Commercial FM radio broadcasting utilizes the frequency band 88—108 MHz for trans-
mission of voice and music signals. The carrier frequencies are separated by 200 kHz
and the peak-frequency deviation is fixed at 75 kHz. Pre-emphasis is generally used,
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as described in Chapter 5, to improve the demodulator performance in the presence of
noise in the received signal.

The receiver most commonly used in FM radio broadcast is a superheterodyne
type. The block diagram of such a receiver is shown in Figure 3.42. As in AM radio
reception, common tuning between the RF amplifier and the local oscillator allows the
mixer to bring all FM radio signals to a common IF bandwidth of 200 kHz, centered at
J1r=10.7 MHz. Since the message signal m(¢) is embedded in the frequency of the
carrier, any amplitude variations in the received signal are a result of additive noise and
interference. The amplitude limiter removes any amplitude variations in the received
signal at the output of the IF amplifier by band-limiting the signal. A bandpass filter
centered at f;r = 10.7 MHz with a bandwidth of 200 kHz is included in the limiter to
remove higher order frequency components introduced by the nonlinearity inherent in
the hard limiter.

A balanced frequency discriminator is used for frequency demodulation. The
resulting message signal is then passed to the andio frequency amplifier which performs
the functions of de-emphasis and amplification. The output of the audio amplifier is
further filtered by a lowpass filter to remove out-of-band noise and its output is used to
drive a loudspeaker.
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FM Stereo Broadeasting. Many FM radio stations transmit music programs
in stereo by using the outputs of two microphones placed in two different parts of the
stage. Figure 3.43 shows a block diagram of an EM stereo transmitter. The signals from
the left and right microphones, mg (t) and m, (1), are added and subtracted as shown.
The sum signal me(£) 4 m, (2 is left as is and occupies the frequency band 0-15 kHz.
The difference signal me(f) — m,(f) is used to AM modulate (DSB-SC) a 38-kHz
carrier that is generated from a 19-kHz oscillator. A pilot tone at the frequency of 19
kHz is added to the signal for the purpose of demodulating the DSB-SC AM signal.
The reason for placing the pilot tone at 19 kHz instead of 38 kHz is that the pilot is

Figure 3.42 Block diagram of a superheterodyne FM radio receiver.

more easily separated from the composite signal at the receiver. The combined signal "

is used to frequency modulate a carrier.

By configuring the baseband signal as an FDM signal, 2 monophonic FM receiver
can recover the sum signal mg(t) +m,(¢) by use of 2 conventional FM demodulator.
Hence, FM stereo broadcasting is compatible with conventional FM. The second
requirement is that the resulting FM signal does not exceed the allocated 200-kHz
bandwidth. :

The FM demodulator for FM stereo is basically the same as a conventional FM
demodulator down to the limiter/discriminator. Thus, the received signal is converted
to baseband. Following the discriminator, the baseband message signal is separated
into the two signals m,(2) + m,{t) and m(t) — m,(t) and passed through de-emphasis
filters, as shown in Figure 3.44. The difference signal is obtained from the DSB-SC
signal by means of a synchronous demodulator using the pilot tone. By taking the sum.
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Figure 3.44 FM stereo receiver.

and difference of the two composite signals, we recover the two signals m,(¢) and
m,(¢). These audio signals are amplified by audio-band amplifiers and the two outputs
drive dual loudspeakers. As indicated above, an FM receiver that is not configured to
receive the FM stereo sees only the baseband signal m,(¢) + m, (z) in the frequency
range 0—15 kHz. Thus, it produces a monophonic output signal which consists of the
sum of the signals at the two microphones.
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" color TV receivers. With the development of the transistor and microelectronics com-
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3.4.3 Television Broadcasting

Commercial TV broadcasting began as black-and-white picture transmission in London
in 1936 by the British Broadcasting Corporation (BBC). Color television was demon-
strated a few years later, but the move of commercial TV stations to color TV signal
transmission was slow in developing. To a large extent, this was due to the high cost of

ponents, the cost of color TV receivers decreased significantly, so that by the middle
1960s color TV broadcasting was widely used by the industry.

The frequencies allocated for TV broadcasting fall in the VHF and UHF frequency -
bands. Table 5.2 lists the TV channel allocations in the United States. We observe that - -
the channel bandwidth allocated for transmission of TV signals is 6 MHz.

In contrast to radio broadcasting, standards for television signal transmission vary
from country to country. The U.S. standard, which we describe below, was set by the

National Television Systems Committee (NTSC).

Black-and-White TV Signals. The first step in TV signal transmission is to
convert a visual image into an electrical signal. The two-dimensional image or picture is
converted to a one-dimensional electrical signal by sequentially scanning the image and |
producing an electrical signal that is proportional to the brightness level of the image.
The scanning is performed in a TV camera, which opticaily focuses the image on a
photo cathode tube that consists of a photosensitive surface.

The scanning of the image is performed by an electron beam that produces an
output current or voltage which is proportional to the brightness of the image. The '
resulting electrical signal is called a video signal. ;

The scanning of the electron beam is controlled by two voltages applied across the .
horizontal and vertical deflection plates. These two voltages are shown in Figure 345,

| ! i | ;\r/\|

“‘"‘—"‘ “— 10 psec d

53.5 psec
(a)
i
|
_ i
!—« 15.4 msec 4‘! }‘— 3
- 1.27 msec
®)

Figure 3.45 Signal waveforms applied to horizontal (a) and vertical (b) deflection
plates.
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Figure 3.46 Interlaced scanning pattern.

'.In this scanning method, the image is divided into 525 lines that define a frame, as
ilustrated in Figure 3.46. The resulting signal is transmitted in 1/30 of a second. The
numbey of lines determines the picture resolution and, in combination with the rate of
transmission, determine the channel bandwidth required for transmission of the image.

-"The time interval of 1/30 second to transmit & complete image is generally not

* fast enough to avoid flicker that is annoying to the eyes of the average viewer. To

overcome flicker, the scanning of the image is performed in an interlaced paitern as
shown in Figure 3.46. The interlaced pattern consists of two fields, each consisting of
262.§ lines. Each field is transmitted in 1/60 of a second, which exceeds the ﬁicker?ate
thaﬁ is observed by the average eye. The first field begins at point “a” and terminates at
point “c.” The second field begins at point “b” and terminates at point “d.”

A horizontal line is scanned in-53.5 usec as indicated by the sawtooth signal
waveform applied to the horizontal deflection plates. The beam has 10 usec to move to
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Figure 3.47 Typical video signal for one horizontal sweep.

the next line. During this interval, a blanking pulse is inserted to avoid the appearance
of retrace lines across the TV receiver. A 5 usec pulse is added to the blanking pulse
to provide synchronization for the horizontal sweep circuit at the receiver. A typical
video signal is shown in Figure 3.47.

After the transmission of one interlaced field, the vertical sawtooth signal wave-
form applied to the vertical deflection plates is reset to zero. The retrace interval of
1.27 msec, corresponding to 20 line scans, allows the beam to move from the bottom
to the top of the picture. A vertical blanking pulse is inserted during the interval to
avoid the appearance of retrace lines at the TV receiver. When we allow for the vertical
retrace (twice per frame), the actual number of horizontal lines in the image is 485.

The bandwidth of the video signal can be estimated by viewing the image as a
rectangular array of 485 rows by (485)(4/3) columns, where 4/3 is the aspect ratio
(the ratio of the width to height of the image). Thus, we have 313,633 picture elements
(pixels) per frame, which are transmitted in 1/30 of a second. This is equivalent to a
sampling rate of 10.5 MHz, which is sufficient torepresent a signal as large as 5.25MHz.
However, the light intensity of adjacent pixels in an image is highty correlated. Hence,

the bandwidth of the video signalis less than 5.25 MHz. In commercial TV broadcasting, -

the bandwidth of the video signal is limited to W = 4.2 MHz.
Since the allocated channel bandwidth for commercial TV is 6 MHz, it is clear

that DSB transmission is not possible. The large low-frequency content of the video:

signal also rules out SSB as a practical modulation method. Hence, VSB is the only
viable alternative. By transmitting a large carrier component, the received VSB signal
can be simply demodulated by means of an envelope detector. This type of detection
significantly simplifies the implementation of the rece1ver.

The range of frequencies occupied by the transmitted video signal is shown in -

Figure 3.48. We note that the full upper sideband (4.2 MHz) of the video signal is
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Figxré 3.48 Spectral characteristics of black-and-white television signal.

transmitted along with a portion (1.25 MHz) of the lower sideband. Unlike the con-

ventional VSB spectral shaping described in Section 3.2.4, the lower sideband signal
in the frequency range f. and f, — 0.75 MHz is transmitted without attenuation. The
frequencies in the range f, — 1.25 to f, — 0.75 MHz are attenuated as shown in Fig-
ure 3.48 and all frequency components below f. —1.25 MHz are blocked. VSB spectral
shaping is performed at the IF amplifier of the receiver.

In addition to the video signal, the audio portion of the TV signal is transmitted by
frequency modulating a carrier at f +4.5 MHz. The audjo-signal bandwidth is limited
to W =10 kHz. The frequency deviation in the FM modulated signal is selected as
25 kHz and the FM signal bandwidth is 70 kHz. Hence, the total channel bandwidth
required to transmit the video and aundio signals is 5.785 MHz.

Figure 3.49 shows a block diagram of a black-and-white TV transmitter. The
corresponding receiver is shown in Figure 3.50. It is a heterodyne receiver. We note
that there are two separate tuners, one for the UHF band and one for the VHF band.
The TV signals in the UHF band are brought down to the VHF band by a UHF mixer.
This frequency conversion makes it possible to use a common RF amplifier for the two
frequency bands. Then, the video signal selected by the tuner is translated to a common
1F frequency band of 41-47 MHz. The IF amplifier also provides the VSB shaping
required pricr to signal detection. The output of the IF amplifier is envelope detected
to produce the baseband signal.

The audio portion of the signal centered at 4.5 MHz is filtered out by means of
an IF filter amplifier and passed to the FM demodulator. The demodulated audio band
signal is then amplified by an andio amplifier and its output drives the speaker.

The video component of the baseband signal is passed through a video amplifier
which passes frequency components in the range 0-4.2 MHz. Its output is passed to the
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Figure 3.50 Block diagram of a black-and-white TV receiver.

DC restorer that clamps the blanking pulses and sets the correct dc level. The de-restored
video signal is then fed to the picture tube. The synchronizing pulses contained in the

teceived video signal are separated and applied to the horizontal and vertical sweep -

generators.
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Compatible Color Television. The transmission of color information con-
tained in an image can be accomplished by decomposing the colors of pixels into
primary colors and transmitting the electrical signals corresponding to these colors. In
general, all natural colors are well approximated by appropriate mixing of three primary
colors: blue, green, and red. Consequently, if we employ three cameras, one with a blue
filter, one with a green filter, and one with a red filter, and transmit the electrical signals
myp(t), mg(2), and m, (¢), generated by the three color cameras that view the color image,

" the received signals can be combined to produce a replica of the original color image.

Such a transmission scheme has two major disadvantages. First, it requires three
times the channel bandwidth of black-and-white television. Second, the transmitted
color TV signal cannot be received by a black-and-white (fnonochrome) TV receiver.

The NTSC standard adopted in 1953 in the United States avoids these two prob-
lems by transmitting a mixture of the three primary-color signals. Specifically, the three
signals transmitted in the standard color TV system are the following three linearly in-
dependent combinations:

my (f) = 0.11mp(t) + 0.59my (£) + 0.30m,(£)
my(t) = —0.32my, (1) — 0.28m, (£) + 0.60m, (¢) (3.43)
ma(t) = 0.31m, () — 0.52m, (1) + 0.21m, (£)

The transformation matrix

0.11 0.59 030 :
M=1-032 -028 0.60 (34.4)
0.31 052 0.21

that is used to construct the new transmitted signals m (¢}, m;(#), and m g (¢) is nonsin-
gular and is inverted at the receiver to recover the primary-color signals mp(2), m g (1)
and m,(¢) from my, (2), m;(t) and mg (2).

The signal m(¢) is called the luminance signal. It is assigned a bandwidth of
4.2 MHz and transmitted via VSB AM as in monochrome TV transmission. When this
signal is received by a monochrome receiver, the result is a conventional black-and-
white version of the color image. Thus, compatibility with monochrome TV broadcast-
ing is achieved by transmitting m (¢). There remains the problem of transmitting the
additional color information that can be used by a color TV receiver to reconstruct the
color image. It is remarkable that the two composite color signals m; (t) and m o(t) can
be transmitted in the same bandwidth as my (¢), without interfering with myz ().

The signals m;(t) and m(¢) are called chrominance signals and are related to
hue and saturation of colors. It has been determined experimentally, through subjective
tests, that human vision cannot discriminate changes in () and mg () over short
time intervals and, hence, over small areas of the image. This implies that the high fre-
quency content in the signals m;(¢) and m o (¢) can be eliminated without significantly
compromising the quality of the reconstructed image. The end result is that m(z) is
limited in bandwidth to 1.6 MHz and m(¢) is limited to 0.6 MHz prior to transmis-
sion. These two signals are quadrature-carrier multiplexed on a subcarrier frequency
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Figure 3.51 Transmission of primary-color signals and multiplexing of
chrominance and luminance signals.

fee= [ + 3.579545 MHz, as illustrated in Figure 3.51. The signal m;(¢) is passed
through a VSB filter that removes a part of the upper sideband, above 4.2 MHz. The
signal m g (¢) is transmitted by DSB-SC amplitude modulation. Therefore, the compos-
ite video signal may be expressed as - .

m(e) = mp () + mo () Sin 277 fet -+ 7 (F) COS 2 fot + ) (2) sin 2t fsgt (3.4.5)

The last two terms in (3.4.5) involving m(z) and /% (), constitute the VSB AM signal
for the chrominance m; (). The composite signal m(¢) is transmifted by VSB plus
carrier in a 6 MHz bandwidth, as shown in Figure 3.52.

The spectrum of the luminance signal m  (¢) has periodic gaps between harmonics
of the horizontal sweep frequency f, which in color TV is 4.5 MHz/286. The subcarrier
frequency fi. =3.579545 for transmission of the chrominance signals was chosen
because it corresponds to one of these gaps in the spectrum of . (¢). Specifically, it falls
between the 227 and 228 harmonics of f3. Thus, the chrominance signals are interlaced
in the frequency domain with the luminance signal as illustrated in Figure 3.53. As a

consequence, the effect of the chrominance signal on the lumindnce signal m (@) is .

not perceived by the human eye, due to the pessistence of human vision. Therefore, the
chrominance signals do not interfere with the demodulation of the luminance signal in
both a monochrome TV receiver and a color TV receiver.

Horizontal and vertical synchronization pulses are added to m (¢) at the transmitter.
In addition, eight cycles of the color subcarrier A, cos 27 fy 2, called a “color burst,” are
superimposed on the trailing edge of the blanking pulses, as shown in Figure 3.54, for
the purpose of providing 2 signal for subcarrier phase synchronization at the receiver.
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The front end of the color TV receiver is basically the same as that of a mono-
chrome receiver, down to the envelope detector which converts the 6 MHz VSB signal to
baseband. The remaining demultiplexing operations in the color TV receiver are shown
in Figure 3.55. We note that a lowpass filter with bandwidth 4.2 MHz is used to recover
the luminance signal m (¢). The chrominance signals are stripped off by bandpass

“filtering and demodulated by the quadrature-carrier demodulator using the output of

a VCO that is phase locked to the received color-carrier frequency burst transmitted
in each horizontal sweep. The demodulated chrominance signals are lowpass filtered
and, along with the luminance signal, are passed to the “inverse matrix” converter that
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reconstructs the three color signals m,(2), mg(¢) and m,(2); i.e.,

mp(t) 1.00 -1.10 1.70 mp(t)
mg(t) | = | 1.00 —0.28 —0.64| | m;(t) (3.4.6)
mp(t) | 1.00 -0.96 0.62 mg(t) |

The resulting color signals control the three electron guns that strike corresponding
blue, green, and red picture elements in a color picture tube. Although color picture
tubes are constructed in many different ways, the color mask tube is commonly used in
practice. The face of the picture tube contains a matrix of dots of phosphor of the three
primary colors with three such dots in each group. Behind each dot color group there
is a mask with holes, one hole for each group. The three electron guns are aligned so
that each gun can excite one of the three types of color dots. Thus, the three types of
color dots are excited simultaneously in different intensities to generate color images.

3.5 MOBILE RADIO SYSTEMS

The demand to provide telephone service for people traveling in automobiles, buses,
trains, and airplanes has been steadily increasing over the past three to four decades. To

meet this demand, radio transmission systems have been developed that link the mobile
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Figure 3.56 Mobile radio system.

telephone user to the terrestrial telephone network. Today, radio-based systems make
it possible for people to communicate via telephone while traveling in airplanes and
motor vehicles. In this section, we will briefly describe the analog cellular telephone
system that provides telephone service to people with hand-held portable telephones
and automobile telephones. Digital cellular systems are studied in Chapter 10.

A major problem with the establishment of any radio communication system is
the availability of a portion of the radio spectrum. In the case of radio telephone service,
the Federal Communications Commission (FCC) in the United States has assigned parts
of the UHF frequency band in the range 806-890 MHz for this use. Similar frequency
assignments in the UHF band have been made in Europe and Japan.

The cellular radio concept was adopted as a method for efficient utlhzatlon of
the available frequency spectrum, especially in highly populated metropolitan areas
where the demand for mobile telephone services is the greatest. A geographic area is
subdivided into cells, each of which contains a base station, as illustrated in Figure 3.56.
Each base station is connected via telephone lines to a mobile telephone switching office
(MTSO), which in turn is connected via telephone lines to a telephone central office
(CO) of the terrestrial telephone network.

A mobile user communicates via radio with the base station within the cell. The
base station routes the call through the MTSO to another base station if the called party
is Jocated in another cell or to the central office of the terrestrial telephone network if
the called party is not a mobile. Each mobile telephone is identified by its telephone
number and the telephone serial number assigned by the manufacturer. These numbers
are automatically transmitted to the MTSO during the initialization of the call for
purposes of authentication and billing.

A mobile user initiates a telephone call in the usual manner by keying in the
desired telephonc number and pressing the “send” button. The MTSO checks the au-
thentication of the mobile user and assigns an available frequency channel for radio
transmission of the voice signal from the mobile to the base station. The frequency
assignment is sent to the mobile telephone via a supervisory control channel. A second
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frequency is assigned for radio transmission from the base station to the mobile user.
The simultaneous transmission between the two parties is called full-duplex operation..
The MTSO interfaces with the central office of the telephone network to complete the
connection to the called party. All telephone communications between the MTSO and

the telephone network are by means of wideband trunk lines that carry speech signals -

from many users. Upon completion of the telephone call, when the two parties hang
up, the radio channel becomes available for another user.

During the phone call, the MTSO monitors the signal strength of the radio trans-
mission from the mobile user to the base station and, if the signal strength drops below
a preset threshold, the MTSO views this as an indication that the mobile user is moving

out of the initial cell into a neighboring cell. By communicating with the bage stations -

of neighboring cells, the MTSO finds a neighboring cell that receives a stronger signal
and automatically switches, or hands-off, the mobile user to the base station of the
adjacent cell. The switching is performed in a fraction of a second and is generally
transparent to the two parties. When a mobile user is outside of the assigned service
area, the mobile telephone may be placed in a “roam” mode, which allows the mobile
user to initiate and receive telephone calls. '

In analog transmission of voice-band audio signals viaradio, between the base sta-
tion and the mobile user, the 3-kHz wide audio signal is transmitted via FM using a chan-
pel bandwidth of 30 kHz. This represents a bandwidth expansion of approximately a
factor of 10. Such a large bandwidth expansion is necessary to obtain a sufficiently large
signal-to-noise ratio (SNR) at the output of the FM demodulator. However, the use of FM
is highly wasteful of the radio frequency spectrum. The new generation of cellular tele-
phone systems discussed in Chapter 10 use digital transmission of digitized compressed
speech (at bit rates of about 10,000 bps) based on LPC encoding and vector quantization
of the speech-model parameters as described in Chapter 6. With digital transmission,
the cellular telephone system can accommodate a four-fold to tenth-fold increase in the
number of simultaneous users with the same available channel bandwidth.

The cellular radio telephone system is designed such that the transmitter powers
of the base station and the mobile users are sufficiently small, so that signals do not
propagate beyond immediately adjacent cells. This allows for frequencies to be reused
in other cells outside of the immediately adjacent cells. Consequently, by making the
cells smaller and reducing the radiated power, it is possible to increase frequency reuse
and, thus, to increase the bandwidth efficiency and the number of mobile users. Current
cellular systems employ cells with a radius in the range of 5-18 km. The base station
normally transmits at a power level of 35 W or less and the mobile users transmit at a

power level of 3 W or less, approximately. Digital transmission systems are capable of -

communicating reliably at lower power levels (see Chapter 10).

The cellular radio concept is being extended to different types of personal com-

munication services using low-power, hand-held radio transmitter and receiver. These
emerging communication services are made possible by rapid advances in the fabrica
tion of small and powerful integrated circuits that consume very little power and are
relatively inexpensive. As a consequence, we will continue to experience exciting new
developments in the telecommunications industry, well into the twenty-first century.
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3.6 FURTHER READING

Analog communication systems are treated in numerous books on basic communica-
tion theory, including Sakrison (1968), Shanmugam (1979), Carlson (1986), Stremler
(1990), Ziemer and Tranter (1990), Couch (1993), Gibson (1993), and Haykin (2000).
Implementation of analog communications systems are dealt with in depth in Clarke
and Hess (1971).

PROBLEMS

3.1 The message signal m(t) = 2cos400¢ + 45in(500¢ + Z) modulates the carrier
signal c(t) = A cos(8000r¢), using DSB amplitude modulation. Find the time
domain and frequency domain representation of the modulated signal and plot
the spectrum (Fourier transform) of the modulated signal. What is the power
content of the modulated signal? )

3.2 InaDSB system the carrier is ¢(z) = A cos 277 f;¢ and the message signal is given
by m(z) =sinc(¢) + sinc?(¢). Find the frequency domain representation and the
bandwidth of the modulated signal. :

3.3 The two signals (a) and (b) shown in Figure P-3.3 DSB modulate a carrier signal
¢(t) = A cos2x fz. Precisely plot the resulting modulated signals as a function
of time and discuss their differences and similarities.

(D) | ' ma(t)

@ ®
Figure P-3.3

3.4 Suppose the signal x () = m (¢t} + cos 2 f.t is applied to a nonlinear system
whose output is y (z) = x () + %xz (¢). Determine and sketch the spectrum of
-y (¢t) when M (f) is as shown in Figure P-3.4 and W <« £

3.5 The modulating signal

m(t) = 2cos 400077 + 5 cos 60007t
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M(f)
-W 0 W f
Figure P-3.4
is multiplied by the carrier

¢ (t) = 100 cos 21 f,t

where f; = 50 kHz. Determine and sketch the powcr-spectral density of the DSB
signal.

3.6 A DSB-modulated signal u(t) = Am(t) cos2mf,t is mixed (multiplied) with a.
local carrier xp (f) = cos(27 f.t + 6) and the output is passed through a LPF with
a bandwidth equal to the bandwidth of the message m(¢). Denoting the power of
the signal at the output of the lowpass filter by Poy and the power of the modulated
signal by Py, plot —ﬂ‘i as a function of 6 for 0 < 6 < m.

3.7 An AM signal has the form
u(t) = [20 + 2 cos 30007 ¢ + 10 cos 60007r7] cos 27 f,t

where f, = 10° Hz.

1. Sketch the (voltage) spectrum of u(z).

2. Determine the power in each of the frequency components.

3. Determine the modulation index.

4. Determine the power in the sidebands, the total power, and the ratio of the
sidebands power to the total power.

3.8 Amessage signalm () = cos 20007 ¢-+2 cos 40007 t modulates the carrier c(¢) =
100 cos 27 f,t where f, = 1 MHz to produce the DSB signal m (1)c(z).

1. Determine the expression for the upper sideband (USB) signal.
2. Determine and sketch the spectrum of the USB signal.
3.9 A DSB-SC signal is generated by multiplying the message signal m(¢) with the
periodic rectangular waveform shown in Figure P-3.9 and filtering the product

with a bandpass filter tuned to the reciprocal of the period T, with bandwidth
2W, where W is the bandwidth of the message signal. Demonstrate that the output
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u(t) of the BPF is the desired DSB-SC AM signal
u(t) = m(t) sin2m f.t
where fo = 1/T,.
' ' s

l"— 1

uf?
ppr | Y

Figure P-3.9

3.10 Show that in generating a DSB-SC signal as in Problem P-3.9, it is not necessary
that the periodic signal be rectangular. This means that any periodic signal with
period T, can substitute for the rectangular signal in Figure P-3.9.

3.11 The message signal m(r) has a Fourier transform shown in Figure P-3.11(a).
This signal is apphed to the system shown in Figure P-3.11(b) to generate the

signal y(z).
1. Plot ¥ (f), the Fourier transform of ().

2. Show that if y(#) is transmitted, the receiver can pass it through a replica of
the system shown in Figure P-3.11(b) to obtain m(¢) back. This means that
this system can be used as a simple scrambler to enhance communication
privacy.

3.12 Show that in a DSB-modulated signal, the envelope of the resulting bandpass
signal is proportional to the absolute value of the message signal. This means that
an envelope detector can be employed as a DSB demodulator if we know that the
message signal is always positive. ’

3.13 An AM signal is generated by modulating the carrier f, = 800 kHz by the signal

‘ m(t) = sin 20005t + 5 cos 400071t
The AM signal ‘
u(?) = 100[1 + m(t)] cos 2 f.t
is fed to a 50 §2 load.

1. Determine and sketch the spectrum of the AM signal.
2. Determine the average power in the carrier and in the sidebands.
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MU

(a)

m{t) HPF 1er | ¥
fcu(off=fc ["' w, W]

A cos2mf,t Acos2m(f,+ Wi
®).

Figure P-3.11

3. What is the modulation index?
4. What is the peak power delivered to the load?

3.14 The output signal from an AM modulator is
u(t) = 5 cos 180071 + 20 cos 20007 + 5 cos 22007t

1. Determine the modulating signal m(¢) and the carrier ¢(2).
2. Determine the modulation index. : )

3. Determine the ratio of the power in the sidebands to the power in the carrier.

3.15 A DSB-SC AM signal is modulated by the signal '
m(t) = 2cos 20007t + cos 60007t -

The modulated signal is ,
u(t) = 100m(t) cos 2m fct

where f. = 1 MHz.
1. Determine and sketch the spectrum of the AM signal.
2. Determine the average power in the frequency cornponents.
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3.16 A SSB AM signal is generated by modulating an 800-kHz carrier by the signal
m(t) = cos 2000t 4- 2 sin 20007 ¢. The amplitude of the carrier is 4. = 100.
1. Determine the signal 71 (z).
2. Determine the (time domain) expression for the lower sideband of the SSB
AM signal.
3. Determine the magnitude spectrum of the lower sideband SSB signal.
3.17 Weaver’s SSB modulator is illustrated in Figure P-3.17. By taking the input signal

as m(r) = cos2m f,t, where f,, < W, demonstrate that by proper choice of fi
and £, the output is a SSB signal.

() LPF N
I\, BW=W | Y
O RS
m(t) k +
s $SB
9 ° a
0 %0 signal
) LPF
CO— mivaw
Figure P-317

3.18 The message signal m(r) whose spectrum is shown in Figure P-3.18 is passed
through the system shown in the same figure.

cos (21 fyt)
m(t) 0 [ square-law n(=x% Bandpass | 72 10 [ upass Yal0)
device filter \XJ filter
cos (Zmfyr) M)
-w W f
Figure P-3.18
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The bandpass filter has a bandwidth of 2W centered at f; and the lowpass filte
has a bandwidth of W. Plot the spectra of the signals x(z), y1 (), y2(£), ¥3(t), an
v4(2). What are the bandwidths of these signals?

3.19 The system shown in Figure P-3.19 is used to generate an AM signal. Th
modulating signal m(z) has zero mean and its maximum (absolute) value
A, =max |m(t)]. The nonlinear device has a input—output characteristic

() = ax () + bx’(r)

1. Express y(#) in terms of the modulating signal 7(¢) and the carrier c(¢) =
cos 27 fet.

2. What is the modulation index?
3. Specify the filter characteristics that yield an AM signal at its output. -

m(f) x(t) Nonlinear y(® . u(?)
Linear
—)@————» memoryless filter ———)-signal

T system

c(f)=cos (2mfp1)

Figure P-3.19

3.20 The signal m () whose Fourier trané,form M (f) is shown in Figure P-320is to
be transmitted from point A to point B. It is known that the signal is normalized,
meaning that —1 < m(t) < 1.

M(f)

10,000 10,000 f

Figure P-3.20

1. If USSB is employed, what is the bandwidth of the modulated signal?
2. If DSB is employed, what is the bandwidth of the modulated signal?

3. If an AM modulation scheme with a = 0.8 is used, what is the bandwidth
of the modulated signal?
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4. If an FM signal with ks =60 kHz is used, what is the bandwidth of the
modulated signal?

3.21 Avestigial sideband modulation system is shown in Figure P-3.21. The bandwidth
of the message signal m(z) is W and the transfer function of the bandpass filter
is shown in the figure.

1. Determine %,;(¢) the lowpass equivalent of x(z), where h(z) represents the
impulse response of the bandpass filter.

2. Derive an expression for the modulated signal u(z).

m(t) BPE u(t)

[
H(f) VSB signal

A cos 27f,1)

Figure P-3.21

3.22 Find‘expressions for the in-phase and quadrature components, x.(¢) and x,(2),
and envelope and phase, V (¢) and © (¢), for DSB, SSB, Conventional AM, USSB,
LSSB, FM, and PM.

3.23 The normalized signal m,(¢) has a bandwidth of 10,000 Hz and its power content
is 0.5 W. The carrier A cos 27 fot has a power content of 200 W.
1. If m,(t) modulates the carrier using SSB amplitude modulation, what will
be the bandwidth and the power content of the modulated signal?
2. If the modulation scheme is DSB-SC, what will be the answer to part 17

3. If the modulation scheme is AM with modulation index of 0.6, what will
be the answer to part 17

4. If modulation is FM with ks = 50,000, what will be the answer to part 17

3.24 The message signal m (¢) = 10 sinc(400¢) frequency modulates the carrier c(t) =
100 cos 27 f,¢. The modulation index is 6.

Py

]
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1. Write an expression for the modulated signal u(z)?

2. What is the maximum frequency deviation of the modulated signal?
3. What is the power content of the modulated signal?

4. Find the bandwidth of the modulated signal.

'3.25 Signal m(z) is shown in Figure P-3.25. This signal is used once to frequency
modulate a carrier and once to phase modulate the same carrier.

m{t)
1 R
/i
l
I
0 1 2 3 t
“———————_———

Figure P-3.25

1. Find a relation between kp and ky such that the maximum phase of the
modulated signals in both cases are equal. '

2. fk, = fz = 1, what is the maximum instantanecus frequency in each
case? :

3.26 An angle modulated signal has the form
u(t) = 100 cos[2m f,t + 4 sin 20007 ¢]
where f. = 10 MHz.

1. Determine the average transmitted power.
2. Determine the peak-phase deviation.

3. Determine the peék—frequency deviation.
4. Is this an FM or a PM signal? Explain.

3.27 Find the smallest value of the modulation index in an FM system that guarantees
that all the modulated signal power is contained in the sidebands and no power
is transmitted at the carzier frequency.

3.28 Wideband FM can be generated by first generating a narrowband FM signal and
then using frequency multiplication to spread the signal bandwidth. Figure P-3.28
illustrates such a scheme, which is called an Armstrong-type FM modulator. The
narrowband FM signal has a maximum angular deviation of 0.10 radians in order
to keep distortion under control. .

1. If the message signal has a bandwidth of 15 kHz and the output frequency
from the oscillator is 100 kHz, determine the frequency multiplication thatis
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. m() Narrowband Freq.uency “Wideband FM signal
FM modulator multipliers f.= 104 MHz
4
Acos 2mfpt
Frequency
multipliers
fo= 100 KHz

Figure P-3.28 Armstroﬁg-type FM Modulator.

necessary to generate an FM signal at a carrier frequency of f, =104 MHz
and a frequency deviation of f = 75 kHz.

2. If the carrier frequency for the wideband FM signal is to be within 2 Hz,
determine the maximum allowable drift of the 100 kHz oscillator.

3.29 Determine the amplitude and phase of various frequency components of a PM
signal with k, = 1 and m(¢), a periodic signal given by

m(t)={_1__’1 051‘52

T
P <t =Ty

in one period.
3.30 An FM signal is given as

u(t) = 100 cos {27‘[]’61‘ + 100 /t m(t) dl’}

where m (¢) is shown in Figure P-3.30.

1. Sketch the instantaneous frequency as a function of time.
2. Determine the peak-frequency deviation.

m(t)

BEEEEE

-1 1 |2 t

-5

Figure P-3.30
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3.31 The carrier ¢(t) = 100 cos 27 ¢ is frequency modulated by the signal m(t) =
5c0s20000r¢, where f. = 10® Hz. The peak frequency deviation is 20 kHz.

1. Determine the amplitude and frequency of all signal components that have’
a power level of at least 10% of the power of the unmodulated carrier
component.
2. From Carson’s rule, determine the approximate bandwidth of the FM signal.
3.32 The carrier ¢(#) = A cos 27 10%¢ is angle modulated (PM or FM) by the sinusoid
signal m(r) =2 cos 2000r¢. The deviation constants are k, = 1.5 rad/V and ks =
3000 Hz/V.

1. Determine S and 8.
2. Determine the bandwidth in each case using Carson’s rule.

3. Plot the spectrum of the modulated signal in each case (plot only those

frequency components that lie within the bandwidth derived in part 2.)

4, If the amplitude of m(f) is decreased by a factor of two, how would your '

answers to parts 1-3 change? ‘
5, If the frequency of m(t) is increased by a factor of two, how would your
answers to parts 1-3 change?

3.33 The carrier c(t)=100cos2xf.¢ is phase modulated by the signal m(f) =
5¢0s20007¢. The PM signal has a peak—phase deviation of 71/2 The carrier
frequency is f. = 10° Hz.

1. Determine the magnitude spectrum of the sinusoidal components and sketch
the results.

2. Using Carson’s rule, determnine the approximate bandwidth of the PM signal
and compare the results with ghe analytical result in part 1.

3.34 An angle-modulated signal has the form
#(t) = 100 cos[2m fut + 4 sin 27 fint] .
where f, = 10 MHz and f, = 1000 Hz.

1. Assuming that this is an FM signal, determine the modulation index and the
transmitted signal bandwidth.

2. Repeat part 1 if f,, is doubled.

3. Assuming that this is a PM signal determine the modulation index and the

transmitted signal bandwidth.
4. Repeat part 3 if f, is doubled.

3.35 It is easy to demonstrate that amplitude modulation satisfies the superposition
principle, whereas angle modulation does not. To be specific, let 773 (#) and my(t)
be two message signals, and let u; (r) and u,(z) be the corresponding modulated .-

versions.
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1. Show that when the combined message signal m (¢) 4 m4(z) DSB modu-
lates a carrier A cos 2m ft, the result is the sum of the two DSB amplitude-
modulated signals 27 (z) + uy(¢).

2. Show that if m1(#) + m,(t) frequency modulates a carrier, the modulated
“signal is not equal to uy (£) + uz(2).

3.36 AnFM discriminator is shown in Figure P-3.36. The envelope detector is assumed
to be ideal and has an infinite input impedance. Select the values for L and C
if the discriminator is to be used to demodulate an FM signal with a carrier
fo = 80 MHz and a peak-frequency deviation of 6 MHz.

: L C
u(t) . 10k0 Bavelope |y
Figure P-3.36

3.37 An angle-modulated signal is given as
u(2) = 100 cos [20007t + ¢ (2)]

where (a} ¢ () = 55in207¢ and (b) ¢ (t) = 5cos207¢. Determine and sketch
the amplitude and phase spectra for (a) and (b), and compare the resuits.

3.38 The message signal m(t) into an FM modulator with peak-frequency deviation
Ja = 25 Hz/V is shown in Figure P-3.38. Plot the frequency deviation in Hz and
the phase deviation in radians.

()

)

Figure P-3.38

3.39 A message signal m(t) has a bandwidth of 10 kHz and a peak magnitude [m(z)]
of 1 V. Estimate the bandwidth of -the signal u(z) obtained when m(t) fre-
quency modulates a carrier with a peak frequency deviation of (2) fy = 10 Hz/V,
(b) 100 Hz/V, and (c) 1000 Hz/V.
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3.40 The modulating signal into an FM modulator is

m(t) = 10cos 167t

The output of the FM modutator is

t

u(t) = 10cos [40071: —|-27rkf/ m(7) dr}

—C0
where k; = 10. X the output of the FM modulator is passed through an ideal BPF
centered at f, =2000 with a bandwidth of 62 Hz, determine the power of the fre-

’ quency components at the output of the filter (see Figure P-3.40). What percentage
of the transmitter power appears at the output of the BPF? -

BPF
™ LW ' | Output
m(t) demodulator ' - ey ——
- £, = 2000 Hz 1=
kf= 10 '
! 2000 ©

Figure P-3.40

3.41 The message signal m1(¢) is shown in Figure P-3.41.

m (), V

105"

[ U
wlhb————

4 t(sec)

Figure P-3.41

and the message signal my (1) = sinc(2 x 10%), in volts again.

1. If m,(¢) is frequency modulated on a carrier with frequencfy 105 Hz \.;vith a
frequency deviation constant (ks) equal to 5 Hz/V, what is the maximum

instantaneous frequency of the modulated signal?

2. Ifm(¢) is phase modulated with phase-deviation constant k=3 radigns/V,
what is the maximum instantaneous frequency of the modulated signal?

What is the minimum instantaneous frequency of the modulated signal?
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3. I my(¢) is frequency modulated with &y = 10 Hz/V, what is the maximum
instantaneous frequency of the modulated signal? What is the bandwidth of
the modulated signal? :

3.42 We wish to transmit 60 voice-band signals by SSB (upper sideband) modulation

and frequency-division multiplexing (FDM). Each of the 60 signals has a spectrum
as shown in Figure P-3.42. Note that the voice-band signal is band limited to
3 kHz. If each signal is frequency translated separately, we require a frequency
synthesizer that produces 60 carrier frequencies to perform the frequency-division
multiplexing. On the other band, if we subdivide the channels into L groups of X
subchannels each, such that LK = 60, we may reduce the number of frequencies
from the synthesizerto L + K. ‘

1. Tllustrate the spectrum of the SSB signals in a group of X subchannels.
Assume that a 1 kHz guard band separates the signals in adjacent fre-
quency subchannels and that the carrier frequencies are f, = 10kHz, £, =
14kHz, ..., etc.

2. Sketch L and X such that LK = 60 and L + X is a minimum.

3. Determine the frequencies of the carriers if the 60 FDM signals occupy the
frequency band 300 kHz to 540 kHz, and each group of X signals occupies
the band 10 kHz to (10 + 4K) kHz.

M

-3000 0 3000 f

" Figure P-3.42

3.43 A superheterodyne FM receiver operates in the frequency range of 88-108 MHz.

The IF and local oscillator frequencies are chosen suchthat fir < fi 0. Werequire
that the image frequency f! fall outside of the 88-108 MHz region. Determine
the minimum required f and the range of variations in fio?
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Random Processes

This chapter is devoted to the study of random processes and their properties. Random
processes provide good models for both information sources and noise. When a signal
is transmitted through a communication channel there are two types of imperfections
that cause the received signal to be differént from the transmitted signal. One class
of imperfections are deterministic in nature, such as linear and nonlinear distortion,
intersymbol interference, etc. The second class is nondeterministic (such as addition of
noise, multipath fading, etc.). For a quantitative study of these phenomena we model
them as random processes. :

The information that is to be transmitted is also, by its nature, best modeled as a _

random process. This is due to the fact that any signal that conveys information must

have some uncertainty in it, otherwise its transmission is of no interest. We will explore .
this aspect later in greater detail in Chapter 6. In this chapter, after a brief review of the :

basics of probability theory and random variables, we introduce the concept of a random
process and the basic tools used in the mathematical analysis of random processes.

4.1 PROBABILITY AND RANDOM VARIABLES

144

In this section we give a brief review of some bagics of probability theory that are
needed for our treatment of random processes. It is assumed throughout that the reader
has already been exposed to probability theory elsewhere and, therefore, our treatment
in this section will be brief.

Probability Space. The fundamental concept in any probabilistic model is the
concept of a random experiment, which is any experiment whose outcome, for some
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reason, cannot be predicted with certainty. Flipping a coin, throwing a die, and drawing
a card from a deck of cards are examples of random experiments. What is common in all
these cases is that the result (or outcome) of the experiment is uncertain. A random exper-
iment has certain outcomes that are the elementary results of the experiment. In flipping

.of acoin, “head” and “tail” are the possible outcomes. In throwing a die 1, 2, 3,4, 5, 6 are

the possible outcomes. The set of all possible outcomes is called the sample space and
denoted by $2. Outcomes are denoted by w'’s and certainly each w lies in §2, i.e., @ € .
A sample space is discrete if the number of its elements are finite or countably
infinite, otherwise it is a nondiscrete sample space. All the random experiments given
above have discrete sample spaces. If one chooses randomly a number between 0 and
1, then the sample space corresponding to this random experiment js nondiscrete.
Events are subsets of the sample space for which a probability can be defined
(as will be defined in the next paragraph). For discrete sample spaces, any subset of
the sample space is an event, that is, a probability can be defined for it. For instance,
in throwing a die various events such as “the outcome is even,” “the outcome is greater
than 3,” and “the outcome divides 3" can be considered. For a nondiscrete sample space,
not every subset of £2 can be assigned a probability without sacrificing basic intuitive
properties of probability. To overcome this difficulty, we define a o -field B on the sample
space §2 as a collection of subsets of €2 such that the following conditions are satisfied:

1. Qe®.
2. If the subset (event) E € B then E° € B where E€ denotes the complement of E.
3. fE; e Bforalli, then UZ E; € B.

We define a probability measure P on B as a set function assigning nonnegative
values to all events E in B such that the following conditions are satisfied:

1. 0<PE)<I1forall E € .
2, P)=1.
3. For disjoint events E1, Ey, Fs, ... (ie., events for which E; N E ;= @ forall
i # j, where @ is the null set), we have P (U2, E;) = 372, P(E)).
The triple (82, B, P) is called a probability space.
Some basic properties of the probability measure follow easily from the set the-
oretical properties of events together with the basic properties of probability measure.
We list some of the most important properties here.

1. P(E)=1-P(E).

2. P(@) =0.

3. P(E1UE3) = P(Ey) + P(E;) ~ P(E1 N Ey).
4. If E; C E; then P(E;) < P(Ey).

Conditional Probability. Let us assume that the two events E; and E; are
defined on the same probability space with cotresponding probabilities P (E;) and
P(E3). Then, if an observer receives the information that the event E, has in fact
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occurred, the observer’s probability about event E; will notbe P (E;) any more. In fact,
the information that the observer received changes the probabilities of various events,
and new probabilities, called conditional probabilities, are defined. The conditional
probability of the event E; given the event E, is defined by

P(ENE?) E P(Eg) # 0
P(E1Ey) = {0 e otherwise ‘

1

If it happens that P (E1|E2) = P(E,) then knowledge of E» does not change t}%e Prob-
ability of occurrence of E;. In this case, the events Ey and E, are said to be statistically
independent. For statistically independent events, P(E; N E,) = P(E1)P(E2).

Example 4.1.1
Tn throwing a fair die, the probability of

A = {The outcome is greater than 3}

is

P(A)=P@A) + P(5)+ P(6) =} C LY
The probability of
B = (The outcome is even} @.12)
is
P(B) = P() + P+ PO = 1 4.13)
In this case,
poaizy < PADE) _ PO+PO =§

P(B) 5
If the events { E;}{..; make a parﬁﬁon of the sample space Q; i.e., if the following
two conditions are satisfied -
U E=Q
ENE; =0 foralll <i,j <nandi #j

n

then, if for an event A we have the conditional probabilities {P (AIEDY,, P(A) can
be obtained by applying the fotal probability theorem stated as

P(4) =3 P(E)P(AIE)

i=1 _
Bayes rule gives the conditional probabilities P (E;|A) by the following relation
' P(E)P(A|E:)
Sio P(ENP(ALE))

P(E|A) =
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O

Figure 4.1 Random variable as a

Xon) Xwp) Xws) Kwg R mapping from 2 to R.

Random Variables. A (real) random variable is a mapping from the sample
space €2 to the set of real numbers. A schematic diagram representing a random variable
is given in Figure 4.1.

Random variables are denoted by capital letters X, ¥, etc.; individual values of
the random variable X are X (w). A random variable is discrete if the range of its values

- is either finite or countably infinite. This range is usually denoted by {x;}.

The cumulative distribution function (CDF) of a random variable X is defined as
Fy(x) =Plwe R: X(w)<x)
which can be simply written as
Fy(x) = P(X <x)

and has the following properties:

1L.0<Fy(x) <1l
. Fx(x) isnondecreasing.
CHmy oo Fx(x) = 0and Hmy oo Fy(x) = 1.
. Fx(x) is continuous from the right; i.e., lim¢ o F(x + €) = F(x).
. Pla< X <b)=Fx(®)— Fx(a).
6. P(X = a) = Fy(a) — Fx(a™).
For discrete random variables Fy(x) is a stair-case function. A random variable is
called continuous if Fy(x) is a continuous function. A random variable is called mixed
if it is neither discrete nor continuous. Examples of CDFs for discrete, continuous, and
mixed random variables are shown in Figures 4.2, 4.3, and 4.4, respectively.
The probability density function (PDF) of a random variable X is defined as the
derivative of Fx(x); i.e., '

U B Wb

d
Sx(x) = d—FX(x)
X
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Fy(x)
=== i
g—d
?....._._._J
1
Figure 4.2 The CDF for a discrete
x  random variable.

Fy(x)

e e

Figure 43 The CDF for a continuous

x  random variable.

Fy(x)

—’/ Figure 4.4 The CDF for a mixed

x  random variable.

In case of discrete or mixed random variables, the PDF involves impulses. The basic
properties of PDF are listed here:

1 fx@x) >0

2. [% fx(x)dx = 1.

3. [ fx(x)dx=P@a <X <b). ,

4. In general, P(X €A) = [, fx(x)dx.

5. Fx(x) = f_ fx(u) du.
For discrete random variables, it is more common to define the probabzlzzy mass function
(PMF ), which is defined as {p;} where p; = P(X = x;). Obviously for all { we have

i >0and ), pi = 1.
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important Random Variables. The most commonly used random variables
in communications aré:

Bernoulli Random Variable. This is a discrete random variable taking two
values one and zero with probabilities p and 1 — p. A Bernoulli random variable is
a good model for a binary data generator. Also, when binary data is transmitted over
a comunication channel, some bits are received in error. We can model an error by
modulo-2 addition of a 1 to the input bit, thus changing a 0 into a 1 and a 1 into
a 0. Therefore, a Bernoulli random variable can be employed to model the channel
€rTors.

Binomial Random Variable. This is a discrete random variable giving the num-
ber of I's in a sequence of n independent Bernoullj trials. The PMF is given by

. Np*A—-p)yt, 0<k<n
Pix =) P a-p ks
0, otherwise

This random variable models, for example, the total number of bits received in error
when a sequence of n bits is transmitted over a channel with bit-error probability
of p.

Uniform Random Varigble. ~ This is a continuous random variable taking values
between @ and b with equal probabilities over intervals of equal length. The density
function is given by .

i, a<x<b
fx(x)—{ ¢

0, otherwise

This is amodel for continuous random variables whose range is known, but nothing else
is known about the likelihood of various values that the random variable can assume.
For example, when the phase of a sinusoid is random it is usually modeled as a uniform
random variable between 0 and 27.

Gaussian or Normal Random Variable. This is a continuous random variable
described by the density function

_ fx=mp?
e

fx(x) = .,

V2ro
The Gaussian random variableis the most important and frequently encountered random
variable in communications. The reason is that thermal noise, which is the major source
of noise in communication systems, has a Gaussian distribution. The properties of
Gaussian noise will be investigated in more detail later in Section 4.4.2. Graphs of the
PDFs and PMFs of the above random variables are given in Figures 4.5-4.8.
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0 a b x  random variable. ~

The CDF for the Gaussian random variable with m = 0 and

& (x) and given by

X

@(x):P(Xfx):/

—0

! e_% dt
27
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| ' Figure 4.8 The PDF for the Gaussian

o = 1 is denoted by

m x  random variable.

A closely related functionis Q(x) = 1 — ®(x) giving P(X > x). This function is well
tabulated and frequently used in communications. It is easy to see that Q{x) satisfies
the following relations:

O(—x)y=1- Q) (4.1.4)

o0 =1 (4.1.5)
0(c0) =0 4.1.6)

Table 4.1 gives the values of this function for various values of x.

There exist certain bounds on the @ function that are widely used to find bounds
on error probability of various communication systems. These bounds are investigated
in the problems at the end of this chapter. The two mostly used upper bounds are

1 X2
Ox) = —2—6'? forallx >0 4.1.7)
and
00) < —m—e"%  forallx >0 4.1.8)
x) < e ? orallx > A
2rx - ¢
The frequently used lower bound is
1 1 2
xX)> ——{1l——= e 7 forallx > 0 4.1.9
2 omx < xz) - ( )

A plot of Q(x) and these bounds is given in Figure 4.9.

A Gaussian variable can be described in terms of its two parameters 7 and o
by N(m, ¢2). For this random variable a simple change of variable in the integral that
computes P(X > x) resultsin P(X > x) = Q("—;ﬁ). This gives the so-called zail
probability in a Gaussian random variable.
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: TABLE 4.1 TABLE OF Q(x) VALUES
: x o(x) x @) x o)
0 5.000000e~01 24 8.197534¢-03 4.8 7.933274e-07
0.1 4.601722e-01 2.5 6.209665¢-03 49 4.791830e~07
02 4.207403e-01 2.6 4.661189e-03 50 2.866516e~07
03 3.820886e-01 27 3.466973e-03 5.1 1.698268e-07
04 3.445783e-01 2.8 2.555131e-03 52 9.964437e-06
0.5 3.085375e-01 2.9 1.865812¢-03 5.3 5.790128¢e~08
0.6 2.742531e-01 3.0 1.349898e-03 54 3.332043e-08
0.7 2.419637e-01 3.1 9.676035e-04 55 1.898956e-08
0.8 2.118554e01 32 6.871378e-04 56 1.071760e-08
0.9 1.840601e~01 3.3 4.834242e-04 57 5.990378e-09
1.0 1.586553¢-01 34 3.369291e-04 58 3.315742e-09
11 1.356661e~01 35 2.326291e-04 59 1.8175072~09
12 1.150697e-01 36 1.591086e-04 6.0 9.865876e~10
13 9.680049¢—02 37 1.077997e-04 6.1 5.303426e~10
14 8.075666e-02 3.8 7.234806e-05 6.2 2.823161e~10
i 1.5 6.680720e—02 3.9 4.809633e~05 6.3 1.488226e-10 |
E 1.6 5.479929e-02 4.0 3.167124¢-05 6.4 7.768843e~11
1.7 4.456546e—02 4.1 2.065752e~05 65 4.016001e-11
; 1.3 3.593032e-02 42 1.334576e-05 6.6 2.055790e~11
' 1.9 2.871656e~02 4.3 8.539898e-06 6.7 1.042099e~11
2.0 2.275013e-02 44 5.412542e-06 6.8 5.230951e~12
2.1 1.786442¢-02 45 3.397673e<06 6.9 2.600125e-12
: 22 1.390345¢-02 46 O 2.112456e-06 7.0 1.279813e~12
| 23 1.072411e-02 47 1.300809e-06

10
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0

Figure 4.9

Bounds on Q-function.
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Functions of a Random Variable. A function of arandom variable ¥ = g(X)
i itself a random variable. To find its CDF we can use the definition of the CDF to
obtain

Fy(y) = Plo e Q: g(X(w)) < x)

In the special case that, for all y, the equation g(x) = y has a countable number of
solutions {x;} and, for all these solutions g’(x;) exists and is nonzero, we can use the
following relation to find the PDF of the random variable ¥ = g(X).

Tx(x)

B0 =2

(4.1.10)

Example 4.1.2
Assuming X is a Gaussian random variable with m = 0 and o == 1, find the probability
density function of the random variable ¥ givenby ¥ =aX + b.

Solution In this case g(x) =ax+ b, therefore g'(x) = a. The equation ax + 5 = y has
only one solution given by x; = 1;—”. Using these results, we obtain

b
laf
L @.1.11)
= e 2a v ha
2ra?

Itis observed that Y is a Gaussian random variable X' (b, a2).

From the above example, we arrive at the important conclusion that a linear function
of a Gaussian random variable is itself a Gaussian random variable.

Statistical Averages. The expected value of the random variable X is de-
fined as ‘

E(X):/ xfx(x)dx

—0
and is usually denoted by mx. The expected value of a random variable is a measure of
the average of the value that the random variable takes in a large number of experiments.
In general, the nth moment of a random variable X is defined as

{oe]
m{ & / x" Fy(x) dx (4.1.12)

-0

The expected value of ¥ = g(X) is
EGQ0) = | g0 frta)

-0

 For discrete random variables, these equations become

EX) =) uP(X=x)
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and

E@X) = gG)PX =x)

. In the special case where g(X) = (X — E(X))?, E(Y) is called the variance of
X, which is a measure of spread of the density function of X. The variance is denoted
by o2 and its square root, o, is called the standard deviation. The relation for the
variance can be written as 0% = E(X?) — (E(X))2 For any constant c, the following
hold: ‘

1. E(cX)=cEX).
2. E(c) =c.
3. EX+o)=EX) +ec.
Tt is also easy to verify the following properties of the variance

1. VAR(cX) = c*VAR(X).
2. VAR(c) = 0.
3. VAR(X + c) = VAR(X).

Characteristic Functions. The characteristic function of a random variable
X is denoted by Wy (v) and defined as

V() & /_ ~ Fx(0e* dx (4.1.13)

Asitis observed from Equation (4.1.13), the characteristic function of arandom variable
is closely related to the Fourier transform of its density function. The characteristic
function of a random variable provides a simple way to find its various moments. This
can be easily shown by using the moments property of the Fourier transform. To obtain
the nth moment of the random variable X, we can use the relation

(n)

1 4

v=0

The characteristic function of a Gaussian random variable with mean m and variance

o?is given by
Wy () = /oo {—————1 e_(xz;fm)z} el dx
-0 L4/ 2702

= ivm=TE . (4.1.15)

Multiple Random Variables. Let X and ¥ be two random variables defined
on the same sample space §2. For these two random variables, we can define the Joint

CDF as
Fyy(x, ) =PlweQ: X <x, Y =y

Section 4.1 Probability and Random Variables 155

or simply as
Fxy(x,y)=PX =<xY =<y

and the joint PDF as

2
x93y
The following relations summarize the basic properties of the joint and marginal CDFs
and PDFs.

1. Fy(x) = Fy,y(x, 00).
. Fy(y) = Fxy(co, y).
- fx) = [, frr(x, y)dy.
CO) = S fer(x, y)dx:
150 S5 Fry(x, ) dxdy = 1.
CP(XY) € A) = [[ 4 pesFrr(x y) dx dy.
cFry@x,y) = [2 0 2 frr@, v)dudv.

The conditional PDF of the random variable Y, given that the value of the random
variable X is equal to x, is denoted by fy;x(y|x) and defined as

Lr8n | fr(x) #0
0, otherwise

frr@,y) = Fyy(x,y)

b IE=A N B SRS I

frixOx) = {

If it happens that the density function after knowledge of X is the same as the density
function before the knowledge of X, then the random variables are said to be statiszically
independent. For statistically independent random variables,

Txr @,y = fx) fr ()

The expected value of g(X, Y), where ¢g(X, Y) is any function of X and ¥, is obtained
from

E(g(X, 7)) = /_ /_ £G5 ) fr (x, y) dx dy

In the special case where g(X, Y) = X7, we obtain E(XY), which is called the cor-
relation of X and Y. In the case where g(X,Y) = (X — mx)(Y¥ — my), we obtain
E(XY) — mymy, which is called the covariance of X and Y. Note that if X = 7,
then COV(X, ¥) = VAR(X). The normalized version of the covariance, called the
correlation coefficient, is denoted by py y and is defined as

_COV(X,Y)
- Ox0y
Using the Cauchy-Schwarz inequality (see Problem 2.9), it can be shown that | px y| <1

and p = = 1 indicates a first order relationship between X and Y'; i.e., a relation of the
form ¥ =aX +b. The case p = 1 corresponds to a positive a and p = —1 corresponds

PX.Y
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to & negative a. Also, it is easy to verify that if X and Y are independent, then
COV(X, Y) = px,y = 0. That is, independence implies lack of correlation (o = 0). It
should be noted that lack of correlation does not in general imply independence. That
is, p might be zero and the random variables may still be statistically dependent.
. Some properties of the expected value and variance applied to multiple random

variables are listed below:

1. E(Zl CiXi) = & Zi E(X,)

2. VAR(E, i Xi) = 32, cVAR(X:) + X2 30 16 COV(X, X)),

where ¢;’s are constants.

Multiple Functions of Multiple Random Variables. If we define two func-
tions of the random variables X and ¥ by

Z=g(X,Y)
W=hX7T)

then the joint CDF and PDF of Z and W can be obtained directly by applying the
definition of the CDF. However, if it happens that for all z and w the set of equations

gx, )=z
hix,y) =w

has a countable number of solutions {x;, y;}, and at these points the determinant of the

Jacobian matrix
(2 2
J(x,y)—-—'[gj; 5{}

3x ay
is nonzero, then, we have
F (i, )
Fzw(z,w) = (4.1.16)
Z {detd (xi, yi)l
where det J denotes the determinant of the matrix J.
Example 4.1.3

The two random variables X and Y are independent and identically distributed, each with
a Gaussian density function with mean equal to zero and variance equal to o2. If these
two random variables denote the coordinates of a point in the plane, find the probability
density function of the magnitude and the phase of that point in polar coordinates.
Solution First we have to find the joint PDF of X'and Y. Since X and Y are independent,
their joint PDF is the product of their marginal PDFs; i.e.,

Ty = fx&®fr)

1 24y?

g 2 (41 17

= Inot
The magnitude of the point with coordinates (X, Y) in the polar plane is given by V =
/XT+ Y7, and its phase is given by ® = arctan §. We begin by deriving the joint PDF

of V and ©. In this case, g(X,Y) = /X2 + Y2 and h(X,Y) = arctan 3 ? 'The Jacobian -
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matrix is given by
X Y
Jx,y) = {V‘Z;f v (4.1.18)
’ TR YT

The determinant of the Jacobian matrix can be easily determined to be equal to
1

Nese

1
=7 (4.1.19)

']det.]'(x, ¥ =

The set of equations

jarctan ¥ =6

/22 £ 97 =
{ TAy=v (4.1.20)

has only one solution given by
x =vcosf ‘
{y — vsing (4.1.21)
Substituting these results into (4.1.16), we obtain the joint PDF of the magnitude and the
phase as )
Sfrio(v, 0) = ufy y(vcosd, vsinf)

v e
e %7, v>0,0<0 <2 (4.1.22)

T
To derive the marginal PDFs for the magnitude and the phase, we have to integrate the
joint PDF. To obtain the PDF of the phase, we have

fe(9)=/ fro(v,0)dv
0

1 [
=5 '/0 ;ie = dv

1 )
=[]

1
=50 0<8 <27 (4.1.23)
Hence, the phase is uniformly distributed on [0, 2rr). To obtain the marginal PDF for the
magnitude, we have

2

Sr(v) = fre(v,8)de
0

v _
=€, w20 4.124)

For negative v, of course, fy (v) = 0. Therefore,

2
Frv) = { ¢ ¥, vz0 (4.1.25)

s v<0
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This PDF is known as the Rayleigh probability density function and has widespread
applications in the study of the fading in communication channels. It is also interesting to
note that, in Example 4.1.3

fre,8) = fy(v)fe(6) (4.1.26)
and, therefore, the magnitude and the phase are independent random variables.

Jointly Gaussian Random Variables. Jointly Gaussian or binormal random
variables X and Y are defined by the joint density function

1 . 1
%, y) = expd —
Frr@.y) 2109/ 1 — p? p{ 21— %

(x—m)? O -m)? 20(x—m)(y— mz)} }
ot o? 0107

‘When the two random variables X and ¥ are distributed according to a binormal distri-
bution, not only X and Y are themselves normal random variables, but the conditional
densities f(x|y) and f(y|x) are also Gaussian. This property is the main difference
between jointly Gaussian random variables and two random variables each having a
Gaussian distribution. Also, it is straightforward to show that if X and ¥ are jointly
Gaussian, X is Gaussian with mean m; and variance af, Y is Gaussian with mean my
and variance o2 and the correlation coefficient between X and ¥ is p.

The definition of two jointly Gaussian random variables can be extended to  ran-
dom variables X1, X3, X3, - - ., X». If we define the random vector X = (X3, Xa, ...,
X,), and the vector of the means m = (m1, ma, ..., m,), and the n X 7 covariance
matrix C such that C;; = COV(X;, X;), then the random variables {X;} are jointly
Gaussian if

1
fla,xa, . x) = Wexp{

Here are the main properties of jointly Gaussian random variables:

—%(x——m)C’l(x—m)’}

1. If » random variables are jointly Gaussian, any subset of them is also distributed
according to a jointly Gaussian distribution of the appropriate size. In particular,
all individual random variables are Gaussian.

2. Jointly Gaussian random variables are completely characterized by their mean

vector m and covariance matrix C. These so-called second-order properties comt-

pletely describe the random variables.

Any subset of the jointly Gaussian random variables conditioned on any other

subset of the original random variables makes a jointly Gaussian distribution of

the appropriate size.

W

4, Any set of linear combinations of (X1, X, ..., X,,) is itself jointly Gaussian. In

particular, any linear combination of X;’s is 2 Gaussmn random variable.

5. Two uncorrelated jointly Gaussian random variables are independent. Therefore
for jointly Gaussian random variables, independence and uncorrelatedness are
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“equivalent. As we have seen before, this is not true in general for non-Gaussian
random variables.

Sums of Random Variables. If we have a sequence of random variables (X3,
X5, ..., X,), with basically the same properties, then the behavior of the average

Y= % 31 X;isexpected to be “less random” than each X;. The law of large numbers

and the central limiz theorem are precise statements of this intuitive fact.

The weak law of large numbers (WLLN) states that if the random variables
X1, X5, ..., X, are uncorrelated with the same mean my and variance 0}2{ < 00,
thenforany € > 0, imyseo P(JY —my| > ¢) =0, where ¥ = i > oi=1 X;. This means
that the average converges (in probability) to the expected value.

The central limit theorem not only states the convergence of the average to the

mean but also gives some insight into the distribution of the average. This theorermn states

that if (X3, Xz, ..., X,;) are independent with means (m;, ms, ..., m,) and variances
(02,02,...,02), then the CDF of the random variable —j; T_y £ converges to

the CDF of a Gaussian random variable with mean O and vanance I In the special
case that the X;’s are independent and identically distributed (i.i.d.) thls theorem says
that the CDF of ¥ = 1 = 2 i=1 Xi converges to the CDF of a N(m, ——) Note that,
although from the central limit theorem we can conclude that the average converges
to the expected value, we cannot say that the law of large numbers follows from the
central limit theorem. This is because the requirements for the central limit theorem
to hold are much stronger. For the central limit theorem to hold, we need the random
variables to be independent, whereas the law of large numbers holds under the less
restrictive condition of uncorrelatedness of the random variables.

This concludes our brief review of the basics of the probability theory. References
at the end of this chapter provide sources for further study.

4.2 RANDOM PROCESSES: BASIC CONCEPTS

A random process is a natural extension of the concept of random variable when dealing
with signals. In analyzing communication systems we are basically dealing with time-
varying signals. In our development so far, we have assumed that all the signals are
deterministic. In many situations the deterministic assumption on time-varying signals
is not a valid assumption, and it is more appropriate to model signals as random rather
than deterministic functions. One such example is the case of thermal noise in electronic
circuits. This type of noise is due to the random movement of electrons as a result of
thermal agitation and, therefore, the resulting current and voltage can only be described
statistically. Another example is the reflection of radio waves from different layers of
the ionosphere that makes long-range broadcasting of short-wave radio possible. Due
to randomness of this reflection, the received signal can again be modeled as a random
signal. These two examples show that random signals are suitable for description of
certain phenomena in signal transmission.

Another situation where modeling by random processes proves useful is in the
characterization of information sources. Aninformation source, such as a speech source,
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generates time-varying signals whose contents are not known in advance, otherwise
there would be no need to transmit them. Therefore, random processes provide 2 natural
way to model information sources as well. v

A random process, a stochastic process, or a random signal can be viewed in two
different, although closely related, ways. One way is to view a random process as a
collection of time functions, or signals, corresponding to various outcomes of arandom
experiment. From this viewpoint, corresponding to each outcome w; in a probability
‘space (82, B, P), there exists a signal x(¢; w;). This description is very similar to the
description of random variables in which a real number is assigned to each outcome
;. Figure 4.10 depicts this characterization of random processes. Thus, for each wy;,
there exists a deterministic time function x(z; w;), which is called a sample function,
or a realization of the random process. The collection of all sample functions is called
an ensemble. :

At each time instant fg, and for each w; € 2, we have the number x (fo; ;). For
the different w;’s at a fixed time 2o, the numbers x (t; w;), constitute a random variable
denoted by X (fp). After all, a random variable is nothing but an assignment of real
numbers to the outcomes of a random experiment. This is a very important observation

x{t; wy)

~ /| -
\/ ]

x(t; wy)

x(t; w3)

.

Figure 4.10 Sample functions of a
random process.
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and a bridge that commnects the concept of a random process to the more familiar concept
of arandom variable. In other words, at any time instant the value of a random process
constitutes a random variable.
Alternatively, we may view the random signal at#1, 7,, .. ., orin general, allz € R
as a collection of random variables {X(z;), X(22), ...}, or in general, {X(#),¢ € R}.
From this viewpoint, arandom process is represented as a collection of random variables
indexed by some index set (e.g., R in the latter case). If the index set is the set of real
numbers, the random process is called a continuous-time random process, and if it is
the set of all integers, then the random process is a discrete-time random process. A
discrete-time random process is nothing but a sequence of random variables {X; -
This second view of random processes, although less intuitive, is more appropriate for
precise mathematical development of the theory of random processes.
Ezample 4.2.1
) Let (€2, B, P) denote the probability space corresponding to the random experiment of
throwing a die. Obviously, in this case & = {1,2,3, 4, 5, 6}. For all w;, let x(1; @;) =
wie~"u_;(¢) denote a random process. Then X (1) is a random variable taking values

e~!,2¢7, ..., 6! each with probability 4. Sample functions of this random process
are shown in Figure 4.11. For this example, the first viewpoint of random processes is the
preferred view.
x(f o 1)
1 \4\
L L J I ] !
-4 -3 -2 -1 0 1 2 3 4 1t
x(1; wy)
2
T \IN !
-4 -3 —-2 -1 0 1 2 3 4 1
x(t; w3)
3
| ] ] | ] !
—4 -3 -2 -1 0 1 2 3 4 1

Figure 4.11 Sample functions of Example 4.2.1.
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Example 4.2.2 .

Let w; denote the ontcome of a random experiment consisting of independent drawings
from a Gaussian random variable distributed according to N'(0, 1). Let the discrete-time
random process {X,}%, be defined by: Xp = Oand X, = Xp—1 + w, foralln > 1.
It follows from the basic properties of the Gaussian random variables that for all / > 1,
j>1andi < j,{X,} isa j —i+ 1 dimensional Gaussian vector. For this example the
second view; i.e., interpreting the random process as a collection of random variables, is
more appropriate.

4.2.1 Description of Random Processes

Rased on the adopted viewpoint, there are two types of descriptions possible for random
processes. If the random process is viewed as a collection of signals, the analytic
description may be appropriate. In this description, analytic expressions are given for
each sample in terms of one or more random variables; i.e., the random process is
given as X (t) = f(; 6). where 8 = (61, 81, ..., 6,) is, in general, a random vector
with a given joint PDF. This is a very informative description of a random process

because it completely describes the analytic form of various realizations of the process.

For real-life processes, it is hardly possible to give such a complete description. If an
analytic description is not possible, a statistical description may be appropriate. Such
a description is based on the second viewpoint of random processes, regarding them as
a collection of random variables indexed by some index set.

Definition 4.2.1. A complete statistical description of a random process X ()
is known if for any integer n and any choice of (1, 12, ..., %) € R” the joint PDF of
(X(r), X (1), ..., X (1,)) is given. :

If the complete statistical description of the process is given, for any n the joint density
function of (X (t1), X (t2), - -, X () is given by fx (), X@),... X0 (X1, 25 -+ - » Xn)-

Definition 4.2.2. A process X (¢) is described by its Mth order statistics if for
alln < M and all (fy, B, ..., &) € R the joint PDF of (X (1), X (t2), ..., X (x)) is

given.

A very important special case, in the study of communication systerss, is the case of

M = 2, in which second-order statistics are known. This simply means that, at each

time instant ¢, we have the density function of X (¢), and for all choices of (11, 2) the
joint density functon of (X (#;), X (2)) is given.

Example 4.2.3 . .
A random process is defined by X (f) = A cos(277fyt + @) where G isa random variable
uniformly distributed on [0, 27). In this case, we have an analytic description of the
random process. Note that by having the analytic description, we can find the complete
statistical description. Figure 4.12 shows some samples of this process. i
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8=3/4

Figure 4.12 Samples of the random process given in Example 4.2.3.

Example 4.2.4
The process X (¢) is defined by X (r) = X, where X is a random variable uniformty
distributed on [~1, 1]. In this case again, an analytic description of the random process is
given. For this random process, each sample is a constant signal. Samples of this process
are shown in Figure 4.13.

Example 4.2.5
The process X (t), t > 0, is defined by the property that forany n andany (¢, 2, ..., t,) €
R*+*, the joint density function of {X (#;)}}-, is a jointly Gaussian vector with mean 0 and
covariance matrix described by

Crj = COV(X (1), X (1)) = o min(t, 7))

This is a complete statistical description of the random process X (¢). A sample of this
process is shown in Figure 4.14.

Note that in the last example, although a complete statistical description of the
process is given, little insight can be obtained in the shape of each realization of the
process.
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t
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—0.6
0

t
1

Figure 413 Samples of the random.
t  process given in Example 4.2.4.

x(®)

:  Figure4.14 Sample of the process
given in Example 4.2.5.

4.2.2 Statistical Averages

The facts that at any given time the random process defines a random variable and at
any given set of times it defines a random vector, enable us to define various statistical
averages for the process via statistical averages of the corresponding random variables.
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Definition 4.2.3. The mean, or expectation of the random process X (¢) is a
deterministic function of time mx (¢) that at each time instant 7 equals the mean of the
random variable X (f). That is, mx () = E[X (¢)] for ali t.

Since at any #, the random variable X (%) is well defined with a PDE Tx()(x), wehave

E[X (1)] = mx (i) = / * it (%) dx

Figure 4.15 gives a pictorial description of this definition.

o/

N/

Figure 4.15 The mean of a random pracess.

Example 4.2.6
The mean of the random process in Example 4.2.3 is obtained by noting that
& 0<o<2n
9) = 2 —
Fol®) { 0, otherwise
Hence,

2
E[X ()] = / Acos(2rfot +8)— d6 = 0
: 0 n :

‘We observe that, in this case my () is independent of 7.

Another statistical average that plays a very important role in our study of random
processes is the autocorrelation function. The autocorrelation function is especially
important because it completely describes the power-spectral density and the power-
content of a large class of random processes.

Definition '4.2.4. The autocorrelation function of the random process X (2),
denoted as Rxx (11, 1), is defined by Ryx(t1, 1) = E[X (1) X (&)].
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From the above definition it is clear that Ryx (1, ) isa deterministic function of two
variables #; and f,, given by

(o=} toe]
Rxx(t1, 1) = / / x1%2 e, X (X1, X2) dx1 dxz
—o0 J—co

The. autocorrelation function is usually denoted by Rx (#1, t,) for -short.

Example 4.2.7 ) )
The autocorrelation function of the random process in Example 4.2.3 is

Ry(t, 12) = E[Acos(2rfot: + ®)A cos(2m forr + ©)]
1
= A’E B cos2mfolt =) + 5 cosQrfolty +12) + 2@)}

AZ
=5 cos 2w fo(ty — 2)

Note that

2 1
E[cos@rfolt + 1) +20)] = / cos[2m fo(ty -+ 12) + 29)]2—; 46 =0
0

Example 4.2.8
For the random process given in Example 4.2.4, we have

+1 X2 1
2
Rx(n, 1) = E(X") =/ 7‘135 =3

-1
So far, we have given two methods to describe random processes, an an?l}ftic and a
statistical description. A statistical description can be 2 complete description or an
Mth order description. Sometimes, even having a second-order statistical descnp.non
of a random variable is not practical. In these cases, it may be possible to fn?d various
statistical averages by averaging over different realizations; in particular, it may be
possible to find my(¢) and Rx(f1, 1,). Although this information is much less than a

complete statistical description of the random process, it may be adequate. In some

cases, as we will see later, the mean and autocorrelation function provide a complete
statistical description for the important class of Gaussian random processes.

4.2.3 Stationary Processes

Tn a complete statistical description of a random processes, for any n, a..nd any (?1 I T
1), the joint PDF fx (), Xt X6) (15 X2, - - - Xn) is given. This joint PDF in general
depends on the choice of the time origin. In a very important class gf_random DIOCESSES,
thejoint density functionis independent of the choice of the time origin. These processes
whose statistical properties are time independent are called stationary processes. There

are different notions of stationarity. A strictly stationary process is a process in which "

for all #» and all (t, %2, ..., 1), fX(t;),X(tz),...,X(t,,) ()FI, X2, .- ,.x,,) deCHdS only on the
relative position of (f, 12, - - - 1), and not on their vaiues directly. In other words, 2

shift in the time origin does not change the statistical properties of the process. A formal -

definjtion of a strictly stationary process is the following:

Section 4.2 Random Processes: Basic Concepts 167

Definition 4.2.5. A strictly stationary process is a process in which for all 1, all
(ti, 12, ..., L), and all A

Fx. X020 X0 F1s X25 -+ X5) = FX(4+A) X (2t A) X (- A) (X1, %2, -+ <5 Xn)

A process is called Mth order stationary if the above condition holds for all n < M.

It is obvious that for both strictly stationary processes and Mth order stationary pro-
cesses the density function of X (¢) is time independent.

Example 4.2.%
Let X (7) denote a process such that forallnand all (1, #s, . . ., 1), the vector (X (1), X (1),
..., X(t,)) is an n-dimensional Gaussian random variable with mean zero and covari-
ance matrix I, (n-dimensional unitary matrix). Then clearly X (¢) is a strictly stationary
process.

Strict stationarity is a very strong condition that only a few physical processes
may satisfy. A less restrictive definition of stationarity is often more useful.

Definition4.2.6. A process X (¢) is wide-sense stationary (WSS) if the following
conditions are satisfied:

1. mx(t) = E[X(¢)] is independent of £.

2. Ry(t1, 1p) depends only on the time difference v =1 —# and noton 1 and 1,
individually.

Hereafter, the term stationary with no adjectives means WSS, and for these processes
the mean and autocorrelation are denoted by my and Ryx(v), or simply Ry (7).

Example 4.2.10
For the randop process in Exercise 4.2.3, we have already seen that my =0 and
Ry(t;, ) = % cos 27 fo (1) — 12). Therefore, the process is WSS.

A class of processes closely related to stationary processes is the class of cy-
clostationary processes. In cyclostationary processes, the statistical properties are not
time independent, but periodic with time. We will give the formal definition of the
cyclostationary processes here, but their importance in communication system analysis
will become more apparent in Chapters 7 and 8.

Definition 4.2.7. A random process X (z) with mean my (¢) and autocorrelation
function Ry (t 41, ) is called cyclostationary, if both the mean and the autocorrelation
are periodic in ¢ with some period Tp; i.e., if

mx(t + Tp) = mx (@) 4.2.1)
and ‘
Rx(t+t+To,t+To) = Rx(t +7,t) 4.2.2)
forallz and 7.
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Example 4.2.11

Let Y (1) = X (z) cos(2m fot) where X (¢) is a stationary random proéess with mean m and
autocorrelation Rx (7). Then

my(t) = E [X(t) cos(2n fot)] = my cos(2 fot) (4.2.3)
and
Ry(t+7,1) = E[X(t + 7) cos@m fo(t + ©)X (1) cos(27 for)]
= Rx ()[4 cos(@m for) + § cos(dn fot + 27 for)] 4.2.4
It is seen that both my (f) and Ry (¢ + 7, #) are penodlc with period Tp = . Therefore

the process is cyclostationary.

The following theorem gives the basic properties of the autocorrelation function
of a stationary process.

Theorem 4.2.1. Rx(7), the autocorrelation function of the stationary process -

X (2), has the following properties:

1. Rx(7) is an even function; i.e., Rx(—71) = Rx(%).
2. The maximum absolute value of Ry (z) is achieved at T = 0; i.e., |[Rx(7)] <

Rx(0). .
3. If for some Ty we have Ry(Tp) = Rx(0), then for all integers k, Rx(kTp) =

Rx(0).
Proof.
1. By definition

Rx(r) = E[X()X(t — )] = E[X(t — D)X ()] = Rx(-=7)

This proves the first part of the theorem.
2. By noting that

EX®+Xt-1))P 20
and expanding the result, we have
EX?0]+ E[X*(t — )] £ 2E[X(HX (¢ —1)120
Hence,
£Rx(7) = Rx(0)

which means |Rx(7)] < Rx(0).
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3. The proof is by mathematical induction. Assume that Ry (i Tp) = R x(0), fori =
1,2,...,k — 1. Expanding

E[X() - X(t — kTP
=E[(X®)~ X0 - k-DTo) + (X¢ — (k= DTp) - X (¢ — kTp))]? A
we obtain '
2Rx(0) — 2R3 (kTp)
=E[X() - X — (k~ DT+ EX¢ — (k- DTp) — X(t — kTo)]
+2E[(X () ~ X (¢ — (k= D)X (¢ — (k — DTo) — X (¢ ~ kTp))]
Now using the relation Ry (iTy) = Ry(0) fori <k — 1,
E[X(1) = X(t — (k ~ DT)F = —2Rx((k — 1)Tp) +2Rx(0) = 0
and
E[X(t— (k- DTp) — X(t — kTp)F = —2Rx(Tp) + 2Rx(0) = 0
By applying the Cauchy-Schwarz inequality (Problermn 2.9), we obtain
[EX () = X (¢ — (k= DTo)(X ¢ — (k= 1)To) — X (¢ — kTo))]]
SVEX®) - X~ k= DI)PEIX(t — (k — DTp) — X (¢ — kTp)I?
= V4(Rx((k — DTo) — Rx(0))(Rx(To) — Rx(0)) = 0
from which we conclude Ry (k7Tp) = Rx(0) for all integers k. &

- Ergodic Processes.. For a strictly stationary process X () and for any_function
g(x), we can define two types of averages:

1. By looking at a given time #, and different realizations of the process, we have a
random variable X (fo) with density function fy,(x), which is independent of #,
since the process is strictly stationary. For this random variable, we can find the
statistical average (or ensemble average) of any function g(X) as

E[g(X ()] = / 8(X) fx(w(x) dx

This value is, of course, independent of #.

2. By looking at an individual realization, we have a deterministic function of time
x(#; w;).Based on this function, we can find the time average for a function g(x),
defined as

+T/2

1
(g (X)) llm ? , ¢ (x(t; wi) dt
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{g(x)}; s, of course, a real number independent of  but, in general, it is dependent
on the particular realization chosen {e; ot i). Therefore, for each w; we have a
corresponding real number {g(x));. Hence, (g(x)); is the value assumed by a
random variable, We denote this random variable by (g(X)).

If it happens that for all functions g (x), (g(x)); is independent of i and equals
E[g(X (to))], then the process is called ergodic.t

Definition 4.2.8. A stationary process X (t) is ergodic if for all funcj;ions g(x)
andall w; € Q .

i 1 d Elg(X
Jim = /_ , 8o dt = B

In other words, if all time averages are equal to the corresponding statistical averages,
then the stationary process is exgodic.

A natural consequence of ergodicity is that in measuring various statistical aver-
ages (mean and autocorrelation, for example), it is sufficient to look at one r'ealizaz‘ion
of the process and find the corresponding time average, rather than considering a large
number of realizations and averaging over them.

Example 4.2.12 o
For the process givenin Example 4.2.3, for any value of 0 < 8 < 27 (i.e., for any realization

of the process) we have

1 e
(Xt 60 lim — / o(A cos(2 ot +0) dt

Toco T -T2

NT
/ g(Acosr for + 6)) dz

lim
N> 2NTy | _y7,

To
—1—/ g(Acos(2m for + 6))dt
To 0

2 +8 .
I for+6=u 1 du
= — Acosi)—=
TOL T
o
—_ g(Acosu)du
2 Jo

z

fOur notion of ergodicity and the definition that follows are not precise. A precise definition of
ergodicity requires knowledge of measure theo: , our ¢ e
is one of the properties satisfied by stationarity and ergodic processes and sometimes 18 refen.ed toas ergo ICf
property. For most engineering applications, however, this notion is adequate. For.a precise definition O
ergodicity and some related misconceptions, the reader is referred to Gray and Davisson (1986).

ry and is not treated here. In fact, our definition of ergodicity -
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where T = 715 On the other hand,

T

ey 1
EX@®] = / g(Acos(27 for + 0)) — db
0 21
2 1 2 fot +2n
b o / g(Acos(w)) du
T 2r for

1 2n
= —-—/ g(Acosu)du
2r Jy

and, therefore, the process is ergodic.

Example 4.2.13
In the process given in Example 4.2.4, each sample has a different constant value and,
therefore, the time average for each w; depends on i. This means that the process is not
ergodic.

Example 4.2.14
We have already seen that a sequence of random variables defines a discrete-time random
process. Let us assume that the sequence {X;}%2__ isa sequence of independentidentically
distributed random variables. Then, for any realization, by the law of large numbers, we
have limy 00 Elﬁ Z,'V:_ » Xi = E[X]. This means that i.i.d. processes are ergodic.

Ergodicity is a very strong property. Unfortunately, in general, there exists no simple
test for ergodicity. For the important class of Gaussian processes, however, there exists
a simple test that we will discuss in Section 4.4.1.

Power and Energy. In our discussion of power and energy for deterministic
signals we defined two types of signals—energy-type and power-type.

We can extend these notions to random processes. Let X (¢) be a random process
with sample functions x(#; ;). Then, the energy and power of each sample function
are defined as

-0

o
& = / x-z(t; w;) dt
and :

7
Pi=lm — “(t; wp) dt
; TLHQoT/_mX (Hw)d
This shows that for each w; €  we have real numbers &; and P; denoting energy
and power respectively and therefore it is clear that both energy and power are random
variables which we denote! by €x and Px. It makes sense to define the expected values
of @y and By as a measure of the power and energy content of the process. These
parameters are defined as follows:

Note that here we are using script letters to denote random variables.
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Definition 4.2.9. The power content Py and the energy content Ex of the ran-
dom process X (t) are defined as

Py = E[%®y]
and
Ex = E[%x]
where
0
x = / X% dt
—0
and
1 T2
Py = lim — / X%ty dr
T T -T/2
From this definition,
& =E [/ X%@) dt}
OQ
= / E[XY)) 4t
= / Rx(z, t)dt 4.2.5)
and
1 T/2
Py=E [hm = X dt]
T=oo T J_1p2
1 T/2
= lim — E[X2()]dt
T—>oo T -T2
T/2 :
= —/ Rx(,t)dt (4.2.6)
T—»oo T
If the process is stationary, then Rx(¢,t) = Rx(0) is independent of ¢, and we have
Py = Rx(0)
and '

v e}

It is seen that for stationary processes, if £x < ©o; i.e., if the process }s “energy-
type,” then we have Rx(0) = E[X2%()]=0. This means that for all #, X (#) is zero with

probability one. This shows that for the case of stationary processes, only power-type -

processes are of theoretical and practical interest.
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If, in addition to being stationary, the process is also ergodic, then Py is not
random anymore, and for each sample function of the process, we have

F; = Px = Rx(0)
Example 4.2.15
For the process given in Example 4.2.3, which is both stationary and ergodic, we have
’ AZ AZ
Py = Rx{(0) = — cos2nfp1) =
2 =0 2

This is, in fact, the power content of each sample function in this process since each
realization is a sinusoidal waveform.

Example 4.2.16
For the process in Example 4. 2.4, which is stationary but not ergodic, we have Py =
Ry (0) = In this case, for each sample, which is a constant waveform x where —1 <

x =<1, the power is x* and the power content of the process is simply E[X?].

Example 4.2.17
For the process of Example 4.2.5, which is neither stationary nor ergodic, we have
1 T
Px = Tlir:;o 7 /0 Ryx(t,t)dt
But
Ry(t,t) = ¢?min(t,£) = o  forallz > 0.

Hence,

1 T
Py = lim ——/ oltdt =
T Jy

T—>o0

Muitiple Random Processes. Multiple random processes atise naturally
when dealing with statistical properties of two or more random processes defined
on the same probability space. For example, take the case where we are dealing with
a random process. X (¢) and we pass it through a linear time-invariant system. For
each sample function input x(#; w;), we have a sample function output defined by

Y& ) = x(; w;) * h(t), where A(t) denotes the impulse response of the system. It

is seen that for each w; € 2, we have two signals x(¢; w;) and ¥(¢; w;). Therefore, we
are dealing with two random processes X (¢) and Y (z) defined on the same probability
space. Although we can define many random processes on the same probablhty space,
we hardly need anything beyond the case of two random processes in communication
systems and, therefore, we will only treat this case. When dealing with two random
processes, a natural question is the dependence between the random processes under
consideration. To this end, we define independence of two random processes.

N

\
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Definition 4.2.10. Two random processes X (¢) and ¥ (z) are independent if for .

all 1, 15, the random variables X (1;) and Y (#) are independent. Similarly, X (¢} and
Y (t) are uncorrelated if X (1) and ¥ (z,) are uncorrelated for all 13, 7.

From the properties of random variables we know that independence of random pro-
cesses results in their being uncorrelated, whereas, in general, uncorrelatedness does
not imply independence, except for the important class of Gaussian processes for which
the two properties are equivalent. We define the correlation function for the case of two
random processes as follows.

Definition 4.2.11. The cross-correlation function between two random pro-
cesses X (t) and Y (¢) is defined as )

Ryy(t;, 1) = E[X(t))Y (t2)]
It is seen from the above definition that, in general,
Rxy(t1,12) = Ryx(f2, 11) (427

The concept of stationarity can also be generalized to joint stationarity for the
case of two random processes as follows.

Definition 4.2.12. Two random processes X (¢) and Y (¢) are jointly wide-sense
stationary, ot simply jointly stationary, if both X (£) and ¥ (¢) are individually stationary
and the cross correlation function Ryy (f1, ) depends only ont = #; — 2.

Example 4.2.18 - :
Assuming that the two random processes X () and Y () are jointly stationary, determine
the autocorrelation function of the process Z{(2) = X (¢) + Y ().

Solution By definition

Rzt +1.1) = E[Z(t + )Z ()]
=E[XG¢+D+Y+NEEOFTYO)]
= Ryx(t) + Ry () -+ Ryy (z) + Rxy(—7)

4.2.4 Random Processes and Linear Systems '

Tn the section on multiple random processes, we saw that when a random process passes
through a linear time-invariant system the output is also a random process defined on
the original probability space. In this section, we will study the properties of the output
process based on the knowledge of the input process. ‘We are assumning that a stationary
process X (¢) is the input to & linear time-invariant system with impulse response h(),
and the output process is denoted by Y (#) as shown in Figure 4.16.

X0 h(t) v¢) Figuredlé A random process passing
through a linear time-invariant system.
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The following questions are of interest: Under what conditions will the output
process be stationary? Under what conditions will the input and output processes be
jointly stationary? How can we obtain the mean and autocorrelation of the output process
and the crosscorrelation between the input and output processes. The following theorem
answers these questions.

.Theorem 4.2.2. Ifastationary process X (r) with mean my and autocorrelation
function R x () is passed through a linear time-invariant system with impulse response
h (1), the input and output processes X (z) and ¥ (z) will be jointly stationary with

my = mX[ h@t) dt 4.2.8)
Ryy(1) = Ry(v) % h(~1) (4.2.9)
Ry (1) = Rx(v) % h(z) % A(—7) (4.2.10)

Proof. By noting that Y (¢) = [ X ()h(t — ) d, we see that

i

my(t)

E {/oo X@h(t —1)dr

]

/oo E[X(®)Ih@ —1)dr

—cC

[ee]
= / myxh(t —t)dt

u=t—1 i o
= mX/ h(u) du

This proves that my is independent of ¢ and concludes the first part of the theorem.
For the second part, we have

Ryxy(t, ) = E[X(@)Y )]
= E[X(rl)/ X(s)h(tz»s)ds}
= /_ E[X )X ()h(ty — 5) ds
= / Ry(t; — Yh(ty — 5) ds

= / Rx(t; —ty — u)h(—u) du
~00

=/ " Ry(t — uph(—u) du

-

Ry (1) % A(—1)
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The last relation shows that Ryy (#1, ;) depends only on 7. Therefore, if we prove the
third part of the theorem, we have also proved that the input and the output are jointly

stationary.
To prove the third part (and hence, finish the proof of the second part) -of the

theorem, we use the result we obtained above. We observe that

Ry(n,5) = E[Y@)Y )] :
E K / Z X - 5) ds> Y(rz)}

=/ " Rur(s — th(t — 5)ds

(o0
wn / Rxy Wh(ty — 1y — u) du
~00

" Rxy () xh(r)
Rx () x h(—T) % h{7)

where in the last step we have used the result of the preceding step. This shows that Ry,
the autocorrelation function of the output depends only on t and, hence, the output pro-
cess is stationary. Therefore, the input and output processes are jointly stationary.

]

Example 4.2.19 _
Assume a stationary process passes through a differentiator. What are the mean and

autocorrelation function of the output and what is the cross correlation between the input
and output?
Solution In a differentiator k() = &'(¢). Since &' (¢) is odd, it follows that

{oe)
my=mx/ §t)dt =0

—cQ
and
, d
Ryy = Rx(t) #*§'(—1) = =Rx(v) % &' (x) = 7 Rx (%)
and
d ) &
Ry(m) = "'E;RX(T) *8(0) = —-E;Rx(f)
Example 4.2.20

Repeat the previous example for the case where the LTI system is a quadrature filter

defined by A(1) = % and, therefore, H(f) = —; sgn(f). The output of the filter is the

Hilbert transform of the input in this case (see Section 2.5).

= 1>
my=mX/ ;dt:o

-0

Solution 'We have
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because ;17 is an odd function. Also, we have

1 A
Rxy(t) = Rx(7) » = —Rx(7)
-7
and
1 n
Ry () = Rxy (1) * == Rx(®) = Rx(1)
_ where we have used the fact that () = —x(r), and assumed that the R x(7) has no dc

component (see Problem 2.50).

4.3 RANDOM PROCESSES IN THE FREQUENCY DOMAIN

In the last part of the previous section, we dealt with the passage of random processes
through linear systems. We saw that if a stationary process passes through an LTT system,
the input and output will be jointly stationary. We also found a relation between the
input and output autocorrelation functions and the crosscorrelation function between
the input and the output. In Chapter 2, we have seen that using frequency domain
techniques greatly simplifies the input-output relation of linear systems. A natural
question now is: How can frequency-domain analysis techniques be applied to the case
of LTI systems with random inputs? Qur main objective in this section is to develop the
necessary techniques that can be used in the frequency-domain analysis of LTT systems
when driven by random inputs.

A first attempt would be to define Fourier transforms for each sample function of
the random process x(¢; ;), and thus, to define a new process with variable f on the
original probability space. The problem with this approach is that there is no guarantee
that all the samples of the random process possess Fourier transforms. In fact, for many
processes we can not define a Fourier transform for individual sample functions.

Another approach would be to look at the input-output power spectra. This ap-
proach is inspired by the convolution integral relation that exists between input and
output autocorrelation functions when a system is driven by a random input signal,
and also by the close relationship between the power spectrum of deterministic signals
and their time-average autocorrelation functions as seen in Section 2.3. But prior to
a formal definition, we have to see what we mean by the power-spectral density of a
stochastic process.

4.3.1 Power Spectrum of Stochastic Processes

The power spectrum of a stochastic process is a natural extension of the definition of
the power spectrum for deterministic signals when the statistical nature of the process
is also taken into account.

Let X (¢) denote a random process and let x(#; ;) denote a sample function of

this process. To define the power-spectral density for this sample function, we truncate
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it by defining
& o) x(twp), [t1<T/2
;o) = ;
T ! 0, otherwise

By truncating the signal, we make sure that the result is an energy-type signal, and there-
fore, possesses a Fourier transform, which we denote by X7, (). From the definition of
the energy-spectral density for energy-type signals, we know that the energy-spectral
density for this signal is simply | X, (f Y{2. Having the energy-spectral density we can
define the p;)wer—spectral density as the average energy-spectral density per unit of time;
£, l—X—TLgL Now, by letting T become arbitrarily large, we define the power-spectral
density for the sample function being considered, and we can denote it by Sy, (f)-

Itis obvious that, in general, various sample functions give rise to various Sy (f)'ss
ie., for each f we have a random variable denoting the amount of power at that
frequency in each sample function. It makes sense to define the power spectrum as the
ensemble average of these values; i.e.,

2 2
uf [ Xz (£)] } - E[IX?(f)l] i

Sx(f) = £| im ————

T—>c0 T T—>00

Equation (4.3.1) of the power-spectral density is a straightforward generaliza-
tion of the corresponding relation for the case of deterministic signals. Although this
definition is quite intuitive, using it to find the power-spectral density is not always easy.

Example 4.3.1
Find the power-spectral density for the process defined in Example 4.2.4.

Solution Let X denote a random variable uniformly distributed on [~1, 1]. Then, the
truncated random signal is simply

Xr(t) = XTI (%)
Hence,
X7(f) = XT sine(Tf)

and
Sx(f) = Jm E(X)T sinc®(TF)

Noting that E(X?) = 1/3, we have to find limr— e T sinc?(Tf). But T sinc?(Tf) is the ;

Pourier transform of A(%), and as T goes to infinity, this function goes to 1. Therefore,

Jim T sinc®(TF) = 8(f)

and Sx (f) = 36()-

There exists a very important theorem known as the Wiener-Khinchin theorem that gives
the power-spectral density of a random process in terms of its autocorrelation functions.
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Theorem 4.3.1 [Wiener-Khinchin]. If for all finite r and any interval & of
length ||, the autocorrelation function of the random process X (¢) satisfies the

condition
J/sd Ryt +1,t)dt| <0 (4.3.2)

then the power-spectral density of X (¢) is the Fourier transform of (Rx (t + 7, #)) where

Ry +7,0) % tm = 7 Rl
=g x(t +1,0)dt (4.3.3)

Proof. We begin with the definition of the power-spectral density of a random
process

1
Sx(f) = Jim ZEXr(f)]
where ‘
T/2 .
X = [ X
-T/2

Substituting for X1 (f), we have
Sx(f) = li IE[ et [ 2
() = lim — s)e~ 25 g X (t)et =St

T T ~T/2 g /_r/z (Me a

1 T2 TR ,
= lim ——-/ Ry(s,t eI E-D gp g
Toe0 T —rpdetp2 X( ) S5

Novs{ we proceed by finding the inverse Fourier transform of the above and showing
that it equals (Rx (¢ + 7, ¢)). We start with

FUSx ()] = lim I/w +J'27rfr/T/2 /MR J2m fs—1)
X = — e ,t -— —
Too T Jooo I - x(s,t)e dtdsdf

1 (T2 (T2 o0
= lim — Ry(s. 1) dt ds / o fle—(s—0]
5% T Jorp Jorps x(s, 1) e df

Using the fact that F ™[ 1] = §(¢), we have
/ " g flr=e-) df =8(t —s+1)

—oQ

Substituting this result in the inverse Fourier transform, we obtain

o 1 I T/2
FSx (Nl = lm — di Rx(s,)8(z —s+1)ds
T T J_1p2 -T2
But,
T/2 -
/ Re(s. 08( —s 4 1yds = | DXEFT0, ~T2<i4T<Tf2
~T/2 0, otherwise
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Hence,

T2 (Ry@G+1,1), =T/2<t+t<T/2
&Sy (] = Jim = [ { x¢+n8, 172 21 4
~roo -T2 otherwise
This can be written as
T/2
l[Sx(f)] _ My e & 7 fTTé?'T Ryx(t+1z,t)dt, >0
mz e+ [107, . Rx(t +7,00dt, 7 <0
or
imroco # [ Rx(t+7,0)dt — T2 Ry(t+7,0)dt], >0
7o # 27, Re(t +7,0) dt — [ Ry (¢ +7,0)d1], 7<0

Since [f&Q Ry(t+1,1) dt] < oo for all & of length 7, as T — oo the second terms in
the above brackets make no contribution. Therefore, , by taking the Fourier transform of
both sides, we have

FUSx (M =

T/2
$2() =% [Jim 7 [ ReG+ 434
T>0 T Jorp2

This concludes the proof of the Wiener-Khinchin theorem. E
The following corollaries are immediate results of the Wiener-Khinchin theorem.

Corollary 4.3.2. . If X (¢) is a stationary process in which 7 Ry () remains finite
for all finite 7, then

CSx(H) =FRx(m] 43.5)
Proof. In this case the condition of the preceding theorem is satisfied and,
2
(ReCe+7,) = Jim - [ ZZ Ra() d = Ry(x)
Applying the Wiener-Khinchin theorem gives the desired result.
Corollary 4.3.3. In acyclostationary process, if

Ty :
Ryt +z,)dt| < 0

then the condition of the Wiener-Khinchin theorem is satisfied (why?) and the power-

spectral density is obtained from by )
Sx(f) = F[Rx(v)] (4.3.6)

where
aef 1 [T/
Rx() = —/ Rx(t+ 1, ) dt @37
To J-ns2

and Ty is the period of the cyclostationary process.

Section 4.3 Random Processes in the Frequency Domain 181

Proof. The proof is immediate by noting that for a cyclostationary process
1 /T2 To/2
Him — Rx(l‘—i—l’ 1ydt = —/ Rx(t 4, t)dt
T—oo T

Example 4.3.2
“ It was shown in Example 4.2.11, that if X (¢) is stationary, then Y (¢) = X (*) cos (2 fot)
is a cyclostationary process with

Ry(t+7,6)= Rx(r)[ cos(2nfor) + 1 3 cos(dm fot + 27rfor)] (4.3.8)

Using the above corollary, we have

- 1 o
Ry(r) = —/ Ryt +7,0)dt
- To/2

= Xz( 2 cos(27 for) (4.3.9)
Therefore,
Sy(f) = FLRy (1))
= 3Sx(f + fo) + Sx(f — fo)] 4.3.10

Based on the Wiener-Khinchin theorem the following observations are in order:

¢ To find the total power in the process it is enough to integrate the power-spectral
density -

Py = /; Sx(fdf
(Rx(t+ 7, ))emo

1 T/2
E[X(t + )X ()]de

i

i
5

T=0

1 T/Z )
=F {Iim — X% dtJ
T—o0 T -T /2

which is exactly the power content of a random process as defined in Section 2.3.
For stationary and ergodic processes, each sample function x(¢; w;) is a deter-
ministic function for which we can define the power-spectral density as given
in Section 2.3. To this end we define the power-spectral density as the Fourier
transform of the (time-average) autocorrelation function of x (¢; «;) defined by

°

1 [I72
Rz(m,)(t) T——»ooT zx(t;wi)x(t—r;w,-)dt

and

Sx(t;w.-) =& [Rx(r;cu,-) (T)]
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Now, since the process is ergodic, the time average in the equation defining
Ry (1.0 (T) is equal to the corresponding statistical average for all samples x (¢; wy),
namely,

1 /T2
im =  w)x(t — 5 wp) df = ~ )=k
%ROT/;T/zx(t,w)x(t ;) dt = E[X(0)X(t —1)] ¥ (1)

and, therefore,

Sx(f) = F[Rx ()] = Sx(in

This shows that for stationary and ergodic processes the power-spectral density ;

of each sample function is equal to the power-spectral density of the process.
In other words, each sample function is a good representative of the spectral
characteristics of the entire process. Obviously, the power content of the process
is also equal to the power content of each sample function. -

The power-spectral density was originally defined as

i EIXr(OF]
T—00 T

From this definition, it is obvious that the power-spectral density is always a-;
real, non-negative and an even function of f. The fact that the power-spectral |

density is real and even is a direct consequence of the autocorrelation function
being real and even, but non-negativeness of the power-spectral density is not

a direct consequence of the properties of the autocorrelation function that we
have studied so far.! Therefore we can add this property to the already mentioned

properties of the autocorrelation function of a stationary process as given in
Section 4.2.3.

Example 4.3.3
For the stationary and ergodic random process in Example 4.2.3 we had

A2
Rx(r) = - cos(2n fot)

Hence,

2
Sx(f) = S0 = )+ 8(F + £o)

The power-spectral density is shown in Figure 4.17. Al the power content of the process 4:

is located at f and — fp and this is expected because the sample functions of this process
are sinusoids with their power at those frequencies.

tThe fact that S, ( £) is non-negative is a consequence of the fact that Ry (r) is positive semi-definite it

the sense that for any signal g(#), we have f: f_o; g(ORx (¢t —5)g(s)dtds 2 0.
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Sx(1)
A? A?
TT T )
: Figure 4.17 Power-spectral density of
~fo fe F  the random process of Example 4.2.3.
Example 4.3.4

The process of Example 4.2.4 is stationary but not ergodic. In this case,
Ry(r) = EX (¢ +0)X(N] = E[X*} =}
~ Hence,
Sx(H=F[3] =38(N

as was shown before without using the Wiener-Khinchin theorem. It is obvious that, in
this case, for each realization of the process, we have a different power spectrum.

Example 4.3.5
The process given in Example 4.2.11 with x(¢) as in Example 4.2.4, is cyclostationary
with
Rx(t +7,1) = tcos@nfo(2t + 7)) + cos (27 fo1)]

from which we obtain

_ 1 [T 1
Ry(t) = — Ry (t + 7, 1) dt = = cos(2n fyT)
o Jonop2 6

Therefore,
Sx(f) = H8(f — fo) +8(f + fo)l

4.3.2 Transmission over LTl Systems

‘We have already seen that, when a stationary random process with mean m,, and auto-
correlation function Ry (7) passes through a linear time-invariant system with impulse
response A (z), the output process will be also stationary with mean

o0
my = mX/ h(t)ydt
-0

and autocorrelation

Ry(t) = Rx(t) * A(z) » h(—T)
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‘We have also seen that X (¢) and ¥ () will be jointly stationary with crosscorrelation
function

Rxy(t) = Rx(z) x h(—7)

Translation of these relations into the frequency domain is straightforward. By noting
that F[A(—7)] = H*(f) and [° h(t)dt = H(0), we have :

Sy(f) = Sx(NIH)? (43.12)

Equation (4.3.11) says that, since the mean of arandom process is basically its dc value,
the mean value of the response of the system only depends onthe value of H(f) at f = 0
(dc response). The second equation says that, when dealing with the power spectrur,
the phase of H(f) is irrelevant; only the magnitude of H (f) affects the output power
spectrum. This is also intuitive since power depends on the amplitude, and not the
phase, of the signal.

‘We can also define a frequency domain relation for the autocorrelation function.
Let us define the cross-spectral density Sxy (f) as

Sxr(f) E F[Rxy ()] 4.3.13)
Then
Sxr () = Sx(f) H*(f) (43.14)
and since Ryx(r) = Ryy(—1), we have
Syx(f) = Sgy(f) = Sx(fYH(S) (4.3.15)

Note that, although Sx(f) and Sy(f) are real non-negative functions, Sxy(f) and ‘
Syx(f) can, in general, be complex functions. Figure 4.18 shows how the above quan-
tities are related.

) > A ()

H¥) F— Sx)

Sx(F) H(f) = Sn(f)

Figure 4.18 Input—output relations for
[H(HP = 5y(P) power-spectral density and cross-spectral -
density.
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Examplie 4.3.6
If the process in Example 4.2.3 passes through a differentiator, we have H(f) = jonf
and, therefore,

. A?
Sy (f) = 4n? f* [Tw = SO+ + D | = A2 — fo) + 8(F + fo)]

and

s A2
Ser(f) = C2NSx () = TR 505 4y~ o0 - g

Example 4.3.7
Passing the process in Example 4.2.4 through a differentiator results in
Sy () = 4a?f2(38(f)) =0
Sxr(f) = (=j27/)(38(f)) =0

These results are intitive because the sample functions of this proceéss are constant and
differentiating them results in zero output.

Power-Spectral Density of a Sum Process. In practice, we often encounter
the sum of two random processes. For example, in the case of communication over a
channel with additive noise, the noise process is added to the signal process. Next, we
determine the power-spectral density for the sum of two jointly stationary processes.
) Letus assume that Z(t) = X (#) + Y () where X (t) and Y (¢) are jointly stationary
random processes. We already know that Z(z) is a stationary process with

 Rz(x) = Rx(t) + Ry(2) + Ry (v) + Ryx () (4.3.16)

Taking the Fourier transform of both sides of this equation and using the result of
Problem 4.50, we obtain

Sz(f) = Sx(f) + Sy (F) + Sxy (f) + Srx(f)
N’
Sk
= S8x(f) + Sy (f) +2Re [Sxr ()] (4.3.17)

Equation (4.3.17) shows that the power-spectral density of the sum process is the sum
of the power spectra of the individual processes plus a third term which depends on the
correlation between the two processes.

If the two processes X (¢) and ¥ (¢) are uncorrelated, then

Rxy () =mymy
Now, if at least one of the processes is zero mean we will have Rxy(r) =0and

Sz(f) = Sx(f) +Sr(f) (4.3.18)
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Example 4.3.8
Let X (¢) represent the process in Example 4.2.3, and let Z(f) = X )+ ;‘f;X (z). Then,
j A%
Sxr(H) =15 R 1507 + fo) = 8(F = )

and, therefore,
Re[Sxy (f)1=0
Hence,

Sz(f) = Sx(f) + S¢(f) = A2 (3 + 72 fR)B(F — fo) + 8(f + fo)]

4.4 GAUSSIAN AND WHITE PROCESSES

Gaussian processes play an importantrole in communication systems. The fundamental
reason for their importance is that thermal noise in electronic devices, which is produced

by random movement of electrons due to thermal agitation, can be closely modeled by :
a Gaussian process. The reason for the Gaussian behavior of thermal noise is that the ::

current introduced by movement of electrons in an electric circuit can be regarded as the
sum of small currents of a very large number of sources, namely individual electrons
It can be assumed that at least a majority of these sources behave independently and

therefore, the total current is the sum of a large mumber of i.i.d. random variables. Now

by applying the central limit theorem, this total current has a Gaussian distribution.
Apart from thermal noise, Gaussian processes provide rather good models {0
some information sources as well. Some interesting properties of the Gaussian pro

cesses, which will be discussed in this section, make these processes mathematically

tractable and easy to deal with. .

4.4.1 Gaussian Processes

We start our discussion with a formal definition of Gaussian processes.

Definition 4.4.1. A random proéess X(2) is a Gaussian process if for all n.

and all (#, %, . - - » 1), the random variables {X (#:)}; have a jointly Gaussian density
function.

From the above definition it is seen that, in particular, at any time instant fo the random
variable X (f) is Gaussian, and at any two points #1, random varjables (X (z1), X (%2)
are distributed according to a two-dimensional Gaussian random variable. Moreover
since a complete statistical description of {X (t:)}i=1 depends only on m and C, th
mean and autocovariance matrices, we have the following theorem.

Theorem4.4.1. For Gaussian processes, knowledge of the mean and autocore= :
'lation; i.e., mx(z) and Ry (z1, t2) gives a complete statistical description of the process. ;
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The following theorem is of fundamental importance in dealing with Gaussian
processes.

Theorem 4.4.2.  If the Gaussian process X () is ;* :=eced through an LTI system,
then the output process ¥ (¢) will also be a Gaussian process.

Proof. To prove that Y (¢) is Gaussian we have to prove that for all n and all
{t;Y,, the vector (¥ (#1), Y (82), ..., Y (#,)) is 2 Gaussian vector. In general, we have
0 Jj=N
5) = X(@h(; — = li i j Y
YQ /_oo (Dh( —1)de I}E&mENXUAW ja)

Hence,
Y (81) = imy- o0 lima—so SN X G ARG — FA)
Y (12) = limys o0 limanso 3012y X (G AYR( — jA)

Y (1) = LMy oo imaso SNy X (G AYA(ta — jA)
Since {X(j A)}?;_N is a Gaussian vector and random variables (Y{(11), Y (t2), - .-,
Y (2,)) are linear combinations of random variables {X (j A)}ﬁ-":_ ~» We conclude that
they are also jointly Gaussian. =

This theorem is a very important result and demonstrates one of the nice properties of
Gaussian processes that makes them attractive. For a non-Gaussian process, knowledge
of the statistical properties of the input process does not easily lead to the statistical
properties of the output process. For Gaussian processes, we know that the output pro-
cess of an LTI system will also be Gaussian. Hence, a complgte statistical description of
the output process requires only knowledge of the mean and autocorrelation functions
of it. Therefore, it only remains to find the mean and the autocorrelation function of
the output process and, as we have already seen in Section 4.2.4, this is an easy task.
Note that the above results hold for all Gaussian processes regardless of station-
arity. Since a complete statistical description of Gaussian processes depends only on

my(t) and Ry (11, ), we have also the following theorem.

Theorem 4.4.3. For Gaussian processes, WSS and strict stationarity are
equivalent. 5

We also state the following theorem without proof. This theorem gives sufficient con-
ditions for the ergodicity of zero-mean stationary Gaussian processes. For a proof, see
Wong and Hajek (1985).

Theorem 4.4.4. A sufficient condition for the ergodicity of the stationary zero-
mean Gaussian process X (¢) is that

/00 IRy (T)|dt < o0 -

—C0
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Paratlel to the definition of jointly Gaussian random variables we can define jointly
Gaussian random processes. :

Definition 4.4.2. The random processes X (¢) and Y (¢) are jointly Gaussian if
foralin,mandall (1, 2z, ..., ;) and (7, 73, . . ., T), therandom vector (X (#1), X (1),

e X, Y)Y (), ..., Y () is distributed according to an n + m dimensional

jointly Gaussian distribution. S

‘We have also the following important theorem:

Theorem 4.4.5.  For jointly Gaussian processes, uncorrelatedness and indepen- -

dence are equivalent.

Proof. This is also a straightforward consequence of the basic properties of
Gaussian random variables as outlined in our discussion of jointly Gaussian random

variables. . &

4.4.2 White Processes

The term white process is used to denote the processes in which all frequency com-
ponents appear with equal power; i.e., the power-spectral density is a constant for all
frequencies. This parallels the notion of “white light” in which all colors exist.

Definition 4.4.3. A process X (z) is called a white process if it has a flat spectral
density; i.e., if Sy (f) is a constant for all f. -

The importance of white processes in practice stems from the fact that thermal noise can
be closely modeled as a white process over a wide range of frequencies. Also, a wide
range of processes used to describe a variety of information sources can be modeled
as the output of LTI systems driven by a white process. Figure 4.19 shows the power
spectrum of a white process. . '

If we find the power content of a white process using Sy (f) = C, a constant, we
will have ‘

PX=/_°° Sy(fdf = [ Cdf =o0

-0

Sx()

Figure4.19 Power-spectral density of a
white process.
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5.5

Figure 4.20 Power spectrum of thermal
f  noise.

Obviously, no real physical process can have infinite power and, therefore, a white
process is not a meaningful physical process. However, quantum mechanical analysis
of the thermal noise shows that it has a power-spectral density given by

‘ it

S,; =— 4.4.1
5 Z(e# — 1) ¢ )

in which /i denotes Planck’s constant (equal to 6.6 x 10~ Joules x second) and k is
Bolizmann’s constant (equal to 1.38 x 1072 Joules/Kelvin). T denotes the temperature
in degrees Kelvin. This power spectrum is shown in Figure 4.20.

The above spectrtm achieves its maximum at f = 0 and the value of this maxi-
mmum is 1‘21 The spectrum goes to zero as f goes to infinity, but the rate of convergence
to zero is very slow. For instance, at room terperature (T = 300 K) S,(f) drops to
90% of its maximum at about f =~ 2 x 10' Hz, which is beyond the frequencies
employed in conventional communication systems. From this we conclude that ther-
mal noise, though not precisely white, for all practical purposes can be modeled as
a white. process with power spectrum equaling 521 The value k7 is usually denoted
by Ny and, therefore, the power-spectral density of thermal noise is usually given as
S (f) = %Q and sometimes referred to as the two-sided power-spectral density, em-
phasizing that this spectrum extends to both positive and negative frequencies. We will
avoid this terminology throughout and simply use power spectrum or power-spectral
density. -

Looking at the autocorrelation function for a white process, we see that

_g-1[M — ﬂg
R,(z)=F [2] = (1)

This shows that for all T £ 0 we have Ry(r) = 0; ie., if we sample a white process
at two points #; and #; (f; # 1), the resulting random variables will be uncorrelated. If
in addition to being white, the random process is also Gaussian, the sampled random
variables will also be independent.

In short, the thermal noise that we will use in subsequent chapters is assumed to
l.;)ve a stka}ionary, ergodic, zero-mean, white Gaussian process whose power spectrum is

{i *7

7 =7
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. Noise-Equivalent Bandwidth. When white Gaussian noise passes througha
filter, the output process, although still Gaussian, will not be white anymore. The filter
characteristics determine the spectral properties of the output process, and we have

Sr() = Sx(DIEWP = 2P

Now, if we want to find the power content of the output process, we have to integrate
Sy (f). Thus, .

Joe] N (o]
Py=/_ sy(f>df=—29/_ H()Pdf

Therefore, to determine the output power, we have to evaluate the integral
[ 1H ()1 df . To do this calculation, we define Byeq, the noise-equivalent bandwidth
of a filter with frequency response H(f), as

neq . 2H2

max

where Hyx denotes the maximum of [H ()] in the passband of the filter. Figure 421

shows Hppax and Breq for 2 typical filter.
Using the above definition, we have

Ng [*®

-0

H(HIPdf

X 2BpeqHax

= Np BueqHzax (4.4.3)

Therefore, by having Byeq, finding the output noise power becomes 2 simple task. -

The noise-equivalent bandwidth of filters and amplifiers is usually provided by the
manufacturer. ’

Hm:\x

Figure 421 Noise-equivalent

= Bpeq ~— f bandwidth of a typical filter.

o 2
[, HDP 642

Section 4.4 Gaussian and White Processes 191

- 1
IH( )= W

5 Figure 4.22 Frequency response of a
) f lowpass RC filter.

Example 4.4.1
Tind the noise-equivalent bandwidth of a lowpass RC filter.

Solutiqh ‘g (f) for this filter is

1

B =15 7m7re

and is shown in Figure 4.22.
Defining t = RC, we have

1

[H( ) =~
1+ 4n?f27?
and, therefore, Hp. = 1. We also have

TlEHrd = 2/°°—l-—d
/—w d o +/1+4n?f2c? f

u=2rft /»oo 1 du
o= 2 X —
o 1+u?  2mr

1 7
= — ——
Tt 2
_ 1
T2t
Hence,
L
Bneq = Z = 1
2x1 4RC
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4.5 BANDLIMITED PROCESSES AND SANMPLING

A bandlimited process is a random process whose power-spectral density occupies a
finite bandwidth. In other words, a bandlimited process is a process with the property
that for all | f| = W, we have Sy (f) = 0 where W is the bandwidth of the process.

Almost all of the processes encountered in nature are bandlimited because there
is a limit on the bandwidth of all physical systems. Bandlimited processes also arise
when passing random processes through bandlimited linear systems. The output, usually
called a “filtered process,” is a bandlimited process. The power- spectral density of a
typical bandlimited process is shown in Figure 4.23.

Sx(F)

ol

Figure 4.33 " Power spectrum of a
- w f . bandlimited process..

‘We have already seen in Section 2.4 that for bandlimited signals there exists the

powerful sampling theoremn which states that the signal can be perfectly reconstructed

from its sampled values as long as the sampling rate is more than twice the highest
frequency component in the signal; i.e., the bandlimited s1gna1 can be expressed in
terms of its samples taken at regular intervals T;, where T, < 2W’ by the relation

x()= Y 2WTx(kTy) Sinc(2W (t — T,))

=00

In the special case where Ty = 2—% the above relation simplifies to

x(t) = kg:wx (%) sinc (ZW (t - 5%))

One wonders if such a rejation exists for bandlimited random processes. In other
words, if it is possible to express a bandlimited process in terms of its sampled values.
The following theorem, which is the sampling theorem for the bandlimited random
processes, shows that this is in fact true.

Theorem 4.5.1. Let X(¢) be a stationary bahdlimited process; i.e., Sx(f) = 0
for | f| > W. Then the following relation holds
2

E{X®) — > X(Ty)sinc@W(t —kT;))| =0 @S

k=—o00

1 . s
where Ty = 53 denotes the sampling interval.
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Proof. Let us start by expanding the above relation. The lefi-hand side becomes
0 2
E|X@) - Z X (kT;) sincQW (¢ — k7))

e

=Rx(0)—2 > Rx(t —kTy) sinc@W(t — kTy))

k=—00

+ D0 ) Rx((k—DT)sinc@W(t — kT,)) sinc@W (t — IT,))

k=—c0 I=—c0

Inu'oducing the change of variable m = [—k inthelastline of the above relation, we have

Y. D Rx((k~DT,)sinc@W(r — kT,)) sinc@W (¢ — IT,))
k=—00 [=—0c0
=3 Z Ry(—mT;)sinc QW ¢t — kTs)) sincQW (t — kT, ~ mTy))

k=~0c0 m=—c0

= ) sincQW( —kT,)) > Rx(uT)sincQW(t - kT, — mT,))

k=—c0 m=—c0

where we have used the fact that Ry (—mT;) = Ry(mT,).
The fact that the process is bandlimited means that the Fourier transform of R x (r)
is bandlimited to W and, therefore, for Rx(7) we have the expansion

Ry () = Z Ry (KT,) sinc[2W (1 — kT3)]

k=~00

' from which we obtain

Z RX(mT)smc[ZW(t—~k1} —mT)] = Rx(t - kT3)

m=-=00

Therefore,
2

E\X(@®) - Z X&T)sinc2W (¢ — kT,)]

k=-00

= Ry(0) - 2 Z Ry(t = kT,) sincl2W (: — KT,)]

k=—o00

+ Z Rx(z —kT)smc[ZW(t — kT

k=—00

S =Rx(0)— > Rx(t —kT,)sinc2W (¢ — kT)]

k=—o0
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Now we can apply the result of Problem 2.42 to- Ry (7) to obtain ,

(o]
Rx(0) = Z Ry(t — kTy) sinc[2W (t — kT)]
=00
Substituting this result in the expression for E[X ()], we obtain
o 2
X0 - Y, XUT)sinc2W( —kI)]} =0

k=00

E

This concludes the proof of the theorem. B

This result is a parallel to the sampling theorem for deterministic signals d.evelF)ped in
Section 2.4. Note that, due to the random nature of the entities involved in this case,
the equality of X () and Z;‘;_w X (kT,) sinc[2W (¢ — kT5)] is not pointwise, and we
can only say that :

2

X(@) - 2 X (kT;) sinc2W (¢t —kT)]l| =0

=—00

E

This is usually called equality in quadratic mean or equality in the mean-squared sense

and denoted by

o .

X0 E Y XET) sineW( - k)] 452
k=—00

Now that we have-seen that a bandlimited process can be recovered from its sampled

values taken at 1/2W intervals, an interesting question is whether or not tk_lese samples

are uncorrelated. It can be shown that a necessary and sufficient condition for the

uncorrelatedness of these samples is that the power spectrum O

the passband; i.e. -

(K i<W
)= 0, otherwise

Unless this condition is satisfied, the samples of the process will be correlgted and this
correlation can be exploited to make their transmission easier. This fact will be further

explored in Chapter 6.

4.6 BANDPASS PROCESSES

are the equivalents of bandpass deterministic signals.

Bandpass random processes
; its power located in the neighborhood of some centra_l

A bandpass process has all
frequency fo-

f the process be flat over
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Sx(H

/N AN

~fo fi 7

Figure 4.24 Power spectrum of a bandpass process.

Definition 4.6.1. X (?) is a bandpass or narrowband process if Sx (f) = 0 for
|f — fol = W, where W < fo.

Although the term narrowband process is usually used for the case where W < f,
we will use both terms bandpass process and narrowband process interchangeably.
Figure 4.24 shows the power spectrum of a bandpass process.

Note that, as in Section 2.5, there is no need for f; to be the mid-band frequency,
or, in general, there is even no need for fj to be in the frequency band of the process.

Bandpass processes are suitable for modeling modulated signals. A random pro-
cess is usually modulated on a carrier for transmission over a communication channel
and the resulting process is a bandpass process. The noise that passes through a bandpass
filter at the front end of a receiver is also a bandpass process.

As we have seen in Section 2.5, there are certain ways to express bandpass signals
in terms of equivalent lowpass signals. The purpose of this section is to generalize those
results to the case of random processes. As we will see, many of the results of Section 2.5
can be generalized in a straightforward manner to bandpass processes.

Let X (¢) be a bandpass process as defined above. Then Ry (v) is a deterministic
bandpass signal whose Fourier transform Sx (f) is nonzero in the neighborhood of f.
If X(¢) is passed through a quadrature filter with impulse response %, and transfer
function H(f) = —j sgn(f), the output process is the Hilbert transform of the input
process, and according to Example 4.2.20, we have

Ryg(7) = —Rx(z)
‘ Rg(r) = Rx(2)
ll:Iow, parallel to the deterministic case, let us define two new processes X, (t) and X, (¢)
y

X.(1) = X () cos(2mfor) + X (¢) sin(2r fot)

X,(1) = R@t) cos@rfot) — X (2) sin(2r fot)
As in the deterministic case, X, (¢) and X, (z) are called in-phase and quadrature com-
ponents of the process X (¢). Throughout the rest of this chapter, we will assume that

the process X (?) is stationary with zero mean and, based on this assumption, explore
the properties of its in-phase and quadrature components.
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Theorem 4.6.1. If X(¢) is a zero-mean stationary bandpass process, the pro-
cesses X, (f) and X, (¢) will be zero-mean jointly stationary processes.

is trivial. It remains to
Proof. The fact that both X(z) and X(¢) are zero mean is ivial
prove that Rx, (t + 7, %), Ry, (t +1,1), and Ry, x, (¢t + t,t) are functions of 7 only

‘We have
Ry (t+7,1)
= E[X.(t +1)X()
= E[(X(t + 7) cos@2r folt + 1)) + X (¢ + ) sin@r fo(t + )
x (X (£) cos(2m fot) + X (2) sin(27 fo1))]
= Ry(7) cos(2m fot) cos(2r fo(t + 7)) — Rx (7) sin(2 fot) cos(27 fo(t + 7))
+ Ry (z) cos(2r fot) sinr fo(t + 7)) + Ry (v) sin(27 for) sin(27 fo(t + 7))
= Ry(7) cos(2nfot) + Rx(r)sin2m for) ‘ ‘
Wheré we have used results of Exami)le 4.2.20 and the fact that B x (r) is an odd function,

because it is the Hilbert transform of an even function (see Problem 2.46).
1t can be proved similarly that .

Ry, (v) = Ru(z) cos@r for) + Ry (v) in(2m fov)

and
Ry x,(t) = Rx(t)sin(2m for) — Ry (v) cos (27 fo7)
| In conclusion, we have the following relations to which we will refer frequently

Rx.(t) =Ry, (v)=Rx(®) cos(2rfo) + fzxgr) in@rfor) o0
Rx,x,(z) = Rx(t)sin(2m for) — Rx(r) cos(2mfot)
This concludes the proof of the theorem. 5
Theorem 4.6.2. X (t) and X, (¢) are lowpass processes; i.e., their power spec-
trum vanishes for | f| > W. » .
Proof. Note that Ry (7) and Ry, (7) are deterministic signals. Comparing

Ry, (7) = Ry, (¥) = Rx(7) cos(2n fo) + Rx (%) sin(2r for)

i rresponding relations for deterministic signals as developed in Section 2.5,
zleﬂ;g;:r:/(; t]:\aIt> the relclgations describing both Ry, (t) and Rx, (t) are exactly the ;am;
relations that describe x.(#), the in-phase component ofa deFemnmsuo. bgndpass s1gann !
x(2). This means that Rx, (v) and Ry, (v) are both lowpass signals. This, in tx;hmI;u r;led s
that the Bourier transform of these signals; iL.e., Sy, (f) and Sx,(f) are ban e >
| | < W and, therefore, the theorem is proved.
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From the above theorems it is seen that the processes X.(¢) and X, (£) play the same
role as the in-phase and quadrature components for deterministic signals and, there-
fore, they are called the in-phase and quadrature processes. Furthermore, we have
seen that these processes are jointly stationary with the same power-spectral den-
sity. Parallel to the deterministic case, we can also define the envelope and phase

processes by
V() = /X2 + X2(0) (4.6.2)

X5 (1)

®(t) = arctan %0

(4.6.3)

+ To find the power spectrum of the in-phase and quadrature components, we have

Sx. (f) = Sx,(f)
‘= F[Ry(r) cos2mfor) + Ry sin (27 fo1)]

_ Sx(f~fo) +$X(f+fo)
2 2

+[=7 sgn(f)Sx(H]*

_ Sx(f ~ fo) + Sx(f + fo)

5(f—fo)—5(f+fo)}
2j

2 2
+ 7 580(f + fo)Sx(f + fo) — L sgn(f — fo)Sx(f — fo)
S — S
= —_X(f2 11 —sgn(s - sy 4+ SELERD = P01 4 sens + ol
Sx(f = fo) : f<=f

Sx(F=f)+iSx(f+fo) F=—f
=< Sx(f—f+Sx(F+ /) Ifl<fo
Sx(f+ ) +iSx(F—f) F=5
Sx(f + fo) f>5

From the fact that the original process X (z) is bandpass, it follows that

Sx(f —f)+Sx(f +fo) IfI<fo

0, otherwise “4.64)

Sx. () = Sx,(f) ={

‘This simply means that in order to obtain the power spectram of both X,(¢) and Xs(2),
it is enough to shift the positive-frequency part of Sy (f) to the left by f, and to shift
the negative-frequency part of it to the right by f; and add the result. Figure 4.25 shows
the relation between Sx(f), Sy, (f) and Sx, (f).
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fo f

Power spectrum of in-phase and quadratore components.

Figure 4.25

To obtain the cross-spectral density we have

Syx.(F) = FlRx.x, )] |
SUF — foy — 87 + fo)
= SX(f) * [——(—f;—-—ofz}‘——""”}
5(F — fo) +8(F + o)
[ jsen(HSx(P [__J——T———

%[Sx(f ¥ fo) = Sx(f — fo))

L+ S + o5l - f)Sx(f = )]

A
T2
~jSx(f — fo) f<—fo
%Sx(f-i-fo)*jé’x(f—fo) =—fo
jISx(f + fo) —Sx(f—f} i< fo
—i8x(f — fo) +iSx(f+f), f=1
iSx(f+ o f>r

ass, the above relation simplifies to

I

Again, since the process is bandp
i1Sx(f + foy = Sx(f — foll [fl< fo
Sxx, () = 0, otherwise

Figure 4.26 shows the relation between Sx, x,(f) and Sx(f)-

Sy(F + foll +sga(f + fo)l = —JZ—SXU — fll —sgn(f — fo)]
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Sx()

i N

h T 7

Figure 4.26 Cross-spectral density of in-phase and quadrature components.

Since the cross correlation function
Ry, x,(r) = Rx(7) sinQ2x fo1) — Ry (1) cos(2r foT)

is an odd function, it follows that Ry, x, (0) = 0. This means that at any time instant
to, the random variables X, (fo) and X, (f) are uncorrelated. Of course, from this we
cannot conclude that the random processes X, (¢) and X,(z) are uncorrelated since, in
general, there is no guarantee that for arbitrary #; and #; the random variables X(t;) and
X (t,) are uncorzelated. However, if the symmetry condition

Sx(f + fo) = Sx(f = fo) (4.6.5)

is satisfied for all | f| < fo, then Sy x, (f) = 0 and therefore Rx, x,(v) = O forall 7.
This means that X (#;) and X, (#) are uncorrelated for arbitrary #; and #,, which in turn,
means that the random processes X, () and X,(¢) are uncorrelated. If Sx (f) happens
to be symmetric around fj, then the above condition is satisfied and the processes X.()
and X, (¢) will be uncorrelated.

If the zero-mean, stationary, and bandpass process X (z) is Gaussian as well,
then X.(¢) and X,(z) will be jointly Gaussian (why?). In this case, uncorrelatedness
is equivalent to independence and, therefore, under the above conditions the processes
X (1) and X,(¢) will be independent.

Example 4.6.1
The white Gaussian noise process N (#) with power spectrum le passes through an ideal
bandpass filter with frequency response

1 |f=fd=<W
0, otherwise

H(f)={



200 Random Processes Chapter 4

i i trum and the
where W < f.. The output process is denoted by X (¢). Find the power spec ‘
cross—spectralcdensity of the in-phase and quadrature components in the following two

£ases:

1. fo is chosen to be equal to f.
2. fois chosen to be equal to fe— W,

Solution The process X (¢) is obviously a bandpass process whose power-spectral den-
sity is given by

Mzz, If=fl<W

0, otherwise

Sx(f) = {

If we choose £, as the central frequency, then to obtain power spectra of X, (#) and X (1)
we have to shift the positive-frequency part of Sx(f) to the left by fo = f: and the
negative-frequency part of it to the right by the same amount and add the results. If we do
this, the resulting spectrum will be

No, |fl<W
Sx(h)=56x )= {O, otherwise

Since we are choosing fp to be the axis of symmetry of the spectrum of X (¥), tpe process
X.(t) and X, () will be independent with this choice and Sy, x,(f) = 0. Figure 4.27

shows the relation between various power spectra in this case.

Sx ()=5x{f)
2N,
=M
Figure 4.27 In-phase and quadrature
power spectra in first part of Example
W w f o461

If we choose fo = f. — W as the central frequency,’ the results will be quite
different. In this case, shifting the positive and negative components of X (t) by fo to the
left and right and adding them results in

Yoo \fl<2W

2

Sx, () =8x(f) = {0, otherwise

and for the cross-spectral density, we will have

—jl, W < f<0
Sxx (=4 jk, 0<f<2W
0, otherwise

tCentral frequency does not, of course, mean the center of the bandwidth. It means the frequency

with respect to which we are expanding the process:
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Sx (f)=5x(F)

—2w P

Figure4.28 In-phase and quadrature components for second part of Example 4.6.1.

Of course, in this case the processes X, (r) and X, (¢) will not be independent. See Fig-
ure 4.28 for this case.

So far, we have defined X, (¢) and X, (z) in terms of X (¢) and X ®) by
Xo(0) = X (1) cos2m for) + X (t) sin(27 for)
X;() = X(t) cos2m for) — X (¢) sin(27 fot)

and have slgown that X.(t) and X, (¢) are jointlyvstationary lowpass processes. Obtaining
X (¢) and X (¢) in terms of the in-phase and quadrature components is straightforward,
and we can summarize the result as

X(t) = X () cos2m for) — X,(¢) sin(2m fot)

X(®) = X () sin(27 for) + X, (£) cos(2m for)
These relations are frequently used in Chapters 5 and 7 to express bandpass processes
in terms of the corresponding lowpass processes. ’

The power contents of the in-phase and quadrature components of X () can be
obtained easily. From .

Rx () = Rx,(t) = Rx(r) cos(2x for) + Rx (t) sin(2m for)
we have ’
Py, = Py, = Rx,(¥)|=0 = Rx(0) = Px (4.6.6)

In other words, the power content of the in-phase and quadrature components is equal
to the power content of the original bandpass process.

4.7 FURTHER READING

The books by Leon-Garcia (1994), Helstrom (1991), Davenport and Root (1987),
Papoulis (1991), Nelson (1995), and Stark and Woods (1994) cover probability and ran-
dom processes with emphasis on electrical engineering applications. Gray and Davisson
(1986) is particularly interesting since it covers random processes for electrical engi-
neers without compromising mathematical vigor. Advanced treatment of the material
in this chapter, based on measure theory conceps, can be found in the book by Wong
and Hajek (1985).
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PROBLEMS

4.1 A random experiment consists of drawing a ball from an un that contains 4 red
balls numbered 1, 2, 3, 4 and three black balls numbered 1, 2, 3. Precisely state
what outcomes are contained in the following events.

1. E; = The number on the ball is even.

2. E, = The color of the ball is red and its number is greater than 1.
3. E; = The number on the ball is less than 3.

4. E4= E\U Es.

5. Es = E; U (E, N E3).

4.2 Tf all balls in the preceding problem are equally likely to be drawn, find the
probabilities of E;, 1 <i < 5.

4.3 Tn a certain city three car brands, A, B, C have 20%, 30%, and 50% of the market
share, respectively. The probability that a car needs major repair during its first
year of purchase for the three brands is 5%, 10%, and 15%, respectively.

1. What is the probability that a car in this city needs major repair during its
first year of purchase? ’

2. If a car in this city needs major repair during its first year of purchase, what
is the probability that it is made by manufacturer A?

4.4 Under what conditions can two disjoint events A and B be independent?

4.5 An information source produces O and 1 with probabilities 0.3 and 0.7, respec-
tively. The output of the source is transmitted via a channel that has a probability
of error (turning a 1 into a 0 or a 0 into a 1) equal to 0.2.

1. Whatis the probability that at the outputa 1 is observed?
2. What is the probability that a 1 was the output of the source if at the output
of the channel a 1 is observed?

4.6 A coin is flipped three times and the random variable X denotes the total number
of heads that show up. The probability of a head in one fiip of this coin is denoted
by p. ’

1. What values can the random variable X take?
2. What is the PMF of the random variable X?
3. Derive and plot the CDF of X.
4. What is the probability that X exceeds 17 -
477 Coin A has a probability of head equal to % and probability of tail equal to ?;,

and coin B is a fair coin. Each coin is flipped four times. Let the random variable
¥ denote the number of heads resulting from coin' A and ¥ denote the resulting

number of heads from coin B.
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1. What is the probability that X = ¥ = 27
2. What is the probability that X = ¥?
3. What is the probability that X > Y?
4. What is the probability that X + ¥ < 57

4.8 A random variable X is defined by the CDF

0, x<0
Fy(x) = %x, I<x<1
K, x>1

1. Find the value of K.
2. Is this random variable discrete, continuons, or mixed?
3. What is the probability that % <X <1?
4. What is the probability that % <X <1?
5. What is the probability that X exceeds 27
4.9 Random variable X is distributed according to fy(x) = A(x).

1. Find the CDF of X.
2. Determine P(X > ).
3. Determine P(X > 0]X < 1).
4. Whatis fx(x|X > 1)?
5. Whatis E[X]X > 317

4.10 The noise voltage in an electric circuit can be modeled as a Gaussian random

variable with mean equal to zero and variance equal to 1072,

1. What is the.: Probability that the value of the noise exceeds 10742 What is
thcf probability that it exceeds 4 x 107*? What is the probability that the
noise value is between ~2 x 10~* and 1047

2. Given that the value of the noise is positive, what is th il i
Civen that e P , is the probability that it

3. This noise passes through a half-wave rectifier with characteristics

x, x>0
g(X)—{o’ x<0

Find the PDF of the rectified noise by first finding its CDF. Why can we not
use the general expression in Equation (4.1.10) here?
4. Find the expected value of the rectified noise in the previous part.

5, Now assume tl.iat the noise passes through a full-wave rectifier defined by
g) = |x|. Find the density function of the rectified noise in this case.
‘What is the expected value of the output noise in this case?
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4.11 X isaN(0, &%) random variable. This random variable is passed through a system
whose input—output relation is given by y = g(x). Find the PDF or the PMF of
the output random variable ¥ in each of the following cases. _

1. Square-law device, g(x) = ax’.

2. Limiter,
—b, x<-b
gx)=4¢0b, xzb
x, |xl<bd
3. Hard limiter,
a, x>0
gx)=40, x=0
b, x<0

4. Quantizer, g(x) =x, fora, <x <ant1, 1<n < N, where x, lies in the in-
terval [g,, an.1] and the sequence {a;, as, . -, ay+1) datisfies the conditions
a; = —00, ay+1 = co and fori > j we have a; > a;.
4.12 The random variable @ is uniformly distributed on the interval {—%, 5] Find the
PDF of X = tan ®. Find the mean and the variance of X.
4.13 Let Y be a positive valued random variable; i.e., Fr(y)=0fory <0.
1. Let @ be any positive constant. Show that P(¥ >a) < ZH (Markov
inequality). -
2. Let X be any random variable with variance g?anddefineY = (X — E[X n?
and @ = € for some €. Obviously the conditions of the problem are satisfied

for Y and « as chosen here. Derive the Chebychev inequality
2

P(X ~ ELXI > ©) < 5
4.14 Show that for a binomial random variable, the mean is given by np and the
variance is given by np(1 — p).
4.15 Show that for a Poisson random variable defined by the PMFP(X =k) =
k =0,1,2,..., the characteristic function is given by ¥x(v) = eMe” =D, Use

this result to show that E[X] = A and VAR(X) = A.
4.16 Let X denote a Gaussian random variable with mean equal to zero and variance

equal to o'%. Show that

PRI
Fe

EX =14 n=2k+1
T 1x3x5%x---x(n—1o", n=2k
4.17 Two random variables X and Y are distributed according to

Fer(y) = KGx+y, 0sx=10=<y=l
XY Y= 0, otherwise
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Find X.
. What is the probability that X + Y > 1?
. Find P(X > Y).
. Whatis P(X > Y[X +2Y > 1)?
. Find P(X = Y)7
. Whatis P(X > 0.5|X = Y)?
- Find fx(x) and fy(y).
8. Find fx{(x|X +2Y > 1) and E[X|X + 2Y > 1].
4.18 Let Xy, X5, ..., X, denote i.i.d. random variables, each with PDF fx(x),

1. Y =min{X;, X5, ..., X,,}, find the PDF of Y.
2. If Z =max{X1, Xy, ..., X,,}, find the PDF of Z.

4.19 Show that for a Rayleigh density function

N AW =

2

o) = { HeTE, x>0
0, otherwise

we have E[X] =0 /% and VAR(X) = (2 — D)o,
4.20 Let X and ¥ be independent random variables with

—QX
fry =08 %20
| 0, otherwise
and
‘ Be ™, y>0
r(y) =
0, otherwise

where o and § are assumed to be positive constants. Fi
: . Find th
Treat the special case o = B separately. @PPFotX T

4.21 Two random variables X and Y are distributed according to

Ke™¥, x>y>0
0, otherwise

fx,y(x,y) = {

. Find the value of the constant X .

Find the marginal density functions of X and Y.
Are X and Y independent?

. Find fxp (x| ).

. Find E[X | Y = y].

. Find COV(X, ¥) and py y.

[N I SR T R S
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422 Let © be uniformly distributed on [0, 7] and let random variables X and Y be
defined by X = cos © and Y = sin ®. Show that X and Y are uncorrelated but
they are not independent. ’

4.23 Let X and Y be two independent Gaussian random variables, each with mean zero
and variance 1. Define the two events E;(r)={X >r and ¥ >r} and Ea(r) =
[/ X2 ¥ Y? > +/2r}, where r is any nonnegative constant.

1. Show that E,(r) € E,(r), and therefore, P(E1(r)) < P (E2(r))-
2. Show that P(E,(r)) = Q*(r).
3. Use rectangular to polar transformation relations to find P(E,(r)) and con~
clude with the bound
00 < e
on the @ function.

4.24 Tt can be shown that the Q function can be well approximated by

o

x

e~ T
Qx) ~ N

and

(bat + bat® + bst® + bar* + bst®)

-1
v where t = § Tor

p = 0.2316419
by = 0.31981530

b, = —0.356563782
by = 1781477937
by = —1.821255978
bs = 1.330274429

Using this relation write a computer program to compute the Q function at any
given value of its argument. Compute Q(x) forx =1, 1.5,2,2.5,3,3.5, 4,‘4.5, 5
and compare the results with those obtained from the table of the @ function.
4.25 Letthe random vector X = (X1, X2, . . ., X,) be jointly Gaussian distributed with
mean m and covariance matrix C. Define a new random vector Y = AX! +b,
where Y is an n-dimensional random vector and A and b are constant matrices.
Using the fact that linear functions of jointly Ganssian random variables are
themselves jointly Gaussian, find the mean and covariance matrices of ¥.

4.26 Let X and Y be independent Gaussian random variables, each distributed accord-

ing to N0, o2).

1. Find the joint density function of the random variables Z = X + Y and
W = 2X — Y. What is the correlation coefficient between these two random

variables.

Problems 207

2. Find the PDF of the random variable R = % ‘What is the mean and the
- variance of R?

4.27 Random variables X and ¥ are jointly Gaussian with

m={[1 2]
4 -4
c= |4 5]
1. Find the correlation coefficient between X and Y.
22.IfZ=2X+Yand W = X —~ 27, find COV(Z, W).
3. Find the PDF of Z.

4.28 Let X and Y be two jointly Gaussian random variables with means mx and my,
variances o% and U% and correlation coefficient px y. Show that fxy(x|y) is a
Gaussian distribution with mean mx + p 2 (y — my) and variance 0% (1 — 0% ¢)-
What happens if p = 0? What if p = £17

4.29 X and Y are zero-mean jointly Gaussian random variables, each with variance o,

The correlation coefficient between X and Y is denoted by p. Random variables
Z and W are defined by

Z =Xcos@ +Ysind
| W=—Xsin6 + Y cosé
where & is a constant angle.

1. Show that Z and W are jointly Gaussian random variables and determine
their joint PDE.

2. For what values of § are the random variables Z and W independent?

4.30 Two random variables X and ¥ are distributed according to

K =t
frrGxy)y=<4=¢ T 7y 20
0, xy <0

1. Find X.

2. Show that X and Y are each Gaussian random variables.
3. Show that X and Y are not jointly Gaussian.

4. Are X and Y independent?

5. Are X and Y uncorrelated?

6. Find fxy(x|y). Is this a Gaussian distribution?

4.31 Let X and Y be two independent Gaussian random variables with common vari-
ance o2. The mean of X is m and Y is a zero-mean random variable. We define
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random variable V as V = /X% 4 Y2, Show that

_24m?
Zh(Z)e =, v>0

fv(v)={
0 v=<0

where
1 (= 1 /"
L(x) = — EFCOSH gy — __/ 25 S05% gy
2 Jo 2T S
is called the modified Bessel function of the first kind and zero order. The distri-
bution of V is known as the Ricean distribution. Show that, in the special case of
m = 0, the Ricean distribution simplifies to the Rayleigh distribution.
4.32 A coin whose probability of a head is %, is flipped 2000 times
1. Using the law of 1arge numbers, find a lower bound to the probability that
the total number of heads lies between 480 and 520. : o
2. Using the ceniral limit theorem, find the probability that the total number
of heads lies between 480 and 520.

4,33 Find the covariance matrix of the random vector X in Example 4.2.2.

4.34 Find mx(?) for the random process X (¢) given in Example 4.2.4. Is itindependent .

of t?
4.35 Let the random process X (¢) be defined by X () = A + Bt, where A and B are
independent random variables each uniformly distributed on [—1, 1]. Find m x (¢)
and Rx (1, 1)
4.36 What is the autocorrelation function of the random process given in Exam-
ple 4.2.5? _
4.37 Show that the process given in Example 4.2.4 is a stationary process.
4.38 Is the process given in Example 4.2.5 wide-sense stationary?
4.39 Show that any Mth-order stationary process, M > 2,is wide-sense stationary.
4.40 Which one of the following functions can be the autocorrelation function of a
random process and why?
1. f(r) = sin@m fo1).
2. fz) =12
I—17] |rf=l

3. f(f):{1+m 7] > 1
4. f(z) as shown in Figure P-4.40.

4.41 Is the process given in Example 4.2.5 an ergodic process?

4.42 Ts the process of Example 4.2.1 power-type or energy-type? Is this process .

stationary? ‘
4.43 A random process Z(z) takes values 0 and 1. A transition from Otolorfrom1to
0 occurs randomly, and the probability of having r transitions in a time nterval

Problems

4.44

4.45

n

12

T Ty S

Figure P-4.40

of duration 7, (z > 0), is given by

1 ( QT n
T+or m:) n=012..

pn(n) =

where o > 0 is a constant. We further assume thatat 7 = 0, X(0) is equally likely

tobe O or 1.
1. Find mz(z).
2. Find Rz(t + ¢, t). Is Z(#) stationary? Is it cyclostationary?
3. Determine the power of Z (7).

The random process X (¢) is defined by

Xty = X cos2m fot + ¥ sin 2 ft '

w%lere X and Y are two zero-mean independent Gaussian random variables each
with variance o'2.

1. Find mx (z).

2. Find Rx(r + 7, #). Is X (¢) stationary? Is it cyclostationary?

3. Find the power-spectral density of X (¢).

4. Answer the above questions for the case where 03 = o}
Let {Ag}f2_, be a sequence of random variables with E [A]=m and
E[A A;1=Ryk - _]) We further assume that Ry(k — )= Ra(j — k). Let
p(t) be any deterministic signal whose Fourier transform is P( f), and define the

209
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random process

+co
X =y, Awpt—kT)
k=—co

where T is a constant.

1. Find mx(®).

2. Bind Rx(t +7,1). . .
3. Show that this process is cyclostationary with period T.
4. Show that |
1 [T 1 & Io
Ry(x) = —/ Ry(t +t,0)dt = Z Ra(n)Rp(z —n
T Jo T =

where Ry(7) = p(r)* p(—1) is the (deterministic) autocorrelation func-

tion of p(z). o
5. Show that the power-spectral density of X () is given byl

Sx(f) = I_P—(Y-{-)—E \:RA(O) +22 R,;(k) coserka}

k=1

4.46 Using the result of Problem 445 find the power-spectral density of the random

process _
o
X@) =Y, Awplt—nT)
n=—o0
in the following cases '
1. A,’s are independent random variables eac

probability and

h taking values 1 with equal

1, 0<xT
pi) = 0, otherwise
2. A,’s take values 0 and 1 with equal probability, all the other conditions as
in part 1.
3. Solve parts 1 and 2 for the case where '
1, 0<t<3T
pi) = 0, otherwise

4. In each of the above cases find the bandwidth that contains 95% of the total

power of the process.

4.47 Let A,’s denote a sequenc

each taking values £1 with equal probability. Random variables By, are defined

e of independent binary valued random variables,

Problems ) 11

acc;ording to B, = A, + A, and the random process X (¢) is defined as
X@) = Z:?—-«oo B,p(t —nT).
1. Using the results of Problem 4.45 determine the power-spectral density of
X@».
2. Assuming that

) = 1, O0=<t=xT
PEI= 0, otherwise

plot a sample function of X (¢). Find the power-spectral density of X () and
plot it.

3. Let B, = A, + aA,—, and find the power-spectral density of X (¢). How
does the value of « change the power-spectral density of X (z). What is the
effect of the value of & on the 95%-power bandwidth of the process?

4.48 Let X (r) be a cyclostationary process with period 7. From Corollary 4.3.3, we
have seen that, in order to find the power-spectral density of X (z), we first deter-
mine R(r) = —%foT Ry(t + 7, t)dt and then find F[R(z)]. We now obtain this
result by another approach.

1. Let ® be arandom variable, independent of X () and uniformly distributed
on [0, T]. Show that Y (¢) = X (¢ + ©) is stationary and its autocorrelation
functicn is given as ,

1 T
Ry(7) = ?/0 Rx(t +7,1)dt

2. Sbow that Y () and X () have equal power-spectral densities.
3. Conclude that

1 T
Sx(fi=% {E/: / Rx(t+1,1) dtJ
0
4.49 The RMS bandwidth of a process is defined as
NROL
X Sx(hdr
Show that for a stationary process, we have
1 42
472 Ry (0) dt?
4.50 Show that for jointly stationary processes X (¢) and ¥ (r), we have Ryy(r) =
Ryy(—7). From this, conclude that Sxy (f) = S35 (/).
4.51 A zero-mean white Gaussian noise with power-spectral density of %’Q passes
through an ideal lowpass filter with bandwidth B.

- Wrms

Wias = Rx(7)

=0
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1. Find the autocorrelation of the output process Y (t).
2. Assuming T = 5, find the joint PDF of the random variables ¥ (f) and
Y (s ++ 7). Are these random variables independent?
4.52 Find the output autocorrelation function for a delay line with delay A when the
input is a stationary process with autocorrelation Rx (t). Interpret the result.

4.53 We have proved that when the input to an L1 system is stationary, the output
is also stationary. Is the converse of this theorem also true? That s, if we know
that the output process is stationary, can we conclude that the input process is

necessarily stationary? .
4.54 Tt was shown in this chapter that if a stationary random process X (z) with
autocorrelation function Rx(z) is applied to an LTI system with impulse re-
sponse h(t), the output ¥(#) is also stationary. with autocorrelation function
Ry(t)=Rx(z) % h(z) » h(—7). In this problem, we show that a similar rela-

tion holds for cyclostationary processes.

1. Let X (¢) be acyclostationary process applied to an LTI system with impulse
response A (¢). Show that the output process is also cyclostationary.

- 2. Show that
Ry(t,t+7) = Rx(t,t + ) * h(z) x h(~7)
3. Conclude that the relation
Sy(f) = Sx(AHNOE
is true for both stationary and cyclostationary processes.
4.55 Generalize the result of the Example 4.3.8 to show that if X (t) is stationary,

1. X(¢) and %X (¢) are uncorrelated processes,

2. The power spectrum of Z(t) = X () + 4X(¢) is the sum of the power -

spectra of X (f) and £X (1).
Express the power spectrum of the sum in terms of the power spectrum of X (¢).
4.56 X () is a stationary process with power-spectral density Sx(f). This process
passes through the system shown in Figure P-4.56. '

X 4 Y

Delay =T

Figure P-4.56

1. Is Y (¢) stationary? Why?
2. What is the power-spectral density of ¥ ()?

Problems 213

3. nga?t frequency components cannot be present in the output process and
why?

4.57 g‘hc( ;;ationary random process X (#) has a power-spectral density denoted by
X .
1. What is the power-spectral density of Y (¢) = X H-X@¢-1)
2. What is the power-spectral density of Z(z) = X'(f) — X (£)?
3. What is the power-spectral density of W(z) = ¥ ®)+ Z(@)?
4.58 Show that for two joinﬂy stationary processes X (¢) and Y (¢), we have

[Rxy(2)] < Rz(O)Rp(0) < L[Rx(0) + Ry (0)]

4.59 The stati.onary process X (r) is passed through an LTI system and the output
process 1s1 de;notfed by Y (r). Find the output autocorrelation function and the
crosscorrelation function between the input and th t i
e ationoaon o p e output processes in each of

1. A delay system with delay A.
2. A system with A(t) = 1.

3. A system with A(t) =€~ u(t) where ¢ > 0.

4

. A system described by the differential equation
a re)y+v d
YO+ (t)=E;X(i‘)—X(f)

5. A finite time averager defined by the input-output relation

1 1+T
(@) = f/z_r x(v)dr

where T is a constant.

4.60 Give an example of two processes X (¢) and ¥ )] i
: for which Ryy (¢ 1)1
function of r but X (#) and ¥ (¢) are not stationary. pldnnie

4.61 For each of the following processes, find the power-spectral density

1. X(t) = Acos(2m for +©), where A is a constant and @ i i
- s : s is arand
uniformly distributed on [0, 7l rendom variable
2. X(¢t) = X + Y, where X and Y are independent, X is uni
s , if -
and Y is uniform on [0, 1]. i s o on (=1,

4.62 X(t)isa staﬁonary ran'dom process with autocorrelation function Ry (1) = e~
a > 0. Thls process is applied to an LTI system with 4(2) = ¢~P1u(t), where
B > 0.Find the power-spectral density of the output process Y (). Treat the cases
o # B and o = f separately.
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4.63 LetY(t) = X (1) +N(r), where X (z) and N (¢) are signal and noise processes. Ttis

assumed that X (r) and N (¢) are jointly stationary with autocorrelation functions
Rx(z) and Ry(7) and crosscorrelation function Ryy(t). It is desired to separate
the signal from the noise by passing ¥ () through an LTI system with impulse
response h(¢) and transfer function H (f). The output process is denoted by X (¢),
which is desired to be as close to X (¢) as possible.
1. Find the crosscorrelation between X () and X () in terms of A(7), Rx (),
Ry(x), and Rxn (7).
2. Show that the LTI system that minimizes E{X () — X ()7? has a transfer
function
B = SxD+ S
Sx(f) + Sn(f) + 2RelSxn (] ,
3, Now assume that X (f) and N (¢) are independent and N (¢) is a zero-mean

white Gaussian process with power-spectral density %1 Find the optimal
H (f) under these conditions. What is the corresponding value of E[X () —

X ()P in this case?
4. Tn the special case of Sy (f) = 1, Sx(f) = ﬁ_l—f—, and Syn(f) = 0, find
the optimal H (f).

4.64 Inthis problem, we examine the estimation of a random process from observation

of another random process. Let X () and Z(#) be two jointly stationary random
processes. We are interested in designing an LTI system with impulse response
A(t) such that when Z(¢) is passed through it the output process X () is as close
to X () as possible. In other words, we are interested in the best linear esPLmate
of X (r) based on the observation of ¥ (¢) in order to minimize E[X @) — X o

1. Let us assume we have two LTI systems with impulse responses @(t) and
g(). Z(¢) is applied to both systems and the outputs are denoted by X () and
X(t), respectively. The first filter is designed such that its output satisfies

the condition
E[(X(®) - X@)NZ(—D)=0
for all values of 7 and ¢, where the second filter does not satisfy this property.
Show that
EX(¢) - XOF = EIX() - XOF

i.e., the necessary and sufficient condition for an optimal filter is that its
output should satisfy the orthogonality condition as given by

E{(X®) - XENZ—1)]1=0

which simply means that the estimétion errore(t) = X (@) — X(r) must be
orthogonal to the observable process Z (1) at all times. :
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4.65

4.66
4.67

4.68
4.69

4.70

4.71

4.72

2. Show that the optimal 4 (¢) must satisfy
Rxz(z) = Rz(z) » h(7)
3. Show that the optimal filter satisfies

_ Sxz(f)
B = Sz(f)

4. Derive an expression for E[e?(f)] when the optimal filter is employed.

‘ The random process X (¢) is defined by

X@) = Y Apsinc2W( —nT)
T =00

s . . .
where A,’s are independent random variables with mean zero and common

variance o2.

1. Use the result of Problem 4.45 to obtain the power-spectral density of X ().
2. In the special case of T = EIVT/ what is the power content of X (¢)?
3. Nowlet X (¢) be azero-mean stationary process with power-spectral density

Sx () =%H(§£ﬁ) and let A, = X;(nT), where T = f{ﬁ. Determine the

power-spectral density of X (¢) and its power content. What is the relation
between X (¢) and X (¢)?

What is the noise-equivalent bandwidth of an ideal bandpass filter with band-
width W?
Work out Example 4.6.1 with fo = f; — %.
Verify the Equation (4.6.6) for both parts of Example 4.6.1.
A zero-mean white Gaussian noise, 7, (t), with power-spectral density %‘l is
passed through an ideal filter whose passband is from 3-11 KHz. The output
process is denoted by »n(z).

LIS = 7 KHz, find S, (f), Sp, (), and Ry, (), where n.(r) and ng(r)

are the in-phase and quadrature components of n(t).

2. Repeat part 1 with fy = 6 KHz.

Letp (t) be a bandpass si%nal with in-phase and quadrature components p(¢) and
Ds ('t) andlet X () = ) oo oo Anp(t —nT), where A,’s are independent random
variables. Express X () and X;(z) in terms of p.(f) and p; (). .
Let X (.t) be a bandpass process and let V (¢) denote its envelope. Show that for
all choices of the center frequency fp, V (¢} remains unchanged.

Letny, (t). be a zero-mean white Gaussian noise with power-spectral density %,
and let this noise be passed through an ideal bandpass filter with bandwidth 2W
centered at frequency f.. Denote the output process by n(z).
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1. Assuming fo= f., find the power content of the in-phase and quadrature
components of n(z).

2. Find the density function of V' (¢), the envelope of n(z).

3. Now assume X () = A cos 27 fot + n(t) where A is a constant. What is the
density function of the envelope of X (#)?

4.73 A noise process has a power-spectral density given by

10°8(1 -4, (<108

S"(f)z{o, |F] > 108

This noise is passed through an ideal bandpass filter with a bandwidth of 2
centered at 50 MHz. :
1. Find the power content of the output process.

2. Write the output process in terms of the in-phase and quadrature components
and find the power in each component. Assume fp = 50 MHz.

3. Find the power-spectral density of the in-phase and quadrature components.
4. Now assume that the filter is not an ideal filter and is described by

[F1—49 x 10°, 49MHz < | f| < 51 MHz,
0, otherwise

[H(H)I = {

Repeat parts 1, 2, and 3 with this assumption.

o

Effect of Noise on Analog
Communication Systems

In Chapter 3, we studied the important characteristics of analog communication sys-
tems. These characteristics included time-domain and frequency-domain representa-
tions of the modulated signal, bandwidth requirements, and power content of the modu-
lated signal and, finally, modulator and demodulator implementation of various analog
communication systems.

In this chapter the effect of noise on various analog communication systems will be
analyzed. As we will see, angle-modulation systems and particularly FM, can provide a
high degree of noise immunity, and therefore are desirable in cases of severe noise and/or
low signal power: This noise immunity is obtained at the price of sacrificing channel
bandwidth because, as we have seen in Chapter 3, the bandwidth requirements of
angle-modulation systems is considerably higher than amplitude-modulation systems.

This chapter starts with an analysis of the performance of linear-modulation sys-
terns in the presence of noise. Then, the performance of phase-locked loops (PLL) that
are used for carrier synchronization is studied. The effect of noise on angle-modulation
systems is treated next and, finally, the effects of transmission loss and noise on analog
communication systems in general are analyzed.

5.1 EFFECT OF NOISE ON LINEAR-MODULATION SYSTEMS

In this section we determine the signal-to-noise ratio (SNR) of the output of the receiver
that demodulates the amplitude-modulated signals. In evaluating the effect of noise on
the various types of analog-modulated signals, it is also interesting to compare the result
with the effect of noise on an equivalent baseband communication system. We begin
the evaluation of the effect of noise on a baseband system.

o217
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5.1.1 Effect of Noise on a Baseband System

Since baseband systems serve as a basis for comparison of various modulation systems,
band system. In this case, there exists no

we begin with a noise analysis of a base
demodulator, and the receiver consists only of a lowpass filter with bandwidth W. The

noise power at the output of the receiver is, therefore,

+W NO
P, = —d
= df
= NoW _ (5.1.1)
If we denote the received power by P, the baseband SNR is given by
(5) == (5.1.2)
N/J, NoW

5.1.2 Effect of Noise on DSB-SC AM

In DSB, we have
u(t) = A cos(2mfet + ¢c) ‘ (5.1.3)

and, therefore, the received signal at the output of the receiver noise-limiting filter is

@) = u@) + n{®) )

= A.m(r) cos2rfet + ¢c) +nc(2) cos 2 fot — ns(t) sin 27 fet (5.1.4)

where we have used the in-phase and quadrature components of the noise as discussed

in Section 4.6.
Suppose we demodulate the received signal by first multiplying 7 (¢) by a locally

generated sinusoid cos(27 f.t + ¢), where ¢-is the phase of the sinusoid, and then
passing the product signal through an ideal lowpass filter having 2 bandwidth W. The

multiplication of 7 () with cos(2m f.t + ¢) yields
r () cos(2m fot + ) = Am(?) cos(2r .t + ¢.) cosQufet + ) + n{t) cos@m fet + q5)
= LAam(p) cos(e — ¢) + 3 Aom(t) cos(4nfet + & + ¢c)
+ L[nc(1) cos ¢ + ns (1) sing)
+ %[nc(t) cos(dn fit + ¢) — ns (@) sin(dn fet + )] (5.1.5)
-frequency components and passes only the lowpass

The lowpass filter rejects the double
components. Hence, its output is

$(6) = LAam(e) cos(@ — ¢) + Hne(t) cos + (1) sin 9 (.16).

hapter 3, the effect of a phase difference between the

As it was discussed in C ;
} in the received signal

transmitter and the receiver is a reduction equal to cos? (¢ — ¢
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power. Th'is can be avoided by employing a PLL as described in Section 5.2. The effect
of a PLL is to generate a sinusoid at the receiver with the same frequency and phase
of the carrier. If a PLL is employed, then ¢ = ¢,, and the demodulator is called a
coherent or synchronous demodulator. In our analysis in this section, we assumne that
we are famploying a coherent demodulator. With this assumption and without loss of
generality, we can assume ¢ = ¢, = 0, and Equation (5.1.6) reduces to

Y@ =3 [Am () +ne()] G.17)

Iherefole, at the TeceIver Output the message Slgnal and the noise Components are
addltl\le and we are able to deﬁ.ﬂe a meanlngful SNR. Ihe message Slgnal pOWBI 1S
g

AZ
P, = —4—Pm : (5.1.8)
and the noise power is given by
P, =3P,
= }LP,, . (5.1.9)

where we have used the fact that the power contents of n.(¢) i

; : : +(t) and n(z) are equal. This
was shown in S.ectlon 4_.6.as seen in Equation (4.6.6). The power content of n(z) can
be found by noting that it is the resuit of passing ., (¢) through a filter with bandwidth
B.. Therefore, the power-spectral density of n(¢) is given by

_ B - fl<Ww
Sulf) = {O, otherwise (5.1.19
The noise power is
{oe]
B= [ sinas
—c0
Np
= > X 4W
= 2W Ny (5.1.11)
Now we can find the output SNR as
S P,
()%
_ %P
%2WNO
AP,
= WG (5.1.12)
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2 -
In this case, the received signal power is Py = &;—". Therefore, by using Equa-

tion (5.1.2), we obtain
( S ) _ P
Ny NoW

S
= (ﬁ>b (5.1.13)

Tt is seen that in DSB-SC Al the output SNR is the same as the SNR for a basgband
system. Therefore, DSB-SC AM does not provide any SNR improvement over a simple
baseband communication system. :

5.1.3 Effect of Noise on SSB AM
In this case
U(t) = Agm() cos 2 fut £ Ah(s) sin2m fit (5.1.14)
Therefore, the input to the demodulator is
r(@) = Aom(t) cos 2n fet & An(t) sin2n fot + n(z)
= (Am () +n.()) cos2r fot + (LAA() — g @) sin2rft (5.1.15)

Here again we assume that demodulation occurs with an ideal-phase rcfercl}ce.
Hence, the output of the lowpass filter is the in-phase component (with a coefficient
of 1) of the above signal; ie.

yi) = %m(t) + %nc(t) . (5.1.16)

It is observed that, in this case, again the signal and the noise components are addit'ive
and a meaningful SNR at the receiver output can be defined. Parallel to our discussion

of DSB we have

A2
Po= P (5.1.17)
and
Pr, = 3P0, = 4Py ' (5.1.18)

The noise power-spectral density in this case is No/ 7 over the bandwidth 'of the front-
" end filter at the receiver, which here has a bandwidth of W. For instance, in the USSB

case, we have

L f<IflsFf+f

0, otherwise
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Therefore, _
. i No
P,1=/ S,,(f)df:——z—x2W=WNo (5.1.19)
—co
Therefore, V
(S) B A?Pm (5.1.20)
N)ossg  Pn,  WNp o
But, in this case,
Pr = Py = AP, (5.1.21)
and, therefore,
S > ' Px ( S )
fat = ={ = 5.1.22
(N ossg WHNo N/ ( )

‘Therefore, the SNR in a SSB system is equivalent to that of a DSB syster.

5.1.4 Effect of Noise on Conventional AM
In conventional DSB AM, the modulated signal is

u(®) = Al +am, ()] cos 2 f.t (5.1.23)
Therefore, the received signal at the input to the demodulator is
r{t) = [A[l + am, ()] + n(£)] cos 2n fot — ng (2) sin 2w fat (5.1.24)

where a is the modulation index and m, (¢) is normalized so that its minimum value
is —1. If a synchronous demodulator is employed, the situation is basically similar to
the DSB case, except that we have 1 -+ am, () instead of m(z). Therefore, in this case,
after mixing and lowpass filtering, we have

310 = HAJL + ama (D] + n.(5)} (5.1.25)

However, in this case, the desired signal is m(¢), not 1 + an,,(¢). The dc component in
the demodulated waveform is removed by a dc blocking device and, hence, the lowpass
filter output is

ng(t)
2
In this case, from Equation (5.1.24), we obtain the received signal power Pg as

Y0 = 5 Aeama(©) + (5.1.26)

AZ
Pg = f [1+a%By,] (5.1.27)

where we have assumed that the message signal is zero mean. Now we can derive the
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output SNR for the coberent demodutator. From Equation (5.1.26)

s 1A2a’ Py,

(N),AM TN
_ AZaszn

2NoW

a*Py, %i [1 +a?Py, ]
1+a2P,, NoW

a®P,, Pz
14+a2P,, NoW

_ a* P, <£>

T 14+a?P,, \N/,

- (E) (5.1.28)
N/, :

where we have used Equation (5.1.2) and

2
a” B, (5.1.29)

=7 + a%Py,,

denotes the modulation efficiency. _ '
From above it is seen that, since a®P,, < 1+a?P,,, the SNR in conventional

AM is always smaller than the SNR in a baseband system. In practical applicatigns,
the modulation index a is in the range of 0.8-0.9. The power content of the normalized
message process depends on the message source. For speech §ignals that usually have
a large dynamic range, Pp, is in the neighborhood of 0.1. This means ‘that the overall
Joss in SNR compared to a baseband system is a factor of 0.075 or equivalent to a loss

of 11 dB. The reason for this loss is that a large part of the transmitter power isusedto

send the carrier component of the modulated signal and not the desired signal.

To analyze the envelope detector performance in the presence of noise, we have
to use certain approximations. This is mainly due to the nonlinear sMc@re of the enve-
lope detector that makes an exact analysis difficult. In this case the demodulator detects

the envelope of the received signal and the noise process. The input to the envelope

detector is
r(t) = [A{1 + am, ()] + nc(£)} cos 2 fut — ng(t) sin2m fot
and, therefore, the envelope of 7 (f) is given by (see Equation 4.6.2))

V(@) = \/E/&c[l + amy ()] + n ()P +nk () (5.131)

Now, we assume that the signal component in 7 (¢) is much stronger than the noise

(5.130) '
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component. With this assumption, we have

P (ns(t) K [A[1 +am, (D] ~ 1 (5.1.32)
Therefore, with high probability
Ve@®) = [Ac[l + amp (D] + e (2) (5.133)
After removing the dc component, we obtain ]
y@) = Acam, (1) + nc(t) (5.1.34)

which is basically the same as y(z) for the synchronous demodulation without the %

coefficient. This coefficient, of course, has no effect on the final SNR, and therefore we
conclude that, under the assumption of high SNR at the receiver input, the performance
of synchronous and envelope demadulators is the same. However, if the above assump-
tion is not true, with synchronous demodulation we still have additive signal and noise
at the receiver output, but with envelope demodulation, the signal and noise become
intermingled. To see this, let us assume that at the receiver input the noise power! is
much stronger than the signal power. This means that ’

Ve@) = /[l +ama ()] +n.(OF +n2()

= A2+ ama (92 +n2(2) +n2(2) + 24en()(L + amy (D))

\/ (n2(t) +n2(®)) [1 +

24.7.()

n__—_Z(z) 0 I+ amn(t))}

RE

Acnc(t)
Vnz(t)'
Acnc(2)

Va (t)
where in (a) we have used the fact that (1 + am,(¢))? is small compared to the
other components and in (b) we have denoted /n2(t) + nZ(t) by V,(f), the enve-

lope of the noise process, and have used the approximation +/1 + ¢ & 1 + £, for small
€, where

R

V. () [1 + (1 +am, (t))]

= V.(t) + (I +am,(@)) (5.1.35)

2A.n.(t)
€= ———"""—(1+am,(t 5.1.36
nZ(t)+n§(r)( ) ( )
From Equation (5.1.35), it is observed that at the demodulator output, the sighal
and the noise components are no longer additive and, in fact, the signal component
is multiplied by noise and is no longer distinguishable. In this case, no meaningful
SNR can be defined. It is said that this system is operating below the threshold. The

By noise power at the receiver input we mean the power of the noise within the bandwidth of the
modulated signal, or equivalently, the noise power at the output of the noise-limiting filter.
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subject of threshold and its effect on the performance of a communic_ation system will
be covered in Section 5.3.1 when we discuss the noise performance in angle modula-
tion.

Example 5.1.1 ‘ .
The message signal m(f) has a bandwidth of 10 Kz, a power of 1.6 W.and' a maximum
amplitude of 6. It is desirable to transmit this message to a destination via a channelenh
80-dB attenuation and additive white noise with power-spectral density Sp(f) = P =
1012 W/Hz, and achieve a SNR at the modulator output of at least 50 dB. What is the
required transmitter power and channel bandwidth if the following modulation schemes

are employed?

1. DSB AM
2. SSB AM
3. Conventional AM with modulation index equal to 0.8

Solution We first determine (%) , as a basis of comparison.

S PR PR _108PR
N/), NoW 2x10°2x10*" 2

Since the channel attenuation is 80 dB, the ratio of transmitted power P to received power

P R is
Pr
— =80
10 log P
and, therefore,
Pr=10"%pP;

Hence,

2 2

S 108 x IO—SPT Pr
NJ,

1. For DSB AM, we have

Sy (S =i~50d3=105
N/, N/, 2

therefore,
5;1=mS=>PT=2x 10° W ~ 200 KW
and
BW = 2W = 2 x 10000 = 20000 Hz ~ 20 KHz
2. For SSB AM,

SY o5\ 2B _ 105 — pr —200KW
~),"\¥),”2
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and
BW = W = 10000 Hz = 10 KHz
3. For conventional AM, with a == 0.8,

), (5), %
=] =gl =) =pE
N/, N/, 2
where 7 is the modulation efficiency given by

_ a? P,
=1 +a?P,,
First we find Pp,, the power content of the normalized message signal. Since
max{m(t)| = 6, we have
= ——BL—- =

(max|m (5))*

16 4

Pﬂl — -

- 36 36 9
Hence,

2., 4

0.8% x 5

TTromsg 0B

n

Therefore,

P
<~> ~022-% = 0.11Pp = 10°
. 2

or
Pr ~ 909 KW
The bandwidth of conventional AM is equal to the bandwidth of DSB AM; ie.,
BW =2W =20KHz

5.2 CARRIER-PHASE ESTIMATION WITH A PHASE-LOCKED
LOOP (PLL)

In this section, we describe a method for generating a phase reference for synchronous
demodulation of a DSB-SC AM signal. The received noise-corrupted signal at the input
to the demodulator is given by (compare with Equation (3.2.5)).

r(t) = u(t) +n(2)
= Ao (s) cosQfut + be) -+ nt) (52.1)

First, we note that the received signal r(z) has a zero mean, since the message
signal m(z) is zero mean; i.e., m(t) contains no dc compornent. Consequently, the
average power at the output of a narrowband filter tuned to the carrier frequency f,
is zero. This fact implies that we canuot extract a carrier-signal component directly
from r(z).



r(?)
—_—
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If we square r(¢), the squared signal contains a spectral component at twice the
carrier frequency; i.e.,
r2(t) = A’m?(r) cos*(2m f.t + ¢.) + noise terms
= FAIm*(1) + 1 AZm? (1) cos(4n fot -+ 2¢,) + noise terms (5.2.2)

Since m2(¢) > 0, there is signal powér at the frequency 2 f;, which can be used to drive
e-locked loop (PLL).
: Phasln order to isglgge th>e desired double-frequency component from the rest of the
frequency components, the squared-input signal is passed through a narrowband ﬁIt@r
that is tuned to the frequency 2f,. The mean value of the output of such a filter is
a sinusoid with frequency 2f., phase 2¢., and amplitude Alm*(HHQ fc) /2, V{hcre
[H(2f.)} is the gain (attenuation) of the filter at f=2 f-c. Thus, squaring the input
signal produces a sinusoidal component at twice the carrier frquency whlch. can.be
used as the input to a PLL. The general configuration for the carrier-phase estimation

system is illustrated in Figure 5.1.

Bandpass
Squar(?—law filter PLL
device tuned to 2f,
l Figure 5.1 System for carrier-phase
Output estimation.

5.2.1 The Phase-Locked Loop (PLL)

The PLL consists of a multiplier, a loop filter, and a voltage-controlled oscillator (VCO),-

asshown in Figure 5.2. Suppose that the inputto the PLL s the sinusoid cos (4?1' Tt +2¢)
and the output of the VCO is sin(4w fot + 2¢), where ¢ represents the estimate of ¢.
The product of these two signals produces the signal

e(t) = cos(dr f.t + 2¢) sin(4m fit +28)

= 1sin2(6 —¢) + 1sin(87f.t +26 +2¢) (523)

Note that e(r) contains a low-frequency term (d ¢) and a term at four times the carrier.
The loop filter is a lowpass filter that responds only to the 1o.w—frequency compo-
nent sin 2(¢ — ¢) and removes the component at 4 f,. This filter is usually selected to

Input ‘ Loop
signal filter
——  VCO

Figure 5.2 Basic elements of 2 PLI.
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have the relatively simple transfer function

1+ s
1+ 78
where the time constants 7; and 1, are design parameters (7] 3> 13) that control the
bandwidth of the loop. A higher-order filter that contains additional poles may be used,
if necessary, to obtain a better loop response.

The output of the loop, v(z), provides the control voltage for the VCO whose
implementation is described in Section 3.3.3, in the context of FM modulation. The
VCO is basically a sinusoidal signal generator with an instantaneous phase given by

G(s) = (5.2.4)

dnfit + 26 = dnfir + K, /t v(r) dr (5.2.5)

where K, is a gain constant in radians/volt-sec. Hence, the carrier-phase estimate at the

- output of the VCO is

26 =K, / t v(r) dr ' (5.2.6)

and its transfer function is X, /s.

Because the double-frequency term resulting from the multiplication of the input
signal to the loop with the output of the VCO is removed by the loop filter, the PLL may
be represented by the closed-loop system model shown in Figure 5.3. The sine function
of the phase difference 2(¢ — ¢) makes the system nonlinear and, as a consequence,
the analysis of the PLL performance in the presence of noise is somewhat involved,
although it is mathematically tractable for simple-loop filters.

In steady-state operation when the loop is tracking the phase of the received
carrier, the phase error & — ¢ is small and, hence,

2Sn2@ -9y~ d—¢ (527

With this approximation, the PLL is represented by the linear model shown in Figure 5.4.
This linear model has a closed-loop transfer function.

KG
H(s) = _KG@)fs
14+ KG(s)/s
where the factor of 1/2 has been absorbed into the gain parameter K. By substituting

(5.2.8)

1 . Loop
2 sin(2¢—2 ¢) filter
G(s)

<
[#)
&}

w|

Figure 5.3 Model of a PLL.
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Loo

+ P
i filter
- G(s)

vCO
£
s

Figure 5.4, Linear model of a PLL.

from Equation (5.2.4) for G (s) into Equation (5.2.8), we obtain

1+;).'2S

- - (5:2.9)
I+ (n+5)s+ 32

H(s) =

Hence, the closed-loop system function for the linearized PLL is sec'onc_l order WhEI'l 'the
loop filter has a single pole and a single zero. The parameter 7, determines the position
of the zero in H (s), while K, 71, and 7 control the position of the closed-loop system

poles. .
The denominator of H (s) may be expressed in the standard form

D(s) =s*+ 2L wns + a),% (5.2.10)

where ¢ is called the loop-damping factor atid w,, is the natural frequency of the loop. In

terms of the loop parameters, w, = «/K/t1 and { = 0,(2 + 1/K )/2, the closed-loop ‘

transfer function becomes

(2t wn — 02/K)s + w?
52+ 20 wps + @

H{s) = (5211)

The magnitude response 20 log] H (j )] as a function of the normalized frequency
w/w, is illustrated in Figure 5.5, with the damping factor as a parameter and 7; > 1. Note-
that, ¢ =1 results in a critically damped loop response, { < 1 produces an underdamped

loop response, and ¢ > 1 yields an overdamped loop 16SpONSe.
The (one-sided) noise equivalent bandwidth of the loop is (see Problem 5.6)

g/ Km) 1+@e) o spp
4(1’2 -+ -Ilf) 8¢/ wn

By =

Inpractice, the selection of the bandwidth of the PLL involves a txja(‘ie-off ]Jetween speed
of response and noise in the phase estimate. On the one hand, it is da?suable'to. sele'c _
the bandwidth of the loop to be sufficiently wide in order to track any time variations in -
the phase of the received carrier. On the other hand, a wideband PLL allows more noise
to pass into the Joop, which corrupts the phase estimate. Next, we assess the effects of
noise in the quality of the phase estimate.
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Figure 5.5 Frequency response of a second-order loop. (From Phaselock
Techniques, 2nd Ed., by F. M. Gardner; © 1979 by John Wiley & Sons. Reprinted
with permission of the publisher.)

5.2.2 Effect of Additive Noise on Phase Estimation

In order to evaluate the effects of noise on the estimate of the carrier phase, let us
assume that the PLL is tracking a sinusoidal signal of the form

s(t) = Agcos[2n fot + ¢ (t)] (5.2.13)
which is corrupted by the additive narrowband noise
n(t) = ne(t) cos 2 fot — ng(2) sin 2z fot (5.2.14)

The in-phase and quadrature components of the noise are assumed to be statisti-
cally independent, stationary Gaussian noise processes with (two-sided) power-spectral
density No/2 W/Hz. By using simple trigonometric identities, the noise term in
Equation (5.2.14) can be expressed as

n(t) = x.(t) cos2m fot + ¢ (D] — x,(¢) sin[27 fot + ¢ (£)] (5.2.15)

where
xc(t) = ng(t) cos @ (t) + ny(2) sing{z)
. (5.2.16)
x5 (1) = —ne(t) sin @ (1) + ng () cos ¢ (1)
We note that _
xe(t) 4 jxs @) = [ne(r) + jng (£)]e7¢® (5.2.17)
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It is easy to verify that a phase shift does not change the first two. moments of 7. (¢)
and n,(t), so that the quadramre components x.(z) and x,(¢) have exactly the same
statistical characteristics as n.(¢) and n(¢) (see also Problem 4.29).

Now, if s(t) +n(z) is multiplied by the output of the VCO and the double-
frequency terms are neglected, the input to the loop filter is the noise-corrupted signal

e(t) = Acsin A + x.(t) sin Ag — x, () cos A (5.2.18)

where, by definition, A¢ = ¢ — ¢ is the phase error. Thus, we have the equivalent
model for the PLL with additive noise as shown in Figure 5.6.

When the power P, == A2/2 of the incoming signal is much larger than the noise
power, the phase estimate ¢ & ¢. Then, we may linearize the PLL and, thus, easily
determine the effect of the additive noise on the quality of the estimate ¢. Under
these conditions, the model for the linearized PLL with additive noise is illustrated in
Figure 5.7. Note that the gain parameter A, may be normalized to unity, provided that
the noise term is scaled by 1/A.. Thus, the noise term becomes '

t
() = i) inag — 2D cosag (5.2.19)
C AC
Since the noise n; (z) is additive at the input to the loop, the variance of the phase
error A¢, which is also the variance of the VCO output phase, is
NOBncq

2 __ ’ .
G==g : (5.2.20)

Loop

filter
o/ 60s)

AcsinA¢

X
s

Figure 5.6 Equivalent model of PLL with additive noise.

Noise

G(5)

<
"’IN8

Figure 5.7 Linearized model of PLL
with additive noise.
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where By is the (one-sided) noise-equivalent bandwidth of the loop, given by Equa-
tion (5.2.12). Note that A2/2 is the power of the input sinusoid and o2 is simply the
ratio of the total noise power within the bandwidth of the PLL divided by the input
signal power. Hence,

ag =1 (5.2.21)
PL
~where py, is defined as the SNR
212
oy = el (5.2.22)
BneqNO/z

Thus, the variance of @ is inversely proportional to the SNR.

The expression for the variance ¢ of the VCO-phase error applies to the case
where the SNR is sufficiently high so that the linear model for the PLL applies.
An exact analysis based on the nonlinear PLL is mathematically tractable when
G(s) =1, which results in a first-order loop. In this case, the PDF for the phase er-
ror can be derived [see Viterbi (1966)], and has the form

flAp) = w (5.2.23)
2 lp(pr)
where py, is the SNR defined in Equation (5.2.22), Byeq is the appropriate noise-
equivalent bandwidth of the first-order loop, and I,(-) is the modified Bessel function
of order zero.

From the expression for f (A¢) we may obtain the exact value of the variance o2
for the phase error of a first-order PLL. This is plotted in Figure 5.8 as a function of
1/pr. Also shown for comparison is the result obtained with the linearized PLL model.
Note that the variance for the linear model is close to the exact vadance for oy, > 3.
Hence, the linear model is adequate for practical purposes.

Approximate analysis of the statistical characteristics of the phase error for the
nonlinear PLL have also been performed. Of particular importance is the transient
behavior of the nonlinear PLL during initial acquisition. Another important problem is
the behavior of the PLL at low SNR. It is known, for example, that when the SNR at
the input to the PLL drops below a certain value, there is a rapid deterjoration in the
performance of the PLL. The loop begins to lose lock and an impulsive-type of noise,
characterized as clicks, is generated, which degrades the performance of the loop.
Results on these topics can be found in the texts by Viterbi (1966), Lindsey (1972),
Lindsey and Simon (1973), and Gardner (1979), and in the survey papers by Gupta
(1975) and Lindsey and Chie (1981).

Squaring Loop. Now that we have established the effect of noise on the per-
formance of the PLL, let us return to the problem of carrier synchronization based on
the system shown in Figure 5.9. The squaring of the received signal that produces the
frequency component at 2 f, also enhances the noise power level at the input to the PLL
and, thus, it increases the variance of the phase error.
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16—
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Exact

Linear model

0.6~

Variance of VCO-phase estimate

Figure 5.8 Comparison of VCO-phase
021 ! variance for exact and approximate (linear
order) first-order PLL. (From Principles
of Coherent Communication, by A. J.
Viterbi; © 1966 by McGraw-Hill.

I ] ! ] ! ]

2
0 0z 04 08 o8 10 12 Reprinted with permission of the
No Bneq/A _ ‘publisher.)
_cos (Aaf t+24)
Square-law | Bandpass
() device 5O filter ) e(®) Loop
™1 (full-wave tuned to \J filter
rectifier) 2fe 3
| sin (dmfyt+2¢)
vCO
sin 2mft+ )
+2
Output to coherent
demodulator Frequency
divider

Figure 5.9 Carrier recovery using a square-law device.

To elaborate on this point, let the input to the squarer be n(¢) +n(2). The out-
putis ‘ ‘
y(t) = 12 @) + 2u@nl) + 22() (5.2.24)
The noise terms are 2u (#)n(z) and #?(¢). By computing the autocorrelation and power-
spectral density of these two noise components, one can show that both components
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have spectral power in the frequency band centered at 2 ... Consequently, the bandpass
filter with bandwidth Byeq centered at 2 £, which produces the desired sinusoidal signal
component that drives the PLL, also passes noise due to these two noise terms.

.~ Let us select the bandwidth of the loop to be significantly smaller than the band-
width By, of the bandpass filter, so that the total noise spectrum at the input to the PLL
may be approximated by a constant within the loop bandwidth. This approximation
allows us to obtain a simple expression for the variance of the phase error as

: 1
'O’g =
¢ oSt
where Sy is called the squaring loss and is given as
: 1

Since Sp, <1, we have an increase in the variance of the phase error caused by the
added noise power that results from the squaring operation. For example, when p =
Byp /2 Bpeq, the loss is 3 dB or, equlvalently, the variance in the estimate increases by a
factor of two.

Finally, we observe that the output of the VCO from the squaring loop must be
frequency divided by a factor of two and phase shifted by 90° to generate the carrier
signal for demodulating the received signal.

(5.2.25)

S = . (5.2.26)

Costas Loop. A second method for generating a properly phased carrier for
a DSB-SC AM signal is illustrated by the block diagram in Figure 5.10. The received
signal

r{t) = Acm(t) cosQRu fot + ¢) + nlt)

() .| Lowpass
&/ filter
cos 2mfit+¢)
90°-phase
shift

() Loop e(n)
veo filter CX>

sin 2afe+ @)
() Lowpass
O/ filter

Figure 510 Block diagram of Costas loop.
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is multiplied by cos(2r fet + @) and sin(2n f.f + $), which are outputs from the VCO.
The two products are
y.(t) = [Acm (@) cosQrft + ¢)
+ ng(r) cos 2m ft — ng (£) sin 21 for) cos (2 fot + )

1 - Lo
= %‘:m(t) cos Ag + E[nC(t) cos @ + ng(t)sing]
+ double-frequency terms (5.2.27)

Vs ® = [Acm(t) COS(Zﬂfct + ¢)
F1.(0) COS 27 fut — ng(2) sin 27 fot] sin@r fot + 6)

= %im(z) sin Ag + %[nc(t) sind — n, (1) cos ]

+ double-frequency terms (5.2.28)

where A¢ = ¢ — ¢. The double-frequency terms are eliminated by the lowpass filters

following the multiplications. /
An error signal is generated by multiplying the two outputs y.(#) and y; (t) of the

lowpass filters. Thus,
e(?) = y ()Y ()

= %g—mz(t) sin2A¢ + %—c—m(t) [n.(2) cos § + n(r) sin $lsin Ag

+ %Em(r)[nc(t) sin ¢ — ng(t) cos ¢l cos A

+ o) cosd + (0 sin Al sind — ()05 6)

This error signal is filtered by the loop filter whose output is the control voltage that
drives the VCO. ' o

We note that the error signal into the loop filter consists of the des.lred term
(A>m?(r) /8) sin 2A¢, plus terms that involve signal x noise and noise X noise. Thes¢
terms are similar to the two noise terms at the input of the PLL for the squarmg.method.
In fact, if the loop filter in the Costas loop is identical to that used in the squaring loop,
the two loops are equivalent. Under this condition, the PDF of the phase error and the

performance of the two loops are identical. '
In conclusion, the squaring PLL and the Costas PLL are two practical methods

for deriving a carrier-phase estimate for synchronous demodulation of a DSB-SC AM
signal. .

5.3 EFFECT OF NOISE ON ANGLE MODULATION

In this section, we will study the peﬁorfnance of angle-modulated signals whc?l con-
taminated by additive white Gaussian noise and compare this Qerformance Wlth the
performance of amplitude-modulated signals. Recall that in amplitude modulation, the
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Figare 511 Effect of noise on the zero crossings of (a) low-power and
(b) high-power modulated signals.
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message information is contained in the amplitude of the modulated signal, and since
noise is additive, the noise is directly added to the signal. However, in a frequency-
modulated signal, the noise is added to the amplitude and the message information
is contained in the frequency of the modulated signal. Therefore, the message is con-
taminated by the noise to the extent that the added noise changes the frequency of the
modulated signal. The frequency of a signal can be described by its zero crossings.
Therefore, the effect of additive noise on the demodulated FM signal can be described
by the changes that it produces in the zero crossings of the modulated FM signal.
Figure 5.11 shows the effect of additive noise on the zero crossings of two frequency-
modulated signals, one with high power and the other with low power. From the above
discussion and also from Figure 5.11, it should be clear that the effect of noise in an
FM system is less than that for an AM system. It is also observed that the effect of noise
in a low-power FM system is more than in a high-power FM system. The analysis that
we present in this chapter verifies our intuition based on these observations.

The block diagram of the receiver for a general angle-modulated signal is shown
in Figure 5.12. The angle-modulated signal is represented as'

u(t) = Accos(27rfct + o)
B {Accos (nfit + 2wk [T m(x)dr), FM

(53.1)
AccosQft +kym (1)), PM

TWhen we refer to the modulated signal, we mean the signal as received by the receiver. Therefore,
the signal power is the power in the received signal not the transmitted power.
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(@) + (0 Bandpass r(O=ult) +n() Angle ¥® Lowpass 0
filter demodulator ! filter

Figure 5.12 Block diagram of receiver for a general angle-demodulated signal.

The additive white Gaussian noise n,, () is added to u(¢) and the result is passed tl}rough
a noise-limiting filter whose role is to remove the out-of-band noise. The bgndw1dth of
this filter is equal to the bandwidth of the modulated signal, and therefore, it passes the
modulated signal without distortion. However, it eliminates the out-of-band noise and,
hence, the noise output of the filter is a bandpass Gaussian noise denoted by 7(¢). The
output of this filter is

r(t) = u(®) +n(t)
= u(t) + n.(t) cos 2w fot —ns(t) sin Zyrfct (5.3.2)

As with conventional AM noise-performance analysis, a precise analysis is quite in-

volved due to the nonlinearity of the demodulation process. Let us make the assumption -

that the signal power is much higher than the noise power. Then, if the bandpass noise
is represented as

n(t) = 1/n2(t) + n2@) cos (27rfct + arctan :Zig> |
= Va(t) cOS@rfet + Da (1) (5.3.3)

where V,,(¢) and ®,(¢) represent the envelope and the phase of the bandpass no@se
process, Tespectively, the assumption that the signal is much larger than the noise
means that .

P(Va(t) € A0) = 1 (5:3.4)

Therefore, the phasor diagram of the signal and the noise are as shown in Figure 5.13.
From this figure it is obvious that we can write

rt) = (AC 4 Vo (2) cos(®,(t) — qb(t))) cos <2nfct + &)

Vi () sin(@n () — (1) )
Ac+ Vu(t) cos(Pn () — (1))

~ (Ac + Va(t) cos(@y(6) = ¢<z>)> '

- arctan

20 in(out - 0 (t)))

c

X COS (anct +o() +

The demodulator processes this signal and, depending whether it is a phase or a fn?-
quency demodulator, its output will be the phase or the instantaneous frequency of this
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\“\Vn(z‘) sin (@,(0 ~ ¢ (1)
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Figure 5.13 Phasor diagram of signal and noise in an angle-modulated system.

signal.’ Therefore, noting that

= V@), PM N
90 = 2rks ff m(r)dr, EM (5:3.5)

the output of the demodulator is given by

© = kpm (1) + Yn(2), PM
T Z Vkepmty + £ 27,0, P
kpm (£) + 22 sin(D, (1) — ¢ (1)), PM
=4 A (53.6)
() + 5 5 sin(@a () — ¢(1), FM
where, we have defined
v & Va®) Sin(@, (1) — (1)) (5.3.7)

Ac

The first term in Equations (5.3.5-5.3.7) is the desired signal component and the second
term is the noise component. From this expression, we observe that the noise component
is inversely proportional to the signal amplitude A.. Hence, the higher the signal level,
the lower will be the noise level. This is in agreement with the intuitive reasoning
presented at the beginning of this section based on Figure 5.11. Note also that this
is not the case with amplitude modulation. In AM systems, the noise component is
independent of the signal component and a scaling of the signal power does not affect
the received noise power.

tOf course, in the FM case the demodulator output is the instantaneous frequency deviation of v(z)
from the carrier frequency f.. :
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Let us study the properties of the noise component given by

Va(t) .
V() = T(t)- sin(®, (1) — (1))

= :i—[Vn(t) sin @, (t) cos ¢ (1) — Va(t) cos (1) sin ¢ (1)]

c

1 .
= ™ [ns () cos p(t) — ne(t) sin @ (¢)] (5.3.8)
The autocorrelation function of this process is given by

ElYa(t + T)Ya()] = -j—E [Ry, (7) cos(@ (1)) cos(@ (t + 7))
4R, (D) sin(@( + ) sin(p (1))]

1
= ERnc(f)E[COS@(t +7)—¢M)] (539

where we have used the fact that the noise process is stationary and R, () = Rn, (1)
and R, (t) = 0 [see Equation (4.6.1) and Example (4.6.1)]. Now we assume that the
message m (¢) is a sample function of a zero-mean, stationary Gaussian process M(t)
with the autocorrelation function Ry (). Then, in both PM and FM modulation, ¢ (¢)
will also be a sample function of a zero-mean stationary, Gaussian process @ (z). For
PM this is obvious because

O(2) =k,M(t) (5.3.10)
and in the FM case, we have

&) = 2mky /t M) dz (5.3.11)

Noting that fim represents a linear time-invariant operatjon it is seen that, in this case,
®(t) is the output of an LTI system whose input is a zero-mean, stationary Gaussian
process. Consequently @ (¢) will also be a zero-mean, stationary Gaussian process.

At any fixed time 7, the random variable Z(z, 7) = @ (£ + 7) — ®(¢) 1s the differ-
ence between two jointly Gaussian random variables. Therefore, it is itself a Gaussian
random variable with mean equal to zero and variance

o2 = E[%(t + 7)1 + E[8*()] — 2Re (1)
= 2[Re(0) — Ro(1)] (5.3.12)
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Now, using this result in Equation (5.3.9) we obtain
1

EIX(t +DX(0] = -

Ry (D) Efcos(d(t + 1) — 2(2))]
= Aianc(r)Re [Eel®tHD—2D]

1 .
= ZERHC (T)Re [Eej Z(r,r)]

<

1
= g3 Rn (R [¢727%)

1
= Zanc ()Re [e~(R¢(0)—Rw(r))]

1
= — R, (r)e  Re@—Re(z)) 513.13
pe ne () (3.3.13)
where we have used Equation (4.1.15). This result shows that under the assumption
of a stationary Gaussian message, the noise process at the output of the demodulator
is also a stationary process whose autocorrelation function is given above and whose
power-spectral density is

Sy(f) = F[Ry(7)]

1
- g;,[_ﬂ R () e—(R:»(O)—R@(r»]

[ o

= ——F[R,, (1)eR D]

= SN *G() (5.3.14)
<
where g(t) = e®*® and G(f) is its Fourier transform.
It can be shown (see Problem 5.12) that bandwidth of g () is half the bandwidth B,
of the angle-modulated signal, which for high modulation indices is muchlarger than W,
the message bandwidth. Since the bandwidth of the angle-modulated signal is defined
as the frequencies that contain 98%-99% of the signal power, G(f) is very small in
the neighborhood of [ f| = % and, of course,

No, If1<%
0, otherwise

S ()= { (5.3.15)
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Figure 5.14 Typical plots of G(f), Su, (f), and the result of their convolution.

A typical example of G(f), S, (f) and the result of their convolutlon is shownin
Figure 5.14. Because G(f) is very small in the neighborhood of | | = —5 , the resulting
Sy(f) has almost a flat spectrum for | f| < W, the bandwidth of the message From
Figure 5.14 it is obvious that for all | f| < W, we have

g~ Re(®
Se(f) = () <)
_ —R@(O)NO/‘ G(f) df
Y / G(f) df
= e_;@ Nos)|
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e~ Re(®)
A2

ab

NyeRo®

(5.3.16)

It should be noted that Equation (5.3.16) is a good approximation only for | f| <
W. This means that for | /| < W, the spectrum of the noise components in the PM and
FM case are given by

PM

No
Sn, (f) = { w2 FM' (5.3.17)

where we have used the fact that in FM the noise component is given by = o 4Y.(2) as
previously indicated in Equation (5.3.6). The power spectrum of the noise component
at the output of the demodulator in the frequency interval | f| < W for PM and FM is
shown in Figure 5.15. It is interesting to note that PM has a flat noise spectrum and FM
has a parabolic noise spectrum. Therefore, the effect of noise in FM for higher-frequency
components is much higher than the effect of noise on lower-frequency components.
The noise power at the output of the lowpass filter is the noise power in the frequency

S )
Ny
Al
1 l
-W w f
(a
Ny o
Al f
~ rd
~ ~ s 4
| ]
-w w f  Figure5.15 Noise power spectrum at
b} demodulator output in (a) PM and (b) FM.
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range [W, +W]. Therefore, it is given by
+W
Bu= [ Su(fdf
-w
“PMdf,  PM
[y A df, ™M
e, M
= - (5.3.18)
Now we can use Equation (5.3.6) to determine the output SNR in angle modula-
tion. First, we have the output signal power

1l

Il

Py, PM
=Y (53.19)
© |BPy, BM
Then, the SNR, defined as
). %
N/, P,
becomes
AL Py PM
<£) = {2 W (5.3.20)
o Gy
Noting that %5 is the received signal power, denoted by Pr, and
= k, max|m(t)|, PM
{ﬂ" k"mlm[w( ) (5321)
Br = Lt—=—, M
we may express the output SNR as
B \* Py ' '
(S> _ ) rx (m—m;’,’;(t—n) wi M (5322)
N - 2
8 P
NJo 3Pr (maxb;(t)]) E%V" FM

If we denote ﬁ% by (%) ,» the SNR of a baseband system with the same received

power, we obtain

PMﬂzg S
(i) _ (max[m(x)zx)z(ﬁ)b’ FM (5.3.23)
- PupB S
Nio 3wty (Wp T

. . P . : g .
Note that in the above expression m—r"ens 18 the average-to-peak-power ratio of the

message signal (or, equivalently, the power content of the normalized message, Py, )-
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Therefore,

2P S
(£> =% M"(sz’ i (5.3.24)
NJo 3'812‘PMn(N)b’ M

Now using Carson’s rule B, = 2(8 + 1)W, we can express the output SNR in terms
of the bandwidth expansion factor, which is defined to be the ratio of the channel
bandwidth to the message bandwidth and denoted by &

B
Q=

W= 28+ 1) (5.3.25)

From this relationship we have 8 = % — 1. Therefore,

Q

g 2
7 S
<§_> _ PM(max]m(t)l) (%) M
N 0 B 2.1 \2 s
3PM(ma:2([m(t)1) (#)p ™
From Equations (5.3.22) and (5.3.26), we observe that:

1. Inboth PM and FM, the output SNR is proportional to the square of the modulation
index 8. Therefore, increasing B increases the output SNR even with low received
power. This is in contrast to amplitude modulation where such an increase in the
received SNR is not possible.

2. The increase in the received SNR is obtained by increasing the bandwidth. There-
fore, angle modulation provides a way to trade-off bandwidth for transmitted
power.

3. The relation between the output SNR and the bandwidth expansion factor, €2, is
a quadratic relation. This is far from optimal.! We will see in Chapter 9 that the
optimal relation between the output SNR and the bandwidth expansion factor is
an exponential relation. '

4. Although we can increase the output SNR by increasing S, having a large 8 means
having a large B, (by Carson’s rule). Having a large B. means having a large
noise power at the input of the demodulator. This means that the approximation
p(Va(t) € A;) = 1 will no longer apply and that the above analysis will not hold.
In fact, if we increase B such that the above approximation does not hold, a
phenomenon known as the threshold effect will occur, and the signal will be lost
in the noise.

5. A comparison of the above result with the SNR in amplitude modulation shows
that, in both cases, increasing the transmitter power will increase the output SNR,

(5.3.26)

By optimal relation we mean the maximum saving in transmitter power for a given expansion in
bandwidth. An optimal system achieves the fundamental limits on communication predicted by information
theory.
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but the mechanisms are totally different. In AM, any increase in the received
power directly increases the signal power at the output of the receiver. This is due
basically to the fact that the message is in the amplitude of the transmitted signal
and an increase in the transmitted power directly affects the demodulated signal
power. However, in angle modulation, the message is in the phase of themodulated
signal and, consequently, increasing the transmitter power does not increase the
demodulated message power. In angle modulation what increases the output SNR
is a decrease in the received noise power as seen from Equation (5.3.18) and
Figure 5.11. )

6. Tn FM, the effect of noise is higher at higher frequencies. This means that signal
components at higher frequencies will suffer more from noise than the lower-
frequency components. In some applications, where FM is used to transmit
SSB-FDM signals, those channels which are modulated on hi gher-frequency car-
Hers suffer from more noise. To compensate for this effect, such channels must
have a higher-signal level. The quadratic characteristics of the demodulated noise
spectrumn in FM is the basis of pre-emphasis and de-emphasis filtering that will
be discussed in Section 5.3.2.

5.3.1 Threshold Effect in Angle Modulation

The noise analysis of angle demodulation schemes is based on the assumption that the
SNR at the demodulator input is high. With this crucial assumption, we observed that
the signal and noise components at the demodulator output are additive, and we were
able to carry out the analysis. This assumption of high SNR is a simplifying assumption
that is usually made in analysis of nonlinear-modulation systems. Due to the nonlinear
nature of the demodulation process, there is no reason that the additive signal and noise
components at the input of the modulator result in additive signal and noise components
at the output of the demodulator. In fact, this assumption is not at all correct in general,
and the signal and noise processes at the output of the demodulator are completely
mixed in a single process by a complicated nonlinear functional. Only under the high
SNR assumption is this highly nonlinear functional approximated as an additive form.
Particularly at Jow SNRs, signal and noise components are s intermingled that one
can not recognize the signal from the noise and, therefore, no meaningful SNR as a
measure of performance can be defined. In such cases, the signal is not distinguishable
- from the noise and a mutilation or threshold effect is present. There exists 2 specific
signal to noise ratio at the input of the demodulator known as the threshold SNR, beyond
which signal mutilation occurs. The existence of the threshold effect places an upper
Limit on the trade-off between bandwidth and power in an FM system. This limit is 2
practical limit in the value of the modulation index 7. The analysis of the threshold
effect and derivation of the threshold index B is quite involved and beyond the scope
of our analysis. The interested reader is referred to the references cited at the end of this
chapter for an analytic treatment of the subject. Here we only mention some results on
the threshold effect in FM. -
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It can be shown that at threshold the following approximate relation between

5 = (£), and By holds in an FM system:
| ( S ) =208+ 1)
7)., ; (53.27)

From the above relation, given a received power Pg, we can calculate the maximum
allowed § to make sure that the system works above threshold. Also, given a bandwidth
allocation of B, we can find an appropriate § using Carson’s rule B, = 2(f + DW
Then, using the threshold relation given above, we determine the required mmunum
received power to make the whole allocated bandwidth usable.

. In general, there are two factors that limit the value of the modulation index 8.
The first is the limitation on channel bandwidth which affects 8 through Carson’s rule.
The second is the limitation on thie received power that limits the value of § to less
than what is derived from Equation (5.3.27). Figure 5.16 shows plots of the SNR in an
FM system as a function of the baseband SNR. The SNR values in these curves are in
dB and different curves correspond to different values of 8 as marked. The effect of
threshold is apparent from the sudden drops in the output SNR. These plots are drawn

DSB, SSB

dB scale

dB scale
&,

Fti%lré 5.16 Output SNR vs. baseband SNR in an FM system for various values
of 8. :
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for a sinusoidal message for which

_ P 1 (5.3.28)
(max|m(®?* 2
In such a case,
(£> = §ﬁ2 <£) (5.3.29)
N), 2 N/
As an example, for 8 = 5, the above relation yields :
S
<—S—> =157+ (—> (5.3.30)
N /olag N /plas
<£> =120~ 20.8dB (5.3.31).
b.th
On the other hand, if 8 = 2, we have
S ‘ S
<—> =78+ (—> (5.3.32)
N/ala N /plas
S
(—) =60~ 17.8dB (5.3.33)
N/pm

From this discussion it is apparent that, if for example (%) , =20dB, then, regardless of
the available bandwidth, we cannot use 8 = 5 for such a system because the demodulator
will not demodulate below the threshold of 20.8 dB. However, 8 = 2 can be used which
yields an SNR equal to 27.8 dB at the output of the receiver. This is an improvement
of 7.8 dB compared to a baseband system.

In general, if we want to employ the maximum available bandwidth, we must
choose the largest possible 8 that guarantees the system operates above threshold. This
is the value of B that satisfies

s .
(—) =208 +1) (5334)
N/bpm
By substituting this value in Equation (5.3.24), we obtain
(_]S\?) = 608%(8 + 1) Py, : (5.3.35)

which relates a desired output SNR to the highest possible j that achieves that SNR.

Example 5.3.1 , )
Design an FM system that achieves an SNR at the receiver equal to 40 dB and requires
the minimum amount of transmitter power. The bandwidth of the channel is 120 KHz, the

message bandwidth is 10 KXz, the average-to-peak-power ratio for the message, Py, ="

—n—\ﬁw is ;1—1, and the (one-sided) noise power-spectral density is Ny = 10°% W/Hz
\(Vhat is the required transmitter power if the signal is attenuated by 40 dB in transmission
through the channel?
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Solution First we have to see whether the threshold or the bandwidth impose a more
restrictive bound on the modulation index. By Carson’s rule

B, =28+ D)W
120,000 = 2(8 +°1) x 10,000

from which we obtain 8 = 5. Using the relation

S

(—ﬁ> = 60B%(8 + 1) Py, (53.36)
0

with ( %)a = 10%, we obtain 8 = 6.6, Since the value of 8 given by the bandwidth constraint

is less than the value of B given by the power constraint, we are limited in bandwidth as

opposed to being limited in power. Therefore, we choose 8 =5 which, when substituted

in the expression for the output SNR

S\ 3,/
B, e

. yields
S 800
=) == =266.6 ~24.26 dB 53.38
< N)b 3 = 266.6 (53.38)
Since (£), = 7% with W = 10,000 and No = 107, we obtain
8
Pp=—— =0.0266 ~ —15.74 dB 5.3.
=355 (53.39)
and
Pr = —15.74 + 40 = 24.26 dB ~ 266.66 W (53.40)

Had there been no bandwidth constraint we could have chosen f = 6.6, which results in
(£), = 153. In turn, we have Py % 0, 0153, and Pr ~ 153 W.

Threshold Extension in Frequency Modulation. We have already seen that
the nonlinear demodulation effect in angle modulation in general results in nonadditive
signal and noise at the output of the demodulator. In high received signal-to-noise ratios,
the nonlinear-demodulation process can be well approximated by a linear equivalent
and, therefore, signal and noise at the demodulator output will be additive. At high
noise levels, however, this approximation is not valid anymore and the threshold effect
results in signal mutilation. We have also seen that, in general, the modulated signal
bandwidth increases with the modulation index and since the power of the noise entering
the receiver is proportional to the system bandwidth, higher-modulation indices cause
the threshold effect to appear at higher-received powers.

Tn order to reduce the threshold, in other words, in order to delay the threshold
effect to appear at lower-received signal power, it is sufficient to decrease the input-noise
power at the receiver. This can be done by decreasing the effective system bandwidth
at the receiver. :

Two approaches to FM threshold extension are to employ FMFB or PLL-FM
(see Figures 3.37 and 3.38) at the receiver. We have already seen in Section 3.3.3 in
the discussion following FMFB and PLL-FM systems, that these systems are capable
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of reducing the effective bandwidth of the receiver. This is exactly what is needed for
extending the threshold in FM demodulation. Therefore, in applications where power
is very limited and bandwidth is abundant, these systems can be employed to make it
possible to use the available bandwidth more efficiently. Using FMFB, the threshold
can be extended approximately by 5-7 dB.

5.3.2 Pre-emphasis and De-emphasis Filtering

As observed in Figure 5.15, the noise power-spectral density at the output of the de-
modulator in PM is flat within the message bandwidth whereas for FM the noise power
spectrum has a parabolic shape. This means that for low-frequency components of the
message signal FM performs better and for high-frequency components PM is a bet-
ter choice. Therefore, if we can design a system that for low-frequency components
of the message signal performs frequency modulation and for high frequency com-
ponents works as a phase modulator, we have a better overall performance compared
to each system alone. This is the idea behind pre-emphasis and de-emphasis filtering
techniques.

The objective in pre-emphasis and de-emphasis filtering is to design a system
which behaves like an ordinary frequency modulator—demodulator pair in the low fre-
quency band of the message signal and like a phase modulator—demodulator pair in
the high-frequency band of the message signal. Since a phase modulator is nothing but
the cascade connection of a differentiator and a frequency modulator, we need a filter
in cascade with the modulator that at low frequencies does not affect the signal and
at high frequencies acts as a differentiator. A simple highpass filter is a very good ap-
proximation to such a system. Such a filter has a constant gain for Jow frequencies and
at higher frequencies it has a frequency characteristic approximated by X f|, which
is the frequency characteristic of a differentiator. At the demodulator side, for low fre-
quencies we have a simple FM demodulator and for high-frequency components we
have a phase demodulator, which is the cascade of a-simple FM demodulator and an
integrator. Therefore, at the demodulator, we need a filter that at low frequencies has a
constant gain and at high frequencies behaves as an integrator. A good approximation
to such a filter is a simple lowpass filter. The modulator filter which emphasizes high
frequencies is called the pre-emphasis filter and the demodulator filter which is the
inverse of the modulator filter is called the de-emphasis filter. Frequency responses of
a sample pre-emphasis and de-emphasis filter are given in Figure 5.17.

Another way to look at pre-emphasis and de-emphasis filtering is to note that, due
to the high level of noise in the high-frequency components of the message in FM, it is
desirable to attenuate the high-frequency components of the demodulated signal. This
results in a reduction in the noise level, but it causes the higher-frequency components
of the message signal to be also attenuated. To compensate for the attenuation of the
higher components of the message signal, we can amplify these components at the
transmitter before modulation. Therefore, at the transmitter we need a highpass filter
and at the receiver we must use a lowpass filter. The net effect of these filters should
be a flat-frequency response. Therefore, the receiver filter should be the inverse of the
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Figure 5.17 Pre-emphasis (a) and
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transmitter filter,
The characteristics of the pre-emphasis and de-emphasis filters depend largely
on the power-spectral density of the message process. In commercial FM broadcasting

-of music and voice, first-order lowpass and highpass RC filters with a time constant of

75 microseconds (us) are.employed. In this case, the frequency response of the receiver
(de-emphasis) filter is given by

1

. i+ ]%
where fy = m #2100 Hz is the 3-dB frequency of the filter.

To analyze the effect of pre-emphasis and de-emphasis filtering on the overall
SNR in FM broadcasting, we note that, because the transmitter and the receiver filters
cancel the effect of each other, the received power in the message signal remains
unchanged and we only have to consider the effect of filtering on the received noise.
Of course, the only filter that has an effect on the received noise is the receiver filter
that shapes the power-spectral density of the noise within the message bandwidth. The
noise component before filtering has a parabolic power spectrum. Therefore, the noise
component after the de-emphasis filter has a power-spectral density given by

Snep(f) = Sn, (NIHLAAP

No 1
=—f—_ 5.3.42
A 14 % ¢ )
0

Hy(f) = (5.3.41)
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where we have used Equation (5.3.17). The noise power at the output of the demodulator
now can be obtained as

+W
= Snm d
Pr .[W (Frdf

+W g2
Y
A Jw 1+ L
fo
3 ,
= M F—V— — arctan _VKjl (5.3.43)
A2 LA 0

Because the demodulated message signal power in this case is equal to that of a simple
FM system with no pre-emphasis and de-emphasis filtering, the rauo.of the output
SNRs in these two cases is inversely proportional to the noise power ratios; 1..,

(%)OPD — Pna
(7{7)0 Fres
2N0W3
_ 342
21\2’5 3 {—% — arctan %]
w3
_ l___(:f.g)___w (5.3.44)
=2W
3 5 arctan %

where we have used Equation (5.3.18). Equation (5 .3.44? gives the improvement ob-
tained by employing pre-emphasis and de-emphasis filtering.

Example 5.3.2 .
Tn commercial FM broadcasting W = 15 KHz, fo = 2100 Hz, and 8 = 5. Assuming

that the average-to-peak-power ratio of the message signalis 0.5, find the improvement in
output SNR of FM with pre-emphasis and de-emphasis filtering compared to a baseband

system.
Solution From Equation (5.3.26) we have

S 9 S)
—} =3x5x05 —
(1\,)0 % 8 X(N b
S
~95(%)
N b
15.7+ 3
. I ,

(5.3.45)

dB
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Therefore, FM with no pre-emphasis and de-emphasis filtering performs 15.7-dB better
than a baseband system. For FM with pre-emphasis and de-emphasis filtering, we have

3
(E) _1 (&) (ﬁ)
NJ,, 3%-actn® \N/,

o fo
150003
_1 o GR) ( i)
= 3 15000 15000
3 St —arctan 3 \N /,

S
~133+ | =

~133+157+ <_S_>
N b

S
~29 —
+<N>b

The overall improvement compared to a baseband system is, therefore, 29 dB.

dB

dB

(5.3.46)

dB

5.4 COMPARISON OF ANALOG-MODULATION SYSTEMS

Now we are at a point that we can present an overall comparison of different analog com-
munication systems. The systems that we have studied include linear-modulation sys-
tems (DSB-SC, Conventional AM, SSB-SC, VSB) and nonlinear systems (FM and PM).

The comparison of these systems can be done from various points of view. Here
we present a comparison based on three important practical criteria:

1. The bandwidth efficiency of the system. ,

2. The power efficiency of the system as reflected in its performance in the presence
of noise:

3. The ease of implementation of the system (transmitter and receiver).

Bandwidth Efficiency. The most bandwidth-efficient analog communication
system is the SSB-SC system with a transmission bandwidth equal to the signal band-
width. This system is widely used in bandwidth-critical applications such as voice
transmission over microwave and satellite links, and some point-to-point communica-
tion systems in congested areas. Since SSB-SC cannot effectively transmit dc, it cannot
be used for transmission of signals that have a significant dc component such as im-
age signals. A good compromise is the VSB system, which has a bandwidth slightly
larger than SSB and is capable of transmitting dc values. VSB is widely used in TV
broadcasting, and also in some data communication systems. PM and particularly FM
are least-favorable systems when bandwidth is the major concern, and their use is only
Jjustified by their high level of noise immunity.
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Power Efficiency. A criterion for comparing power efficiency of various Sys~
tems is the comparison of their cutput SNR at a given received signal power. We have
already seen that angle-modulation schemes and particularly FM provide a high level of
noise immunity and, therefore, power efficiency. FM is widely used on power-critical
communication links such as point-to-point communication systems and high fidelity
radio broadcasting. It is also used for transmission of voice (which has been already
SSB/FDM multiplexed) on microwave LOS and satellite links. Conventional AM and
VSB+C are the least power-efficient systems and are not used when the transmitter
power is a major concern. However, their use is justified by the simplicity of the re-
ceiver structure.

Ease of Implementation. The simplest receiver structure is the receiver for
conventional AM, and the structure of the receiver for VSB+C system is only slightly
more complicated. FM receivers are also easy to implement. These three systems are
widely used for AM, TV, and high-fidelity FM broadcasting (including FM stereg).
The power inefficiency of the AM transmitter is compensated by the extremely simple
structure of literally hundreds of millions of receivers. DSB-SC and SSB-SC require
synchronous demodulation and, therefore, their receiver structure is much more com-
plicated. These systems are, therefore, never used for broadcasting purposes. Since the
receiver structure of SSB-SC and DSB-SC have almost the same complexity and the
transmitter of SSB-SC is slightly more complicated compared to DSB-SC, DSB-SC is
hardly used in practice, due to its relative bandwidth inefficiency.

5.5 EFFECTS OF TRANSMISSION LOSSES AND NOISE IN ANALOG -
COMMUNICATION SYSTEMS

In any communication system there are usually two dominant factors that limit the per-
formance of the system. One important factor is additive noise generated by electronic
devices that are used to filter and amplify the communication signal. A second: factor
that affects the performance of a communication system is signal attenuation. Basi-
cally all physical channels, including wireline and radio channels, are lossy. Hence, the
signal is attenuated (reduced in amplitude) as it travels through the channel. A simple
mathematical model of the attenuation may be constructed, as shown in Figure 5.18, by

Transmitted Channel Received
i ignal
signal /x\ /+\ signal
{0 r)=as@®+n@
4
Figure 5.18 Mathematical model of
Attenuation Noise channel with attepuation and additive
@ n(t noise.
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multiplying the transmitted signal by a factor @ < 1. Consequently, if the transmitted
signal is s (), the received signal is

r(t) = as(t) +n() (5.5.1)

Clearly, the effect of signal attenuation is to reduce the amplitude of the desired sig-
nal s(¢) and, thus, to render the communication signal more vulnerable to additive
noise.

In many channels, such as wirelines and microwave LOS channels, signal atten-
uation can be offset by using amplifiers to boost the level of the signal during transmis-
sion. However, an amplifier also introduces additive noise in the process of amplifica-
tion and, thus, corrupts the signal. This additional noise must be taken into consideration
in the design of the communication system.

In this section, we consider the effects of attenuation encountered in signal trans-
mission through a channel and additive thermal noise generated in electronic amplifiers.
We also demonstrate how these two factors influence the design of a communication
system.

5.5.1 Characterization of Thermal Noi‘se Sources

Any conductive two-terminal device is generally characterized as lossy and has some
resistance, say R ohms. A resistor which is at a temperature T above absolute zero
contains free electrons that exhibit random motion and, thus, result in a noise voltage
across the terminais of the resistor. Such a noise voltage is called thermal noise.

In general, any physical resistor (or lossy device) may be modeled by a noise
source in series with a noiseless resistor, as shown in Figure 5.19. The output n(z) of
the noise source is characterized as a sample function of a random process. Based on
quantum mechanics, the power-speetral density of thermal noise (see Section 4.4) is
given as

2R f|
(F -1
where £ is Planck’s constant, & is Boltzmann’s constant, and 7" is the temperature of

the resistor in degree Kelvin; i.e., T = 273 + C, where C is in degrees Centigrade. As
indicated in Section 4.4, at frequencies below 10'2 Hz (which includes all conventional

Sr(f) = Vi/4z . | (55.2)

R

)

Figure 519 A physical resistor (a) is
modeled as a noiseless resistor in series
€Y ®) with a noise source (b).
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(s
Figure 5.20 Noisy resistor connected to

a load resistance Ry.

communication systems) and at room temperature,

A VARE!

oAl 4 5.5.3
eF N1+ | (55.3)
Consequently, the power-spectral density is well approximated as
Sr(f) = 2RkT V*/Hz (5.5.4)

When connected to a load resistance with value Ry, the noise voltage shown in
Figure 5.20 delivers the maximum power when R = R;. In such a case, the load is
matched to the source and the maximum power delivered to the load is E[N 2(+)1 /ARy
Therefore, the power-spectral density of the noise voltage across the load resistor is

kT
Salf) =7

As previously indicated in Section 3.4.2, kT is usually denoted by Np. Hence, the
power-spectral density of thermal noise is generally expressed as

W/Hz (5.5.5)

N,
So(f) = 70 W/Hz (5.5.6)
For example, at room temperature (T = 290 K), Np = 4 x 107 W/Hz.

5.5.2 Effective Noise Temperature and Noise Figure

When we employ amplifiers in communication systems to boost the level of a signal, we
are also amplifying the noise corrupting the signal. Since any amplifier has some finite
passband, we may model an amplifier as a filter with frequency-response characteristic
H(f). Let us evaluate the effect of the amplifier on an iriput thermal noise source.

Figure 5.21 illustrates a thermal noise source connected to a matched two-port
network having frequency response H(f). The output of this network is connected to
a matched load. First, we recall that the noise power at the output of the network is

o0 N o
Pno ZL Sn(f)]H(f)!zdf = —ig [_ ) IH(f)P df (557)

Thermal .
noise AI;%{?H Load
source Figure 521 Thermal noise converted to

Matched Matched amplifier and load.
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From Section 3.4.2, we recall that the noise-equivalent bandwidth of the filter is defined
as

1 i 5
Bun= 35 | IH(P af (558)

where, by definition, ¢ = |H(f )|§m is the maximum available power gain of the
amplifier. Consequently, the output noise power from an ideal amplifier that introduces
no additional noise may be expressed as

P = (gNOBneq (5.59)

Any practical amplifier introduces additional noise at its output due to internally
generated noise. Hence, the noise power at its output may be expressed as

Py = %NOBneq + P
= kT Bpeq + P (5.5.10)

where P, is the power of the amplifier output due to internally generated noise.
Therefore,

P
Prp = GkByeq | T + —— 5.5.
0 neq< +<§aneq> (5.5.1D
This leads us to define a quantity
P, ni

T, = 2
A T (5.5.12)
which we call the effective noise temperature of the two-port network (amplifier). Then,
Pro = GkBreq(T + 1) (5.5.13)

Thus, we interpret the output noise as originating from a thermal noise source at tem-
perature T + T,.

A signal source at the input to the amplifier with power Py; will produce an output
with power

Py = <gP:ri (5514)
Hence, the output SNR from the two-port network is

S\ Pu gP,;

(ﬁ)o T Py GKT Bueg(1 +T./T)
_ Psi

" NoBaeg(1+ T2/ T)

1 (S 5.5.15
1+ T./T _]\—/>i (5.5.13)

where, by definition, (S/N); is the input SNR to the two-port network. We observe that
the SNR at the output of the amplifier is degraded (reduced) by the factor (1 4+ 7,/ T).
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Thus, T, is 2 measure of the noisiness of the amplifier. An ideal amplifier is one for

which T, = 0. .
Wflen T is taken as room temperature 75(290 K) the factor (1 + T,/ Tp) is called

the noise figure of the amplifier. Specifically, the noise figure of a two-port netwqu is
defined as the ratio of the output noise power Fr, to the output noise power of an ideal
(noiseless) two-port network for which the thermal noise source is at room temperature

(Ty = 290 K). Clearly, the ratio
7.
F = il (5.5.16)
F (1 + To> .

is the noise figure of the amplifier. Consequently, Equation (5.5.15) may be expressed

as
(ﬂ) =l(£> (5.5.17)
N, " F\N/;

By taking the logarithm of both sides of Equation (5.5.17), we obtain

Sy 2 —‘SL 5.5.18)
101log <—]\7>0 = ~10log F 4+ 10log <N>i (

Hence, 10log F represents the loss in SNR due to the additional noise introg‘luced by
the amplifier. The noise figure for many low-noise amplifiers such as trgvehng wave
tubes in beiow 3 dB. Conventional integrated circuit amplifiers have noise figures of

6 dB-7 dB. . .
It is easy to show (see Problem 5.18) that the overall noise figure of a cascade of

K amplifiers with gains % and corresponding noise figures F, 1 <k < Kis

-1l B-1 _Frk-1l (5.5.19)
F=h+—g—*4q + G, .. By

This expression is known as Fries’ formula. We observe that the dominant term is.Fl,
which is the noise figure of the first amplifier stage. Therefore, the fron.t gnd ofa receiver
should have a low-noise figure and a high gain. In that case, the remaining terms 1n the

sum will be negligible.

Example 5.5.1

Suppose
%; =5 and a noise figure F; =6,
cascade of the three stages.

Solution From Equation (5.5.19), we obtain

an amplifier is designed of three identical states, each of whi.ch has a gain of
{=1,2,3. Determine the overall noise figure of the

F,-1 Fy=~1
F=F+ @ + %

where Fy = Fy = F; = 6 and %; = %, = 5. Hence,
F=6+1+02=72

or, equivalently, Fyp = 8.57 dB.
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5.5.3 Transmission Losses

As we indicated previously, any physical channel attenuates the signal transmitted
through it. The amount of signal attenuation generally depends on the physical medium,

- the frequency of operation, and the distance between the transmitter and the receiver.

We define the loss &£ in signal transmission as the ratio of the input (transmitted) power
to the output (received) power of the channel; i.e.,

P,
=L (5.5.20)
Py
or, in decibels, as
ZL4s = 10log &L = 10log Pr — 101og Py (6.5.21)

In wireline channels, the transmission loss is usually given in terms of dB per unitlength;
e.g., dB/Km. For example, the transmission loss in coaxial cable of 1 cm diameter is
about 2 dB/Km at a frequency of 1 MHz. This loss generally increases with an increase
in frequency.
Example 5.5.2
Determine the transmission Joss for a 10-Km and a 20-Km coaxial cable if the loss/Km
is 2 dB at the frequency operation.

Solution The loss for the 10-Km channel is £45 =20 dB. Hence, the output (received)
power is Pg = Pr/$% =102 Pr. For the 20-Km channel, the loss is $u5 =40 dB. Hence,
Pr =107%Pr. Note that doubling the cable length increased the attenuation by two orders
of magnitude.

In L.OS radio systems the transmission loss is given as
drd\?
L= (T) (5.5.22)

where A=c/f is the wavelength of the transmitted signal, ¢ is the speed of light
(3 x 10% m/sec), f is the frequency of the transmitted signal, and d is the distance
between the transmitter and the receiver in meters. In radio transmission, & is called
the free-space path loss.

Example 5.5.3
Determine the free-space path loss for a signal transmitted at f = 1 MHz over distances
of 10 Km and 20 Km.

Solution The loss given in Equation (5.5.22) for a signal at a wavelength A = 300 m is
Lap = 201og;o (4 x 10*/300)
} = 52.44 dB (5.5.23)
for the 10-Km path and
Lap = 201og;o(8r x 10*/300)
= 58.44 4B (5.5.24)

for the 20-Km path. It is interesting to note that doubling the distance in radio transmission
increases the free-space path loss by 6 dB.
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Example 5.54 .
A signal is transmitted through a 10-Km coaxial line channel which exhibits a loss of
2 dB/Km. The transmitted signal power is Prqp = —30 dBW (—30 dBW means 30 dB
below 1 W or, simply, 1 mW). Determine the received signal power and the power at the
output of an amplifier which has a gain of 4g = 15 dB.
Solution The transmission loss for the 10-Km channel is £45 =20 dB. Hence, the
received signal power is :

Prap = Prag — €ag = —30 - 20 = 50 dBW ‘ (5.5.25)
The amplifier boosts the received signal power by 15 dB. Hence, the power at the output
of the amplifier is
Poqg = Pra + Gus
= -50+15=~35dBW (5.5.26)

5.5.4 Repeaters for Signal Transmission

Analog repeaters are basically amplifiers that are generally used in telephone wireline
channels and microwave LOS radio channels to boost the signal level and, thus, to
offset the effect of signal attenuation in transmission through the channel.

Figure 5.22 illustrates a system in which a repeater is used to amplify the signal
that has been attenuated by the lossy transmission medium. Hence, the input signal
power at the input to the repeater is

Pr=Pr/Z (5.5.27)

The output power from the repeater is .
Py =%4Pr =%Pr /2 (5.5.28)
We may select the amplifier gain 4 to offset the transmission loss. Hence, ¢ = &£ and

Py = Pr.
Now, the SNR at the output of the repeater is

)= =)

_1<PR )_1( Py )
_Fa NOBneq —Fa 58NOBneq

1 P
= ( L (5.5.29)
F.2L Naneq
P,
Transmitter Pr Lossy N ?:F Amplifier (Tfl_)‘
PT channel < F —
£ ' fa

Figure 522 A communication system employing a repeater to compensate for
channel loss.
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Based on this result, we may view the lossy transmission medjum followed by the
amplifier as a cascade of two networks, one with a noise figure &£ and the other with a
noise figure F,. Then, for the cascade connection, the overall noise figure is

Fogi ezl (5.5.30)
If we select §, = 1/, then,
: F,—1
F=2 = ZF, 5.5.31
+ 1% A ( )

Hence, the cascade of the lossy transmission medium and the amplifier is equivalent to
a single network with noise figure £F,.

Now, suppose that we transmit the signal over K segments of the channel where
each segment has its own repeater, as shown in Figure 5.23. Then, if F; = &£; Fy; is the
noise figure of the ith section, the overall noise figure for the X sections is

§£2Faz -1 ££3Fa3 -1
F=%F,+ s
T G/ 80/ 8 (/%)
ExFox — 1
+ (5.5.32)
(6a1/£1) Gaz/22) - - - (Gax /L k)
Therefore, the SNR at the output of the repeater (amplifier) at the receiver is
&).-7&)
NJo F\WN/;
1 P,
= _< L ) (5.5.33)
F \ NoBpeq

In the important special case where the K segments are identical; i.e.,, &; = £
for all i and F,; = F, for all i, and where the amplifier gains are designed to offset the
losses in each segment; i.e., G, = &; for all 7, then the overall noise figure becomes

F=K2F,— (K —1)=~ KZF, (5.5.34)
Hence, .
S 1 P
(—) ~ ( ! ) (5.535)
Ny KZF, \NoBueg
Transmitter Channel Repeater Channel Repeater Channel
o % Tl %R [ % [ %fa | Zs
Repeater

PO
(gan ’ ‘an

Figure 5.23 A communication system employing repeaters.
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Therefore, the overall noise figure for the cascade of the K identical segments is simply
K times the noise figure of one segment.

Ezample 5.5.5 . o
. A signal with bandwidth 4 kHz is to be transmitted a distance of 200 Km over a wireline

channel that has an attenuation of 2 dB/Km. (1) Determine the transmitt.cr powgr. Pr
required to achieve an SNR of (S/N)o =30 dB at the output o.f the receiver amphﬁe':r
which has a noise figure Fagp =3 dB. (2) Repeat the calculation whe.n a repeater is
inserted every 10 Km in the wireline channel, where the repeater has‘a gain of 20 dB and
anoise figure of F, =5 dB. Assume that the noise-equivalent bandwidth of each repeater
is Breq =4 KHz and that No =4 x 1078 W/Hz.. .

Solution (1) The total loss in the 200-Km wireline is 400 dB. From Equation (5.5.35),
with X = 1, we have . .

101log(S/N) = —10log & — 10log F, — 101og(NoBgeq) + 10log Pr

Hence,
Prap = (S/N)oap + Faap + (NoBueq)ap + 10log £

=30+ 5+ 400 + (NoBueg)an

But,
(NoBreg)an = 10log(1.6 x 107'7) = —168 dBW.

where dBW denotes the power level relative to 1 W, Therefore,
Prgg = 435 — 168 = 267 dBW

Pr=5x 108 W

which is an astronomical figure. : .
(2) The use of a repeater every 10 Km reduces the per segment loss to £qp = .

There are 20 repeaters, and each repeater has a noise figure of 5 dB. Hence, Equa-
tion (5.5.35) yields
(S/N)oag = —10log K — 10log & ~ 10log F, — 101og(NoBreq) + 1010g Pr

30 = —13 — 20 — 5+ 168 + Pras

Therefore,
Prgg = ~100 dBW

or, equivalently,
Pr = 1070'W (0.1 pW)

The above example clearly illustrates the advantage of using analog repeaters
in communication channels that span large distances. However, we also observeé lt\rhfa{t
analog repeaters add noise to the signal and, cons;quently, degrade the output d
1t is clear from Equation (5.5.35) that the transmitted power Pr must be mcrease;{
linéarly with the number K of repeaters in order. to maintain the.same (S/N)o as )
increases. Hence, for every factor of two increase in K, the transmitted power Pr mus

be increased by 3 dB.
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5.6 FURTHER READING

Analysis of the effect of noise on analog communication systems can be found in
Carlson (1986), Ziemer and Tranter (1990), Couch (1993), and Gibson (1993). The
book by Sakrison {1968) provides a detailed analysis of FM in the presence of noise.
Phase-locked loops are treated in detail in Viterbi (1966), Lindsey (1972), Lindsey
and Simon (1973), and Gardner (1979), and in the survey papers by Gupta (1975) and
Lindsey and Chie (1981). Taub and Schilling (1986) provides in-depth treatment of the
effect of threshold and various methods for threshold extension in FM.

PROBLEMS

5.1 The received signal r () = _& (#) + n () in a communication system is passed
through an ideal LPF with bandwidth W and upity gain. The signal component
s(t) has a power-spectral density

Py

S.r (f) = '1_""“—+ (f/B)Z

where B is the 3-dB bandwidth. The noise component n(z) has a power-spectral
density Ny/2 for all frequencies. Determine and plot the SNR as a function of the
ratio W/B. What is the filter bandwidth W that yields a2 maximum SNR?

5.2 The input to the system shown in Figure P-5.2 is the signal plus noise waveform
r(t) = Accos 2 fot + n(t)
where n () is a sample function of a white-noise process with spectral density
No/2.
1. Determine and sketch the frequency responée of the RC filter.
2. Sketch the frequency response of the overall system.

3. Determine the SNR at the output of the ideal LPF assuming that W > ..
Sketch the SNR as a function of W for fixed values of R and C.

It
1t

0 R Ideal

l LPF Qutput

Figure P-5.2
5.3 A DSB amplitude-modulated signal with power-spectral density as shown in
Figure P-5.3(a) is corrupted with additive noise that has a power-spectral density
No/2 within the passband of the signal. The received signal-plus-noise is demod-
ulated and low pass filtered as shown in Figure P-5.3(b). Determine the SNR at
the output of the LPF. '
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H(f)

S”I(f) 1
fof . -w W f
M M ri “]}_‘?E:W _9\_.\22;;

_f: l j;‘—W fc fc+W f BW =
cos (2mf.t)
(@) ®
Figure P-5.3

5.4 A certain communication channel is characterized by 90-dB attenmation and ad-
ditive white noise with power-spectral density of %Q = 0.5 x 107" W/Hz. T.he
bandwidth of the message signal is 1.5 MHz and its amplitude is uniformly dis-
tributed in the interval [—1, 1]. If we require that the SNR after demodulation be
30 dB, in each of the following cases find the necessary transmitter power.

1. USSB modulation.
2. Conventional AM with a modulation index of 0.5.

3, DSB-SC modulation.

5.5 A sinusoidal message signal whose frequency is less than 1000 Hz, r_nodulates
the carrier ¢(t) = 1073 cos 2 f,t. The modulation scheme is convent'lonal AM
and the modulation index is 0.5. The channel noise is additive white with power-
spectral density of 2 = 10712 W/Hz. At the receiver, the signal is processed as
shown in Figure P-5.5(a). The frequency response of the bandpass nojse-limiting

filter is shown in Figure P-5.5(b).

H() —
) Bandpass Ideal s
Received noise-limiting ——y®——-)— LFF — (7\7)0
signal filter r BW = 1000 Hz
2 cos 27f,t
@
H(f)
7
i 2000Hz 1 o 2000 Hz b
/X AN
- f—1500  f.  f+1500 F

(b)

Figure P-5.5
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1. Find the signal power and the noise power at the output of the noise-limiting
filter. -
2. Find the output SNR.

5.6 Derive the expression for the (one-sided) noise-equivalent bandwidth of the PLL
given by Equation (5.2.12). -

5.7 In an analog communication system, demodulation gain is defined as the ratio of
the SNR at the output of the demodulator to the SNR at the output of the noise-
limiting filter at the receiver front end. Find expressions for the demodulation
gain in each of the following cases:

1. DSB.

2. SSB.

3. Conventional AM with a modulation index of . What is the largest possible
demodulation gain in this case?

4. FM with modulation index 8.

5. PM with modulation index 3,.

5.8 In a broadcasting communication system the transmitter power is 40 KW, the
channel attenuation is 80 dB, and the noise power-spectral density is 10710 W/Hz.
The message signal has a bandwidth of 10* Hz.

1. Find the predetection SNR (SNR in r(t) = ku(t) +n(1))

2. Find the output SNR if the modulation is DSB.

3. Find the output SNR if the modulation is SSB.

4. Find the output SNR if the modulation is conventional AM with 2 modula-
tion index of 0.85 and normalized message power of 0.2.

5.9 A communication channel has a bandwidth of 100 KHz. This channel is to be used
for transmission of an analog source m (¢), where |m(2)} < 1, whose bandwidth
is W = 4 KHz. The power content of the message signal is 0.1 W.
1. Find the ratio of the output SNR of an FM system that utilizes the whole
bandwidth, to the output SNR of a conventional AM system with a2 modu-
lation index of @ = 0.85. What is this ratio in dB?

2. Show that if an FM system and a PM system are employed and these systems
have the same output signal to noise ratio, we have
BWey /387 +1
BWray Br+1
5.10 The normalized message signal m,, (¢) has a bandwidth of 5000 Hz and power of
0.1 W, and the channel has a bandwidth of 100 KHz and attenuation of 80 dB. The
noise is white with power-spectral density 0.5 x 1012 W/Hz and the transmitter
power is 10 KW. ’
1. If AM with a = 0.8 is employed whatis () ?
2. If FM is employed what is the highest possible (57),?
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5.11 A normalized message signal has a bandwidth of W =8 KHz and a power of
P, = % It is required to transmit this signal via a channel with an availablé band-
width of 60 KHz and attenuation of 40 dB. The channel noise is additive and white
with a power-spectral density of LVZ-Q =10"12 W/Hz. A frequency-modulation
scheme, with no pre-emphasis/de-emphasis filtering, has been proposed for this
purpose.

1. If it is desirable to have an SNR of at least 40 dB at the receiver output,
what is the minimum required transmitter power and the corresponding
modulation index? : ‘

2. Ifthe minimum required SNR is increased to 60 dB, how would your answer
change? v

3. Ifinpart 2, we are allowed to employ pre-emphasis/de-emphasis filters with
a time constant of v = 75 usec, how would the answer to part 2 change?

5.12 Let ©(¢) denote a zero-mean, stationary Gaussian process with autocorrela-
tion function Re¢ (7). This process modulates a sinusoid to generates the angle-
modulated process U () = A, cos@rft + &(1)).

1. Show that, in general, U(z) is not a stationary process.
2. Show that Ry (7), the average autocorrelation function of U (¢) is given by

B 1 772 A2
Ry(t) = lim — Ry(t,t + 1) dt = == cos(2r f,7)g(T)
T T -T2 . 2
where
g(t) = e~ (Re(0)—Re (1))

3. Determine the power-spectral density of U (¢), and show that

AZ
Su(fi= "f[G(f"'fc)"'G(f"' fe)l

where
G(f) = e—Ro(O)g;[eRw(T)]

This shows that the bandwidth of the angle-modulated process U (¢) is twice
the bandwidth of FleRe®)].

5.13 Inthe transmission of telephone signals over LOS microwave links, a combination
of FDM-SSB and FM is often employed. A block diagram of such a system
is shown in Figure P-5.13. Each of the signals m; () is bandlimited to W Hz
and these signals are USSB modulated on carriers ¢; (¢) = A; cos 2w ft where
fi=0G—1DW,1 <1 2 K and m(¥) is the sum of all USSB modulated signals.
This signal is FM modulated on a carrier with frequency f; with a modulation
index of 8. ’
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my(f) ]
my(f) ———ry m(D) - u(®)

FDM
) R ——
) — SSB

G p—

Figure P-5.13

1. Plot a typical spectrum of the USSB modulated signal m(z).
2. Determine the bandwidth of m ().

3. At the receiver side, the received signal 7 (z) = u(t) + n,(t) is first FM
demodulated and then passed through a bank of USSB demodulators. Show
that the noise power entering these demodulators depends on 7.

4. Determine an expression for the ratio of the noise power entering the de-
modulator whose carrier frequency is f; to the noise power entering the
demodulator with carrier frequency f;, 1 <, j < K.

5. How should the carmier amplitudes A; be chosen to guarantee that, after
USSB demodulation, the SNR for all channels is the same?

5.14 A power meter that measures average power is connected to the output of a
transmitter as shown in Figure P-5.14. The meter reading is 20 W when it is
connected to a 50 Q2 load. Determine:

1. The voltage across the load resistance.
2. The current through the load resistance.
3. The power level in dBm units.

¢

Figure P-5.14

5.15 A twisted-pair telephone wireline channel with characteristic impedance Z, =
300 €2 is terminated with a load of Z; =300 2. The telephone line is 200 Km
long and has a loss of 2 dB/Km.

1. If the average transmitted power Pr =10 dBm, determine the received
power Py if the line contains no repeaters.

2. Ifrepeaters with a gain of 20 dB are used to boost the signal on the channel
and if each repeater requires an input signal level of 10 dBm, determine the
number of repeaters and their spacing. The noise figure of each repeater is

6dB.
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5.16 A radio antenna pointed in a direction of the sky has a noise temperatures 9f
50 K. The antenna feeds the received signal to the preamplifier which has a gain
of 35 dB over a bandwidth of 10 MHz and a noise figure of 2 dB.

1. Determine the effective noise temperature at the input to the preamplifier.
2. Determine the noise power at the output of the preamplifier.

5.17 An amplifier has a noise-equivalent bandwidth Bpeq = 25 KHz and a maxirm.lm
available power gain of G = 30 dB. Its output noise power is 10%%T,. Determme
the effective noise temperature and the noise figure.

5.18 Prove that the effective noise temperature of k two-port networks in cascade is

T T3 Tek

L=Tatg +ggt Tag, o

6

Information Sources
and Source Coding

Communication systems are designed to transmit information. In any cornmunication
system there exists an information source that produces the information, and the purpose
of the communication system is to transmit the output of the source to the destination.
In radio broadcasting, for instance, the information source is either a speech source or
a music source. In TV broadcasting, the information source is a video source whose
output is a moving image. In FAX transmission, the information source produces a still
image. In communication between computers, either binary data or ASCII characters
are transmitted and, therefore, the source can be modeled as a binary or ASCII source.
In storage of binary data on a computer disk, the source is again a binary source.

In Chapters 3 and 5 we studied transmission of analog information using different
types of analog modulation and, in particular, we studied the trade-off between band-
width and power in FM modulation. The rest of this book deals with transmission of
digital data. Digital data transmission provides higher level of noise immunity, more
flexibility in bandwidth-power trade-off, the possibility of applying cryptographic and
antijamming techniques, and ease of implementation using large-scale integration. In
order to be able to employ the benefits of digital data transmission, we have to first con-
vert analog information into digital form. Conversion of analog signals into digital data
should be carried out in a way that the least amnount of information is lost. Therefore,
it is necessary to have a precise notion of information.

Everyone has an intuitive notion of the meaning of information. However, per-
formance analysis of communication systems can hardly be conceived without a quan-
titative measure of information and mathematical modeling of information sources.
Hartley, Nyquist, and Shannon were the pioneers in defining quantitative measures
for information. In this chapter, we investigate mathematical modeling of information

267
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sources and provide a measure of information. Then we will see hc?w the output of
an information source can be made more compact and, therefore, easier to transtmut or

store.

6.1 MODELING OF INFORMATION SOURCES

The intuitive and common notion of information refers to any new knowledge about
something. One can obtain information via hearing, seeing, 0t other means of percep-
tion. The information source, therefore, produces outputs which are of interest to the
receiver of information, who does not know these outputs m adva.nge. Tpe role of the
communication-system designer is to make sure that ttus mformatlgn 1s't_ransmlt.ted
to the receiver correctly. Since the output of the information source is 2 time-varying
unpredictable function (if predictable, there is no need to trans'xmt it) it can be‘ modeled
as a random process. We have already seen in Chapter 4 that in comn_lumcanon chan-
nels the existence of noise causes stochastic dependence between thfs input and output
of the channel. Therefore, the communication-system designer designs a sy§tem 1.:hat
transmits the output of a random process {information source) to a destination via a
random medium (channel) and ensures low distortion. . )
Information sources can be modeled by random processes, and the properties
of the random process depend on the nature of the information source. For example,
when modeling speech signals, the resulting random process has all its power m a
frequency band of approximately 3004000 Hz. Therefor.e, the povx'/er-spectral dens1ta)i
of the speech signal also occupies this band of frequencxcs..A typical power-spectr
density for the speech signal is shown in Figure 6.1. Video signals are r.estored from a
still or moving image and, therefore, the bandwidth depends on the required resolution.
For TV transmission, depending on the system employed (NTSC, PAL or SECAM),
this band is typically between 0-4.5 1\/II-szaI}11d 0—6.? c11\/ItI-Iz For telemetry data the
i course, depends on the rate of change of data. .
bandw\;\(fihtzé ?;f cormmon 1131 all these processes is that they are bandlimited processes
and, therefore, can be sampled at the Nyquist rate ot larger and rec_onstructled from the
sampled values. Therefore, it makes sense to confine ourselves.to discrete-time rando::?1
processes in this chapter because all information sources of interest can jbe model§
by such a process. The mathematical model for an mformamon source is sholvon in
Figure 6.2. Here the source is modeled by a discrete-time random process {X ,-},-=_°9.
The alphabet over which the random variables X; are defined can be either discrete (in

NN

~3400 ~300 300 3400 f  Figure 6.1 Typical power spectrum of
speech signal.
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. K g X X X X,
Information source -

Figure 6.2 Mathematical model for a
discrete-time information source.

transmission of binary data, for instance) or continuous (e.g., sampled speech). The
statistical properties of the discrete-time random process depend on the nature of the
information source.

In this chapter, we will only study rather simple models for information sources.
Study of more complicated models is mathematically demanding and beyond the scope
of our treatment. However, even simple models enable us to define precisely a measure
of information and bounds on compression of information.

The simplest model for the information source that we study is the discrete

- memoryless source (DMS). A DMS is a discrete-time, discrete-amplitude random pro-

cess in which all X;’s are generated independently and with the same distribution.
Therefore a DMS generates a sequence of 1.i.d. random variables taking values in a
discrete set.

Letset s = {ay, ay, . .., ay} denote the setin which the random variable X takes
its values, and let the probability mass function for the discrete random varable X
be denoted by pi =p(X = ;) foralli=1,2,..., N. A full description of the DMS
is given by the set &, called the alphabet, and the probabilities {p;}¥.;.

Example 6.1.1
An information source is described by the alphabet #=1{0,1} and p(X;=1)=1 —
P(X; =0)=p. This is an example of a discrete memoryless source. In the special case
where p = 0.5 the source is called a binary symmetric source, or BSS for short.

6.1.1 Measure of Information

In order to give a quantitative measure of information, we will start with the basic
model of an information source and try to define the information content of the scurce
in such a way that certain intuitive properties are satisfied. Let us assume that the source
that we are considering is a discrete source. Let the outputs of this source be revealed
to an interested party. Let a; be the most-likely and ay be the least-likely output. For
example, one could imagine the source to represent both the weather condition and
air pollution in a certain city (in the northern hemisphere) during July. In this case, &
represents various combinations of various weather conditions and pollution such as
hot and polluted, hot and lightly polluted, cold and highly polluted, cold and mildly

~ polluted, very cold and lightly polluted, etc. The question is: which output conveys

more information, a; or ay (the most probable or the least probable one)? Intuitively,
revealing a (or, equivalently, very cold and lightly polluted in the previous example)
reveals the most information. From this it follows that a rational measure of information
for an output of an information source should be a decreasing function of the probability
of that output. A second intuitive property of a measure of information is that a small
change in the probability of a certain output should not change the information delivered
by that output by a large amount. In other words, the information measure should be a
decreasing and continuous function of the probability of the source output.
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Now let us assume that the information about output a; can be broken into
two independent parts, say aj; and aj; ie., X;=(XUD, XU2), a; ={a’?, a’?}, and
p(X =a;)=pxUl =a/1) p(XUD =a/?). This can happen, for example, if we as-
sume that the temperature and pollution were almost independent and, therefore, each
source output can be broken into two independent components. Since the components
are independent, revealing the information about one component (temperature) does
not provide any information about the other component (pollution) and, therefore, intu-
itively the amount of information provided by revealing a; is the sum of the informations
obtained by revealing a’! and a/?. From the above discussion, we can conclude that
the amount of information revealed about an output a; with probability p; must satisfy
the following four conditions:

1. The information content of output a; depends only on the probability of a; andnot
on the value of a;. We denote this function by I (p;) and call it self-information.

2. Self-information is a continuous function of pj; ie., I(-) is a continuous
function.

3. Self-information is a decreasing function of its argument i.e., least probable out-
comes convey most information.

4. If p; = pUDpU?, then I(p;) = I(pU™) + 1 (V).

It can be proved that the only function that satisfies all the above properties is the
logarithmic function; i.e., I (x) = —log(x). The base of logarithm is not important and
defines the unit by which the information is measured. If the base is 2, the information
is expressed in bizs, and if the natural logarithin is employed, the unit is nats. From
this point on we assume all logarithms are in base 2 and all information is given in
bits. ’

Now that the information revealed about each source output g; is defined as the
self-information of that output, given by —log(p;), we can define the information con-
tent of the source as the weighted average of the self-information of all source outputs.
This is justified by the fact that various source outputs appear with their correspond-
ing probabilities. Therefore, the information revealed by an unidentified source output
is the weighted average of the self-information of the various source outputs; i.e.,
Zf"zl il (p)) = Zfil — p; log p;. The information content of the information source
is known as the entropy of the source and is denoted by H X). .

Definition 6.1.1. The entropy of a discrete random variable X is a function of
its PMF and is defined by

N N D
1 :
HX)=-) plogp =y pilog (}—_> (6.1.1)
i=1 !

i=1

where 0log0 = 0. Note that there exists a slight abuse of notation here. One would
expect H (X) to denote a function of the random variable X and, hence, be a random
variable itself. However, H (X) is a function of the PMF of the random variable X and

is, therefore, a number.

H,(p)
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01 02 03 04 05 06 07 08 09 1 p Figure6.3 The binary entropy function.

Example 6.1.2
In the binary memoryless source with probabilities p and 1 — p, respectively, we have

HX)=-plogp~(1-p)log(l-p) 6.12)

This function, denoted by H,(p), is known as the binary entropy function and a plot of it
is given in Figure 6.3. .

Example 6.1.3
A source with bandwidth 4000 Hz is sampled at the Nyquist rate. Assuming that the result-
ing sequence can be approximately modeled by a DMS with alphabet & = {-2, ~1,0,
1,2} and with corresponding probabilities { % %, é lié, TIE}’ determine the rate of the

source in bits/sec.

Solution We have

1 1 1 1 15
H(X) = 510g2+ Zlog/i—l- §10g8+2 X igloglﬁ = gbits/sample

and since we have 8000 samples/sec the source produces information at a rate of
15,000 bits/sec. ,

6.1.2 Joint and Conditional Entropy

When dealing with two or more random variables, exactly in the same way that joint and
conditional probabilities are introduced, one can introduce joint and conditional entro-
pies. These concepts are especially important when dealing with sources with memory.

 Definition 6.1.2. The joint entropy of two discrete random variables (X, T) is
defined by :

H(X,Y) =) p(x,»)logp(x,y) (6.1.3)
xly
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For the case of n random variables X = (X, X, ..., X,), we have
HX) =- Y, pGux,..., %) 108 p(x1, %, ..., %) (6.1.4)
X1 1X25000 %y

As seen, the joint entropy is simply the entropy of a vector-valued random variable.

The conditional entropy of the random variable X, given the random variable ¥, ;
can be defined by noting that if ¥ = y, then the PMF of the random variable X will be
p(x | y), and the corresponding entropy is H(X | ¥ = y) = — 3., p(x |y) log p(x | ),
which is inmtuitively the amount of uncertainty in X when one knows Y =y. The
weighted average of the above quantities over all y is the uncertainty in X when ¥
is known. This quantity is known as the conditional entropy and defined as follows:

Definition 6.1.3. The conditional entropy of the random variable X given the
random variable Y is defined by

HEX|Y)==) pk »logp(|y) (6.1.5)
Xy

In general, we have
H(Xn lex sery Xn--l) = Z P(XI: '--,xn)]-OgP(xn ley . --,xn—l) (61-6)

Ky peeerXn

Example 6.1.4
Using chain mule for PMFs, p(x,y)=p®)p(x|y), show that H(X,T) =H(Y)' +
H(X|Y). Generalize this result to the case of » random variables to show the following

chain rule for entropies
HEX) =HX) +HX | X))+ + HEX | X1, X2, ., Xpd) (6.1.7

Solution From the definition of the joint entropy of two random variables, we have

HX,Y)=-) p( ylogp( )

x.y

=~ p( ) loglp()pGx 3]

Yy o

== pylogpO) =Y plx, Nlog p(x |3
Xy £y

== p()logp(y) -y p(x, Nlogp(x|y)
¥y XY .

=H+HEX|Y) - (6.1.8)
where in the last step we have used
S PGy =p) (6.1.9)

This relation says that the information content of the pair (X, ¥) is equ?l to the it}formation
content of ¥ plus the information content of X after ¥ is known. Equivalently, it says that
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the same information is transferred by either revealing the pair (X, ¥), oz by first revealing
Y and then revealing the remaining information in X. The proof for general 7 is similar
and is left as an exercise. In the case where the random variables X1, X5,..., X,) are
independent, Equation (6.1.6) reduces to

HEX) =Y  HX;) (6.1.10)
i=1

If the random variable X, denotes the output of a discrete (not necessarily memoryless)
source at time r, then H (X, | X;) denotes the fresh information provided by source
output X, to someone who already knows the source output X;. In the same way,
H(X,1X1,X,,..., Xn-1) denotes the fresh information in X, for an observer who
has observed the sequence (X7, X3, ..., Xp—1). The limit of the above conditional
entropy as z tends to infinity is known as the entropy rate of the random process.

Definition 6.1.4.  The entropy rate of a stationary discrete-time random process
1s defined by

H=lim H(X,|X1,X2,..., Xs-1)
n-»o0

Stationarity ensures the existence of the limit, and it can be proved that an alternative
definition of the entropy rate for sources with memory is given by

1
H=lim —H(X;,X3,...,X,).
n—>co g

Entropy rate plays the role of entropy for sources with memory. It is basically a measure
of the uncertainty per output symbol of the source.

6.2 SOURCE-CODING THEOREM

The source-coding theorem is one of the three fundamental theorems of information
theory introduced by Shannon (1948a, 1948b). The source-coding theorem establishes
a fundamental limit on the rate at which the output of an information source can be
compressed without causing a large error probability. We have seen already that the
entropy of an information source is, a measure of the uncertainty or, equivalently,
the information content of the source. Therefore, it is natural that in the statement
of the source-coding theorem, the entropy of the source plays a major role.

The entropy of an information source has a very intuitive meaning. Let us assume
that we are observing outputs of length » of a DMS where n is very large. Then, accord-
ing to the law of large numbers (see Chapter 4), in this sequence, with high probability
(that goes to 1 as n — 00) letter a; is repeated approximately np; times, letter a; is
repeated approximately np, times, ..., and letter ay is repeated approximately npy
times. This means that for n large enough, with probability approaching one, every
sequence from the source has the same composition and, therefore, the same proba-
bility. To put it in another way, asymptotically “almost everything is almost equally
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27HEO

Set of typical sequences with =
elements

Figure 6.4 The set of typical and
nontypical sequences.

probable.”T The sequences X that have the above structure are called typical sequences.
The probability of a typical sequence is given by

P =x) ~ I pi"
— Hfi 12"17.'10311.'

N N
— oY Pilogn

— 9-nH®)

(In this chapter, all the logarithms are in base 2, and all entropies are in bits unlcs;
otherwise specified.) This means that for large n almost all tEchgput sequences od
length  of the source are equally probable with probability & 27", Tt}ese are calle
typical sequences. On the other hand, the probability of the set of nontypical sequences
is negligible. -
o gSi%llce the probability of the typical sequences is almost one and each typical
sequence has a probability of almost 27"H®), the total number of typical sequences
is almost 2"H)_ Therefore, although 2 source of alphabetHsge N can produce N
sequences of length 7, the “effective” number of outputs ig rHE), By effective nuxgl;gr
of outputs we mean that almost nothing is lost by neglecting tbe ot'her qutputs, Zn the
probability of having lost anything goes to Zero as 1 goes to infinity. Elgure 6. g1vis
a schematic diagram of the property mentioned above. This is a very important resu 1
which tells us that for all practical purposes, it is enough to consider the set of typgcg
sequences rather than the set of all possible outputs of the source. The error mtroducg n
ignoring nontypical sequences can be made smaller tha_n‘ any given € > Oby choosutl_g n
to be large enough. This is the essence of data compression, the practice of represen 1;1%
the output of the source with a smaller number of sequences compared to the numbe

of the outputs that the source really produces.

tBorrowed from Cover and Thomas (1991).
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From the above result and since € is an arbitrary positive number, it is seen that we
can only represent the typical source outputs without introducing considerable error.
Since the total number of typical sequences is roughly 2"#®), we need nH (X) bits
to represent them. However, these bits are used to represent source outputs of length
n. Therefore, on the average, any source output requires A (X) bits for an essentially
error-free representation. This, once again, justifies the notion of entropy as the amount
of information per source output.

So far we have assumed that the source is discrete and memoryless and therefore
itcan be represented by an i.i.d. random variable. Such a source can only be compressed
if its PMF is not uniform. For X uniformly distributed, we have H(X) = log ¥ and,
therefore, 2°H®) =271eN — N* This means that the “effective” number of source
outputs of length # is equal to the total number of source outputs, and no compression
is possible.

We have not considered the case where the source has memory. For a source with
memory, the outputs of the source are not independent and, therefore, previous outputs
reveal some information about the future ones. This means that the rate at which fresh
information is produced decreases as more and more source outputs are revealed. A
classic example of such a case is the English alphabet, which shows a lot of dependency
between letters and words (a “q” is almost always followed by a “n,” a single letter
between two spaces is either “I” or “a,” etc.). The entropy per letter for-a large text
of English is roughly the limit of H (X, [ X1, X2, ..., X,—1) as n becomes large (the
entropy rate defined in Section 6.1.2). In general stationary sources, the entropy rate
has the same significance as the entropy for the case of memoryless sources and defines
the number of “effective” source outputs for n large enough; i.e., 2*# where H is the
entropy rate.

Studies with statistical models of printed English show that the entropy rate
converges rather quickly, and for n = 10 we are very close to the limit. These studies
show that forn = 1;i.e., a memoryless source model, we have H (X) = 4.03 bits/letter.
As the memory increases, the size of the space over which conditional probabilities
are computed increases rapidly and it is not easy to find the conditional probabilities
required to compute the entropy rate. Some methods for estimating these conditional
probabilities have been proposed in the literature and, based on these methods, the
entropy of printed English is estimated to be around 1.3 bits/letter. Itis worth mentioning
here that in these studies only the 26 letters of the English alphabet and the space mark
(a total of 27) have been considered.

So far, we have given an informal description of the source-coding theorem and
justified it. A formal statement of the theorem, without proof, is given next. The inter-
ested reader is referred to the references at the end of this chapter for a proof.

Theorem 6.2.1 [Source-Coding Theorem]. A source with enfropy (or entropy
rate) H can be encoded with arbitrarily small error probability at any rate R (bits/source
output) as long as R > H. Conversely if R < H, the error probability will be bounded
away from zero, independent of the complexity of the encoder and the decoder
employed. ]
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This theorem, first proved by Shannon (1948a), only gives necessary and sufficient
conditions for the existence of source codes. It does not provide any algorithm for the
design of codes that achieve the performance predicted by this theorem. In the.: next
section, we present two algorithms for compression of information sources. One is due
to Huffman (1952), and the second is due to Ziv and Lempel (1977, 1978).

6.3 SOURCE-CODING ALGORITHMS

In the preceding section, we observed that H, the entropy of a source, gives a st}arp
bound on the rate at which a source can be compressed for reliable reconstruction.
This means that at rates above entropy it is possible to design a code with an error
probabi]ity as small as desired, whereas at rates below entropy such 2 code does not

_exist. This important result however does not provide specific algorithms tg design
codes approaching this bound. In this section, we will introduce two algorithms to
design codes that perform very close to the entropy bound. These codmg methods are
the Huffman coding algorithm and the Lempel-Ziv source-coding algorithm.

6.3.1 The Huffman Source-Coding Algorithm

In Huffman coding, fixed-length blocks of the source output are n'lapped to'variz}‘ble-
length binary blocks. This is called fixed- to variable-length cochng.. The idea is to
map the more frequently occurring fixed-length sequences to shorter bmary sequences
and the less frequently occurring ones to longer binary sequences. In variable-length
coding, synchronization is a problem. This means that there should be one gnd only one
way to break the binary-received sequence into code words. The following example

clarifies this point.

Example 6.3.1 ' .
Let us assume that the possible outputs of an information source are {a1, a2, a3, aa, as},

and consider the following three codes for this source

Codewords

Letter Probability Codel Code2 Code3 Coded

a =i 1 1 0 00
a p=%} 0 .10 10 01
a pa=¢ 001 100 . 110 10
as pa=+{ 0001 1000 . 1110 11
as ps=1 00001 10000 11l 110

In the first code, each code word ends with a 1. Therefore, as soon as the decoder observes -

a 1, it knows that the code word has ended and a new code.word will start. This mez0s
that the code is a self-synchronizing code. In the second code each code word starts with
a 1. Therefore, upon observing a 1, the decoder knows that a new code word has started
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-and, hence, the previous bit was the last bit of the previous code word. This code is again
self-synchronizing but not as desirable as the first code. The reason is that in this code
we have to wait to receive the first bit of the next code word to recognize that a new code
word has started, whereas in code 1 we recognize the last bit without having to receive
the first bit of the next code word. Both codes 1 and 2 therefore are uniquely decodable.
However, only code 1 is instantaneous. Codes 1 and 3 have the nice property that no code
_word is the prefix of another code word. It is said that they satisfy the prefix condition. It
can be proved that a necessary and sufficient condition for 2 code to be uniquely decod-
able and instantaneous is that it satisfy the prefix condition. This means that both codes
1 and 3 are uniquely decodable and instantaneons. However, code 3 has the advantage
of having a smaller average code word length. In fact, for code 1 the average code word
length is
1 31

1 1 1 1
E[L]=1X5+2XZ+3X§+4XR+5XR=E

and for code 3

1 1 1 1 1 30
E[L]—1x2+2x4+3x8+4x l6+4x TARET:
Code 4 has a major disadvantage. This code is not uniquely decodable. For example, the
sequence 110110 can be decoded in two ways, as dsas or as asa,as. Codes that are not
uniquely decodable, are not desirable and should be avoided in practice. From the discus-
sion above it is seen that the most desirable of the above four codes is code 3, which is
uniquely decodable, instantaneous, and has the least-average code word length. This code
is an example of a Huffman code to be discussed shortly.

As already mentioned, the idea in Huffman coding is to choose code word lengths such
that more probable sequences have shorter code words. If we can map each source
output of probability p; to a code 'word of length approximately log & and at the
same time ensure unique decodability, we can achieve an average code word length of
approximately H (X). Huffman codes are uniquely decodable instantaneous codes with
minimum-average code word length. In this sense they are optimal. By optimality we
mean that, among all codes that satisfy the prefix condition (and therefore are uniquely
decodable and instantaneous), Huffman codes have the minimum-average code word

length. Next, we present the algorithm for the design of the Huffman code. From the

algorithm, it is obvious that the resulting code satisfies the prefix condition. The proof
of the optimality is omitted and the interested reader is referred to the references at the
end of this chapter.

Huffman Encéding Algorithm.

1. Sort source outputs in decreasing order of their probabilities.

2. Merge the two least-probable outputs into a single output whose probability is
the sum of the corresponding probabilities.

3. If the number of remaining outputs is 2, then go to the next step, otherwise go to
step 1.
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oxder of probability 1 O
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110 ] 0 1
8
Merge the two % 1
least probable . .
o 1
2 1
1 1
1111 %
Number of clements = 21 It can be shown that the average length of 2 Huffman code, defined by
R=3 p@ix) (63.1)

xe&

where [(x) is the length of the code word corresponding to the source output x, satisfies
the following inequality '

Assign Oand 1 to
the two code words

HX)<R<HX)+1 (6.3.2)

Now, if instead of single-source letters, the Huffman code is designed for sequences of
source letters of length n (nth extension of the source), we would have

HX" <R, < HX" +1

Ts any clement the
result of merger
of two elements

_i Append the code word
with 0 and 1

where R, denotes the average code word length for the extended source sequence and,
therefore, R = %R,,. In case the sourte we are dealing with is memoryless, we also have
H(X"™) = nH(X). Substituting these in the above equation and dividing by » we have

_— 1
HX) <B<HEX) + - (63.3)
Figure 6.5 Huffman coding algorithm. "

Therefore, forn large enough R can be made as close to H (X) as desired. It is also obvi-
de words for the two remaining outputs ous that for discrete sources with memory, R approaches the entropy rate of the source.
4. Arbitrarily assign 0 and 1 as code words 10T the W .

i ats in a preceding Step, append Example 6.3.3
5. Tf an output is the result of the merger of two outpu . . ‘
. d a 1 to obtain the code word for the preceding A DMS with equiprobable outputs and alphabet & ={a;, az, a3} has the Huffman code
the current code word with 2 0 and 2 ADMS vt

outputs and then repeat 3. If no output is preceded by another output in a preceding

step, then stop.
" Figure 6.5 shows a flow chart of this algorithm,

Example 6.3.2 o . ,
Design a Huffman code for the source given in the preceding example.

Solution The tree diagram shown below summmarizes the design steps for code construc-
tion and the resulting code words.

10 3 2
3
}1
1
3
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The entropy of the source is H(X) = log3 = 1.585 and R= % =1.667. If we use

sequences of two letters, we will have the source

A2 = {(a1, @), (a1, @), (a1, @3), - .., (a3, @), (@3, a2))

. 111 ;
with the probability vector p® = (3,4, 5. 5. 5. 5. §» 5 5)- A Huffman code for this
source is designed in the following tree diagram. )

1 0.
000 5 1
3 0
1 0 2
0010 3 5
5
1 2
! 9
0011 5 f 0
1 0 2
010 5 5
1
1
011 ) 1
1 0 2
011 = 2
? 5 0
1 4
100 5 =
9 1 S .
1 0 2
110 5 5
1 1
111 3 1

Here the average code word length is R, = 3.222 bits/pair of source outputs or 1.611
bits/each source output, Comparing this with the previous example we see that the average
length in this case is closer to the entropy of the source.

In our treatment only binary Huffman codes were treated. Tl}e algorithm for qcsi gn
of binary Huffman codes can be easily generalized to an algonth_m foT: the design of
general M-ary Huffman codes. We will examine the general algorithm in a problem at

the end of this chapter.
6.3.2 The Lempel-Ziv Source-Coding Algorithm

We have already seen that Huffman codes are optimal in the sense that for a given
source they provide a prefix code with minimum-average block length.. Nevertheless,
there exist major problerms implementing Huffman cod-es: One problemis tha't Euffman
codes depend strongly on the source probabilities (statistics). The source statistics have
to be known in advance to design a Huffman code. If we can only observe the source
outputs, then we have to do the coding in two passes. In th_e first pass, we gsumate
the statistics of the source (which, in the case of sources with memory and in cases
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where we want to apply Huffman coding to the extension of the source, becomes
quite time consuming) and in the second pass coding is done. The other problem with
Huffman codes is that if the code is designed for source blocks of length 1, it only
employs variations in the frequency of the source outputs and not the source memory.
If one wants to employ the source memory as well, one has to design the code for blocks
of length 2 or more and this exponentially increases the complexity of the algorithm.
For instance, encoding of ASCII characters with a block length of 1 requires a tree
with 256 terminal nodes, but if a block length of 2 is desired the size of the tree and,
therefore, the complexity of coding becomes much higher. In certain applications, such
as storage in magnetic or optical media where high transfer rates are desirable, the
complexity and speed of Huffman coding becomes a bottleneck.

The Lempel-Ziv algorithm belongs to the class of universal source-coding al-
gorithims; i.e., algorithms that are independent of the source statistics. This algorithm
is a variable- to fixed-length coding scheme. This means that any sequence of source
outputs is uniquely parsed into phrases of varying length and these phrases are encoded
using code words of equal length. Parsing is done by identifying phrases of the smallest
length that have not appeared so far. To this end, the parser observes the source output,
and as Iong as the new source output sequence after the last phrase coincides with one
of the existing phrases, no new phrase is introduced and another letter from the source is
considered. As soon as the new output sequence is different from the previous phrases,
itis recognized as a new phrase and encoded. The encoding scheme is simple. The new
phrase is the concatenation of a previous phrase and a new source output. To encode it,
the binary expansion of the lexicographic ordering of the previous phrase and the new
bit are concatenated. For example, let us assume that we want to parse and encode the
following sequence:

0100001100001010000010100000110000010100001001001

Parsing the sequence by the rules explained before results in the following phrases:

0, 1, 00, 001, 10, 000, 101, 0000, 01, 010, 00001, 100, 0001, 0100, 0010,
01001, .... It is seen that all the phrases are different and each phrase is a previ-
ous phrase concatenated with a new source output. The number of phrases is 16. This
means that for each phrase we need 4 bits, plus an extra bit to represent the new source
output. The above sequence is encoded by 0000 0, 0000 1, 0001 0, 0011 1, 0010 O,
0011 0, 0101 1, 0110 0, 0001 1, 1001 O, 1000 1, 0101 0, 0110 1, 1010 0, 0100 O,
1110 1, .... Table 6.1 summarizes this procedure.

This representation can hardly be called a data compression scheme because a
sequence of length 49 has been mapped into a sequence of length 80, but as the length
of the original sequence is increased, the compression role of this algorithm becomes
more apparent. It can be proved that for a stationary and ergodic source, as the length
of the sequence increases, the number of bits in the compressed sequence approaches
nH(X), where H(X) is the entropy rate of the source. The decompression of the
encoded sequence is straightforward and can be done very easily.

One problem with the Lempel-Ziv algorithm is how the number of phrases should
be chosen. Here we have chosen 16 phrases and, therefore, 4 bits to represent each
phrase. In general, any fixed number of phrases will sooner or later become too small
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TABLE 6.1 SUMMARY OF LEMPEL-ZIV EXAMPLE

Dictionary Dictionary
Location Contents Codeword
1 0001 0 0000 0
2 0010 1 0000 1
3 0011 00 0001 0
4 0100 001 0011 1
5 0101 10 0010 0
[ 0110 000 0011 0
7 0111 101 0101 1
8 1000 0000 0110 o]
9 1001 01 0001 1
10 1010 010 1001 0
11 1011 00001 1000 1
12 1100 100 0101 0
13 1101 0001 0110 1
14 1110 0100 1010 0
15 1111 0010 0100 0
16 1110 1

and overflow would occur. For example, if we were to continue coding of the above
source for additional input letters, we could not add the new phrases to our dictionary
because we have assigned four bits for representation of the elements of the dictionary
and we have already 16 phrases in the dictionary. To solve this problem, the encoder and
decoder must purge those elements from their dictionaries that are not useful anymore

and substitute new elements for them. The purging method should, of course, bea

method on which the encoder and the decoder have agreed.

The Lempel-Ziv algorithm is widely used in practice to compress compuier files.
The “compress” and “uncompress” utilities under the UNIX® operating system and
numerous other algorithms (ZIP, Z00, LZH, ARIJ, etc.) are implementations of various

versions of this algorithm.

6.4 RATE-DISTORTION THEORY

In Section 6.2, we saw that it is possible to encode the output of a discrete-memoryless
‘information source at a rate arbitrarily close to its entropy and still be able torecover the
output reliably. Reliable reconstruction of the source means that the error probability
can be made to approach zero as the block length approaches infinity. In many cases,
however, transmitting at rates close to entropy is not possible. For example, if one has
limited storage space and the entropy of the information source is greater than the storage
capacity, error-free retrieval of the source output from the stored data is impossible. In
cases such as this, some lossy compression technique has to be employed and some

distortion will be introduced.

An example of such a case is the encoding of the output of an analog source:

The samples of an analog source are real numbers, and in order to represent 2 real
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number an infinite number of bits are required. Therefore, in a practical digital system
there exists no way to transimit or store analog data without any loss in precision. To
encode analog samples, the samples must be quantized and the quantized values are
then encoded using one of the source-encoding algorithms.

' .In this section, we will study the case of data compression subject to a fidelity
criterion. ‘We first introduce some quantities that are needed for quantitative analysis of
this case and then define the rate-distortion function.

6.4.1 Mutual Information

For discrete random variables, H(X {Y) denotes the entropy (or uncertainty) of the
random variable X after random variable Y is known. Therefore, if the starting entropy
of the r_andom variable X is H(X), then H(X) — H(X|Y) denotes the amount of
uncertainty of X that has been removed by revealing random variable ¥ In other words
H(X) — H(X|Y) is the amount of information provided by the random variable I;
about random variable X. This quantity plays an important role in both source and
channel coding and is called the mutual information between two random variables.

_ Definition 6.4.1. The mutual information between two discrete random vari-
ables X and Y is denoted by I (X; Y} and defined by

I(X;Y)=HX) - HX|Y). 6.4.1)

Example 6.4.1
Tet X azlld Y be binary random variables with P(X=O,Y=0)=%, P(X=1,
Y=0=3and PX=0,Y =1) = %.FindI(X; Y) in this case.

Soluzﬁon Fromabove P(X =0) = P(Y = 0) = % and, therefore, H(X) = H(Y) =
Hy(5) = 0.919. On the other hand, the (X, Y) pairis arandom vector uniformly distributed
or% three values (0, 0), (1,0), and (0, 1). Therefore, H(X, ¥) = log3=1.585. From
this, we have H(X |¥Y) = H(X,Y) — H(Y) = 1.585 — 0.919 = 0.666 and I (X; ¥) =
H(X) — H(X | ¥) = 0.910 — 0.666 = 0,253. ’

. Mutual information has certain properties that are explored in problems and sum-
marized here.
. I(X; Y) = 0 with equality if and only if X and ¥ are independent.
. I(X; ¥) < min(H(X), H)).
. — €2
- I(X:Y) =3, , p(x, y) log 2205
I =HX+HY) - HX, Y).
. I(X; Y| Z) is the conditional mutual information and defined by I(X; Y | Z) =
HX|Z)-HX\Y, Z).
L IXG YD) =2, p@I(X Y| Z =2).
. I(XY; Z)=1(X; Z)+ I(Y; Z|X). Thisis the chain rule for mutual information.
8. In general, I(Xy,...,XnY) = IX;;Y) + I(X Y X)) + - + I(Xy;
YiXy, ..o, X1

Ur R W R

~Nen
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Tigure 6.6 Entropy, conditional entropy, and mutual information.

Figure 6.6 represents the relation among entropy, conditional entropy and n;utual in-

formation quantities.

6.4.2 Differential Entropy

So far we have defined entropy and mutual information for di]slcrete sct)Pu‘rlfSes;Iifrzz
i i i -t inuous-alphabet source whose ou _
e dealing with a discrete-time, con’gmup' '
flrumbers xgmotbing exists that has the intuitive meaning of entropy. In the continuocus

case, another quantity that resembles entropy, called differential entropy, is defined.

iti i t the
However, it does not have the intuitive meaning of entropy. In fact, to reconstruc

output of a continuous source reliably, .
required because any output of the source is are
a real pumber has infinitely many bits.

an infinite number of bits/source output are
a1 number and the binary expansion of

Definition 6.4.2. The differential entropy of a continuous random variable X

with PDF fx(x) is denoted by k(X) and defined by
h(X) = - / T frlog fr(dxr (64.2)

where 0log0 = 0.

Example 6.4.2 .
Determine the differenti

Solution Using the definition of differential entropy

al entropy of arandom variable X uniformly distributed on [0, al.

| 1 1
h(X)=—-/0 ;log;dx= oga

Tt is seen that fora < 1, we have h(X) <0,

i =1, h(X)
the discrete entropy. Also, for a 1,'
again in contrast to the propexties of discrete entropy.

= 0 without X being deterministic. This i

which is in contrast to the nonnegativity of -
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Example 6.4.3

Determine the differential entropy of a Gaussian random variable with mean zero and

variance o2,

Solution The PDFis f(x) = J~J_—Ee—zi;f. Therefore, using natural logarithms we find
. . . 2ro
the differential entropy In nats

© /1 © 2
h(X)=—/:°ohl(\/?—ﬁ> f(x)dx—/_wln(e 3T f(x) dx

2
o
=1In (2w c? -
( i ) + 202
1 : »
= iln(Zn'ecﬂ) nats 643)

where we have used ff:o f(x)dx = 1and f_czo x2 f(x) dx = o> Changing the base of
logarithms to 2, we have

1
h(X) = 5 logy(2mec”) bits (6.4.4)

Extensions of the definition of diﬁcrentialéntropy to joint random variables and con-
ditional differential entropy are straightforward. For two random variables, we have

hX,Y) = —-/~ [ fx,log fx, y)dxdy (6.4.5)
and
A BX|Y)=h(X,Y)—-A() (6.4.6)

The mutual information between two continuous random variables X and Y is defined
similarly to the discrete case as

I1GGY) = h(Y) = h(Y | X) = h(X) = h(X | ¥) 647

Although differential entropy does not have the intuitive interpretation of discrete en-
tropy, it can be shown that the mutual information of continuous random variables has
basically the same interpretation as the mutual information of discrete random variables;
i.e., the information provided by one random variable about the other random variable.

6.4.3 Rate-Distortion Function

Returning to our original problem of representing a continuous source with finite num-
ber of bits/symbol, the question is: if the source output is to be compressed and repre-
sented by a certain number of bits/symbol, how close can the compressed version and
the original version be? This question is not applicable only to continuous sources. A
similar question can be asked for discrete sources. Let there be a discrete source with
entropy H (X). This means that we can transmit the output of this source using H (X)
bits/source output and with arbitrarily small-error probability. Now let us assume that
using H (X) bits/source symbol is too high and that we can not tolerate it (for example
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in magnetic disk storage, the disk space required becomes huge). Now that the number
of available bits/source output is less than H(X), error-free restoration pf the source ig
not possible and some errors will be inevitable. The question is: at a given number of
bits/source symbol, what is the minimum achievable error rate and, of course, how can
this minimum be achieved? The question can also be asked in the opposite direction;
i.e., what is the minimum number of bits/source output required to reproduce the source
at a certain level of distortion?

To formally present the above discussion, we have to define the notion of dis-

tortion. Distortion in reproduction of a source is a measure of fidelity or closeness
of the reproduction to the original source output. In a high-fidelity reproduction, the

reproduced signal is very close to the original signal and distortion is low, whereasina .

low-fidelity reproduction there exists more “distance” between the origina.l signal and
the reproduction and, therefore, a higher distortion. A “distortion measure” 1s a measure

of how far apart the signal and its reproduction are. One could think of many distortion -

measures between asignal x (f) and its reproduction )T“c (j), forinstance, ’)maxz x(@®)—-x(@),
Mz —c0 & [T47a}%(8) — 2(0) dt, and Hm7c0 1 [TP (x(t) — £())? dt are three dis-
tortion measures.

A good distortion measure must satisfy two properties. First, it has to be a good -

approximation to the perception process, and second, it has to be simple enot}gh to be
mathematically tractable. The first property simply says that, for example, if we are

dealing with speech transmission and in perception of speech the phase of the waveform -

is not a very crucial factor, the distortion meastre should not be l}eaffily dependen? on
exact phase reproduction. On the other hand, if we are dealing w1t§ image perception,
phase plays an important role and, therefore, this must be reflected in our chmf:e of the
distortion measure. Finding a distortion measure that meets both of these requirements.

is usually not an easy task. ‘ o
Tn general, a distortion measure is a distance between x and its reproduction X

denoted by d(x, £). In the discrete case a commonly used distortion measure is the
Hamming distortion defined by

P . 1" x#2
(%)= 0, otherwise
In the continuous case the squared-error distortion defined by

A, ) = (x —%)*

is frequently used. It is also assumed that we are dealing with a per-leter dz:stort?onb_
measure, meaning that the distortion between sequences is the average of the distortion -

between their components; i.e.,
1< N
@, &y == dla )
i=l

This assumption simply means that the position of the “error” in
important and the distortion is not context dependent.

reproduction is not .
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Now, since the source output is arandom process, d (X", X" is arandom variable.
‘We define the distortion for the source as the expected value of this random variable,

N 1< 5 5
D= E[dX",X")] = ” > EMd(X:, )] = E[d(X, D)]
f=1

where in the last step we have used the stationarity assumption on the source (indepen-
dence of the distributions from the index 7).

Example 6.4.4 »
Show that with Hamming distortion, D represents the error probability.

Solution
D = E[dg(X, %)) =1x P[X # X]+0x P[X = £]

= P[X # X] = Plerror]

With all these definitions, our original question can be restated as follows: given a
memoryless information source with alphabet & and probability distribution p(x), a
reproduction alphabet % and a distortion measure d(x, 2) defined for all x € ¥ and
X €%, what is R, the minimum number of bits/source output required to guarantee
that the average distortion between the source-output sequence and the corresponding
reproduction-output sequence does not exceed some given D? It is obvious that Risa
decreasing function of D; i.e., if we need high-fidelity reproduction (fow D) we require
a high R. The relation between R and D is expressed via the rate-distortion function.
The following theorem gives the general form of the rate-distortion function. For a
proof, the reader is referred to the references at the end of this chapter. :

Theorem 6.4.1 [Rate-Distortion]. The minimum number of bits/source output
required to reproduce a memoryless source with distortion less than or equal to D is
called the rate-distortion function, denoted by R(D) and given by

R(D) = min  I1(X; X) (6.4.8)
pGEIx):Ed(X,2)<D
<]

Figure 6.7 is a schematic representation of this theorem. The space of source
outputs of length n; i.e., ¥" is divided into 2"F regions. If the output of the source,
x" falls in region i, the binary representation of i is transmitted to the decoder. Since
1 < i < 2" the binary representation is of length # R and, therefore, coding is done at
arate of R bits/source output. The decoder, after receiving the binary representation of
i, generates a predetermined sequence " such that its average distance (distortion) from
the X sequences in region i is minimum. This is the best representation of the region
i sequences. Note that, for large values of R, we have a large number of regions and,
therefore, our representation is very precise (fine quantization), whereas for small R, the
number of regions is small and the distortion is large (coarse quantization). There exist
two extreme cases. The first happens when there is only one region (R = (). In this case,
the representation point is in some sense (which will be clarified later) the centroid of
the whole input space. The second extreme case is when each region consists of 2 single
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nR bits

— A
0110...11 x;e&"
Encoder Decoder 3

Figure 6.7 Schematic representation of the rate-distortion theorem.

source output. In this case R is taking its maximum value and the distortion is zero.t
From the rate-distortion theorem it is seen that if the rate-distortion function is given
for a source and a distortion measure, we know the minimum number of bits/source
symbol required to reconstruct the source with any given distortion measure. Given
any rate, we can determine the minimum achievable distortion if a code of that rate is
used. It should be emphasized that, as was the case with the source-coding theorem, the
results indicated by the rate-distortion function are “fundamental limits” in the sense
that they can only be achieved asymptotically and with increasing complexity of the
encoding—decoding schemes. ,

Example 6.4.5
For a binary memoryless source with P(X; = 1) =1— P(X; = 0) = p, and with Hamming
distortiomn, it can be shown that the rate-distortion function is given by -

_ [Hy(p) ~ Hy(D) 0= D <min{p,1~—p}
R(D) = {O, otherwise (649)

1. Assuming p = 0.5, how many bits/source output are required to transmit this
information source with a probability of error at most equal to 0.257

2. With p = 0.5, and a channel that can transmit 0.75 bits/each source output, what
is the minimuim achievable error probability?

" Solution

1. Recall that for Hamming distortion, the error probability and the average distortion
coincide (see Example 6.4.4). Therefore, P, = D =0.25 and since p =0.5, we are
dealing with the case where 0 < D < min{p, 1 — p}. This means that R(0.25) =
H,(0.5) — Hp(0.25), which results in R & 0.189. )

2. For R = 0.75, we must solve the equation Hy (p) — H(D) = 0.75, where H,(p) =
H;(0.5) = 1 and, therefore, Hy(D) = 0.25, which gives P, = D = 0.042.

The distortion is zero when the source alphabet and the representation alphabet are the same. In
general, the distortion is given by Dpin = E[ming (X, 2)] = Z_‘ p(x) mingd(x, X).
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Figure 6.8 Rate-distortion function for a binary source with Hamming distortion.

A plot of the rate-distortion function for a binary source and with a Hamming distortion
measure is given in Figure 6.8, Note that for zero distortion (zero-error probability), we
have R(D) = H,(p), whichis in agreement with the source-coding theorerm. Assuming
p < 0.5,for D = p wehave R(D) = 0;i.e., we can reproduce the source at a distortion
of p with no transmission at all, by setting the reproduction vector to be the all-zero
vector. This means that D = p, = P[X 3 2= PX#£0l=PX=1]=p.

It can also be shown that for a zero-mean Gaussian source with variance o2 and
with squared-error distortion measure, the rate-distortion function is giveh by

%log%2 0<D<og?

R(D) = { (6.4.10)

0, otherwise

A plot of this rate-distortion function is given in Figure 6.9. An interesting question
now is: by what factor is the distortion decreased if the rate of the coding of the source is
increased by one bit? The answer, of course, depends on-the rate-distortion function of
the source (which, in turn, depends on the source statistics and the distortion measure).
Let us consider the case of a zero-mean Gaussian discrete memoryless source with
squared-error distortion. Since for0 < D < 2, R(D) = % log %, we can express the
distortion-rate functionas D(R) = 62272  Obviously, increasing R by 1 will decrease
D by a factor of 4, or equivalently by 6 dB. This means that every 1 bit of transmission
capability/source output reduces the distortion by 6 dB.
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Figure 6.9 Rate-distortion function for a Gaussian source with squared-error
distortion.
Example 6.4.6

mean unit-variance Gaussian seurce, what is the minimum

resentation of a zero- i nimt
e tput are employed? By what factor is the distortion

attainable distortion if 8 bits/source ou
decreased if we use 16 bits/source output?

i i i _ 292k gyh R = 8 and ¢ = 1, we have D =
Solution Using the relation D(R) = ¢ 2728 wi o=1v
L~ 152 x 107%. If instead of 8, 16 bits are employed, the distortion 18 reduced by
2 : ‘

48 dB, or a factor of 48,

6.5 QUANTIZATION

dealing with analog sources, a precise description of
er of bits/source output, which is not an achievable
goal. Therefore, in transmission of analog sources some distortion is alyvays Presfznt, ?2;1
the goal is to minimize this distortion. We also introduced the rate—dmtort;lozéi [(I)lftilo :
which gives a fundamental Fimit on the tradeoff between the coderate and ef s o
In this section, we will investigate practical schemes to represent the output of an an AgS
source at low rates and, at the same time, without 1{1troducmg excess‘we dl'smrf?;;;;ﬁon
we have already seen, the fundamer;;alﬁ limit promised by the rate-distortion

be approached asymptoticaily,
21220?611};. Thtf 1;ncod'er observes source outputs gf length , x € %", and mapls1 ;l;z:;
into representation sequences oflengthn, %" € £ . The number of the latter seq

In Section 6.4, we saw that when
the source requires an infinite numb

that is, by using very complex encoders and
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is 27R and therefore R bits/source output are required for their transmission. The larger
the value of n, the closer to the rate-distortion limit the system operates. This means that
an effective quantization scheme should work on blocks of source outputs rather than
single-source outputs. Quantizers that operate on blocks of source output are called
“vector quantizers,” as opposed to “scalar quantizers,” which quantize single-source
outputs. In this section, we will study both scalar and vector quantizers.

Other than the classification of quantizers into scalar and vector quantizers, one
can classify quantizers (or, in general, source coders), on the basis of their general
method for compressing data, as either waveform coders or analysis-synthesis coders.In
waveform coding for data compression, the output of the source, which is a waveform, is
compressed using one of several compression schemes. In this approach the mechanism
by which the waveform is generated is not important and the only important factors
are the characteristics of the source output as a waveform; i.e., its bandwidth, power-
spectral density, statistical properfies, etc. Since in this approach, the mechanism by
which the waveform is generated is not importaunt, the results are very robust and can
be applied to all sources regardless of their nature. In analysis-synthesis coders, the
waveform is not directly compressed and transmitted. Instead, a model for production
of the waveform is adopted and the main parameters of that model are compressed
and transmitted. For example, in speech coding the mechanism by which speech is
produced can be modeled as a time-varying filter excited by either white noise or a
sequence of impulses. In the analysis-synthesis approach to speech coding, parameters
of the time-varying filter and its inputs are quantized (by scalar or vector quantization)
and transmitted. At thereceiving end, a filter that simulates the behavior of the vocal tract
is generated and then excited by the appropriate input and, thus, a close replica of the
waveform is generated. This approach is certainly a model-based approach and does not
have the generality of the waveform-coding approach. On the positive side, model-based
quantization schemes achieve better compression ratios compared to waveform coders.

6.5.1 Scalar Quantization

In scalar quantization each single-source output is quantized into a number of levels
and these levels are encoded into a binary sequence. In general, each source output is
a real number, but fransmission of real numbers requires an infinite number of bits.
Therefore, it is required to map the set of real numbers into a finite set and, at the same
time, minimize the distortion introduced. In scalar quantization, the set of real numbers
R is partitioned into N disjoint subsets denoted by Fy, 1 < k < N. Corresponding to
each subset P, a representation point £, which usually belongs to Ry, is chosen. If .
the source output at time i, x;, belongs to Ry, then it is represented by £, which is the
quantized version of x. % is then represented by a binary sequence and transmitted.
Since there are N possibilities for the quantized levels, log N bits are enough to encode
these levels into binary sequences (IV is generally chosen to be a power of 2). Therefore,
the number of bits required to transmit each source output is R = log N bits. The
price that we have paid for a decrease in rate from infinity to log N is, of course, the
introduction of distortion.
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Figure 6,10 Example of an 8-level quantization scheme.

Figure 6.10 shows an example of an eight-level quantization scheme. In this
scheme, the eight regions are defined as Ry = (—o0, a1}, Ry = (a1, 421, ..., Rg=
(a7, +0c0). The representation point (or quantized value) in each region is denoted
by %; and shown in the figure. The quantization function @ is defined by

o) = %; forallx e R; » (6.5.1)

This function is also shown in the figure. As seen, the quantization function is a nonlinear
function that is noninvertible. This is because all points in R; are mapped into a single
point %;. Because the quantization function is noninvertible, some information is lost
in the process of quantization and this lost information is not recoverable,

If we are using the squared-error distortion measure, then

d(x,2) = (x — Q(x))* = %
where ¥ = x — % = x — Q(x). Since X is a random variable, so are X and X, and
therefore
D = E[d(X, X)] = E[X - 0(X)F

Example 6.5.1
The source X (t) is a stationary Gaussian source with mean zero and power—spectral
density

2 100 Hz
S.\-(f)={ 1<

otherwise -
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The source is sampled at the Nyquist rate, and each sample is quanuzed using the 8-level
quantizer shown in Figure 6.10 with @y = — 60, ay = — 40, a3 = — 20, as =0, as =20,
as=40, a7 = 60, and Xy = 70, 3 = =50, X3 = =30, & = =10, 5 = 10,
%6 = 30, 27 = 50, £3 =70. What is the resulting distortion and rate?

Solution The sampling frequency is f, = 200 Hz. Each sample is a zero-mean Gaussian
random variable with variance

ot = E[X}] = Rx()|ezo = / Sx(f) df = / 2df =400
- 100

Since each sample is quantized into 8 levels, then log 8 = 3 bits are required per sample
and, therefore, the required rate is

= 3f; = 600 bits/sec.

To ﬁnd the distortion, we have to evaluate E[X — X2 for each sample. We will prove
in a problem at the end of this chapter (see Problem 6.45) that, as long as the process is
stationary this is'equal to Py, the power content of the process £ (r), or eqmvalently, the
time-average distortion introduced by quantization. But

D=E[X~ 3P = / (6 = Q02 (x) dx

where fx (x) denotes the PDF of the random variable X. From here, we have

8
D= Z /m 0= Q0 fx(x) dx

or, equivalently,

/ & —2) fx(X)dX+Z " - 20 e dxt / (x = £)? fx (x) dx

j=2 Y-t

(6.5.2)

where fx(x) in the above is ZT werridl sw Substituting {a, ., and {x, , in the above
integral and evaluating the result with the Q-function table, we obtain D 2 33.38. Note
that, if we were to use zero bits/source output, then the best strategy would be to set
the reconstmcted signal equal to zero. In this case, we would have a distortion of D =
E(X — 0)2=02=400. The above quantization scheme and transmission of three bits/
source output has enabled us to reduce the distortion to 33.38. It is also interesting to
compare the above result with the result predicted by the rate-distortion bound. Substituting
R=3andoc =20, in

2

= — Jog —

R 2 log D

we obtain D = 6.25. Obviously, the simple quantization scheme shown in Figure 6.10 is
far from optimal. The reason for this poor performance is threefold. First and foremost, the
rate-distortion bound is an asymptotic bound and holds for optimal mapping of blocks of
source outputs when the length of the block tends to infinity, whereas, in this example, we
have employed a scalar quantizer operating o single-source outputs. The second reason
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with 8 levels (3 bits/source output), no attempt has been
by choosing the {a;} and %;’s appropriately. The
8_| are not equiprobable and can be

is that even as a scalar quantizer
made to design an optimal quantizer
third reason is that after quantization the 8 outputs {X}
further compressed. In this example

i dx for2<i=<T

a; 1
PGy = | e
@ _/0,._, Jamd00.

e 1 .\’2

2 = P(%:) = Iy ]
E(x,) P(%s) /a7 me dx
which results in P (%) = P (%) = .0014, P (&) = P(%7) =0.0214, P(%3)=P(Z)=
0.1359, P(Z4)=P(Zs)= 0.3414. Using the source-coding theorem, we see that the out-
put of the quantizer can be compressed further to 4 () = 2.105 bits/source output. This
means that a more fair comparison is to compare 33.38 with the value of the rate-distortion
function at R = 2.105, which results in D = 21.61 as opposed to 6.25.

In the above example we have chosen E(X — O(X )2, which is called mean-
squared distortion, O quantization noise, as the measure of performance. A more

meaningful measure of performance is a normalized version of the quantization noise,

normalized with respect to the power of the original signal.

Definition 6.5.1. If the random variable X is quantized to 0(X), the signal-to-
quantization-noise ratio (SONR) is defined by

E[X? :
SQNR = .__—[—l——j (6.5.3)
E[X — Q(X)]
When dealing with signals, the quantization-noise power is
1 /%
Py = lim = E[X () — QX (] dt (6.5.4)

and the signal power is

Py = Tlirn % E[X*(1)] dt ' (6.5.5)

Hence, the SQNR is
P
SONR = == (6.5.6)
Py
1t can be shown (see Problem 6.45 at the end of this chapter) that if X (¢) is stationary,
then the above relation simplifies to Equation (6.5.3) where X is the random variable
representing X (f) at any point. ‘
Uniform Quantization. Uniform quantizers are the s
scalar quantizers. In a uniform quantizer the entire real line is partitioned into N re-

gions. All regions except @, and Ry are of equal length, which is denoted by A. This
means that forall 1 i < N —1,wehave gj41 — i = A. Figure 6.10 is an example

implest examples of
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of an 8-level uniform quantizer. In a uniform quantizer, the distortion is given by

D= ay .2 N=2 g 4iA
= [ errp@anr Y [T et s
-0 o1 Ja+i-Da
{o o]
+ soa2 .
u1+(N—2)A(x XN) fX(X) dx (657)

It is seen from Equfltign (6.5.7) that D is a function of N + 2 design parameters
ngmely a, A, an.d {%:}i.4. In order to design the optimal uniform quantizer, one has t(g
differentiate D with respect to the above variables and find the values that m’im'mize D
F}thher assumpti(?ns simplify the above relation to some extent. If we assume thaé
\J;;; ng)1 is an even function of x (§ymmetric density function), then the best quantizer
ill also have symmetry properties. This means that for even N, we will have a; =

Gy = — N . N .
N—i - sz z).A forall 1 <7 < 3 (which means ay = 0), and %; = —Zy41-;
forl <1 < 3. In this case, we have
~¥-na i1t
3 ; A (-4 +i+Da
—1 2 )
p=2f " E-niamdnt2) / (6 — 40)? fi () dx
i=1 (_%,-H)A
. . : (6.5.8)
When N is odd, we have a situation such as the one shown in Figure 6.11. In this ¢
4 = —ay-i = (¥ +i)a,forl <i < ¥land % = —Eyp forl < i< Nﬁ,
which means X wp = 0. The distortion is given by l -
(-5+DA
D=2 T G -m () dx
N-3
253 (~¥+i+Da 2
+ / . (= ie)? f
2 Jegna ( i+1) fx(x)dx + ” x“fx(x)dx (6.5.9)
%
O ——
£=0
F ) I ——
I
!
N !
X5 - !
I i
ay ay a3 { :
T T A
} ! Xy % as a *
]
]
________ %
—_— 2
Figure 6.11 7-level uniform quantizer.
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Minimization of distortion in these cases, although much simpler compared to the
general case, is still a tedious task and is done mainly by pumerical techniques.
Table 6.2 gives the optimal quantization level spacing for a zero-mean unit variance
Gaussian random variable when 2's are chosen to be the mid-points of the quantization
regions.

TABLE 6.2 OPTIMAL UNIFORM QUANTIZER FOR A GAUSSIAN SOURCE

No. output Output-level Mean-squared Informational
levels spacing error ' entropy
N A D . H(®)
1 — 1.000 0.0
2 1.596 0.3634 1.000
3 1.224 0.1902 1.536
4 0.9957 0.1188 1.504
5 0.8430 0.08218 2.183
6 0.7334 0.06065 2.409
7 0.6508 0.04686 . 2598
8 0.5860 0.03744 2.761
9 0.5338 0.03069 2.904
10 0.4908 0.02568 3.032
11 0.4546 0.02185 3.148
12 0.4238 0.01885 3.253
13 0.3972 - 0.01645 3.350
14 0.3739 0.01450 3.440
15 0.3534 0.01289 3.524
16 0.3352 0.01154 3.602
17 0.318% 0.01040 3.676
18 0.3042 0.009430 3.746
19 0.2909 0.0085%94 3.811
20 0.2788 0.007869 3.874
21 0.2678 0.007235 3.933
22 0.2576 0.006678 3.990
23 0.2482 0.006185 4.045
24 0.2396 0.005747 4.097
25 0.2315 0.005355 4,146
26 0.2240 0.005004 4.194
27 0.2171 0.004687 4.241
28 0.2105 0.004401 4.285
28 0.2044 0.004141 4.328
30 0.1987 0.003905 4.370°
31 0.1932 0.003688 4.410
32 0.1881 0.003450 4.449
33 0.1833 0.003308 4.487
34 0.1787 0.003141 4.524
35 0.1744 0.002986 4.560
36 0.1703 0.002843 4.594

(From Max; © 1960 IEEE.)
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v Nonuniform Quantization. If we relax the condition that the quantization
regions (except for the first and the last one) be of equal length, then we are minimizing
the distortion with less constraints and, therefore, the resulting quantizer will perform
better comp?red t0 a uniform quantizer with the same number of levels. Let us assume
th?.t we are interested in designing the optimal quantizer with N levels of quantization
with no other constraint on the regions. The distortion will be given by

aj 2 N2 i
D= /_ =) frdx + 2 / e ) fae) d

+ / = fe) d (65.10)

Thcre exist a toFal of 2N — 1 variables in Equation (6.5.10) and the minimization of D
is to be done with respect to these variables. Differentiating with respect to «; yields

d
3a 0 = fx@)la ~ %) — (& — %41)*1 =0 (6.5.11)

which results in

. .
a; = i(xi + %i41) (6.5.12)

ThlS resultsimply means that, in an optimal quantizer, the boundaries of the quantization
regions are the midpoints of the quantized values. Because quantization is done on a
minimummn distance basis, each x value is quantized to the nearest {2;}Y;.

To determine the quantized values 2;, we differentiate D w1th respect to X; and
define ap = —o0 and ay = +oc0. Thus, we obtain

Bxl / 206 = &) fx(x)dx = (6.5.13)
which results in
5 fa‘ xfx(x)dx
Jor Fx(x) dx
_ Job xfx(x)dx
Pl <X 2a)

“ X fx(x)
aj_1 P(ai—l <X =< ai)

dx

-+oc0
= / ifx(xlai-; <X < a;)dx
—c0

=E[X|aj1 <X <q] (6.5.14)
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where we have used the definition of the conditional density function

Frlx) G <X < iy
) Ph<x<ay 41 =
. <g) = ; )
frlela <X <) 0 ‘ otherwise

3

i i i i ized value (or represen-
tion (6.5.14) shows that in an optimal quantizer the quantize ue

?a?ifn poi(nt) for a region should be chosen to be the ce.ntrozd (conditional exp'e_cted
value) of that region. Equations (6.5.12) and (6.5.14) give the necessary f:fmdltmns
for a scalar quantizer 10 be optimal and are known as the Lloyd-Max conditions. The

criteria for optimal quantization can then be summarized as

1. The boundaries of the quantization regions are the midpoints of the corresponding
quantized values (nearest neighbor law). . - .
2. The quantized values are the centroids of the quantization regions.

Although the above rules are very simple, they do not resplt in anal;{tical soluttlions
to the optimal quantizer design. The us_ual method of Qes1g11mg the optl'ma} quin ﬁze;.
is to start with a set of quantization regions and tt}en using ﬂ?e second criterion, oﬁzléd
the quantized values. Then, we design new quantization regions for the ne;xlz quan :
values, and alternating between the two steps until the distortion does not ¢ aimge IrtL;lC .
from one step fo the next. Based on this method, one can design tk‘xe optimal quan fcex
for various source Statistics. Table 6.3 _shovs{s the opumgl nonumiform quantizers 10T
various values of N for a zero-mean unit variance Gaussian source.

Example 6.5.2 R N . .
?—low would the results of the previous example change if instead of the uniform quantizer

shown in Figure 6.10, we used an optimal nonuniform quantizer with the same number

of levels? _ o ess
i -find the quantization regions and the quantized values. ron Table 6.
oo e ; le is designed for a unit variance Gaussian

ith N = 8. It should be noted that this tab 3
\sxgurce and to obtain the values for the source under study, all the £ .a.nd a values regd frpm
] lied by the o of the source, which is 20 in this case. This gives

the table should be multip is gives
= —g7 = '—3496, ag = —adg = —21,a3 = —as = _10_01?’ as = 0 an
P : —76.88, %3 = —ks = —15.12, %y = —Xs5 = —4.902.

3= -—ig = —4304, 22 = —2‘) = -
J];Iased on these values, the distortion is evaluated to be D = 13.816. The SQNR is

400
= o =28.95~ 14.62dB
SQR 13.816
If one computes the probability of each quantized value using the relation

P@Y=| fx()dx
aj-1
and finds the entropy of the random variable X, onewould obt@ H _(X )= 2.825;31t/s;u1"<§§
output. The distortion obtained from the rate-distortion function w§th R=2.382 gfxg w1Ce
o = 20 is D = 7.966. The difference between 13.816 and 7.966 is purely the d .erf‘n )
between 2 quantization scheme based on indi\{idual-source outputs (scalar quantization
and blocks of source outputs (vector quantization).

TABLE 6.3 OPTIMAL NONUNIFORM QUANTIZER FOR A GAUSSIAN SOURCE

N +a; k% D HZ®
1 — 4] 1 0
2 1] 0.7980 0.3634 1
3 0.6120 0, 1.224 0.1902 1.536
4 0, 0.9816 0.4528, 1.510 0.1175 1.911
5 0.3823, 1.244 0, 0.7646, 1.724 0.079%4 2203
§ 0, 0.6589, 1.447 0.3177, 1.000, 1.8%4 0.05798 2.443
7 0.2803, 0.8744, 1.611 0, 0.5606, 1.188, 2.033 0.04400 2.647
8 0, 0.5006, 1.050, 1.748 0.2451, 0.7560, 1.344,2.152 0.03454 2825
9 0.2218, 0.6812, 1.198, 1.866 0, 0.4436, 0.9188, 1.476, 2.253 0.02785 2.983
10 0, 0.4047, 0.8339, 1.325, 1.968 0.1996, 0.6099, 1.058, 1.591, 0.02293 3125
2.345
11 0.1837, 0.5599, 0.9656, 1.436, 0, 0.3675, 0.7524, 1.179, 1.693, 0.01922 3253
2.059 2426
12 0, 0.3401, 0.6943, 1.081, 1.534, 0.1684,0.5119, 0.8768, 1.286, 0.01634 3372
. 2.141 1.783, 2.49%
13 0.1569, 0.4760, 0.8126, 1.184, 0, 0.3138, 0.6383, 0.9870, 1.381, 0.01406 3.481
1.623,2.215 1.865, 2.565
14 0, 0.2935, 0.5959, 0.9181, 1.277, 0.1457, 0.4413, 0.7505, 1.086, 0.01223 3.582
1.703,2.282 1.468, 1.939,2.625
15 0.1369, 0.4143, 0.7030, 1.013, 0, 0.2739, 0.5548, 0.8512, 1.175, 0.01073 3.677
1.361, 1.776, 2.344 1.546, 2.007, 2.681 :
16 0, 0.2582, 0.5224, 0.7996, 1.099, 01284, 0.3881, 0.6568, 0.9424, 0.005497 3,765
1.437, 1.844, 2.401 1.256, 1.618, 2.069, 2.733
17 0.1215, 0.3670, 0.6201, 0.8875, 0, 0.2430, 0.4909, 0.7493, 1.026, 0.008463 3.849
1.178, 1.508, 1.906, 2.454 1.331, 1.685, 2.127,2.781 ’
18 0, 0.2306, 0.4653, 0.7091, 0.9680, 0.1148, 0.3464, 0.5843, 0.8339, 0.007589 3.928
1.251, 1.573, 1.964, 2.504 1.102, 1.400, 1.746, 2.181, 2.826
19 0.1092, 0.3294, 0.5551, 0.7908, 0, 0.2184, 0.4404, 0.6698, 0.9117, 0.006844 4,002
1.042, 1.318, 1.634, 2.018, 2.55 1.173, 1.464, 1.803, 2.232, 2.869
20 0, 0.2083, 0.4197, 0.6375, 0.8661, 0.1038, 0.3128, 0.5265, 0.7486, 0.006203 4,074
1.111, 1.381, 1.690, 2.068, 2.594 0.9837, 1.239, 1.524, 1.857,
2.279,2.908
21 0.09918, 0.2989, 0.5027, 0.7137, 0, 0.1984, 0.3994, 0.6059, 0.8215, 0.005648 4.141
0.9361, 1.175, 1.440, 1.743, 1.051, 1.300, 1.579, 1.908,
2.116,2.635 2.324,2.946
22 0, 0.1900, 0.3822, 0.5794, 0.7844, 0.09469, 0.2852, 0.4793, 0.6795, 0.005165 4.206
1.001, 1.235, 1.495, 1.793, 0.8893, 1.113, 1.357, 1.632,
2.160, 2.674 1.955, 2.366, 2.982
23 0.09085, 0.2736, 0.4594, 0.6507, 0, 0.1817, 0.3654, 0.5534, 0.7481, 0.004741 4268
0.8504, 1.062,"1.291, 1.546, 0.9527, 1.172, 1.411, 1.682,
1.841,2.203,2.711 2.000, 2.406, 3.016
24 0, 0.1746, 0.3510, 0.5312, 0.7173, 0.08708, 0.2621, 0.4399, 0.6224, 0.004367 4327
0.9122, 1.119, 1.344, 1.595, 0.8122, 1.012, 1.227, 1.462,
1.885, 2.243, 2.746 1.728, 2.042, 2.444, 3,048
25 0.08381, 0.2522, 0.4231, 0.5982, 0, 0.1676, 0.3368, 0.5093, 0.6870, 0.004036 4384
0.7797, 0.9702, 1.173, 1.354, 0.8723, 1.068, 1.279, 1.510,
1.641, 1.927,2.281, 2.77% 1.772, 2.083, 2.480, 3.079
26 0, 0.1616, 0.3245, 0.4905, 0.6610, 0.08060, 0.2425, 0.4066, 0.5743, 0.003741 4.439
0.8383, 1.025, 1.224, 1.442, 0.7477, 0.9289, 1.121, 1.328,
1.685, 1.968,2.318, 2.811 1.556, 1.814,2.121, 2.514, 3.109
27 0.07779, 0.2340, 0.3921, 0.5587, 0, 0.1556, 0.3124, 0.4719, 0.6354, 0.003477 4.491
0.7202, 0.8936, 1.077, 1.273, 0.8049, 0.9824, 1.171, 1.374,
1.487, 1.727, 2.006, 2.352, 2.842 1.599, 1,854, 2.158, 2.547, 3.137
28 0, 0.1503, 0.3018, 0.04556, 0.07502, 0.2256, 0.3780, 0.5333, 0.003240 4.542

0.6132, 0.7760, 0.9460, 1.126,
1.319, 1.529, 1.766, 2.042,
2.385,2.871

0.6930, 0.8589, 1.033, 1.118,
1.419, 1.640, 1.892, 2.193,
2.578,3.164

. (From Max; © 1960 IEEE.)
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6.5.2 Vector Quantization

In scalar quantization, each output of the discrete-time source (which is usually the result
of sampling of a continuous-time source) is quantized separately and then encoded. For
example, if we are using a 4-level scalar quantizer and encoding each leve] into 2 bits, we
are using 2 bits/each source output. This quantization scheme is shown in Figure 6.12,

Now if we consider two samples of the source at each time, and interpret these
two samples as a point a in plane, the scalar quantizer partitions the entire plane into
16 quantization regions, as shown in Figure 6.13. It is seen that the regions in the two-
dimensional space are all of rectangular shape. If we allow 16 regions of any shape
in the two-dimensional space, we are capable of obtaining better results. This means
that we are quantizing 2 source outputs at a time using 16 regions, which is equivalent
to 4 bits/two source outputs, or 2 bits/each source output. Therefore, the number of
bits/source output for quantizing two samples at a time is equal to the number of
bits/source output obtained in the scalar case. Because we are relaxing the requirement
of having rectangular regions, the performance will be improved. Now if we take three
samples at a time and quantize the entire three-dimensional space into 64 regions, we
will have even less distortion with the same nuraber of bits/source output. The idea
of vector quantization is to take blocks of source outputs of length n, and design the
quantizer in the n-dimensional Euclidean space rather than doing the quantization based
on single samples in one-dimensional space.

>

a

{ 9 a3
i :,
______ 3
Figure 612 4-level scalar quantizer.
2
o ° e ©
° ® ® °
L @ L] e xl
L4 L (] a
Figure 6.13 Scalar 4-level quantization
applied to two samples.
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X

Figure 6.14 Vector quantization in two
dimensions.

Letus assume that the quantization regions in the #-dimensional space are denoted
by %, 1 < i < K. These K regions partition the n-dimensional space. Each block
of source output of length n is denoted by x € R”, and if x € @Ry, it is quantized to
Q(x) = %;. Figure 6.14 shows this quantization scheme for n = 2. Now since there
are a total of K quantized values, log K bits are enough to represent these values. This
means that we require log X bits/n source outputs or, the rate of the source code is

log K
R="E

bits/source output (6.5.15)

The optimal vector quantizer of dimension n and number of levels X is the
one that chooses the region ®;’s and the quantized values %;’s such that the resulting
distortion is minimized. Applying the same procedure that we used for the case of scalar
quantization, we obtain the following criteria for an optimal vector quantizer design:

1. Region %; is the set of all points in the n-dimensional space that are closer to %;
than any other &;, for all j #i.
Fu={xeR" :x~ &l < x-%l, Vj#i}

2. %; is the centroid of the region R;.

b =~P(X—16%i—)//.../%xfx(x)dx

A practical approach to designing optimal vector quantizers is based on the same
approach employed in designing optimal scalar quantizers. Starting from a given set of
quantization regions, we derive the optimal quantized vectors for these regions using
criterion 2, then repartition the space using the first criterion, and going back and forth
until changes in distortion are negligible.



302 Information Sources and Source Coding Chapter 8

Vector quantization has found widespread applications in speech and image cod-
ing, and numerous algorithms for reducing its computational complexity have been
proposed. It can be also proved that for stationary and ergodic sources, the performance
of the vector quantizer approaches the optimal performance given by the rate-distortion
function as n becomes large.

6.6 WAVEFORM CODING

Waveform-coding schemes are designed to reproduce the waveform output of the source
at the destination with as small a distortion as possible. In these techniques, no attention
is paid to the mechanism that produces the waveform, and all attempts are directed
at reproduction of the source output at the destination with high fidelity. Because the
structure of the source plays norole in the design of waveform coders and only properties
of the waveform affect the design, waveform coders are robust and can be used with
a variety of sources as long as the waveforms produced by the sources have certain
similarities. In this section, we study some basic waveform-coding methods that are
widely applied to a variety of sources.

6.6.1 Pulse-Code Modulation {PCM)

. Pulse-code modulation is the simplest and oldest waveform-coding scheme. A pulse-
code modulator consists of three basic sections, a sampler, a quantizer, and an encoder.
A functional block diagram of a PCM system is shown in Figure 6.15.

X {x,} - (2} ...0110...
=1 Samnpler Quantizer Encoder ——————

Figure 6.15 Block diagram of a PCM system.

The waveform entering the sampler is a bandlimited waveform with bandwidth
W. Usually there exists a filter with bandwidth W prior to the sampler to prevent any
components beyond W from entering the sampler. This filter is called the presampling
filter. The sampling is done at a rate higher than the Nyquist rate to allow for some
guard-band. The sampled values then enter a scalar quantizer. The quantizer is either a
uniform quantizer, which results in a uniform PCM system, or a nonuniform quantizer.
The choice of the quantizer is based on the characteristics of the source output. The
output of the quantizer is then encoded into a binary sequence of length vwhere N = 2"
is the number of quantization levels. :

Uniform PCM. In uniform PCM, it is assurnéd that the range of the input
samples 1S [—Xmax, +%max] and the mumber of quantization levels N is a power of 2,
N = 2V, From this, the length of each quantization region is given by

2Xmax _ Xmax (6.6.1)

A= N ov-1
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The quantized values in uniform PCM are chosen to be the midpoints of the quantization
regions and, therefore, the error = x — Q(x) is a random variable taking values in
the interval (—%, +%1. In ordinary PCM applications, the number of levels (V) is
usually high and the range of variations of the input signal (amplitude variations Xmax)
is small. This means that the length of each quantization region (A) is small and, under
these assumptions, in each quantization region the error X = X — 0(X) can be well
approximated by a uniformly distributed random variable on (— % , %]. The distortion
introduced by quantization (quantization noise) is, therefore,

- +3 1 AZ X2 x2
2 =2 g= max max
= —#df= = = — max 8.
ElX /_.A. Ax * 12 3N? 3 x4y 662)

where v is the number of bits/source sample. The SQNR ratio then becomes

F_3><N2F_3><4VS<_2

2

SONR = == = 6.6.3
- MEmE T -

If we denote the normalized X by X, thatis X = ;X—, then
SONR =3 x N?X2 =3 x 4X2 ‘ (6.6.4)

Note that by definition l}? | < 1 and, therefore, X? < 1. This means that 3N? =3 x 4"
is an upperbound to the SQNR in uniform PCM. This also means that SQNR in uniform
PCM deteriorates as the dynamic range of the source increases because an increase in
the dynamic range of the source results in a decrease in ¥?_In a problem at the end of
this chapter (see Problem 6.57), we will see that this sensitivity to the source dynamic
range can be improved by employing nonuniform PCM.

Expressing SQNR in dB, one obtains

SQNR|gz 7 Pglap + 6v +4.8 (6.6.5)

It is seen that each extra bit (increase in v by one) increases the SQNR by 6 decibels.
This increase is comparable to that of an optimal system, as was shown in Section 6.4.

Example 6.6.1
‘What is the resulting SQNR for a signal uniformly distributed on [—1, 1] when uniform
PCM with 256 levels is employed.
Solution Since xg.x = 1, then X =X and Py = f_ll %xz dx = % Therefore, using
v =log 256 = §, we have

SOQNR =3 x 4'X% = 4¥ = 65536 ~ 48.16 dB

The issue of bandwidth requirements of pulse transmission systems, of which
PCM is an example, is dealt with in detail in Chapter 8. Here we briefly discuss some
results concerning the bandwidth requirements of a PCM system. If a signal has a
bandwidth of W, then the minimum number of samples for perfect reconstruction of
the signal is given by the sampling theorem and is equal to 2W samples/sec. If some
guard-band is required, then the number of samples/sec is f;, which is more than
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2W. For each sample v bits are used, therefore a total of vf; bits/sec are required for

transmission of the PCM signal. In case of sampling at the Nyquist rate, this is equal to
2vW bits/sec. The minimum bandwidth requirement for transmission of R bits/sec (or,
more precisely, R pulses/sec) is § (see Chapter 8).! Therefore the minimum bandwidt
requirement of a PCM system is

BW = -"{— . (6.6.6)

which, in the case of sampling at the Nyquist rate, gives the absolute minimum band-
width requirement as

BW =uvW 6.6.7)

This means that a PCM system expands the bandwidth of the original signal by a factor
of at least v.

Nonuniform PCM. Aslong as the statistics of the input signal are close to the
uniform distribution, uniform PCM works fine. However, in coding of certain signals
such as speech, the input distribution is far from being uniformly distributed. 'For a
speech waveform, in particular, there exists a higher probability for smaller amphFudes
and lower probability for larger amplitudes. Therefore, it makes sense to de_mgp a
quantizer with more quantization regions at lower amplitudes and lgss quantization
regions at larger amplitudes. The resulting quantizer will be a nonuniform quantizer
having quantization regions of various sizes.

The usual method for performing nonuniform quantization? is to first pass the
samples through a nonlinear element that compresses the large gmplitudes (reduces
dynamic range of the signal) and then perform a uniform quantizanop on th‘e output. At
the receiving end, the inverse (expansion) of this nonlinear operation is applied to obtain
the sampled value. This technique is called companding (compressing-expanding). A
block diagram of this system is shown in Figure 6.16.

{x} :
Compressor Uniform .. 3] Decoder p?
| e || PoM [ RS

Expander Reconstruction
filter

Figure 6.16 Block diagram of a nonuniform PCM system.

There are two types of companders that are widely used for spgech coc?ing. The
p-law compander used in the U.S. and Canada employs the logarithmic function at the

transmitting side, where [x]| < 1,
_log(l+plxl) 665
gx) = Toz(L+ 1) sgn(x) v

t A more practical bandwidth requirementis £, where 1 < « < 2.
tSometimes the term nonlinear quantization is used, which is misleading because all quantization
schemes, uniform or nopuniform, are nonlinear.
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Figure 6.17 u-law compander characteristics.

The parameter y controls the amount of compression and expansion. The standard
PCM system in the U.S. and Canada employs a compressor with p = 255, followed
by 2 uniform quantizer with 128 levels (7 bits/sample). Use of a compander in this
system improves the performance of the system by about 24 decibels. A plot of the
u-law compander characteristics is shown in Figure 6.17.

. The second widely used logarithmic compressor is the A-law compander. The
characteristic of this compander is given by

1+log Alx|
gx) = T+logA sgn(x) (6.6.9)

where A is chosen to be 87.56. The performance of this compander is comparable to
the performance of the u-law compander. The characteristics of this compander are
shown in Figure 6.18.

Optimal Compander Design. In Section 6.5.1, we studied the criteria for
optimal quantizer design. We approach the problem of optimum compander design in
the same manner. This approach gives us an approximation to the characteristics of the
optimal compressor that, when followed by a uniform quantizer, gives close to optimal

performance. By defining ap = —xmax and ay = +xmay, We have
¥ oo ‘
D=3 [ (x—2)fx(x)dx (6.6.10)
i=1 Y &i-i
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Figure 6.18 A-law compander characteristics.

If the number of quantization regions is large and the density function is smooth enough,
one can assume a uniform distribution in each region and, therefore, X; = “—‘—‘21“— After
substituting for £; in the above relation, we have

N A3
D~y fx(as—ﬂl—z'— (6.6.11)
i=1

where A; = a; — a; 1. Noting that the input to the compressor is a nonuniformly quan-
tized sample with quantization regions of size A; and the output is a uniformly quan-
tized sample with quantization regions of equal size A, from Figure 6.19 we see

&)

Figure 6.19 Compander input-output
=l & relation.
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that
A
d 1) N — 6.6.12
g1 Y ( )
We are assuming that the function g(x) maps the interval [—Xmax, ¥max] IR0 {~Ymax.
Ymax] @nd, therefore, the boundary conditions are

{g("xmax) = — Ymax (6.6.13)

&(Xmax) = Ymax
Substituting from Equation (6.6.12) into Equation (6.6.11), we have

1 & A 12
D~ ) ;fX(ai—l) [g’(—az—S] A (6.6.14)

Using the relation A = 222, and assuming that N is very large, one obtains

yxznax *© fX(x) .
D= 6.
s L e P 6B

where g(x) denotes the characteristics of the compressor. The above relation gives the
distortion when a compressor with characteristics g (x) is employed. One can minimize
D to obtain the optimal compressor. The resulting optimal compressor has the form

2 [2 Ui dn }
8(x) = Ymax | = — 1 (6.6.16)
{ S fx(mIsdn
and the resulting distortion is
D=— ” d 3 6.6.17
= oz | [t an) (66.17)

6.6.2 Differential Pulse-Code Modulation (DPCM})

In a PCM system, after sampling the information signal, each sample is guantized
independently using a scalar quantizer. This means that previous sample values have no
effect on the quantization of the new samples. However, as was mentioned in Section 4.5,
when a bandlimited random process is sampled at the Nyquistrate or faster, the sampled
values are usually correlated random variables. The exception is the case when the
spectrum of the process is flat within its bandwidth. This means that the previous
samples give some information about the next sample, and this information can be
employed to improve the performance of the PCM system. For instance, if the previous
sample values were small, with high probability the next sample value will be small
as well and, hence, it is not necessary to quantize a wide range of values to achieve a
good performance. .

In the simplest form of differential pulse-code modulation (DPCM), the difference
between two adjacent samples is quantized. Because two adjacent samples are highly
correlated, their difference has small variations and, therefore, to achieve a certain
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Figure 6.20 A simple DPCM system.

level of performance fewer bits are required to quantize 1t This means that DPCM can
achieve performance levels compared to PCM. at }ower bit rates. ‘

Figure 6.20 shows a block diagram of this simple DPCM scheme. As se;;n in the
figure, the input to the quantizer is not simply X, — Xa-1, but r.ather Xy~ Y1 We
will see that 7" ;_1 is closely related to X,_;, and the above. choice has the adyantage
that accumulation of quantization noise is prevented. The input to the ciuantlz.er, Yy,
is quantized by a scalar quantizer (uniform or nonuniform) to produce ¥ . Using the
relations

Ya=X.—¥_, - (6.6.18)

and
Vo=t 47 (6.6.19)

we obtain the quantization error between the input and the output of the quantizer as

Pr=Yo=Pp— X =Yy

=P, - X, +7,_,
- X, (6.6.20)

<y

= %

At the receiving end, we have
Ro=T0+ X (6.6.21)

By comparing Equations (6.6.19) and (6.6.21),itis seen thatfj,, and X, satisfy the-sgr.ne
difference equation with the same excitation function (i.e., ¥,). Therefore, if the initial

A

conditions of ¥, and X » are chosen to be the same, they will be equal. For instance,

if we let f”__l = X_1 = 0, then for all n we will have f’; = X,. Substituting this in
Equation (6.6.20), one obtains _ ’

VoY, =%, -X%X. (6.6.22)
This shows that the quantization error between X, and its reproduction X, is the same

as the quantization error between the input and the output of the quantizer. However, the
range of variations of ¥, is usually much smaller compared to that of X,, and, therefore,

Y, can be quantized with fewer bis.
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In a more complex version of DPCM, instead of using only the previous sample,
the last p samples are used to predict the value of the next sample. Then the difference
between the sample X, and its predicted value is quantized. Usually a linear predictor
of the form Ef;l a; X is employed, and the coefficients of the predictor a; are chosen
to minimize the mean-squared error between the sample X, and its predicted value

p 2
D=E {X - Za,—Xn_iJ (6.6.23)

i=1

Expanding and assuming the process X, to be stationary, one obtains

P P F
D=Ry(0) ~2) aRx@)+ ) » aa;Rx(i —J) (6.6.24)

i=1 i=1 j=1

To minimize D, we differentiate with respect to the a;’s and find the roots. After dif-
ferentiating, we have

P
D aRx(i—=Rx(j) 1<j=p (6.6.25)

i=1

“where Ry denotes the autocorrelation function of the process X,,. Solving the above set

of equations (usually referred to as Yule-Walker equations), one can find the optimal
set of predictor coefficients {a;}}_;.

Figure 6.21 shows the block diagram of a general DPCM system. This block
diagram is quite similar to the block diagram shown in Figure 6.20. The only difference
is that the delay T = 1 has been substituted with the prediction filter 7 a; X,
Exactly the same analysis showsthat

n—i-

Il}n - er = Xn - Xn (6626)

Because we are using a p-step predictor, we are using more information in predicting
X, and, therefore, the range of variations of ¥, will be less. This in turn means that
even lower bit rates are possible here. Differential PCM systems find wide applications
in speech and image compression.

+ 4 A n
X, +/ Y, 0 ¥, Y, /D X,
P
% ab — Predictor - G‘) Predictor
™ on-i )
i=l
A
aXy;

i

v

i

Figure 6.21 A general DPCM system.
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6.6.3 Delta Modulation (AM)

Delta modulation (AM) is a simplified version of the simp
in Figure 6.20. In delta modulation, the quantizer is a 1-bit (two-level) quantizer with
magnitudes £A. A block diagram of a AM system is shown in Figure 6.22. The same
analysis that was applied to the simple DPCM system is valid here.

1e DPCM scheme shown

Figure 6.22 AM system.

Because in delta modulation only 1 bit/sample is erployed, the quantization noise
will be high unless the dynamic range of ¥z is very low. This in turn means that X, and
X,—1 must have a very high correlation coefficient. To have high correlation between
X, and X, 0N has to sample at rates much higher than the Nyquist rate. Therefore,
in AM the sampling rate is usually much higher than the Nyquist rate but, since the
number of bits/sample is only 1, the total number of bits/second required to transmit a
waveform is lower than that of 2 PCM system.

A major advantage of AM is the very simple structure of the system. At the
receiving end we have the following relation for the reconstruction of Xn

fo Ry =Yu (6.627)

and assuming zero initial conditions, one obtains

n . .
2.=>.7 o (6.6.28)
i=0

By solving this equation for h'n

the values of ¥ ,. If the sampled

This means that to obtain X,,oneonly hasto accumulate
ill be a simple integrator. This

values are represented by impuises, the accumulator W

simplifies the block diagram of a AM system to Figure 6.23.
The step-size A is a very important parameter in designing a delta modulator
system. Large values of A cause the modulator t0 follow rapid changes in the input
signal but at the same time cause excessive quantization noise when input changes:’
slowly. This case is shown in Figure 6.24. As seen in this figure, for large A, when °.

a large quantization noise oceurs, which is known as granular -

the inputs varies slowly,
noise. The case of a too small A is shown in Figure 6.25. In this case we have problem

with rapid changes in the input. When the input changes rapidly (high input slope), it
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Figure 623 AM with integrators.

¢ Figure6.24 Large A and granular noise.

Figure 6.25 Small A and slope-
T overload distortion.

tak;s grarhcr Iopg ﬁme fo.r the output to follow the input and an excessive quantization
g?lge is caused in thls period. This type of distortion, which is caused by high slope of
e input waveform, is called slope-overload distortion.

Adaptive AM. Wehave seen thattoo large a step size causes granular noise and
too srr}all step s.ize results in slope-overload distortion. This means that a good choice
fpr Alsa “med‘lu?:n”‘ X{alue, butin some cases the performance of the best medium value
E;l.e., the one minimizing the me.an—squared distortion) is not satisfactory. An approach
L at works va_/ell in these cases is to change the step size according to changes in the
1;1put. If the input tends to change_ rapidly, the step size is chosen to be large such that
the output can follow the input quickly and no slope-overload distortion results. When
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Figure 6.26 Performance of adaptive
taM

the input is more or less flat (slowly varying) the step size is changed t_o a small value
to prevent granular noise. Such changes in the step size are shown in Figure 6.26: ‘

To adaptively change the step size one has to design a mechanism for reco guizing
large and small input slopes. If the slope of the input is small, the output of the quantizer
¥ alternates between A and — A as shown in Figure 6.26. This is the case where granular
noise is the main source of noise and one has to decrease the step size. However, in
the case of slope overload, the output cannot follow the input rapidly and the output of
the quantizer will be a succession of +A’s or —A'’s. From the above it is seen that the
sign of two successive ?.’s is a good criterion for changing the step size. If ﬂ_le two
successive outputs have the same sign, the step size should be increased, and if they
are of opposite signs, it should be decreased.

A particularly simple rule to change the step size is given by

Ap = Ay KX o (6.6.29)

where €, is the output of the quantizer before being scaled by the step size and X is
some constant larger than one. It has been verified that in the 2060 kbits/sec range,
with a choice of X = 1.5, the performance of adaptive AM systems is 5—-10 dB better
than the performance of AM when applied to speech sources.

6.7 ANALYSIS-SYNTHESIS TECHNIQUES

Tn contrast to waveform coding, analysis-synthesis techniques are methods that are
based on a model for the mechanism that produces the waveform. The parameters

of the model that are extracted from the source waveform are quantized, encoded, and

transmitted to the receiving end. At the receiving end, based onthe received informgti'on,
the same model is synthesized and used to generate an output similar to the original

waveform. These systems are mainly used for speech coding, and in this section we-

will briefly treat one such system known as linear predictive coding or LPC.
Speech is produced as a result of excitation of the vocal tract by the vocal cords.

This mechanism can be modeled as a time-varying filter (the vocal tract) excited by a °
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Figure 6.27 Model for speech generation mechanism.

signal generator. The vocal tract is a combination of the throat, mouth, tongue, lips, and
the nose, that change shape during generation of speech and, therefore, it is modeled
as a time-varying system. The properties of the excitation signal highly depend on the
type of speech sounds, either voiced or unvoiced. For voiced speech, the excitation can
be modeled as a periodic sequence of impulses at a frequency fo, the value of which
depends onthe speaker. The reciprocal 7% is called the pitch period. For unvoiced speech,
the excitation is well modeled as a white noise. This model is shown in Figure 6.27.
The vocal tract filter is usually modeled as an all-pole filter described by the difference
equation
b4
Xp =Y @Xn-i+ Gy (6.7.1)
i=]

where w, denotes the input sequence (white noise or impulses), G is a gain parameter,
{a;} are the filter coefficients, and p is the number of poles of the filier. The process
w,, which represents that part of X, which is not contained in the previous p samples,
is called the innovation process.

Speech signals are known to be stationary for short periods of time, of the order
0f 20-30 msec. This characteristic behavior follows from the observation that the vocal
tract can not change instantaneously. Hence, over 2030 msec intervals, the all-pole
filier coefficients may be assumed to be fixed. At the encoder, we observe a 20-30 msec
record of speech from which we estimated the model parameters {a;}, the type of
excitation signal (white noise or impulse), the pitch perfod 7}0— if the speech is voiced,
and the gain parameter G.

To elaborate on this process, suppose that the speech signal is filtered to 3 KHz
and sampled at a rate of 8000 samples/sec. The signal samples are subdivided into
blocks of 160 samples, corresponding to 20-msec intervals. Let {x,,1 < n < 160} be
the sequence of samples for a block. The encoder must measure the model parameters
to be transmitted to the receiver.

Linear prediction is used to determine the filter coefficients at the encoder. A
linear predictor of order p is an all-zero digital filter with input {x,,} and output

14
2= @y forl<n<N (6.7.2)
k=1
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Xn—3 Xn—p .

——} T=1

Figure 6.28 Functional block diagram of linear prediction.

where we have assumed that outside the interval of interest x, = 0. Figure 6.28 illus-
trates the functional block diagram for the prediction process. The difference petwcen
the actual speech sample x,, and the predicted value £, constitutes the prediction error

ep) 1.8,

€n = Xp— %,

P
= X, — Zakxn_k (6.7.3)
k=1

Tn order to extract as much information as possible from the previous values of X,, we
choose the coefficients {g;} so that the average of the squaxed—error terms; i.e.,

1,
%p= NZen
n=1

1 &2 ’
= N Z (xn — Zakxn—k) (674‘)
n=1 - k=1

is minimized. By differentiating 8, with respect to each of the prediction ﬁlter coeffi-
cients {z;} and setting the derivative to zero, we obtain a set of linear equations for the

filter coefficients; i.e.,

N N p
i Zx,,xn_f = i Z Zakx,,_ixn_k forl<i<p (6.7.5)
N n=1 N n=1 k=1

Since we have assumed that outside the stationary interval, 1 <n <N, we have x, =0,
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we can write the Equation (6.7.5) as

1 i 1 &8
— XpXp—ij = — ApXpy—i Xp—,
= R PIPREN

P 1 o
= Zak [—IV —Z xn_ixn_k} (6.7.6)
. k=1 n=—co
Now if we define
1 oo
Ri= > e (6.7.7)
n=—=co
we can write Equation (6.7.6) as
p- :
Ri=> aRi, forlzi<p (6.7.8)
k=1

which is the same as the Yule-Walker Equation (6.6.25) derived in Section 6.6. We can
further simplify the above equation to the matrix equation

r=Ra (6.7.9)

where a is the vector of the linear predictor coefficients, R is a p X p matrix whose
(i, /)th element is R;_;, and r is a vector whose components are R;’s. It can be easily
verified from the definition of R; that

R, =R_; (6.7.10)

gnd, therefore, the matrix Risa symmetric matrix. Also it is obvious that all elements of
R that are on a line parallel to the diagonal elements are equal. Such a matrix is called a
Toeplitz matrix and there exist efficient recursive algorithms for finding its inverse. One
such algorithm is the well known Levinson-Durbin algorithm. The interested reader is
referred to the references at the end of this chapter for the details of this algorithm.

For the optimal choice of the predictor coefficients, the squared-error term can
be shown to be

' P
e =Ro— ) R (6.7.11)
k=1
According to the speech-production model ,
) 1 X p 2
gy == Z {xn — Zakx,,_k:I
N
n=1 k=1
1 X
= GQN > w? (6.7.12)
n=1

If we normalize the excitation sequence {w,} such that %Eff:l w? = 1, we obtain the
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value of the gain predictor as

G =q/Em" (6.7.13)

The estimation of the type of excitation (impulsive or noise), and the estimate
of the pitch period iﬂ when the excitation consists of impulses, may be accomplished
by various algorithms. One simple approach is to transform the speech data into the
frequency domain and look for sharp peaks in the signal spectrum. If the spectrum ex-
hibits peaks at some fundamental frequency 10, the excitation is taken to be a periodic
impulse train with period -1; If the spectrum of the speech samples exhibits no sharp
peaks, the excitation is taken as white noise. ,

The prediction filter coefficients, gain, voiced-unvoiced information, and pitch 7‘5
are quantized and transmitted to the receiver for each block of sampled speech. The
speech signal is synthesized from these parameters using the system model shown
in Figure 6.27. Typically the voiced-unvoiced information requires 1 bit, the pitch
frequency is represented by 6 bits, the gain parameter can be represented by 5 bits using
logarithmic companding, and the prediction coefficients require 8-10 bits/coefficient.
Based on linear-predictive coding, speech can be compressed to bit rates as low as

2400 bits/sec. One could alternatively use vector quantization when quantizing the

LPC parameters. This would further reduce the bit rate. In contrast, PCM applied to
speech has a bit rate of 5 6,000 bits/sec.

LPC is widely used in speech coding to reduce the bandwidth. By vector quan-
tizing the LPC parameters, good quality speech can be achieved at bit rates of about
4800 bits/sec. One version of LPC with vector quantization has been adopted as a stan-
dard for speech compression in mobile (cellular) telephone systems. Efficient speech
coding is a very active area for research, and we expect to see further reduction in the
bit rate of commercial speech encoders over the coming years.

6.8 DIGITAL AUDIO TRANSMISSION AND DIGITAL
AUDIO RECORDING

Audio signals constitute a large part of our daily communications. Today, thousands
of tadio stations broadcast audio signals in analog form. The quality of voice-signal
broadcasting is generally acceptable as long as the voice signal is intelligible. On the
other hand, the quality of music signals that are broadcast via AM radio is relatively low
fidelity because the bandwidth of the transmitted signal is restricted through regulation
(by the Federal Communication Commission). FM radio broadcast of analog signals
provides higher fidelity by using a significantly larger channel bandwidth for signal
transmission. In the near future, commercial radio broadcasting of audio signals will
convert to digital form.

In the transmission of audio signals on telephone channels, the conversion from
analog to digital transmission, which has been taking place over the past three decades
is now nearly complete. We will describe some of the current developments in the
digital encoding of audio signals for telephone transmission. .
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.The entertainment industry has experienced the most dramatic changes and ben-
efits in the conversion of analog audio signals to digital form. The development of the
compact disc (CD) player and the digital audio tape recorder has rendered the previous
analog recording systems technically obsolete. We shall use the CD player as a case
study of the sophisticated source encoding/decoding and channel encoding/decoding
methods that have been developed over the past few years for digital audio systems.

6.8.1 Digital Audio in Telephone Transmission Systems

Nee}rly all of the transmission of speech signals over telephone channels is currently
digital. The encoding of speech signals for transmission over telephone channels has
beep a topic of intense research for over 50 years and continues to be today. A wide
variety of methods for speech-source encoding have been developed over the years
many of which are in use today. ,

The general configuration for a speech signal encoder is shown in Figure 6.29.
Because the frequency content of speech signals is limited to below 3200 Hz, the speech
signal .is first passed through an anti-aliasing lowpass filter and then sampled, To ensure
that aliasing is negligible, a sampling rate of 8000 Hz or higher is typically selected.
The analog samples are then quantized and represented in digital form for transmission
over telephone channels.

PCM and DPCM are widely used waveform-encoding methods for digital speech
transmission. Logarithmic 1 = 255 compression, given by Equation (6.6.8) is gen-
erally used for achieving nonuniform quantization. The typical bit rate for PCM is
64,000 bits/sec, while for DPCM the bit rate is 32,000 bits/sec.

PCM and DPCM encoding and decoding are generally performed in a telephone
central office where telephone lines from subscribers in a common geographical area are
cpnnected to the telephone transmigsion system. The PCM or DPCM encoded speech
signals are transmitted from one telephone central office to another in digital form
over so-called trunk lines that are capable of carrying the digitized speech signals of
many subscribers. The method for simultaneous transmission of several signals over a
common communication channel is called multiplexing. In the case of PCM and DPCM
transmission, the signals from different subscribers are multiplexed in time, hence, the

__________ é/D Converter
; i
! :
Lowpass 1 J
Analog igi
— filter 4 Sampler ti SN Digital
speech B = 3400 Hz : ] P Quantizer | output
I
; |
H |
{2 ]
Clock (3000 Hz)

Figuré 6.29 Analog-to-digital conversion of speech signals.
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name time-division multiplexing (TDM). In TDM, a given time interval T is selected
as a frame. Each frame is subdivided into N subintervals of duration Ty /N, where N
corresponds to the number of users that will use the common communication channel.
Then, each subscriber who wishes to use the channel for transmission is assigned a
subinterval within each frame. In PCM, each uger transmits one 8-bit sample in each

subinterval.
. In digital speech transmission over telephone lines via PCM there is a standard
scribers. In

TDM hierarchy that has been established for accommodating multiple sub!
the first level of the TDM hierarchy, 24 digital subscriber signals are time-division
multiplexed into a single high-speed data stream of 1.544 Mbits/sec (24 X 64 kbs plus a
few additional bits for control purposes). The resulting combined TDM signal is usually
called a DS-1 channel. In the second level of TDM, four DS-1 channels are multiplexed
into a DS-2 channel, having the bit rate of 6.312 Mbits/sec. In a third level of hierarchy,
seven DS-2 channels are combined via T DM producing aDS-3 channel, which has a bit
rate of 44.736 Mbits/sec. Beyond DS-3, there are two more levels of TDM hierarchy.
Figure 6.30 illustrates the TDM hierarchy for the North American telephone system.

Tnmobile cellular radio systems (see Section 3.5 foradescription) for transmission
of speech signals, the available channel bandwidth per user is small and cannot support.
the high bitrates required by waveform-encoding methods such as PCM and DPCM. For
this application, the analysis-synthesis method based on linear predictive coding (LPC)
as described in Section 6.7, is used to estimate the set of model parameters from short
segments of the speech signal. The speech model parameters are then transmitted over
the channel using vector quantization. Thus, 2 bit rate in the range of 4800-9600 bits/sec
is achieved with LPC. '

Tn mobile cellular communication Systems the base station in each cell serves
as the interface to the terrestrial telephone system. LPC speech compression is only
required for the radio transmission between the mobile subscriber and the base sta-
tion in any cell. At the base station interface, the 1 PC-encoded speech is converted to
PCM or DPCM for transmission over the terrestrial telephone system at a bit rate of
64,000 bits/sec or 32,000 bits/sec, respectively. Hence, we note that a speech signal

64kbps  1.544 Mbps 6.312 Mbps 44,736 Mbps 274.176 Mbps
each each each each each

1
Third

level
multiplexer
DS-3

Pirst level
multiplexer

DS-1

Signals from Signals from . Signals from Signals from
other DS—1 other DS-2 other DS-3 other DS -4
units units units units

Figure 6.30 Digital TDM hierarchy for North American telephone communication

system.
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transmitted fro:n a mobile subscriber to a fixed subscriber will undergo two different
types of en: wline, whereas.speech—mgnal communication between two mobiles ser-
viced by different l?ase stations connected via the terrestrial telephone system, will
undergo four encoding and decoding operations. ’

6.8.2 Digital Addio Recording

Historically, andio recording became a reality with the inventi
during .the second half of the nineteenth cer?tlury. The phonogzglﬁiﬁeapﬁgt?g: %}%
fipproxxma@ly 100 years before it was supplanted by the compact disc, which was
m!:roduc§d in 1982. During the 100-year period, we witnessed the intro,duction of a
l\:&élcde ;an;t;;l of re.cords, the most popular of which proved to be the long-playing (LP)
audc;g r\;/coﬁd iI\:;s introduced in 194-18. LP records provide relatively high-quality analog
In spite of their wide acceptance and popularity, analo i i
numbe.r of limitations, including a limited fylfamic tr};nge (t}lgp?;l:ﬁc})/ ggxﬁ?ﬁ?ﬁi
a relatively low SNR (typically about 60 dB). By comparison, the dynamic range of
Qrchestral music is in the range of 100-120 dB. This means th’at, to record the music
in analog form, the dynamic range has to be decreased to fit the range that can be
accgmmodatgd by the recording system. Otherwise, at Iow music levels, noise will be
audible and, 1‘{‘ one wishes to prevent this, saturation will occur at high, music levels
The compression of the dynamic range of music during recording is usually done b ;
controlling the volume of the input signal. ¢
. D1g1§a1 audig recording and playback allow us to improve the fidelity of recorded
music by increasing the dynamic range and the SNR. Furthermore, digital record-
ings are generally more durable and do not deteriorate with playing til;le as do analog
rgcordmgs. Below, we describe a compact disc (CD) systemn as an example’of acommer-
cially suc.ccssful digital audio system that was introduced in 1982. Table 6.4 provides
a comparison of some important specifications of an LP record and a CD system. The
advantages of the latter are clearly evident. ‘
Frorp a systems point of view, the CD system embodies most of the elements of a
modern digital communications system. These include analog-to-digital (A/D) and

TABLE 6.4 COMPARISON OF LP RECORDS WITH CD SYSTEM

Specification/Feature LP record CD system

Frequency response 30 Hz-20 KHZ 20 Hz-20 KHz
' +3dB +0.5/-1dB

Dynamic range 70 dB >90 dB

) @ 1XHz »

Signal-to-noise ratio 60dB >90dB

Harmonic distortion ~~ 1-2% 0.005%

Du;abxhry High-frequency response  Permanent

. } degrades with playing
Stylus life 500-600 hours 5000 hours
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Figure 6.31 CD digital audio system.

igital-to- /A) conversion, interpolation, modulation/demodulatiop gnd chax}-
Idlﬁlzzldti?x;/?izlcoogdi?g. IZA general block diagram of tk}e element.s of aCD d;g&fal ai?éz
system are illustrated in Figure 6.31. Next, we describe the main features of the so

oder. . )

enwd’ﬁleiige:udio signals from the left (L) and right (R) m'icrophones ina recordAn}S
studio or a concert hall are sampled and digiti;ed by passing tpem through an o
converter. Recall that the frequency band of audible sqund is lmtcd to appro:lllma ?O);
20 KHz. Therefore, the corresponding Nyquist gamphug rate is 40 KHz. ToC : owtem
some frequency guard-band and to prevent aliasing, the sampling rate in a sys»
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has been selected to be 44.1 KHz. This frequency is compatible with video recording
equipment that is commonty used for digital recording of andio signals on magnetic tape.

‘The samples of both the L and R signals are quantized using uniform PCM with
16 bits/sample. According to the formula for SQNR given by Equation (6.6.5), 16-bit
uniform quantization results in an SQNR of over 90 dB. In addition, the total harmonic
distortion achieved is 0.005%. The PCM bytes from the digital recorder are encoded
to provide protection against channel errors in the readback process and passed to the
modulator. » .

At the modulator, digital control and display information is added, including a
table of contents of the disc. This information allows for programmability of the CD
player. The type of modulation and demodulation and the channel coding and decoding
operation will be described in Chapters 8 and 9.

Using a laser, the digita] signal from the modulator is optically recorded in the
surface of a glass disc that is coated with photoresist. This results in a master disc which
is used to produce CDs by a series of processes that ultimately convert the information
into tiny pits on the plastic disc. The disc is coated with a reflective aluminum coating
and then with a protective lacquer.

In the CD player, a laser is used to optically scan a track on the disc at a constant
velocity of 1:25 m/sec and, thus, reads the digitally recorded signal. After the L and
R signals are demodulated and passed through the channel decoder, the digital audio
signal is converted back to an analog audio signal by means of a D/A converter.

- The L and R digital audio signals into the D/A converter have a precision of
16 bits. In principle, the digital-to-analog conversion of the two 16-bit signals at the
44.1 KHz sampling rate is relatively simple. However, the practical implementation of a
16-bit D/A converter is very expensive. On the other hand, inexpensive D/A converters
with 12-bit (or less) precision are readily available. The problem is to devise a method
for D/A conversion that employs a low-precision and, hence, low-cost D/A converter,
while maintaining the 16-bit precision of the digital audio signal.

The practical solution to this problem is to expand the bandwidth of the digital
audio signal by oversampling through interpolation and digital filtering prior to analog
conversion. The basic approach is shown in the block diagram given in Figure 6.32. The
16-bit L and R digital audio signals are up-sampled by some multiple U by inserting
U —1 zeros between successive 16-bit signal samples. This process effectively increases
the sampling rate to U x 44.1 KHz. The high-rate L and R signals are then filtered by a
finite-duration impulse response (FIR) digital filter which produces a high-rate, high-
precision output. The combination of up-sampling and filtering is a practical method
for realizing a digital interpolator. The FIR filter is designed to have linear phase and a
bandwidth of approximately 20 KHz. It serves the purpose of eliminating the spectral
images created by the up-sampling process and is sometimes called an anti-imaging

filter. )

If we observe the high sample rate, high-precision L and R digital audio signals
of the output of the FIR.-digital filter, we will find that successive samples are nearly
the same, differing only in the low-order bits. Consequently, it is possible to represent
successive samples of the digital audio signals by their differences and, thus, to reduce
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Figure 6.32 D/A conversion by oversampling/interpolation.
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Figure 6.34 Basic configuration of a SDM followed by a 1-bit D/A converter and
lowpass smoothing filter.
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the dynamic range of the signals. If the oversampling factor U i.s sufﬁciex}tly large,
AM may be employed to reduce the quantized output to a precision of 1 bit/sample.
Thus, the D/A converter is considerably simplified. An oversampling factor U =256
is normally chosen in practice. This raises the sampling rate to 11.2896 MEZ.

Recall that the general configuration for the conventional AM system 15 as shown
in Figure 6.33. Suppose we move the integrator from the decoder to the input of t‘hg
delta modulator (DM). This has two effects. First, it preemphasizes Fhe lova frequencies
in the input signal and, thus, it increases the correlation of the s1gna_l into the DM.
Second, it simplifies the DM decoder because the differentiator (the inverse system)
required at the decoder is canceled by the integrator. Hence, the decoder is reduced to
a simple lowpass filter. Furthermore, the two integrators at the enco der can be replace:d
by a single integrator placed before the quantizer. Thc'rcsulnng s:ystem, shown 1n
Figure 6.34, is called a sigma-delta modulator (SDM). Flgl:'ll'e 6.35 illustrates a SDM
that employs a single-digital integrator (first-order SDM) with a system function

-1

z
H@O =173 _

Thus, the SDM simplifies the D/A conversion process by requiring only a 1-bit D/A

Figure 6.35 A SDM D/A converter with first-order integrator.

followed by a conventional analog filter (a Butterworth filter, for example) for providing
anti-aliasing protection and signal smoothing. The output analog filters have a passband
of approximately 20 KHz and, thus, eliminate any noise above the desired signal band.
In modern CD players, the interpolator, the SDM, the 1-bit D/A converter, and the
lowpass smoothing filter are generally implemented on a single integrated chip.

6.9 THE JPEG IMAGE-CODING STANDARD

The JPEG standard, adopted by the Joint Photographic Experts Group, is a widely
used standard for lossy compression of still images. Although several standards for
image compression exist, JPEG is by far the most widely accepted. The JPEG standard
achieves very good to excellent image quality and is applicable to both color and gray-
scale images. The standard is also rather easy to implement and can be implemented
in software with acceptable computational complexity.

JPEG belongs to the class of transform coding techniques; i.e., coding techniques
that do not compress the signal (in this case image) directly but compress the transform
of it. The most widely used transform technique in image coding is the Discrete Cosine
Transform (DCT). The major benefits of DCT are its high degree of energy compaction
properties and the availability of a fast algorithm for computation of the transform. The
energy compaction property of the DCT results in transform coefficients with only a
few of them having significant values, so that nearly all of the energy is contained in
those particular components.
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Figure 6.36 The block diagram of a JPEG encoder (a) and decoder (b).

The DCT of an N x N picture with luminance functionx(m, n),0 < m,n < N—1
can be obtained using the following equations:.

N—-1N-1

X(0,0) = -}15 ST xkD (6.9.1)

k=0 =0

N-1N=-1 ’ 241
X, v) = —]2\7 S Z x(k, Dcos [Qk ;\;)un}cos{( ‘;—N)un

k=0 =0

] w,v#0 (69.2)

The X (0, 0) coefficient is usually called the DC component and the other coefficients
are called the AC components. '
The JPEG encoder consists of three blocks, the DCT component, the quantizer,

and the encoder as shown in Figure 6.36. »

The DCT Component. A pictare consists of many pixels arranged inanm X
array. The first step in DCT transformation of the image is to divide the picture array ir}to
8 x 8 subarrays. This size of subarrays has been chosen as a compromise of complexity
and quality. In some other standards, 4 x 4 or 16 x 16 subarrays are chosen. If the
number of rows or columns (m or n) is not a multiple of 8, then the last row (or column)
is replicated to make it a multiple of 8. The replications are removed at the decoder.

Afier generating the subarrays, the DCT of each subarray is computed. This pro-
cess generates 64 DCT coefficients, for each subarray starting from the DC component
X(0, 0) and going up to X (7, 7). The process is shown in Figure 6.37.
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Figure 6.37 The DCT transformation in JPEG.

. The Quantizer. Due to the energy-compaction property of the DCT, only low-
frequency components of the DCT coefficients have significant values.

Since the DC component carries most of the energy, and also since.there exists
a strong correlation between the DC component of a subarray and the DC component
of the preceding subarray, for quantization of DC components a uniform differential-
quantization scheme is employed. The AC components are quantized using uniform-
quantization schemes. Although all components are quantized using a uniform scheme,
different uniform-quantization schemes use different step-sizes. All quantizers, how-
ever, have the same number of quantization regions, namely 256.

A 64-element quantization table determines the step size for uniform quantization
of each DCT component. These step-sizes are obtained using psychovisual experiments.
The output of the quantization step is an 8 x 8 array with nonzero elements only at the
top left corner and many zero elements in other locations. A sample quantization table
illustrating the quantization steps for different coefficients is shown in Table 6.5.

After the quantization process, the quantized DCT coefficients are arranged in a
vector by zig-zag sampling as shown in Figure 6.38.

Using this type of sampling, we obtain a vector X of length 64 with nonzero
values only in the first few components.
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TABLE 65 QUANTIZATION TABLE FOR JPEG

16 11 10 16 24 40 51 61
2 12 14 19 26 58 60 55
14 13 16 24 40 577 69 56
14 17 22 29 51 87 g0 62
18 22 37 56 68 109 103 77
24 35 55 .64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

ACss : ACes - Figure 6.38 Zig-zag sampling of the
Zig-zag Order DCT coefficients.

The Encoding. The quantization step provides lossy compression of the im-
age using the method described above. After this step, entropy coding is employed to
provide lossless compression of the quantized values. One of the entroPy—cod%ngvmefh-
ods specified in the JPEG standard is Huffman coding, as discussed in Sectlor.l 6.3.1.
Huffman codes, in this case, are based on tables specifying codewords for different
amplitudes. Since the quantized subarrays contain a large number of zeros, some form
of runlength coding is used to compress these zeros. The interested reader can refer to
the references at the end of this chapter for further details.

Compression and Picture Quality in JPEG. Depending on the rate, JPEG
can achieve high compression ratios with moderate to excellent image quality for bqth
gray-scale and color images. At rates of 0.2-0.5 bits/pixel, moderate to gpod quality
pictures can be obtained that are sufficient for some applications. Increasing the rate
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to 0.5-0.75 bits/pixel results in good to very-good quality images that are sufficient
for many applications. At 0.75—1.5 bits/pixel, excellent quality images are obtained
sufficient for most applications. Finally, at rates of 1.5-2 bits/pixel, the resulting image
is practically indistinguishable from the original. These rates are sufficient for the most
demanding applications.

6.10 FURTHER READING

Any standard text on information theory covers source-coding theorems and algorithms
in detail. Gallager (1968), Blahut (1987), and particularly Cover and Thomas (1991)
provide nice and readable treatments of the subject. Our treatment of the Lempel-Ziv
algorithm follows that of Cover and Thomas (1991). Berger (1971) is devoted entirely
to rate-distortion theory. Jayant and Noll (1984) and Gersho and Gray (1992) examine
various quantization and waveform-coding techniques in detail. Gersho and Gray (1992)
includes detailed treatment of vector quantization. Analysis-synthesis techniques and
linear-predictive coding are treated in books on speech coding such as Markel and Gray
(1976), Rabiner and Schafer (1978), and Deller, Proakis, and Hansen (2000). The JPEG
standard is described in detail in the book by Gibsen, et al. (1998).

Among the original works contributing to the material covered in this chapter, we
mention Shannon (1948a, 1959), Huffman (1952), Lloyd (1957), Max (1960}, Ziv and
Lempel (1978), and Linde, Buzo, and Gray (1980).

PROBLEMS

6.1 A source has an alphabet {ay, a, a3, as, as, ag} with corresponding probabili-
ties (0.1, 0.2, 0.3, 0.03, 0.15, 0.2}. Find the entropy of this source. Compare this
entropy with the entropy of a uniformly distributed source with the same alphabet.

6.2 Let the random variable X be the output of the source that is uniformly distributed
with size N. Find its entropy.

6.3 Show that H (X) > 0 with equality holding if and only if X is deterministic.

6.4 Let X be a geometrically distributed random variable; i.e.,

P(X =k) = p(l — p)*! =1,2,3,...

1. Find the entropy of X.
2. Knowing that X > K, where X is a positive integer, what is the entropy of
X7 .

6.5 Let ¥ = g(X), where g denotes a deterministic function. Show that, in general,
H(Y) < H(X). When does equality hold?

6.6 Aninformation source can be modeled as a bandlimited process with a bandwidth
of 6000 Hz. This process is sampled at a rate higher than the Nyquistrate to provide
a guard band of 2000 Hz. It is observed that the resulting samples take values in
the set & = {—4, —3, —1, 2, 4, 7} with probabilities 0.2, 0.1, 0.15,0.05, 0.3, 0.2.
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‘What is the entropy of the dlscrete-tnne source in blts/output (sample)? What is
the entropy in bits/sec?

6.7 Let X denote a random variable distributed on the set o = {a1, az, - .., an} With
corresponding probabilities {p1, pa, . - ., px}. Let Y be another random variable
defined on the same set but distributed uniformly. Show that

H{X) = H()

with equality if and only if X is also uniformly distributed. (Hint: First prove the
inequality Inx < x — 1 with equality for x = 1, then apply this inequality to
En—l Pn hl( ))

6.8 A random vanable X is distributed on the set of all positive integers 1,2, 3, .
with corresponding probabilities pi1, pz, p3, .. .. We further know that the ex-
pected value of this random variable is given to bc m; Le.,

(o]

Z ipi=m

i=1
Show that among all random variables that satisfy the above condition, the geo-
metric random variable which is defined by

1 !
pl=_(l__> i=1,2,3,...

m m
has the highest entropy. (Hint: Define two distributions on the source, the first
one being the geometric distribution given above and the second one an arbitrary
distribution denoted by ¢;, and then apply the approach of Problem 6.7.)

6.9 Two binary random variables X and Y are distributed according to the joint
distibution p(X =Y =0 =pEX =0,V =)=pX =Y = 1) = 3. Com-
pute H(X), H(Y), H(X |Y), H(Y | X), and H(X, Y).

6.10 Show that if ¥ =g(X) where g denotes a deterministic function, then
HY|X)=0.

6.11 A memoryless source has the alphabet 4 = {-5,-3,~1,0, 1,3, 5} with corre- -

sponding probabilites {0.05, 0.1, 0.1, 0.15, 0.05, 0.25, 0.3}.

1. Find the entropy of the source.

2. Assume that the source is quantized according to the quantization rule
q(-5) =g(-3) =4,
g(-1)=q0)=q(1) =0
gB3) =40 =

Find the entropy of the quantized source.

6.12 Using both definitions of the entropy rate of a process, prove that for a DMS the
entropy rate and the entropy are equal.
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6.13 A Markov process is a process with one-step memory; i.e., 2 process such that
‘P(Xn | Xpts Xne2, Xn—3, - . D= P(xu | Xn-1)
for all n. Show that for a stationary Markov process the entropy rate is given by
H (Xn I X n—l)- -
6.14 Show that

HXID) =Y pOHX|Y =)

6.15 Let X and ¥ denote two jointly distributed discrete valued random variables
1. Show that
H(X)=~ p(x,y)logp(x)

X,y
and

H)=-)  p( ylogp®)
X,y

2. Use the above result to show that
HX,Y)<HX)+HT)

When does the equality hold? (Hint: Consider the two distributions p(x, y)
and p(x) p(y) on the product set & x ¥, and apply the inequality proved in

(=)p(
Problem 6.7 to 3°, , p(x, ) log E;(?”—y)L )

6.16 Use the result of Problem 6.15 to show that
HX|Y)y = HX)
with equality if and only if X and Y are independent.
6.17 Show that H (X) is a concave function of the probability distribution on ¥; i.e.,
for any two probability distribution vectors p; and p, on %, andany 0 < A < 1
we have ' -

MH(p1) +AH(p2) < H(Ap; + Ap2)

= def ) -
where A = 1 — A. (Note: You have to first show that Ap; + Ap; is a legitimate
probability vector.)

6.18 Show that in general
H(X1, Xa, .., X0) £ Y HX)

When does the equality hold?
6.19 Assume that a BSS generates a sequence of # outputs.
1. What is the probability that this sequence consists of all zeros?
2. What is the probability that this sequence consists of all ones?
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6.20 Give an estimate of the number of binary sequences of
zeros and 7000 ones.

621 A memoryless ternary source with output alph
ing probabilities 0.2, 0.3, 0.5 produces sequences of length 1000.

6.22 A source has an alphabet '{al, as, 43,

6.23 Design a Huffman ¢

6.24 Show that {01, 100, 101, 1110, 1111, 0011, 0001

6.25 Design a ternary Huffman code, using 0, 1,2 as

information Sources and Source Coding Chapter 6

3. What is the probability that in this sequence the first k symbols are ones
and the next n — k symbols are zeros? ’

4. What is the probability that this sequence has k ones and n — k zeros?

5. How would your answers change if instead of 2 BSS we were dealing with
a general binary DMS with p(X; = 1) = p.

length 10,000 with 3000

abet a3, @y, and a3 and correspond-

1. Approximately what is the number of typiéal sequences in the source

output?

. What is the ratio of typical sequences to nontypical sequences?

. What is the probability of a typical sequence?

. What is the number of bits required to represent all output sequences?

. What is the number of bits required to represent only the typical output
sequences?

6. What is the most probable sequence and what is its probability?

7. Ts the most probable sequence a typical sequence?

a4} with corresponding probabilities {0.1,

Wy R W R

0.2,0.3, 0.4}

1. Find the entropy of the source.

2. What is the minimum required average co
source for error-free reconstruction?

3. Design a Huffman code for the source and compare the average length of
the Huffman code with the entropy of the source.

4. Design a Huffrman code for the second extension of the source (take two
letters at a time). What is the average code word length? What is the average
required binary letters per each source output letter?

5. Which oneisamoreefficientcoding scheme, Huffman coding of the original
source or Huffman coding of the second extension of the source?

ode for a source with n output letters and corresponding

probabilities {3, 3, § -+ s, zir). Show that the average code word length
for such a source is equal to the source entropy.

de word length to represent this

} cannot be a Huffman code for
any source probability distribution. :
letters, for a source with output

alphabet probabilities given by {0.05, 0.1, 0.15,0.17,0.18, 0.22,0.13}. What is

the resulting average code wor

d length? Compare the average code word length -

Problems 331

6.26

6.27

6.28

6.29

6.30
6.31

6.32

6.33

?Ni[h the entropy of the source. (In what base would you compute the logarithms
in the expression for the entropy for a meaningful comparison?)

Design a ternary Huffman code for a source with ou ilig

. tput alphabet probabilities
given byi{O.,OS, 0.1,0.15,0.17,0.13, 0.4}. (Hint: You can add a dulzjnmy source
output with zero probability.)

Find the Lempel-Ziv source code for the binary source sequence
00010010Q00001 100001000000010000001010000100000011010000000110

Rec:(?ver the original sequence back from the Lempel-Ziv source code. (Hint: You
require two passes of the binary sequence to decide on the size of the dictionary.)

Using the definition of H (X) and H(X |Y) show that
1% 1) = 3 px, y)log 222
; px)p()

Now by using the approach of Problem 6.7 show that I (X; ¥) > 0 wi i
‘ . . ;YY) = 0with
if and only if X and Y are independent. ( . it equely

Show that

1. I(X; Y) <min{H(X), H)}.

2. 1f1%] and |%] represent the size of sets & and Y, respectively, the

: | , then I{X; Y) <
min{log|#], log|Vl}. ety e IR 1 =

ShowthatI(X;Y) = HX)+HX)-HX. YY=H@)-H{ |X)=1(¥; X).
{_.etydeenote a binary random variable with p(X=0)=1~pX=1)=p and
et ¥ be a binary random variable that depends on X through p(Y=11X =0)=
p¥=0|X=D=e. . | =

1. Find H(X), HY), HY | X), H(X,Y), HZX | Y), and I (X; ¥).

2. For a fixed ¢, which p maximizes I (X; ¥)?

3, For a fixed p, which ¢ minimizes 7 (X; ¥)?

Show that
X YZW)=1(X; D+ I1(X:Z| )+ 1(X; W[ ZT)

Can you interpret this relation?
Let X, Y, and Z be three discrete random variables.

1. Show thatif p(x, y,2) = p(@)p(x |2} p(y | x), we have
X y|Z2y=I1(x; 0

2. Show thatif p(x, 7,2) = P(IP(p(zx,7), then
I IX;Y12Z)

3. In each case give an example where strict inequality holds.
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6.34 Let % and ¥ denote finite sets. We denote the probability vectors on & by p and
the conditional probability matrices on ¥ given ¥ by Q. Then I(X; Y) can be
represented as a function of the probability distribution on & and the conditional

probability distribution on Y given & as I (p; Q).

1. Show that I (p; Q) is aconcave functioninp;i.e., foranyQ,any0 < A < 1,
and any two probability vectors p; and p2 on &, we have

A (p1; Q) +AI(py; Q) < I(p1 +2p1 Q)

where 1 & 1 — 1.
2. Show that I (p; Q) is a convex function in Q; i.e., for any p,any 0 < A < 1,
and any two conditional probabilities Q; and Q, we have

1(p; AQ1 +1Q2) < M (p; Qo) + M (p; Q2)
(Note: You have to first show that Ap; + Apz and AQ; + AQ; are a legitimate
probability vector and conditional probability matrix, respectively.)
6.35 Let the random variable X be continuous with PDF fy(x) andlet ¥ = aX where
a 1s a nonzero constant.
1. Show that A(Y) = logla| 4+ h(X).
2. Does a similar relation hold if X is a discrete random variable?
6.36 Find the differential entropy of the continuous random variable X in the following
cases -
1. X is an exponential random variable with parameter X > 0; ie,,
%e'f, x>0
0, otherwise

fx(x) = {

2.- X is a Laplacian random variable with parameter A > 0; i.e.,

ixl

|
fX(x)’=‘2'):€ A

3. X is a triangular random variable with parameter A > 0; ie.,

o A<x=<0
fr®) =< 0<x <A
0, otherwise

6.37 Generalize the technique developed in Problem 6.7 to continuous random vari-
ables and show that for continuous X and ¥

1. A(X|Y) < h{X) with equality if and enly if X and ¥ are independent.
2. I1(X;Y) > 0 with equality if and only if X and Y are independent.
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6.38 Using an approach similar to Problem 6.8, show that among all continuous random
variables distributed on the positive real line and having a given mean m, the
exponential random variable has the highest differential entropy.

6.39 Using the method of Problem 6.8, show that among all continuous random vari-
ables with a given variance ¢?, the Gaussian random variable has the highest
differential entropy.

6.40 A memoryless source emits 2000 binary symbols/sec and each symbol has a
probability of 0.25 to be equal to 1 and 0.75 to be equal to 0.

1. Whatis the minimum number of bits/sec required for error-free transmission
of this source?
2. What is the minimum number of bits/sec required for reproduction of this
source with an error probability not exceeding 0.17
3. What is the minimum number of bits/sec required for reproduction of this
source with an error not exceeding 0.25? What is the best decoding strategy
in this case?
6.41 A Gaussian source with mean zero and variance 1 is to be transmiited via a
channel that can provide a transmission capacity of 1 bit/each source output (see
Figure P-6.41).

1. Whatis the minimum mean-squared-error achievable?

2. If the maximum tolerable distortionis 0.01, what is the required transmission
capacity/source output?

Gaussian source Channel 3

Tigure P-6.41

6.42 It can })e shown that the rate distortion function for a Laplacian source, fx(x) =
s-e” & with an absolute value of error distortion measure d(x, £) = |x — %] is

2
given by
_ Iog%, 0<D<AX
RD) = {o, D>
(see Berger [1971]).

1. How many bits/sample are required to represent the outputs of this source
with an average distortion not exceeding 47

2. Plot R(D) for three different values of A and discuss the effect of changes
in A on these plots.
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6.43 It can be shown that if X is a zero-mean continuous random variable with vari-
ance o2, its rate distortion function, subject to squared-error distortion measure,

satisfies the lower and upper bounds given by the inequalities
2

1 1 o
X)) — ~log(2meD) < R(D) < - log—
(X) ZOE(M ) =< R( )_20g2
where h(X) denotes the differential entropy of the random variable X (see Cover
and Thomas [1991]).
1. Show that for a Gaussian random varable, the lower and upper bounds

coincide. ]
2. Plot the lower and upper bounds for a Laplacian source with o = 1.

3. Plot the lower and upper bounds for a triangular source witho = 1.

(Hint: Use the results of Problem 6.36.)
6.44 With the assumptions of Example 6.4.6, if we want to reduce the distortion by a
factor of 1000, how many extra bits/source symbol have to be introduced?

6.45 Let X (¢) be a strictly stationary random process.
1. Show that Q(X (¢)) is also strictly stationary for any function Q.
2. From above conclude that X (1) — Q(X (1)) is also strictly stationary and,
therefore, in any quantizer
: 2 .
SONR = ___,_]1:[5]__9 B Rx(©
E(X-0X» Py RO
where () = X (1) — Q(X ()
6.46 Let X () denote a wide-sense stationary Gaussian process with Py = 10.

1. Using Table 6.2 design a 16-level optimal uniform quantizer for this source.
2. What is the resulting distortion if the quantizer in part 1 is employed?
3. What is the minimum number of bits/source symbol required to represent
the quantized source?
4. Compare this result with the result obtained from the rate-distortion bound
that achieves the same amount of distortion.
5. What is the amount of improvement in SQNR (in dB) that results from
doubling the number of quantization levels from & to 167
6.47 Using Table 6.2 design an optimal quantizer for the source given inExample 6.5.1.
Compare the distortion of this quantizer to the'distortion obtained there. What is
the entropy of the quantized source in this case?
6.48 Solve Problem 6.46 using Table 6.3 instead of 6.2 to design an optimal nonuniform
quantizer for the Gaussian source.

6.49 Consider the encoding of the two random variables X
distributed on the region between the two-squares as s

and Y, which are uniformly
hown in Figure P-6.49.
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Figure P-6.49

1. Find fx(x) and fy(y).

2. As'sume each Qf the random variables X and Y are quantized using 4-level
uniform quantizers. What is the resulting distortion? What is the resulting
number of bits/pair (X, ¥)? )

3. Now assume instead of scalar quantizers for X and ¥, we employ a vector
quantizer to achieve the same level of distortion as in part 2. What is the
resulting number of bits/source output pair (X, ¥)?

6.50 Two random variables X and Y are uniformly distributed on the square shown in
Figure P-6.50.

y

/
N

Figure P-6.50
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1. Find fx(x) and fr(y).

2. Assume that each of the random variables X and Y are quantized using
4-level uniform quantizers. What is the resulting distortion? What is the
resulting number of bits/pair (X, ¥)?

3. Now assume that instead of scalar quantizers for X and ¥, we employ a
vector quantizer with the same number of bits/source output pair (X, Y) as
in part 2. What is the resulting distortion for this vector quantizer?

6.51 Solve Example 6.6.1 for the case when the samples are uniformly distributed on
[-2,2].

6.52 A stationary random process has an autocorrelation function given by Rx =
%Ze“lfl cos 27 fyt and it is known that the random process never exceeds 6 in

magnitude. Assuming 4 = 6,

1. How many quantization levels are required to guarantee a SQNR of at least
60 dB?

2. Assuming that the signal is quantized to satisfy the condition of part 1
and assuming the approximate bandwidth of the signal is W, what is the
minimum required bandwidth for transmission of a binary PCM signal based
on this quantization scheme? .

6.53 A signal can be modeled as a lowpass stationary process X () whose PDF at any
time 1y is given in Figure P-6.53.

Fx(x)

|
/

Figure P-6.53

The bandwidth of this process is 5 KHz, and it is desired to transmit it using a
PCM system. :

1. If sampling is done at the Nyquist rate and a uniform quantizer W.ith 3?
levels is employed, what is the resulting SQNR? What is the resulting bit
rate?

2. If the available bandwidth of the channel is 40 KHz, what is the highest
achievable SQNR?
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3, If instead of sampling at the Nyquist rate we require a guard-band of at
least 2 KHz, and the bandwidth of the channel is 40 KHz again, what is the
highest achievable SQNR?

6.54 A stationary source is distributed according a triangular PDF, fx(x) = %A(%).
This source is quantized using a 4-level uniform quantizer described below

1.5, l<x<?2
0.5, O<x=<1
-035, —-1<x<0
-15, —2=<x=<-1

() =

1. Find the entropy of the quantized source.

2. Determine ~thé PDF of the random variable representing the quantization
error; ie., X = X — Q(X).

6.55 The random process X (¢) is defined by X (¢) = ¥ cos(2r fot + ©) where ¥ and
© are two independent random variables, ¥ uniform on [—3, 3] and © uniform
on [0, 2],

1. Find the autocorrelation function of X (¢) and its power-spectral density.

2. If X(¢) is to be transmitted to maintain a SQNR of at least 40 dB using a
uniform PCM system, what is the required number of bits/sample and the
least bandwidth requirement (in terms of 7o)?

3. If the SQNR is to be increased by 24 dB, how many more bits/sample have
to be introduced and what is the new minimum bandwidth requirement in
this case?

6.56 In our analysis of PCM systems, it was always assumed that the transmitted
" bits are received with no errors. However, practical channels cause errors. Let
us assume that the output of a PCM system is transmitted via a channel whose
error probability is denoted by py. It is further assumed that p;, is small enough
such that, in transmission of the v bits resulting from encoding of each quantized
sample, either no error occurs or at most one error occurs. This means that the
probability of each transmitted bit being in error is p;, and the probability of no
error in transmission of v bits is roughly 1 — vp;,. We also assume that, for the
binary representation of each quantized value, natural binary coding (NBC) is
employed; i.e., the lowest quantized level is mapped into a sequence of zeros and
the largest lsvel is mapped into a sequence of all ones and all the other levels are
mapped according to their relative value.

1. Show that if an error occurs in the least significant bit, its effect on the
quantized value is equivalent to A, the spacing between the levels; if an

error occurs in the next bit its effect on the quantized value is 24, .. ., if
an error occurs in the most significant bit, its effect on the quantized value
is271A.
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2. From above, show thatthe miean-squared-error resulting from channel errors
is given by :

4 -1

. 3

where A = 2—’—‘134 = Zomax is the spacing between adjacent levels.

3. Trom the above conclude that the total distortion which is the sum of the
quantization distortion and the transmission distortion due to channel errors,

can be expressed by

D hannel = Pb A?

9

)C2 X.
Dy = —BX_(1 4+ dp, (N2 —1)) = 2 (1 +4p, (4" — 1
totel 3><NQ( +4pp( D=1 (1 +4ps( )

4. Finally, show that the SNR defined as the ratio of the signal power to the
total noise power is given by _

R ax#®

T 1tdp,(N2-1)  14+4p(@ -1

SNR

X

Xenax

6.57 In this problem we study the performance of nonupiform PCM systems. Let the
signal samples be distributed according to the PDF fx(x).

where X =

1. Use Equation 6.6.15 to show that for a u-law compander

2 .2 M
o O+ T Xax 2092y Lo EQRD + 1)

3u2N?

Tn(l + @) x2 . ”

I B S (232 120 B (R + D)

3u24v

where X represents the normalized random variable xi -

2. Show that .
' 3u2N? E(X?
SQNR = — e ——— &)
(n(1 + p)* W E(X?) +2pE|X| +1
3u4 EXY

= Ga( + @) PERD) + 2uEIX| +1
3. Compare the above result with the SQNR for a uniform quantizer and

conclude that
SQNRLL—-].HW = SQNRunﬁomG(PL’ X)

and determine G (i, .
4. Now assume that X is a truncated zero-mean Gaussian random variable
truncated to [—40y, 40x]. Plot both the SQONR 1w and the SQNR uform
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in dB as a function of E(X?) (in dB) for & = 255 and v = 8. Compare
the results and note the relative insensitivity of the p-law scheme to the
dynarmic range of the input signal.

6.58 Design an optimal compander for a source with a triangular PDF given by

x+1, -1=<x<0
fr@)={¢{—x+1, 0<x<1
0, otherwise

Plot the resulting g(x) and determine the SQNR.

6.59 Ina C]? player, the san}plin‘g rate is 44.1 KHz and the samples are quantized using
a 16.-b1t/.sample quantizer. Determine the resulting number of bits for a piece of
music with a duration of 50 minutes.
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In Chapter 6, we described methods for converting the output of a signal source into
a sequence of binary digits. In this chapter, we consider the transmission of the digital
information sequence over communication channels that are characterized as additive
white Gaussian noise (AWGN) channels. The AWGN channel is one of the simplest
mathematical models for various physical communication channels, including wirelines
and some radio channels. Such channels are basically analog channels, which means
that the digital information sequence to be transmitted must be mapped into analog

“signal waveforms.

Our treatment focuses on the characterization and the design of analog signal
waveforms that carry digital information and their performance on an AWGN channel.
We consider both baseband channels; i.e., channels having frequency passbands that
usually include zero frequency (f =0), and bandpass channels; i.e., channels having
frequency passbands far removed from f =0. Whea the digital information is trans-
mitted through a baseband channel, there is no need to use a carrier frequency for
transmission of the digitally modulated signals. On the other hand, there are miany
communication channels, including telephone channels, radio channels, and satellite
channels, that are bandpass channels. In such channels, the information-bearing signal is
impressed on a sinusoidal carrier, which shifts the frequency content of the information-
bearing signal to the appropriate frequency band that'is passed by the chanpel. Thus,
the signal is transmitted by carrier modulation.

We begin by developing a geometric representation of these types of signals,
which is useful in assessing their performance characteristics. Then, we describe several
different types of analog signal waveforms for transmitting digital information and
give their geometric representation. The optimum demodulation and detection of these
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signals is then described and their performance on the AWGN channel is evaluated in
terms of the probability of error. The various modulation methods are compared on
Fhe basis of their performance characteristics, their bandwidth requirements and their
implementation complexity.

7.1 GEOMETRIC REPRESENTATION OF SIGNAL WAVEFORMS

The Gram-Schmidt orthogonalization procedure may be used to construct an orthonor-
n.lal basis for a set of signals. In this section, we develop a geometric representation of
signal waveforms as points in a signal space. Such a representation provides a compact
characterization of signal sets for transmitting information over a channel and simplifies
the. analysis of their performance. Using vector representation, waveform communi-
cation channels are represented by vector channels. This reduces the complexity of

" analysis considerably.

Suppose we have a set of M signal waveforms s, (¢), | <m < M which are to
be used for transmitting information over a communication channel. From the set
of M waveforms, we first construct a set of N <M orthonormal waveforms, where
N is the dimension of the signal space. For this purpose, we use the Gram-Schmidt
orthogonalization procedure.

Gram-Schmic_it Orthogonalization Procedure. We begin with the first
waveform s;(¢), which is assumed to have energy £;. The first waveform of the or-
thonormal set is constructed simply as

51(2)
'¢f1 (f) = — 7.1.1
T (7.1.1)
Thus, 1 (¢) is simply s;(¢) normalized to unit energy.

The second waveform is constructed from s, (¢) by first computing the projection

of 5,(¢) onto vy (2), which is :

c = /oo S2() ¥ (t) dr (7.1.2)

Then, 311 (2) is subtracted from 5,(t) to yield
da(t) = 52(8) — car ¥ () ' (7.1.3)

Now, dg (t) is orthogonal to ¥ (¢), but it does not possess unit energy. If £, denotes the
energy in d, (), then the energy normalized waveform that is orthogonal to ¥, () is

d
Yalt) = -\2/% (7.1.4)
&= /_oodg-(z) dt (7.1.5)
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In general, the orthogonalization of the kth function leads to
d ()
t) = —== 7.1.6
Y (2 NG (7.1.6)
where
k-1
de() = s () = D cu¥i (1) (7.17)
i=1
& = / d2 () dt (7.1.8)
and
i =/ s OUd, i=12 k=1 (7.1.9)
—o .

Thus, the orthogonalization process is continued until all the M signal waveforms
{5, (#)} havebeen exhaustedand N <M orthonormal waveforms have been constructed.
The N orthonormal waveforms {¥, (1)} form a basis inthe N _dimensional signal space.
The dimensionality N of the signal space will be equal to M if all the M signal
waveforms are linearly independent; i.e., if none of the signal waveforms is a linear

combination of the other signal waveforms.

Example 7.1.1
Let us apply the Gram-Schmidt procedure to the set of four waveforms illustrated in

Figure 7.1(a). The waveform s1(z) has energy &) = 2, so that ¥ () = 51 (t)/ 2. Next
we observe that gy = 0, so that Y (r) and so() are orthogonal. Therefore, U (t) =

$2(0)/ /€2 = 02(t) /«/i To obtain ¥3(), we compute ¢3; and css, which are ¢3; = 0 and
c3 = ~+/2. Hence,
ds(1) = 5300 + V20

Since da(r) has unit energy, it follows that ¥ (r) = d3(z). Finally, we find that cs1 =

/2, c4p =0, €43 = 1. Hence,
d(t) = sa(t) = V21 () — ¥3(0) =0
d, consequently, the dimen-

Thus, s4(¢) is a linear combination of () and ¥3(t) an
(1), and 13 (t) are shown in

sionality of the signal set is N = 3. The functions ¥1{2), ¥2
Figure 7.1(b)

Once we have constructed the set of orthogonal w
express the M signals {s.,(t)} as exact linear combinations of the

may write

aveforms {1/, (1)}, we can
{,(1)}). Hence, we

N
su(®) =3 Smn V@), m =12, M (7.1.10)

n=1

where

Sn = / 7 OV dt

-0
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s1(0 . s(0) {

1 1=

S?.(T) 1 s, 4(1‘)

() Originat signal set

lIll ® l[:] 0]

n 1

s

(b) Orthonormal waveforms

f‘ig(u)r}e 7.1 Application of Gram-Schmidt orthogonalization procedure to signals
si{t)}.

and
c o ) N
m = ss) dt = 2
/m 2() ;sm (7.1.11)

Based on the expression in Equation (7.1.7), each signal wavef
resented by the vector ' g veform may be rep-

Sm = (Sm1s Sm2s s - s S ) (7.1.12)

or equivalently, as a point in N-dimensional signal space with coordinates {Smin 1 =
1,2, ..., N}. The energy of the mth signal waveform is simply the square of the léng‘th
of the ‘Vec.tor or, equivalently, the square of the Euclidean distance from the origin to
the point in the N-dimensional space. We can also show that the inner product of two
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signals is equal to the inner product of their vector representations; i.e.,
o .
| syt =sn s, (7.113)
—00

Thus, any N-dimensional signal can be represented geometrically as a point in the
signal space spanned by the N orthonormal functions {/,(?)}.

Example 7.1.2 .
Let us determine the vector representation of the four signals shown in Figure 7.1(a) by
using the orthonormal set of functions in Figure 7.1(b). Since the dimensionality of the
signal space is N =3, each signal is described by three components, which are obtaqned
by projecting each of the four signal waveforms on the three orthonormal basis functions
V1), ¥2(0), ¥3(2). Thus, we obtain 51 = (+/2,0,0),52.= (0, v/2, 0,85 = (0, =2, 1),
84 = (+~/2, 0, 1). These signal vectors are shown in Figuze 7.2.

Finally, we should observe that the set of basis functions {¢, ()} obtg.ined b){ the
Gram-Schmidt procedure is not unique. For example, another set of basis funcpons
that span the three-dimensional space is shown in Figure 7.3. For this basis, the signal

¥
S2
2
'D .
5 ‘/’x(f)
5 B>y
53 Figure 7.2 Signal vectors corresponding
LA0) to the signals 5;(£), £ = 1,2,3, 4.
¥ VA0)
1 1
0 1 t 0 2 3 t
LAG)
1 —
0 1 2 13

Figare 7.3 Alternate set of basis functions.
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vectorsares; =(1,1,0), s = (1, —1,0),s3=(—1,1, 1), andss = (1, 1, 1). The reader
should note that the change in the basis functions does not change the dimensionality
of the space &, the lengths (energies) of the signal vectors, or the inner product of any
two vectors.

Although the Gram-Schmidt orthogonalization procedure is guaranteed to gener-
ate an orthonormal basis for representation of the signal set, in many cases it is simpler
to use a method based on inspection to generate the orthonormal basis. We explore this
method in the problems at the end of this chapter.

7.2 PULSE AMPLITUDE MIODULATION

In pulse amplitude modulation (PAM), the information is conveyed by the amplitude
of the transmitted signal. Let us first consider PAM signals that are appropriate for
baseband channels.

Baseband Signals. Binary PAM is the simplest digital modulation method.
In binary PAM, the information bit 1 may be represented by a pulse of amplitude A -
and the information bit 0 is represented by a pulse of amplitude —A, as shown in
Figure 7.4. This type of signaling is also called binary antipodal signaling. Pulses are
transmitted at a bit rate Ry = 1/ T}, bits/sec, where T}, is called the bit interval. Although
the pulses are shown as rectangular, in practical systems, the rise time and decay time
are nonzero and the pulses are generally smoother. The pulse shape determines the
spectral characteristics of the transmitted signal as described in Chapter 8.

The generalization of PAM to nonbinary (M-ary) pulse transmission is relatively
straightforward. Instead of transmitting one bit at a time, the binary information se-
quence is subdivided into blocks of k bits, called symbols, and each block, or symbol, is
represented by one of M = 2* pulse amplitude values. Thus with k = 2, wehave M = 4
pulse amplitude values. Figure 7.5 illustrates the PAM signals fork =2, M = 4. Note
that when the bit rate R, is fixed, the symbol interval is

k
T =— =kT; 7.2.1
R b (72.1)
‘as shown in Figure 7.6.
S0 S2(8)
A
0 T, ¢
0 T, t —A . . .
Figure 7.4 Binary PAM signals.
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510 500
3A
AT
0 T t 0 T t
550 54(0)
0 T ¢
| ~34 : : .
o ’.———IT 4 . TFigure75 M =4PAMsignal
—A waveforms.
| |
I~ g !
— t } —A—
T, 2T, kT,

T, = bit interval
T

Figure 7.6 Relationship between the

= symbol interval symbol interval and the bit interval.

‘We may characterize the PAM signals in terms of their basic properties. In general,
the M-ary PAM signal waveforms may be expressed as

() = Amgr(®), m=12,...,M, 0=t=T (71.2.2)

where gr(t) is 2 pulse of some arbitrary shape as shown for example in Figure 7.7. We

observe that the distinguishing feature among the M signals is the signal amplitgdc. All
the M signals have the same pulse shape. Another important feature of these signals is

&r®

@ Figure7.7 Signal pulse for PAM.
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Baseband signal N\ Bandpass signal
X

5ult) \T st) cos 2mfit

Carrier Figure 7.8 Amplitede modules
cos 2mrft sinusoidal carrier by the baseband signal.

their energies. We note the signals have different energies; i.e.,
T T _
Em = / s2(t)dt = AL / EWdr=AN, m=1,2,...,M (723)
0 0
where £, is the energy of the signal pulse gr ().

Bandpass Signals. To transmit the digital signal waveforms through a band-
pass channel by amplitude modulation, the baseband signal waveforms s, (1), m =
1,2,..., M aremultiplied by a sinusoidal carrier of the form cos 2 f.£, as shown in Fig-
ure 7.8, where f is the carrier frequency and corresponds to the center frequency in the
passband of the channel. Thus, the transmitted signal waveforms may be expressed as

Um(t) = Apgr(®)cos2nfet, m=12,...,.M - (1.2.4)

As previcusly described in Section 3.2, amplitude modulation of the carrier
cos 27 f.t by the baseband signal waveforms s,,(#) = Angr(2), shifts the spectrum
of the baseband signal by an amount f, and, thus places the signal into the passband of
the channel. Recall that the Fourier transform of the carrieris [§(f — fo) + 8 (f + f2)1/2.
Because multiplication of two signals in the time domain corresponds to the convolu-
tion of their spectra in the frequency domain, the spectrum of the amplitude-modulated
signal given by Equation (7.2.4) is

Am
Un(£) =[Gz (f = [+ Gr(f + fol (7.2.5)

Thus, the spectrum of the baseband signal s, () = Angr(2), is shifted in frequency
by an amount equal to the carrier frequency f;. The result is a DSB-SC AM signal, as
illustrated in Figure 7.9. The upper sideband of the carrier modulated signal is com-
prised of the frequency content of u (t) for | f|> fo; ie., for fo < [fI<fe+ W.
The lower sideband of u, () comprises the frequency content for {f| < f; ie,
for f, — W < |f| < f.. Hence, the DSB-SC amplitude-modulated signal occupies a
channel bandwidth of 2W, which is twice the bandwidth required to transmit the base-
band signal.

The energy of the bandpass signal waveforms u, (¢), m = 1, 2,..., M, givenby
Equation (7.2.4) is defined as

(v e} oQ
En = / Wi (Hdt = / A2 g2.(¥) cos® 2r f,t dt
: —co

-0

AZ loe) AZ o0
=l g de + -2 / g2 () cosdmfot dr (7.2.6)
2 Jow 2 Jew
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et
/K

-W 0 w f
(2)
L22¢5)
l .
2
i | ]
_'fc—W '_fc '—fc+W 0 f:_W fc fc+W f

(b

Figure 7.9 Spectra of (a) Easebaud and (b) amplitude-modulated signals.

‘We note that when f; >> W, the term
- .
/ g2t cosdnfrdt (7.2.7)

-0
involves the integration of the product of a slowly varying funct‘ion,.namely g2 (1), with
a rapidly varying sinusoidal term, namely cos 47 £, as shoxyn n F1g}1re 7.10. Because
g7(1) is slowly varying relative to cos 4 f.t, the integral in Equatzqn (7.2.7) over a
single cycle of cos 4x f,t is zero and, hence, the integral over an arbitrary number of
cycles is also zero. Consequently,

2 o 2
£, = An g2@)ydt = ézi"-ag (7.2.8)

2 Jeoo

cos 4rf 2

Figure 7.10 The signal g2 (t) cos4n fer.
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where £, is the energy in the signal pulse g7 (¢). Thus, we have shown that the energy

in the bandpass signal is one-half of the energy in the baseband signal. The scale factor

of % is due to the carrier component cos 27 f.¢, which has an average power of %
‘When the transmitted pulse shape gr (¢) is rectangular; i.c.,

A :
gr(t) = { V% osesr (7.2.9)

» 0, otherwise
the amplitude-modulated carrier signal is usually called amplitude-shift keying (ASK).

Geometric Representation of PAM Signals. The baseband signal wave-
forms for M-ary PAM are given in Equation (7.2.2), where M =2*, and gr(t)is a
pulse with peak amplitude normalized to unity as previously illustrated in Figure 7.7.

The M-ary PAM waveforms are one-dimensional signals, which may be expressed
as

Su(@) =8 (t), m=1,2,....M (7.2.10)

where the basis function ¥ (?) is defined as

Y@= O0<t<T (7.2.11)

1
—7=8r (1),
Vs
&g is the energy of the signal pulse g7 (), and the signal coefficients (one-dimensional

vectors) are simply

Sn= /€ Am m=1,2,..., M (7.2.12)

An important parameter is the Buclidean distance between two signal points, which is
defined as

dmn =V Ism — snlz = gg (Am — An)l (7213)

If we select the signal amplitudes {Ax} to be symmetrically spaced about zero
and equally distant between adjacent signal amplitudes, we obtain the signal points for
symmetric PAM, as shown in Figure 7.11.

‘We observe that the PAM signals have different energies. In particular, the energy
of the mth signal is

En=5L=EAL, m=1,2,....M (72.14)

Figure 7.11  Signal points
0 (constellation) for symmetric PAM.
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For equally probable signals, the average energy is
1 & £ < )
En =17 S en= = S A% (7.2.15)
R m=1 m=1
If the signal amplitudes are symmetric about the origin, then
An = @m—1—M), m=1,2...,M (12.16)
and, hence, the average energy is
e M
E=—2 @m—1- MY = (M2 —1)/3 (1.2.17)

m=1
When the baseband PAM signals are impress
representation of the digital PAM signal waveform
signal waveforms ux (¢) may be expressed as

ed on a carrier, the basic geometric
s remains the same. The bandpass

Un (1) = S (2) (7.2.18)
where the basic signal waveform 1 (t) is defined as _
/ 2
() = 7 gr () cos 2t (7.2.19)
2
and
&g
S = ?Am, m=12....M (7.2.20)

Note that the only change in the geometric representation of bandpass PAM

signals, compared to baseband signals, is the scale factor /2, which appears in Equa-

tions (7.2.19) and (7.2.20).

As we observed, PAM signal waveforms are basically one-dimensional signals. In this

section, we consider the construction of two-dimensional signals.

7.3.1 Baseband Signals
Let us begin with the construction of two orthogonal signals. Two signal waveforms
s51(t) and so(¢) are said to be orthogonal over the interval (0, T) if

T
/ 5, ()2 () dt =0 (7.3.1)
0

Two examples of orthogonal signals are illustrated in Figure 7.12. Note that the two
signals §,(?) and s,(¢) completely overlap over the interval (0, T, while the signals
54 (t) and s(¢) are nonoverlapping in time. Both signal pairs satisfy the orthogonality
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1) s
24
A
5 t
T T/2 !
Sz(f)
s/ (1)
A
T
0 /2 !
0
al ! T2 T !
@ ®

Figure 7.12 Two sets of orthogonal signals.

property in Equation (7.3.1) and both signal pairs have identical energy; ie.

T T T T
£=_/0 Sf(t)a't=/; s2(t) dt —_-'/0 [S{(t)]zd;=/0 [s;(t)]za't=A2T (13.2)

SEighci pair ;)f these signals may be used to transmit binary information, with one

nal waveform corresponding to a 1 and the other si veyi

: ; . nal wave.

information bit 0. i form conveying fhe

o diC:;g:lrslie:*mlally, theze ségnalfwaveforms can be represented as signal vectors in
-~ nal space. As basis functions, we may selec i

o dime y t the unit energy, rectangular

2
wl<t>={v JT, 0<t<T/2

0, otherwise
(73.3)

o) = {«/2/1", T/2<t<T

0, otherwise
Then, the signal waveforms s, (¢) and 5, (t) shown in Figure 7.12(a) can be expressed as
5102) = s (1) + 51292 ()

52() = sm¥1 (1) + s2Y2 (1) (734)
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51
45°
-45° )

Figure7.13 The two signal vectors
corresponding to the signals waveforms

Sz s(f) and s2(2).

where |
s1 = (511, 512) = (AVT/2, AVT/2) : 735)

sy = (521, 522) = (AT /2, —AJT/2)

i i in Fi 7.13. Note that the signal vectors
al vectors §; and s, are illustrated in Figure
Zriesselpgaiated by 90°, so that they are orthogonal. Furthermore, the square of the length

of each vector gives the energy in each signal; i.e.,
& = lIsi? = AT 7136)
& = [sll? = A’T

The Buclidean distance between the two signals is

dp = /s — ;2 = AV2T = V24T = V2E (73.7)

where & = & = & is the signal energy. ‘
Similarly, the pair of orthogonal signals shownm

as in Equation (7.3.4), where
s = (AVT,0) = (VE,0) 738

s, = (0, AVT) = (0,+/&)

strated in Figure 7.14. Note that s; and 85 are related to
rotation. Hence, the Buclidean

Figme 7.12(b) can be expressed

These two signal vectors are illu : !
the signal vectors shown in Figure 7.13 by a simple 45

s/

S

Figure 7.14 The two signal vectors
corresponding to the signal waveforms
57(t) and 55(0).
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-s, N

52
-5
! Figure 7.15 Signal constellation for
M = 4 biorthogonal signals.

distance between the signal points s} and 53 1s identical to that for signal points s;
and 2.

Suppose that we wish to construct four signal waveforms in two dimensions. With
four signal waveforms, we can transmit two information bits in a signaling interval
of length T. If we begin with the two orthogonal signals s;(¢) and s5,(¢), shown in
Figure 7.12(a), and their corresponding vector representation in Figure 7.13, it is easy to
see that a simple construction is one that adds two additional signal vectors, namely, ~s;
and —s,. Thus, we obtain the 4-point signal-point constellation shown in Figure 7.15,
which corresponds to the analog signal waveforms s1(2), 52 (¢), —s1(t), and —s3 (¢). Since
the pair s1(f) and 5,(f) are orthogonal and the pair —s;(¢) and —s,(#) are orthogonal,
the signal set consisting of the four signal waveforms is called a set of biorthogonal
signals.

The procedure for constructing a larger set of signal waveforms is relatively
straightforward. Specificaily, we can add additional signal points (signal vectors) in the
two-dimensional plane, and construct the corresponding signal waveforms by using
the two orthonormal basis functions v (¢) and v (¢) given by Equation (7.3.3). For
example, suppose we wish to construct M = 8 two-dimensional signal waveforms, all
of equal energy £. These eight signal points are illustrated in Figure 7.16, and allow us
to transmit three bits at a time. The corresponding eight signal waveforms are the two
sets of biorthogonal signal waveforms constructed from the two pairs of orthogonal
signals shown in Figure 7.12.

Alternatively, suppose that we remove the condition that all eight waveforms
have equal energy. For example, suppose that we select four biorthogonal waveforms

’\ Figure 7.16 M = 8 signal-point

2 constellation corresponding to the two
points of orthogonal signal waveforms in
Figure 7.12 and their negatives, i.e.,
510), 52(2), 51(2), 552), —s1.(8), —52(2),
—s51(¢) and —s5(t).

1
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o
/ar: [ a
\

Figure 7.17 Two M = 8 signal-point
constellations in two dimensions,
corresponding to a superposition of two
sets of biorthogonal signal waveforms
) : with different energies.

N
N

(@)

that have energy & and another four biorthogonal waveforms that have energy &,
where & > £;. Two possible eight signal-point constellations are shownin Figure 7.17,
where the signal points are located on two concentric circles of radii J& and JE. In
Section 7.6.5 we show that the signal set in Figure 7.17(b) is preferable in an AWGN
charmel to that shown in Figure 7.17(a).

7.3.2 Two-dimensional Banidpass Signals—Carrier-Phase

Modulation :
In the case of PAM, we recall that bandpass signal waveforms, appropriate for trans-
mission on bandpass channels, were generated by taking a set of baseband signals and
impressing them on 2 carrier. In a similar manner, if we have a set of M two-dimensional
signal waveforms, say s, (1), m= 1,2,..., M, we can generate a set of M bandpass
signal waveforms as -

U () = sm () cos2m fot, m=1,2,....,M, 0<t=<T (7.3.9)

Tn this section, we consider the special case in which the M two-dimensional bandpass
signals waveforms are constrained to have the same energy; i.¢.,

T T
m = / ui(t)dr = / s,i(t) cos? 2r f ¢ dt
0 0

177, 1T,
= —-/ sm(t)dt+—/ s2(tycosdmfotde (7.3.10)
2 Jo 2 Jo

As indicated previously, the integral of the double-frequency component in Equa-
tion (7.3.10) averages to zero when £ > W, where Wisthe bandwidth of the baseband
signal s, (2). Hence,
1 T
. / 2@ydt =& fordllm (73.11)
0

where &, denotes the energy/signal or/symbol.
As we indicated in the discussion following Equation (7.1 .12), when all the signal

waveforms have the same energy, the corresponding signal points in the geometric -

representation of the signal waveforms fall on a circle of radius +/&;. For exampl.e,
in the case of the four biorthogonal waveforms, the signal points are as shown
Figure 7.15 or, equivalently, any phase-rotated version of these signal points.
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Fr_om this geometric representation for M = 4, we observe that the signal points
are equivalent to a single signal whose phase is shifted by multiples of 7r/2. That is,
a bandpass signal of the form s(¢) cos@2rfet + wm/2), m = 0, 1,2, 3, has the same
g‘eometric: representation as an M =4 general biorthogonal signal set. Therefore, a
sun;ﬂe way to generate a set of M bandpass signals having equal energy is to impress
tk}e mlformation on the phase of the carrier. Thus, we have a carmrier-phase modulated
signal.

. ’I.'he general representation of a set of M carrier-phase modulated signal wave-
orms is

27m
um(t)::gT(t)cos(2ﬂfct+—M—), m=0,1,...,M—1, 0<:<T (7312)

where g7 (f) is abaseband pulse shape, which determines the spectral characteristics of
the transmitted signal, as will be demonstrated in Chapter 8. When g7 (¢) is arectangular

pulse, defined as
28,
gr(t)=\/T, 0<t<T (7.3.13)

the corresponding transmitted signal waveforms

28 2
um(t)=\/—jzicos<27rfct+—Mﬁ>, m=0,1,....,M~1, 0<t<T (73.14)

have a constant envelope (the pulse shape g7 (¢) is a rectangular pulse) and the carrier
phase changes abruptly at the beginning of each signal interval. This type of digital-
phase modulation is called phase-shift keying (PSK). Figure 7.18 illustrates a four-phase
(M = 4) PSK signal waveform, usually called a quadrature PSK (QPSK) signal.

By viewing the angle of the cosine function in Equation (7.3.14) as the sum of
two angles, we may express the waveforms in Equation (7.3.14) as

U () = g7 (¢) ApccOS 21 fet — gr () Aps SIn2m fot (7.3.15)

180%phase  0%phase = —90%phase
shift shift shift

oo

N AN AN NN
MAVARV

° | VARV
T T T T T Figure 7.18 Example of a four PSK
0 T 2T 3T 4T signal.
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—sin 2mf.t

Aps 87

Figure 7.19 Digital-phase modulation
viewed as two amplitude-modulated
quadrature carriers.

Apcgr(® cos 27f, ¢

where
Ame =cos2mm/M, m=0,1,...,M—1
Aps =sin2zm/M, m=0,1,....M-1
Thus, a phase-modulated signal may be viewed as two quadrature carriers with an.lpli-
tudes g7 () Ame and g7 (1) Ams as shownin Figure 7.19, which depend on the transmitted

phase in each signal interval. .
Tt follows from Equation (7.3.15) that digital phase-modulated signals can be rep-

resented geometrically as two-dimensional vectors with components +/Es cos 2mm /M,
and /&, sin2nm/M, ie.,
sm= (V& cos2nm/M,  +/&sin2am/M) (13.17)

Note that the orthogonal basis functions are ¥ (t) = \/51: gr(t) cos2m f.t, and

Y () = — /51 gr(t) sin2m f.¢. Signal-point constellations for M = 2,4, 8§ are i.llus-
trated in Figurg 7.20. We observe that binary-phase modulation is identical to binary
PAM.

. (7.3.16)

The mapping or assignment of k information bits into the M = 2% possible p'hascjcs
may be done in a number of ways. The preferred assignment is touse Gray encoding, in
which adjacent phases differ by one binary digit as illustrated in Figure 7.20. Because

011 001
Olgmm—md————m 00 ° ®
! s 000
B EZ A P
1 i
i i
1——» i § ® @
Ve Vs | 5 110 100
T 10 . o
111 101
M=2 M=4 M=8

Figure 7.20 PSK signal constellations.
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the most likely errors caused by noise involve the erroneous selection of an adjacent
phase to the transmitted phase, only a single bit error occurs in the k-bit sequence with
Gray encoding.

The Buclidean distance between any two signal points in the constellation is

Arin = V/ll$m — 842

_ _2mm—n)
_\/zgs (1 cos = ) (7.3.18)

and the minimum Euclidean distance (distance between two adjacent signal points) is
simply

2
doin = 1|25, (1 — cos 7;) (7.3.19)

As we shall demonstrate in Equation (7.6.10), the minimum Euclidean distance
din plays an important role in determining the error-rate performance of the receiver
that demodulates and detects the information in the presence of additive Gaussian noise.

-7.3.3 Two-dimensional Bandpass Signals—Quadrature

Amplitude Modulation

In our discussion of carrier-phase modulation, we observed that the bandpass signal
waveforms may be represented as given by Equation (7.3.15), in which the signal wave-
forms are viewed as two orthogonal carrier signals, cos 27 f.¢ and sin 27 f.¢, modulated
by the information bits. However, the carrier-phase modulation signal waveforms are
constrained to have equal energy &, which implies that the signal points in the ge-
ometric representation of the signal waveforms lie on a circle of radius +/&;. If we
remove the constant energy restriction, we can construct signal waveforms that are not
constrained to fall on a circle.

The simplest way to construct such signals is to impress separate information bits
on each of the quadrature carriers, cos 27 f¢ and sin 2w fz. This type of digital mod-
ulation is called quadrature amplitude modulation (QAM). We may view this method
of information transmission as a form of quadrature-carrier multiplexing, previously
described in Section 3.2.6. ’ )

The transmitted signal waveforms have the form

Upi(t) = Amc8T(2) COS27 fot + Amegr () sin2nfet, m=1,2,...,M (73.20)

where {An.} and {An;} are the sets of amplitude levels that are obtained by mapping
k-bit sequences into signal amplitudes. For example, Figure 7.21 illustrates a 16-QAM
signal constellation that is obtained by amplitude modulating each quadrature carrier by
M = 4 PAM. In general, rectangular signal constellations result when two quadrature
carriers are each modulated by PAM.

More generally, QAM may be viewed as a form of combined digital amplitude
and digital-phase modulation. Thus, the transmitted QAM signal waveforms may be



Chapter 7

(7.321)

358 Digital Transmission through Gaussian Noise Channel
L] -3 L °
-] L] L] e
o Q L] L]
Q e e e
Figure 721 M = 16-QAM signal
constellation.
expressed as
Upn (1) = Amgr (@) cos@ufet +0z), m= 1,2,...
n=12,....,. M

If M, = 2% and M, = 2, the combined amplitude- and phase-modulation method
results in the simultaneous transmission of &y + ks = log, M1 M, binary digits occurring
at a symbol rate R,/ (k1 + k7). Figure 729 illustrates the functional block diagram of

a QAM modulator.

Binary
data Serial to
~———>  parallel

converter

Figure 7.22 Functional block diagram of modulator for QAM.

Transmitted

Transmitting Balanced
filter modulator
gr(®)
cos 2mft
Oscillator
90° phase
shift
sin 2rf,t
Transmitting Balanced
filter
modulator
&r(t) .
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) Tt is clear that the geometric signal representation of the signals given by Equa-
tions (7.3.20) and (7.3.21).is in terms of two-dimensional signal vectors of the form

Sm = (\/E;Amc: \/g_xAms), m=12,...,. M

Examples of signal space constellations for QAM are shown in Figure 7.23.

M= 64
§-— B —— 8= ———o-———@———20
1 i
1
: M=32 i
T ° //o———-——o— -—a————-o\\ ° f
| ’ S 1
! Vi M=16 AN !
® P e m———h—8———0 » +
I ! I i 1
i | t ; ] i
1 i | = !
& ] 6—-—-—-—————-9]%— —8 + é
1 i 1 i IM =
] ! : 1 M=4 ! !
| 1 ] 1 | II 1 !
R e
I [ | f I I
I I | ! i !
+ & S | L L
! AN e |
] N , !
i AN e 1
® ® et — @ ® "
i |
i 1
0——--—-0————0—-——-0————o-———a———-——o—-——--‘

(7.3.22)

- A
\\\J L

M=16
® ©

Figure 723 (a) Rectangular signal-space constellations for QAM. (b, c) Examples
of combined PAM-PSK signal-space constellations.
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The average transmitted energy for these signal constellations is simply the sum
of the average energies on each of the quadrature carriers. For rectangular signal
constellations, as shown in Figure 7.23(a), the average energy/symbol is given by
Eoy = % Eﬁl Is; 1?. The Euclidean distance between any pair of signal points is

dmn = "Sm - Snnz (7323)

5(1) 5/(2)

7.4 MULTIDIMENSIONAL SIGNAL WAVEFORMS 0 T : 0 T4

In the previous section, we observed that a number of signal waveforms, say M = 2k,
can be constructed in two dimensions. By transmitting any one of these M signal wave-
forms in a given interval of time, we convey k bits of information. In this section, we
consider the design of a set of M = 2¥ signal waveforms having more than two dimen-
sions. We will show in Section 7.6.6 the advantages of using such multidimensional
signal waveforms to transmit information.

We begin by constructing M signal waveforms that are mutually orthogonal,
where each waveform has dimension N = M.

s,(1)

5,'(8)

0 172

7.4.1 Orthogonal Signal Waveforms o a2

First, we consider the construction of baseband orthogonal signals and, then, discuss 8 (0

the design of bandpass signals.

Baseband Signals. Orthogonal signal waveforms at baseband can be con- s5'(0)

structed in a variety of ways. Figure 7.24 illustrates two sets of M = 4 orthogonal
signal waveforms. We observe that the signal waveforms s;(¢),i = 1,2,3,4 com-
pletely overlap over the interval (0, T'), while the signal waveforms s;(t), i = 1,2, 3, 4
are nonoverlapping in time. These are just two examples of a set of M =4 orthogonal
signal waveforms. In general, if we begin with a set of K baseband signal waveforms,
we can use the Gram-Schmidt procedure to construct M < K mutually orthogonal
signal waveforms. The M signal waveforms are simply the orthonormal signal wave-
forms ¥; (1),i = 1,2, ..., M, obtained from the Gram-Schmidt procedure. For exam-
ple, asetof M = 2* overlapping orthogonal signal waveforms can be constructed from
Hadamard sequences, also called Walsh-Hadamard sequences (see Problem 7.31).

When the M orthogonal signal waveforms are nonoverlapping in time, the digital
information that is transmitted is conveyed by the time interval in which the signal pulse
occupies. This type of signaling is usually called pulse position modulation (PPM). In
this case, the M baseband signal waveforms may be expressed as

Sm(t) = Agr(t —(m—-DT/M), m=1,2,....M
m-DT/M<t<mT/M
where gr(¢) is a signal pulse of duration T/M and of arbitrary shape.
Although each signal waveform in a set of M orthogonal signal waveforms may

be designed to have different energy, it is desirable for practical reasons that all M
signal waveforms have the same energy. For example, in the case of M PPM signals

0! Ti2  3Ti4

84 (£

t
—A l_l U H
0! 3T T

@ ®

s4'(1)

o

(7.4‘.1)

Figure 7.24 Two sets of M = 4 orthogonal signal waveforms.
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(nonoverlapping signal pulses of duration /M), 2l signal waveforms have the same
amplitude A and, hence,

T mT|M
/ s2@ydt = A2/ gr(t — (m — DT/M)dt
0 . m-1)T/M
T/M ’
= A? / gk@ydr =&, allm (142)
0

The geometric representation of PPM signal waveforms is relatively simple. We
define the M basis functions as
{ Lot — (m— DT/M), (m—DT/M<t<mT/M

e (74.3)

otherwise

form = 1,2, ..., M.Hence, M-ary PPM signal waveforms are represented geometri-
cally by the M-dimensional vectors.

s = (+/&,0,0,...,0)
s2 = (0,v%.,0,...,0) (71.4.4)

s = (0,0,0,...,4/%)

Clearly, these vectors are orthogonal; i.e., 5;-8;.= 0 When.i # j. Itis also interesting
to note that the M signal vectors are mutually equidistant; 1.€.,

4 =V 5m — Sull? = /265, forallms#n (14.5)

Hence, the minimum distance between signal points is +/2&;. Figure 7.25 shows an
example of M = 3 orthogonal signals.

iy (2)

¥y (0

Figure7.25 Orthogonal signals for
M=N=3.
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Bandpass Signals. Bandpass orthogonal signals can be constructed from a
set of baseband orthogonal signals waveforms s,,(t),m = 1,2,..., M, by simply
multiplying the baseband orthogonal signal waveforms by the carrier cos 2 f,. Hence,
the M bandpass signals constructed in this manner are

Un(t) = sp(t)cos2nft, m=1,2,...,M

4.
0<t<T (7.4.6)

The energy in each of the bandpass signal waveforms is one-half of the energy of the
corresponding baseband signal waveforms. To demonstrate the orthogonality of the
bandpass signal waveforms, we have

T T
/ Un (Dun () dt = / Sm(2)8, () cos? 2rr fot dt
0 0

_E/T' @) (t)dt+1/T (t)s,(t) cosdm fot dt
—Zosm S Eosm sq(t) cos 4 fo.

=0

where the double frequency term is zero on a cycle-by-cycle when the carrier frequency
f- is large compared to the bandwidth of the baseband signals.

M-ary PPM signals achieve orthogonality in the time domain by means of no-
overlapping pulses. As an alternative, we can construct a set of M carrier-modulated
signals which achieve orthogonality in the frequency domain. This type of modulation
is generally called carrier-frequency modulation. The simplest form is frequency-shift
keying, which is described next. Other types of carrier-frequency modulation are de-
scribed in Chapter 10.

Frequency-Shift Keying {FSK).  The simplest form of frequency modulation
is binary frequency-shift keying. In binary FSK we employ two different frequencies,
say fi and f» = /i + Af, to transmit a binary information sequence. The choice
of frequency separation Af = f, — fi is considered below. Thus, the two signal
waveforms may be expressed as

2&
() = 1| L cos 2w fit, 0<t<T
V o
|2,
ua(t) = Tb cos 2 fot, 0=<t<T} (7.4.7)
b

where &, is the signal energy/bit and 7 is the duration of the bit interval.

More generally, M-ary FSK may be used to transmit a block of k=
log, M bits/signal waveform. In this case, the M signal waveforms may be expressed
as

[2Es
U () = T cos(2nf.t +2nmAft), m=0,1,...,M—1, 0=t<T (74.8)
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where &, =k&, is the energy/symbol, T =£Tj is the symbol interval and Af is the
frequency separation between successive frequencies; ie., Af = frn = fn—1, where

fa=fc+mAf. ]
Note that the M ESK waveforms have equal energy &;. The frequency separation

Af determines the degree to which we can discriminate among the M poss'ible trans-
mitted signals. As a measure of the similarity (or dissimilarity) between a pair of signal
waveforms, we define the correlation coefficients yma as

T
Ymn = l / U (D) (2) dt ' (7.4.9)
g: 0
By substituting for u,, () and u, (t) in Equation (7.4.9), we obtain

. T
Vi = El- / ZT& cosQm fit + 2mmAft) cos@rf.t +2nnAft) dt
s JO

T 1 T
=-;:/ cosZJT(m—n)Aftdt-l—E:/ cos[4r ot + 27 (m + n)Aftldt
0 0

_ sin2nm = mAST | (410)
2w(m —n)AfT

where the second integral vanishes when f. 3> 1/T. A plot of ¥, as a function of the
frequency separation Af is given in Figure 7.26."We observe that the signal waveforms
are orthogonal when Af is a multiple of 1/2T. Hence, the minimum frequency sepa-
ration between successive frequencies for orthogonality is 1/27. We also note that the
minimum value of the correlation coefficient is Y, = — 0.217, which occurs at the
frequency separations Af = 0.715/T.

N

N+ 32
T T = T Figure 7.26 Crosscorrelation coefficient
as a function of frequency separation for

FSK signals.

Section 7.4 Multidimensional Signal Wavefarms 365

M-ary orthogonal FSK waveforms have a geometric representation as M, M-
dimensional orthogonal vectors, given as

s1 = (v/&.0,0,...,0)

52 =(0,%.0,...,0) (7.4.11)

s =(0,0,...,0,V&)

where the basis functions are Y (1) =2/ T cos 27 (f,+mAf)z. The distance between
pairs of signal vectors is d = /2&; for all m, n, which is also minimum distance among
the M signals.

7.4.2 Biorthogonal Signal Waveforms

As in the case of orthogonal signais, biorthogonal signals can be constructed for trans-
mission through baseband channels and passband channels.

Baseband Signals. We have already described the construction of M =4
biorthogonal signals in two dimensions using the signal waveforms in Figure 7.12. In
general, a set of M biorthogonal signals can be constructed from a set of M /2 orthog-
onal signals 5;(#),i=1,2, ..., M/2 and their negatives —s;(¢), i = 1,2, ..., M/2. As
we shall observe in Section 7.6.10, the channel bandwidth required to transmit the
information sequence by use of biorthogonal signals is just one-half of that required to
transmit M orthogonal signals. For this reason, biorthogonal signals are preferred in
some applications over orthogonal signals. )

The geometric representation of M-ary biorthogonal signals {5,(t),1<m <
M/2, —5m(t), M/2 + 1 <m < M} is straightforward. We begin with #/2 orthogonal
vectors in N == M /2 dimensions and then append their negatives. For example, if the
M /2 orthogonal waveforms are PPM signals, the M/ biorthogonal vectors are given as

s1 = (v/%5,0,0,...,0
s2= (0, /%;,0,...,0)

sup=0,0,0,..., %) (7.4.12)
suy; = (=&, 0,0,...,0)

SM=(0,0,0,...,'—»\/E)

Figure 7.15 illustrates the signal constellation for M = 4 biorthogonal signals. We
observe that this signal constellation is identical to the signal constellation for quadrature
(four phase) phase-shift keying.

Bandpass Signals. Given a set of M baseband biorthogonal signals wave-
forms {5.(?)}, a corresponding set of M bandpass signals {u,(#)} is obtained by
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code words. Given M code words, we can construct M signal wavefonns by rx}apping
a code bit ¢,y = 1into a pulse gr(t) of duration T/N and a code bit ¢mj = 0 into the

negative pulse —gr ().

Example 7.4.1
Given the code words

ag=[01 1110
=[ 1 0 0 1]
G=[ 010 1
=0 1 0 1 0]

construct a set of M = 4 signal waveforms, as described above, using a rectangular pulse

gr(®).
Solution As indicated above, a code bit 1

of duration T/5, and a code bit 0 is mapped
we construct the four waveforms shown 1n Fi

is mabpcd into the rectangular pulse gr(?)
d into the rectangular pulse —gr{®). Thus,
gure 7.28 that correspond to the four code

words.
s (0) 5 (0
A A
: . ; Ly t ; N !
/5 2T/5 37T/5
at 4t
s3(1) 54 (1)
A AT
T
' t

4t -4

Figure 7.28 Asetof M = 4 signal waveforms of dimension N = § constructed

from the four code words in Example 74.3.
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from each orthogonal vector is to translate the origin of the M orthogonal signals to
the point § and to minimize the energy in the signal set {5, }.

If the energy per signal for the orthogonal signals is & = [|$m ||?, then the energy
for the simplex signals is

& =l l® = lIsm = 8I°

1
= <1 - M) & (7.4.19)
The distance between any two signal points is not changed by the translation of the
origin; i.e., the distance between signal points remains at d = ~/2&;. Finally, as in-
dicated above, the M simplex signals are correlated. The crosscorrelation coefficient
(normalized crosscorrelation) between the mth and nth signals is

J /

‘s -8
Vo = — 2

fisz sz 1l
—-1/M 1
= =-— 7.4.20

1-1/M) M-1 ( )A
Hence, all the signals have the same pair-wise correlation. Figure 7.27 illustrates a set
of M = 4 simplex signals.

Finally, we mention that by modulating the carrier signal cos 27 fz by a set of M

baseband simplex signal waveforms we obtain a set of M bandpass signal waveforms
that satisfy the properties of the baseband simplex signals.

7.4.4 Binary-Coded Signal Waveforms

Signal waveforms for transmitting digital information may also be constructed from a
set of M binary code words of the form

Cp = (cml: Cm2:~--:CmN), m=1, 2,.... M (7421)

where ¢,y = Oor 1 for all m and j. N is called the block length, or dimension, of the

Sy

Sy & 5y

Figure 7.27 Signal constellation for
Sq M = 4 simplex signals. :
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code words. Given M code words, we can construct M/ signal waveforms by mapping
a code bit ¢,; = 1 into a pulse gr(z) of duration T/N and a code bit ¢,,; = 0 into the

negative pulse —gr (2).
Example 7.4.1
Given the code words

ag=[1 11 1 0]
o=[ 1 0 0 1]
ag=[l 0 1 0 1]
=0 1 0 1 0]
construct a set of M = 4 signal waveforms, as described above, using a rectangular pulse

gr(®).

Solution As indicated above, a code bit 1 is mapped into the rectangular pulse gr(z)
of duration 7'/4, and a code bit 0 is mapped into the rectangular pulse —gr (). Thus,
we construct the four waveforms shown in Figure 7.28 that correspond to the four code

words.
s () 50
A A
} } t T t t + t
/5 275 375 T
—A - ~A T
s1(1) 54(0)
A AT
T
t t
T
At —A

Figuré 7.28 Asetof M = 4 signal waveforms of dimension N = 5 constructed
from the four code words in Example 7.4.1. :
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Let us consider the geometric representation of a set of M signal waveforms
generated from a set of M binary words of the form

Cn = {Cm1, Cm2s -+ s Cmtv), m=1,2,..., M (7.4.22)

where ¢p; = 0 or 1 for all m and j. The M signal waveforms are of dimension N and
are represented geometrically in vector form as

Sm = (Smls Sm2y -+, SmN), m=1,2,..., M (7.4.23)

where §,,; = £4/E;/N for all m and j,

In general, there are 2% possible signals that can be constructed from the 27
possible binary code words. The M code words are a subset of the 2 possible binary
code words. We also observe that the 2% possible signal points correspond to the vertices
of an N-dimensional hypercube with its center at the origin. Figure 7.29 illustrates the
signal points in N = 2 and N = 3 dimensions.

The M signals constructed in this manner have equal energy &,. The crosscorre-

» lation coefficient between any pair of signals depends on how we select the M signals
from the-2" possible signals. This topic is treated in Chapter 9. It is apparent that any
adjacent signal points have a crosscorrelation coefficient of (see Problem 7.2)

N-2

y=— (7.4.24)

and a corresponding Fuclidean distance

d=2+/&/N (7.4.25)

¥3(0)

53 0 o5

P (2)

S3

6.

i

i s,
! 4
|

]

]

¥y(0)

S2

Pt
/

55 5 Figure 7.29 Signal-space diagrams for
- N=3 signals generated from binary codes.
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75 OPTIMUM RECEIVER FOR DIGITALLY MODULATED SIGNALS
iN ADDITIVE WHITE GAUSSIAN NOISE .

Let us consider a digital communication system that transmits digital information by
use of any one of the M-ary signal waveforms described in the preceding sections.
Thus, the input sequence to the modulator is subdivided into k-bit blocks or symbols
and each of the M = 2* symbols is associated with a corresponding baseband signal
waveform from the set {5, (), m =1,2,..., M}. Bach signal waveform is transmitted
within the symbol (signaling) interval or time slot of duration T'. To be specific, we
consider the transmission of information over the interval 0 <t <T.

The channel is assumned to corrupt the signal by the addition of white Gaussian
noise as shown in Figure 7.30. Thus, the received signal in the interval 0 <1 < T may

be expressed as
r(t) = sm(®) +n@t), 02t=<T (7.5.1)

where n(z) denotes the sample function of the additive white Gaussian noise (AWGN)
process with power-spectral density S, (f) = 5"22 W /Hz. Based on the observation of
r(#) over the signal interval, we wish to design a receiver that is optimum in the sense
that it minimizes the probability of making an error.

Itis convenient to subdivide the receiver into two parts, the signal demodulator and
the detector. The function of the signal demodulator is to convert the received waveform
r(7) into an N-dimensional vector r = (ri,72,---,*n), Where N is the dimension of
the transmitted signal waveforms. The function of the detector is to decide which of
the M possible signal waveforms was transmittéd based on observation of the vector T.

Two realizations of the signal demodulator are described in Sections 7.5.1 and
759, One is based on the use of signal correlators. The second is based on the use of
matched filters. The optimum detector that follows the signal demodulator is designed

to minimize the probability of error.

75.1 Correlation-Type Demodulator

Tn this section, we describe a correlation-type demodulator that decomposes the received
signal and the noise into N -dimensional vectors. In other words, the signal and the noise

Transmitted ‘ Channel
signal ) . Received signal
Sm(t) Tﬁ ) = :m(t) £ n(f)
Notise

n(t)

Figure 7.30  Model for received signal passed through an AWGN channel.
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are expanded into a series of linearly weighted orthonormal basis functions {1/, (31

. is assumed that the N basis functions {¥,(t)} span the signal space, so that every one of

the possible transmitted signals of the set {sm(®),1 <m < M) can be represented as a
weighted linear combination of {1/ (#)}. In the case of the noise, the functions {¥, ()}
do not span the noise space. However, we show below that the noise terms that fall
outside the signal space are irrelevant to the detection of the signal.

Suppose the received signal 7(r) is passed through a paralle] bank of N cross
correlators which basically compute the projection of 7(¢) onto the N basis functions
{4, (1)}, as illustrated in Figure 7.31. Thus, we have

T T
/ P (0) dt = / Lo (1) + n(OTW(o) dt
0 0
7% = Smx + N, k=1,2,...,N (7.5.2)

where

T
smk=/0 SmOYdt, k=1,2,...,N

T
ChE = /0 n®OY@) det, k= 1,2,....,N (7.5.3)
Equation (7.5.2) is equivalent to
r=s,+n (7.5.4)
()
i
* : T ) r
G [ 0@ —«1:"0-——»
() !
|
T N
Received fﬂ Oa HE ?
signal {
r(® !
; To detector
i
i
I
{
]
NG i
L |
T i ™
s jo () dt —————{o——»
Sample
atr=T

Figure 7.31 Correlation-type demodulator.
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where the signal is now represented by the vector s, with component§ Sk, k
1,2,..., N. Their values depend on which of the M signals was transmitted. The
components of n, i.e., {n;}, are random variables that arise from the presence of the,

additive noise. ] .
In fact, we can express the received signal 7 (¢) in the interval 0 <7 < T as

N N
P = smtn(®) + > me(e) +7'(2)

ke k=1 :
= i rey(2) +0'(0) ’ (7.55)
The term n’(2), defined as -
n'(#) = n(t) — f%Jnkglfk(t) (7.5.6)
=]

is a zero-mean, Gaussian noise process that represents the differ'enc.e between the
original noise process n(¢) and that part which corresponds to the projection of 2 (#) _opto
the basis functions {y (z)}. We will show below that n’(¢) is irrelevant to the dem.smn
as to which signal was transmitted. Consequently, the decision may be based entirely
on the correlator output signal and noise components 7, = S + 16, k=1,2, ..., N .

Since the signals {s,,(t)} are deterministic, the signal components are determin-
istic. The noise components {n;} are Gaussian. Their mean values are

T
Elm] = / Eln() () dt = 0 757)
0
for all k. Their covariances are

T T
Elnanm] = /0 /O E[n(O)n(t) et (c) dt dt
= /éT/OT ﬁzga(t — DY) Pm (T) dt ér

Ny [T
=2 /O BOYn() a1

Ny
= '_(Smk

2
where 8,,x = 1 when m = k and zero otherwise. Therefore, the N noise compopents
{ny} are zero-mean, uncorrelated Gaussian random variables with a common variance

o2 = No/2, and

(7.5.8)

N . ) f’lﬁ
f(n)=gf(ni)=mme Z'= o
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From the previous development, it follows that the correlator outputs {r;} condi-

tioned on the mth signal being transmitted are Gaussian random variables with mean

Elre] = Elsme + n] = S (7.5.9

and equal variance
o = g% = No/2 (7.5.10)

Since the noise components {71} are uncorrelated Gaussian random variables, they are
also statistically independent. As a consequence, the correlator outputs {r;} conditioned
on the mth signal being transmitted are statistically independent Gaussian variables.
Hence, the conditional probability density functions (PDFs) of the random variables
(r1s72, ..., ry) =1 are simply :

N
Fels) =] Foelsm), m=1,2..., M (7.5.11)

k=1
where

' 1
f(rk ISmk) = me‘(fk—slnxk)z/No, k = 1’ 2, . N (7512)

0

By substituting Equation (7.5.12) into Equation (7.5.11), we obtain the joint conditional
PDFs as :

. o o
F@&lsn) = oSw7 P {— ;(rk - Smk)Z/NOJ (7.5.13)

1
= G SR —salP/Ne], m=1,2,..., M (7.514)

As a final point, we wish to show that the correlator outputs (r(, 72, ..., 7x) are
sufficient statistics for reaching a decision on which of the M signals was transmitted;
i.e., that no additional relevant information can be extracted from the remaining noise
process #'(¢). Indeed, #’'(¢) is uncorrelated with the N correlator outputs {re}; ie.,

EWW ()7 = E[ (8)]sme + Eln' (Hne]

= E[n'()me]
N
= E{[n(t)—znjwj(t)} nk}
=1
T N
= /0 Eln@n(@We(@) dr — 3 Elnn v 0)
j=1
N, N,
= S e(r) - - Vi) =0 (7.5.15)

Since n'(¢) and {r;} are Gaussian and uncorrelated, they are also statistically
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gr(®)

A

Figure 732 Signalpulse for Example
0 T t 751

n’(t) does not contain any information that is relevant to

independent. Consequently, . . .
the decision as to which signal waveform was transmitted. All the relevant information

is contained in the correlator outputs {r;}. Hence, n'(¢) may be ignqrcd.

Example 7.5.1 )
Consider an M-ary PAM signal set in which the basic pulse shape gr(f) is rectangular as

shown in Figure 7.32. The additive noise is a zero-mean white Gaussian noise process.
Determine the basis function ¢ () and the output of the correlation-type demodulator.

Solution The energy in the rectangular pulse is
T T
& = / () dt = / Ald: = AMT
0 0

Since the PAM signal set has a dimension N = 1, there is only one basis function ¥ (¢).
This is obtained from Equation (7.2.11), and given as

1
v = :/——Xf"ng(t)
. 1
—, 0<t<T
V7T
0, otherwise

The output of the correlation-type demodulator is

T 1 (T
r=/o r(t)lﬁ'(t)dt=ﬁ/o r(t)dt

Tt is interesting to note that the correlator becomes a simple i
is rectangular. If we substitute for r(t), we obtain

ntegrator when w1

, .
r= %/0 [s(t) +n()ldr

1 T T )
=_ﬁ[/o sm\b(t)dt—l—/o n(t)dt]

r=Smt+n
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where the noise term E{n] = 0, and

1 T pT
o}=E {—// n(tn(t) dt dr}
T Jo Jo

LTt
=——// Entn(t)ldtdr
T Jo Jo

No [T/T No
= —= 8¢t —1)dtdt = —
2T/0/o ¢~marar =7

The probability density function for the sampled output is

o= =)/ Mo

1

f(r lsm) = *\/EWO
75.2 Matched-Filter-Type Demodulator

Instead of using a bank of N correlators to generate the variablés {r;}, we may use a
bank of N linear filters. To be specific, let us suppose that the impulse responses of the
N filters are

M@ =T -1, 0<t<T (7.5.16)
where {1 (#)} are the N basis functions and 2, (r) = Ooutside of theinterval 0 <t < T.
The outputs of these filters are

mm=Armma—ow

!
=/ r(tyn(T —t+1)dr, k=12,....N (7.5.17)
0
Now, if we sample the outputs of the filters at t = T', we obtain

T
yk(T)=/0 ryn(tydr=n, k=12,...,N (7.5.18)

Hence, the sampled outputs of the filters at time ¢ = T are exactly the same as the set
of values {r;} obtained from the N linear correlators.

A filter whose impulse response h(¢) = s(T' — 1), where s(¢) is assumed to be
confined to the time interval 0 < ¢ < T, is called the matched filter to the signal s(z).
An example of a signal and its matched filter are shown in Figure 7.33. The response
of &(t) = s(T — 1) to the signal s (r) is

3
y() = / s(T)S(T —t+1)de
0
which is basically the time-autocorrelation function of the signal s(z). Figure 7.34

illustrates y(z) for the triangular signal pulse shown in Figure 7.33. We note that the
autocorrelation function y(z) is an even function of ¢ which attains 2 peak at # = T
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s(0 he)=s(T—-9
A A
0 T t 0 T t
(a) Signal s(£) (b) Impulse response Figure 7.33  Signal 5(¢) and filter

of filter matched to s(f)  matched to s(z).

¥(t) =j01 s(7) s(T—t +7dr

w0 -

Figure 7.34 Matched filter output is the
2T t  autocorrelation function of s(z).

[OOSRy

In the case of the demodulator described above, the N matched filters are matched
to the basis functions {v()}. Figure 7.35 illustrates the matched filter-type demodu-
lator that generates the observed variables {rg}.

Properties of the Matched Filter. A matched filter has some interesting
properties. Let us prove the most important property, which may be stated as follows:
If a signal 5 (¢) is corrupted by AWGN, the filter with impulse response matched to 5(¢)

maximizes the output SNR. .
To prove this property, let us assume that the received signal r (¢) consists of the

signal () and AWGN n(¢) which has zero-mean and power-spectral density S, (f)
Nog/2 W/Hz. Suppose the signal r (¢) is passed through a filter with impulse response
A(#),0 <t < T, and its output is sampled at time ¢ = T.AThe filter response to the

signal and noise components is

Yo = [ rohe - o s
= /ts(r)h(t —vdr+ /ot'n(t)h(t —v)dt (7.5.19)
At the sampling instant ¢ —j T, the signal and noise components are
y(T) = /OT s(OWT - )dt + /OT n(A(T —1)dT
= y5(T) + y:(T) : (7.520)
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g}
O3

y

(T—1)

'/’z(T“tj ——/ol->

Received
signal
r(®)

(Tt e oIV 5

Sample Figure 7.35 Matched filter-type
atr=T demodulator.

where y;(T') represents the signal component and y, (T') represents the noise compo-
nent. The problem is to select the filter impulse response that maxirmizes the output

SNR defined as
(SY _ YAD)
<N > o E[HD)] (7.5.21)

The denominator in Equation (7.5.21) is simply the variance of the noise term at
the output of the filter. Let us evaluate £ [y2(T)]. We have

T T
E X)) = /o /0 E@n@(T — k(T — 1) di de
_ & T 0T 3 B
== O/O 8¢ — AT — DT — 1) di de

. N, T
= 70 /0 RA(T — 1) dt (1.5.22)

Note that the variance depends on the power-spectral density of the noise and the energy
in the impulse response A (f).

By substituting for y;(T") and E[y2(T)] into Equation (7.5.21), we obtain the
expression for the output SNR as

<-S"> = [foTS(r)h(T — 1) dt]z [fGTh(T)S(T — t)dr]2
0

= 7.5.23
N BT 1 d Yo (Th2(T —1yde (7:5:23)
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Since the denominator of the SNR depends on the energy in h(t), the maximum output
SNR over h(f) is obtained by maximizing the numerator of (S/N)g subject to the
constraint that the denominator is held constant. The maximization of the numerator
is most easily performed by use of the Cauchy-Schwarz (see Problem 2.9) inequality,
which states, in general, that if g1 () and g (¢) are finite energy signals, then

°) 2 ) o0
{ / gl(t)gz(ﬂdt} < / g ar / g2yt (7.5.24)

where equality holds when g (t) = Cga(#) for any arbitrary constant C. If we set

g1(t) = h() and g2 () =3 (T —1), itis clear that the (S /N)g is maximized when h(t) =

Cs(T —1);ie., h(t)is matched to the signal s(#). The scale factor C% drops out of the

expression for (S/N)q since it appears in both the numerator and the denominator.
The output (maximum) SNR obtained with the matched filter is

(s> 2 T, | _
N/, NO‘/O (7.5.25)

_ 28

=
Note that the output SNR from the matched filter depends on the energy of the waveform
s(r) but not on the detailed characteristics of s(¢). This is another interesting property
of the matched filter.

Frequency Domain Interpretation of the Matched Filter. The matched

filter has an interesting frequency domain interpretation. Since h(t) =s(T — 1), the
Fourier transform of this relationship is

T Py
H(f) = /0 s(T — e~ ¥t dr

T
= [/ s(r)e! =T dr} eIt
4}
= S*(f)e =T (7.5.26)

We observe that the matched filter has a frequency response which is the complex
conjugate of the transmitted signal spectrum multiplied by the phase factor e~ i T,
which represents the sampling delay of 7. In other words, |H(f)] = 1S(f). s0 that the
magnitade response of the matched filter is identical to the transmitted signal spectrum.
On the other hand, the phase of H(f) is the negative of the phase of S(H-

Now, if the signal s(¢), with spectrum S(f), is passed through the matched filter,
the flter output has a spectrum ¥ () = 1S(f) |2¢~127/T Hence, the output waveform is

35ty = / y(f)e? I df

= / ” |S(F) RIS TS24 f (7.5.27)
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By sampling the output of the matched filter at ¢ = 7', we obtain

o0 T
(T) = / IS(iaf = /0 S dr = &, (7.5.28)

where the last step follows from Parseval’s relation.
The noise of the output of the matched filter has a power-spectral density

So(f) = 1H()PNo/2 (7.5.29)

Hence, the total noise power at the output of the matched filter is
(o]
P= [ Sindf

® N Ny [*® &N
= [ Dmptar =3 [ isprar =25 0530
—c0 —co 2
The output SNR is simply the ratio of the signal power 2, given by
Py =y2(T) (7.531)
to the noise power P,. Hence,
P g2 2%

)
(N o P ENe2 N
which agrees with the result given by Equation (7.5.25).

(7.5.32)

Example 7.5.2 :
Cogsider ﬂ}_e M = :’-tbiorthogonal signals constructed from the binary PPM signals and
.then' m?gat.lves in Figure 7.12(b), for transmitting information over an AWGN channel.
The. noise is assumed to have zero mean and power-spectral density Np/2. Determine the
basis functions for this signal set, the impulse response of the matched-filter demodulators,
fmd t(h; output waveforms of the matched filter demodulators when the transmitted signal
18 $1(7).
Solut'ion The M = 4 biorthogonal signals have dimension N = 2. Hence,.two basis
functions are needed to represent the signals. From Figure 7.12(b), we choose ¥ (f) and

Ya(r) as
T
2 juit
V() = Vi 0sis3

0, otherwise
W3 Lerer

Yalt) = 2 (7.5.33)
0, otherwise
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Figure 7.36 Basis functions and matched filter Tesponses for Example 7.5.2.

These waveforms are illustrated in Figure 7.36(a). The impulse responses of the two
matched filters are

Z, T <t=<T
@)= (T -1 = 2
0, otherwise
\/;, 0<1<T/2
Ba®) = (T —1) = (7.534)
0, otherwise

and are illustrated in Figure 7.36(b).

If 51(2) is transmitted, the (noise-free) responses of the two matched filters are
shown in Figure 7.36(c). Since y(#) and y,(t) are sampled at + = T, we observe that
y1:(T) = 4/ 42—T and y,(T) = 0. Note that A?’T/2 = &, the signal energy. Hence,
the received vector formed from the two matched filter outputs at the sampling instant
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t = T is
= ()= (V& +n,n,) (7.5.35)

"where ny = y1a(T) and n; = y2,(T) are the noise components at the outputs of the
matched filters, given by )

T
Yeu(T) =/ nye®dt, k=12 (7.5.36)
0
Clearly, E{n;] = E[yr.(T)] = 0. Their variance is

T pT
ot = E [ (1)) = fo /0 Eln@n (@) v (v) dt dr
. NO T T
== / / 8t — Y (O)(r) di de
2 0 Jo

= 5\’2—0 /0 T'wz(r) dt = % (7.5.37)
Observe that the (S/N), for the first matched filter is
(), -4
NJ,” N2 T Ny
which agrees with our previous resuit. Also note that the four possible outputs of the

two matched filters, corresponding to the four possible transmitted signals are (ry, 75) =

(V& +n1,m), (01, VE +12), (=&, + ny, 1), and (ny, ~/E; + n3).

7.5.3 The Optimum Detector

In Sections 7.5.1 and 7.5.2, we demonstrated that, for a signal transmitted over an
AWGN channel, either a correlation-type demodulator or a matched-filter-type demod-
ulator produces the vectorr = (ry, ry, . . ., ry) which contains all the relevant informa-
tion in the received signal waveform. In this section, we describe the optimum decision
tule based on the observation vector r. For this development, we assume that there is
no mermory in signals transmitted in successive signal intervals. .

“‘As it is seen from Equation (7.5.4), the received vector r is the sum of two
Vectors, S, the vector equivalent of the transmitted signal, and n, the noise vector. The
vector s, is a point in the signal constellation and the vector n is an N-dimensional
random vector with ii.d. components each being a Gaussian random variable with
mean 0 and variance Ny/2. Since components of the noise are independent and have
the same mean and variance, the distribution of the noise vector n in the N -dimensional
space has spherical symmetry: When s,, is transmitted, the received vector r, which
represents the transmitted signal s,, plus the spherically symmetric noise n, can be
represented by a spherical cloud centered at s,,. The density of this cloud is higher at
the center and becomes less as we depart from s,; i.e., these points become less likely
to be received. The variance of the noise Np/2 determines the density of the noise
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Ly

8!
ks
oy Figure 7.37 Signal constellation, noise
= cloud and received vector for N = 3 and
M = 4. Ttis assumed that sy is
s transmitted.

cloud around the center signal s, For low Np/2, the cloud is quite centered around
s, and its density (representing the probability) reduces sharply as the distance from
the center is increased. For high Np/2, the cloud is spread and larger distances have
a higher probability compared with the low No/2 case. The signal constellation, the
noise cloud, and the received vector are shown in Figure 7.37 for the case of N =3
and M = 4.

We wish to design a signal detector that makesa decision on the transmitted signal
in each signal interval based on the observation of the vector r in each interval, such that
the probability of a correct decision is maximized. With this goal in mind, we consider
a decision rule based on the computation of the posterior probabilities defined as

P(signal s, was transmitted | 1) m=12,....,.M

which we abbreviate as P (s, | r). The decision criterion is based on selecting the signal
corresponding to the maximum of the set of posterior probabilities {P (s | r)}. At the
end of this section we show that this criterion maximizes the probability of a correct

decision and, hence, minimizes the probability of error. Intuitively this decision is

the best possible decision that minimizes the error probability. It is clear that in the
absence of any received information r, the best decision is to choose the signal sp
that has the highest prior probability P (sm). After receiving the information r, the
prior probabilities P (s,) are substituted with the posterior (conditional) probabilities
P (s, | v) and the receiver chooses Sy that maximizes P (s, | r). This decision criterion
is called the maximum a posteriori probability (MAP) criterion.

Section 7.5 Optimum Receiver for Digitally Modulated Signals 383

Using Bayes rule, the posterior probabilities may be expressed as

P(sy ) = JE 1) Plsn) (7.5.38)

F®

where F(r |s,) is the conditional PDF of the observed vector given s, and P (s, is the
a priori probability of the mth signal being transmitted. The denominator of Equation
(7.5.38) may be expressed as

M
F@ = fT18m)P(sm) (7.539)

m=1

From Equations (7.5.38) and (7.5.39) we observe that the computation of the
posterior probabilities P (s, | r) requires knowledge of the a priori probabilities P (5m)
and the conditional PDFs f(r{s,)form=1,2,..., M.

Some simplification occurs in the MAP criterion when the M signals are equally
probable a priori; i.e., P(sy) = 1/M for all M. Furthermore, we note that the denomi-
nator in Equation (7.5.38) is independent of which signal is transmitted. Consequently,
the decision rule based on finding the signal that maximizes P(s,, | r) is equivalent to
finding the signal that maximizes f(r|8,).

The conditional PDE f(r | 8,,) or any monotonic function of it is usually called the
likelihood function. The decision criterion based on the maximum of £ (r [ s,) over the
M signals is called the maximum-likelihood (ML) criterion. We observe that a detector
based on the MAP criterion and one that is based on the ML criterion make the same
decisions as long as the a priori probabilities P (s,,) are all equal; i.e., the signals {sn}
are equiprobable.

In the case of an AWGN channel, the Iikelihood function f(r{s,) is given by
Equation (7.5.11). To simplify the computations, we may work with the natural loga-
rithm of f(r|s,.), which is 2 monotonic function. Thus,

~N 1 &
In f(rlsn) = — In(eNo) = 3~ S 0= smi)? (7.5.40)
k=1

The maximum of In. £ (I | s,,) Over s, is equivalent to finding the signal s, that minimizes
the Euclidean distance

N
D(r,sm) = » (k= Smik)’ (7.5.41)

k=1

We call D(r,S,) m = 1,2,..., M, the distance metrics. Hence, for the AWGN
channel, the decision Tule based on the ML criterion reduces to finding the signal s,,
that is closest in distance to the received signal vector r. We will refer to this decision
rule as minimum distance detection.
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Amother interpretation of the optimum decision rule based on the ML criterion is
obtained by expanding the distance metrics in Equation (7.5.41) as

N N N
. E 2 2
D(x, Sm) = Ty —ernsmn+ Smn
n=1

n=]1 n=1

= - 2resa+lsal? m=12....M (1542

The term |r|? is common to all decision metrics and, henée, it may be ignored in the
computations of the metrics. The result is a set of modified distance metrics

D'(r, $m) = —2T - S + lISm|I? (7.5.43)

Note that selecting the signal s, that minimizes D'(r, s,) is equivalent to selecting the
‘signal that maximizes the metric C(r, s,,) = —D'(x, 8x); L€,

C(r, 8%) =28 Sy — 5wl (7.5.44)

The term r - §,, Tepresents the projection of the received signal vector onto each of
the M possible transmitted signal vectors. The value of each of these projections is
a measure of the coirelation between the received vector and the mth signal. For this
reason, we call C(r, sm), m = 1,2, ..., M, the correlation metrics for deciding which
of the M signals was transmitted. Finally, the terms |[sp||* = &n,m = 1,2, ..., M, may
be viewed as bias terms that serve as compensation for signal sets that have unequal
energies, such as PAM. If all signals have the same energy, [ls, ||> may also be ignored
in the computation of the correlation metrics C(r, s») and the distance metrics D(x, §)
or D'(x, spm). : '

In summary, we have demonstrated that the optimum ML detector computes a
set'of M distances D(r, s,,) or D'(x, s,,) and selects the signal corresponding to the
smallest (distance) metric. Equivalently, the optimum MIL detector computes a set
of M correlation metrics C(r, $,,) and selects the signal corresponding to the largest
correlation metric.

The above development for the optimum detector treated the important case in
which all signals are equally probable. In this case, the MAP criterion is equivalent to
the ML criterion. However, when the signals are not equally probable, the optimum
MAP detector bases its decision on the probabilities P (s, 1), m = 1,2, ..., M, given
by Equation (7.5.38) or, equivalently, on the posterior probability metrics,

PM(X, $z) = F (T |Sm) P (Sm) (7.5.45)

The following example illustrates this computation for binary PAM signals.

Example 7.5.3
Consider the case of binary PAM signals in which the two possible signal points are
51 = —s3 = /&, where &, is the energy per bit. The prior probabilities are P(s;) = p
and P(sy) = 1 — p. Determine the metrics for the optimum MAP detector when the
transmitted signal is corrupted with AWGN.
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’ Solution The received signal vector (one dimensicnal) for binary PAM is

r =+ + y(T) (7.5.46)

where y, (T is a zero-mean Gaussian random variable with variance o2 — Ng/2. Conse-
qugntly, the conditional PDFs 7 (r | s,,) for the two signals are !

_ =SB 202

frlsy) = = &) /25 (7.5.47)
. — 2 2

frls) = ——e o+ VB 20 (7.5.48)

Then the metrics PM(r, s;) and PM(r, sz) defined by Equation (7.5.45) are
PM(r, 51) = pf(ris)

= P =TV}
| o (7.5.49)
PM(r, 55) = f/z:p e~ TVEY 20} (7.5.50)
T Oy

If PM(r, s1) > PM(r, 57), we select s i i i
i » 1 s §2)5 1 as the transmitted signal; otherwise
This decision rule may be expressed as ¥ ;e select sz

PM(I', Sl) :>l 1
PM(r, ) (7.5.51)
But
PM(r, 51) P
— o G - r—vE) 202
BMmsy) ~ 1=t (15.52)
so that Equation (7.5.51) may belexpressed as
CHVE - -VERL 1-p 7553
207 - 7 (7.5.53)
or, equivalently,
51 2
1- Ny 1-
Eir Z U—"ln——.p =20 F
- z B (1.5.54)

This is the final form for the optimum detector, It computes the correlation metric
C(r, 51) = r+/&, and compares it with the threshold (No/H In(1 ~ p)/p.

Itis interesting to note that in the case of unequal prior probabilities, iti
to know not only the values of the prior probabil(ilﬁes%ut alljso the value, of1 EIGG ;st:/aerrﬁ-[
gpectral density Ny, in order to compute the threshold. When p = 1/2, the threshold
1s zero, and knowledge of Ny is not required by the detector. ’
. We cc‘mcl.ade this section with the proof that the decision rule based on the
maximum-likelihood criterion minimizes the probability of error when the M signals are
equally probable a priori. Let us denote by R, the region in the N-dimensional space for
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which we decide that signal s,, () was transmitted when the vectorr = (1,72, -+, TN)
is received. The probability of a decision error given that s, (¢) was transmitted is

Pe|sy) = /R‘ f(r|sy)dr (7.5.55)

where RS, is the complement of R,,. The average probability of error is

Y1
P(e) =" 77P(elsn)

m=1

M
1
—;ﬁ—/}?ﬁf(rlsm)dr

Mo r
= —I—7 r|s,)dr 7.5.56
>3 - [ seis ] (75.56)
We note that P(e) is minimized by selecting the signal s, if f(r|sy) is larger than

f(rlsy) forallm 5 k.
Similarly for the MAP criterion, when the M signals are not equally probable,

the average probability of error is

M
P@=1-) [ PaInf@dr

m=l
P(e) is a minimum when the points that are to be included in each particular region
R,, are those for which P (s, | 1) exceeds all other posterior probabilities.

75.4 Demodulation and Detection of Carrier-Amplitude
Modulated Signals

The demodulation of a bandpass digital PAM signal may be accoinplished by-means
of correlation or matched filtering. However, as we will observe from the following
development, the presence of the carrier introduces an additional complication in the

demodulation.
The transmitted PAM signal in a signaling interval has the form

Un(t) = Amgr()cos2nfet, 0=<r=<T (7.5.57)
The received signal may be expressed as
r(t) = Angr@)cos2nfer +n(), 0=t= T (7.5.58)

where n(1) is a bandpass noise process, which is represented as

n(2) = ne(r) cos 27 fut — ng(t) sin2m fot (7.5.59)
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By crosscorrelating the received signal r(r) with the basis function ¥ (¢), we have

T 2 T 7
/r(t)wﬁ(t)dt:Am/——/ g%(t)c0322ﬂfctdt+/ n(HDy (2) dt
0 & Jo 0

= Ay /& /241 (1.5.60)

where n represents the additive noise component at the output of the correlator.
An identical result is obtained if a matched filter is used in place of the correlator

to demodulate the received signal.

Carrier-Phase Recovery. Inthe above development, we assumed that the func-
tion v (¢) is perfectly synchronized with the signal component of (¢} in both time and
carrier phase, as shown in Figure 7.38 for PAM. In practice, however, these ideal condi-
tions do not hold. First of all, the propagation delay encountered in transmitting a signal
through the channel results in a carrier-phase offset in the received signal. Second, the
oscillator that generates the carrier signal cos2n ft at the receiver, is not generally
phase locked to the oscillator used at the transmitter. Practical oscillators usually drift
in frequency and phase. Consequently, the demodulation of the bandpass PAM signal,
as illustrated in Figure 7.38, is ideal, but it is not practical. In a practical system, itisnec-
essary to generate a phase-coherent carrier at the receiver to perform the demodulation
of the received signal.

In general, the received signal has a carrier phase offset ¢. To estimate ¢ from
the received signal requires that we observe r () over many signal intervals. Because
the message signal, when observed over many signal intervals, is zero mean due to the
randomness in the signal amplitude values {A}, the transmitted DSB-SC amplitude-
modulated signal has zero-average power at the carrier frequency f.. Consequently, it
is not possible to estimate the carrier phase directly from r(t). However, if we square
r(r), we generate a frequency component at f = 2 f. that has nonzero-average pOwer.
This component can be filtered out by a narrowband filter tuned to 2 fe, which can be

Received
signal
@ . To detector

— (X [ Qdt Sampler  p———>"

140

Signal
(X><— pulse < Clock
[ generator
cos 2mf.t
Oscillator Figure 7.38 Demodulation of bandpass
digital PAM signal.
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r(t) ~ Baseband Outpat
x correlator or Sampler Detector 3~
matched filter

cos (21rfct—$)

PLL

Clock

Figure 7.39 Dernodulation of carrier-amplitude modulated signal. *

used to drive a PLL, as described in Section 5.2. A functional block diagram of the
receiver that employs a PLL for estimating the carrier phase is shown in Figure 7.39.

The Costas loop, also described in Section 5.2, is an alternative method for esti-
mating the carrier phase from the received signal r (¢). Recall from our discussion in
Section 5.2 that the PLL and the Costas loop yield phase estimates that are comparable
in quality in the presence of additive channel noise.

As an alternative to performing the correlation or matched filtering at baseband
as shown in Figure 7.39, we may perform crosscorrelation or matched filtering either
at bandpass or at some convenient intermediate frequency. In particular, a bandpass
correlator may be used to multiply the received signal r () by the amplitude-modulated
carrier gr(2) cos(2r fut + &), where cos(2nfot + ¢) is the output of the PLL. The
product signal is integrated over the signaling interval 7, the output of the integrator is
sampled at 7 = T, and the sample is passed to the detector. If a matched filter instead
of a correlator is used, the filter impulse response is gr (7 — ) cos[2n f(T — 1) — (ﬁ].
The functional block diagrams for these demodulators are shown in Figure 7.40.

Opﬁmum Detector. In the case of a perfect (noise-free) carner-phase esti-
mate, ¢ = ¢, and the input to the detector is the signal plus noise term given by
Equation (7.5.60). As in the case of baseband PAM, for equiprobable messages, the
optimum detector bases its decision on the distance metrics

Dlrysp) =G —sm), m=1,2,...,M {(7.5.61)
or, equivalently, on the correlation metrics
CU, Sm) = 2rsm — 52 (7.5.62)
7.5.5 Demodulation and Detection of Carner—Phase
Modulated Signals

The received bandpass signal from an AWGN channel in a signaling interval 0 <¢ < T,
may be expressed as

r{t) = um(t) +n() _
= [Amegr (#) +ne(0)]cos 2 fet — [Apegr (t) + ns(8)] sin 2 fot
m=20,2,....M—-1 (7.5.63)
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Figure 740 Bandpass demodulation of digital PAM signal via (a) bandpass
correlation and (b) bandpass matched filtering.

where . (¢) is the additive bandpass Gaussian noise and A and A, are the information-
bearing signal components that are related to the transmitted carrier phase by Equa-
tion (7.3.16).

The recewed signal may be correlated with v, (1) = ,\/: gr(t)cos2m f ¢t and
() =— 5 gr () sin2x f.t. The outputs of the two correlators yield the two noise-
corrupted s1gna1 components, which may be expressed as :

I=S8,+n
= (V& cos2mm/M +ne, /& sin2mm/M + n,) (7.5.64)

where, by definition

(One(r) dr

1 T
¢ = ,_26g/0. gT

1 T
ng = ﬁ /) ns(l.‘)gf(f) dt (7.5.65)
3
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Because the quadrature noise components ne(t) and n;(t) are zero mean and
uncorrelated [see the argument following Equation (4.6.4)]; it follows that Efn ] =
Eln,} =0 and E[n.n,] =0.

The variance of the noise components is

1 T eT
Ei) =] =5 [ | a0 @Enonmldide
g

No [T,
= — t)dt
28, Jo gr(0)

= No/2 ‘ (1.5.66)

The optimum detector projects the received signal vector onto each of the M
possible transmitted signal vectors {s.} and selects the vector corresponding to the
largest projection; i.e., we compute the correlation metrics

C(¥,8p) =71 Sm, m=0,1,...,M—-1 (7.5.67)

and select the signal vector that results in the largest correlation.
Because all signals have equal energy, an equivalent detector metric for digital-
phase modulation is to compute the phase of the received signal vector r = (71, ra)

®, = tan~! 2 (1568
n

and select the signal from the set {s,} whose phase is closest to @,. In the follow-
ing section, we evaluate the probability of error based on the phase metric given by

Equation (7.5.68).
Carrier-Phase Estimation.  Aspreviously indicated, inany carrier-modulation
system, the oscillators employed at the transmitter and the receiver are not phase-locked,

. in general. As a consequence, the received signal will be of the form

7(£) = Amcgr () cos2rfet + ) — Ams&T (@) sinQr fot + @) +n(t) ‘ (7.5.69)

where ¢ is the carrier-phase offset. This phase offset must be estimated at the receiver,
and the phase estimate must be used in the demodulation of the received signal. Hence,
the received signal must be correlated with the two orthogonal basis functions.

) = \/ggr(f) cos@2nfet + 4)
g B

2 R
Yolt) = — 787 () sin@r fot + @)
\f A .

where ¢ is the estimate of the carrier phase, as shown in Figure 7.41 for the case in
which gr(t) is a rectangular pulse.

(15.70) -

Section 7.5 Optimum Receiver for Digitally Modulated Signals 391
To
T detector
@ -/0 () dr / o 3
\/-12: cos @mfir+d)
Received
signal
PLL
90°
\/—%— sin @mft+ 55)
To
T detector
@ /0 (at " o

Figure 7.41 Demodulator for PSX signals.

‘When the digital information is transmitted via M-phase modulation of a carrier,
a PLL may be used to estimate the carrier-phase offset. For M = 2, the squaring PLL
and the Costas loop described in Section 5.2 are directly applicable.

For M > 2, the received signal may first be raised to the Mth power as shown in
Figure 7.42. Thus, if the received signal r (t) has the form

r(t) = sn () + 1)

— gr(1) cos <2n e+ g%—"—) +n() (7.5.71)

and we passr (¢) through an Mth power device, the output signal will contain harmonics
of the carrier f,. The harmonic that we wish to select is cos(@z Mf.t + M) for
driving the PLL. We note that

2rm
M(—M——> =2rm=0@mod2r), m=12,....,.M (7.572)

Thus, the information is removed from the Mth harmonic. The bandpass filter tuned
to the frequency M. produces the desired frequency component cos(27 Mf.t + M)
fin'ving the PLL. The VCO output is sinQrw Mf.t + M ), so this output is divided
infrequency by M toyield sin(27 £, +¢) and phase-shifted by 7 /2 to yield cos 2m f.2+
@). The two quadrature-carrier components are then passed to the demodulator.
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Figure 7.42 Carrier-phase estimation for M-ary PSK signals.

‘We should note that the quadrature-phase carrier components generated as de-
scribed above contain phase ambiguities of multiples of 27 /M that result from mul-
tiplying the carrier phase ¢ by M. Because M¢ (mod 27) is less than 27, dividing
the resulting angle by M yields a phase estimate of |¢| < 27/M, when, in fact, the

© true carrier phase may exceed this estimate by multiples of 277/M, i.e., by 2rk/M, for -

k=1,2,..., M—1.Such phase ambiguities can be overcome by differentially encod-
ing the data at the transmitter and differentially decoding at the detector, as described
below.

Just as in the case of the squaring PLL, the Mth power PLL operates in the
presence of noise that has been enhanced by the Mth power-law device. The variance
of the phase error in the PLL resulting from the additive noise may be expressed in the
simple form

1
SuLor

y N

(7.5.73)

Q

where py, is the loop SNR and Sy, is the M-phase power loss. Sy 1, has been evaluated
by Lindsey and Simon (1973) for M =4 and M = 8.,

Another method for extracting a carrier-phase estimate ¢ from the received signal
for M-ary-phase modulation is the decision-feedback PLL (DFPLL), which is shown
in Figure 7.43. The received signal is demodulated by using two quadrature phase-
locked carriers to yield » = (ry, ro) at the sampling instants. The phase estimate 6, =
tan~! r,/ry is computed at the detector and quantized to the nearest of the M possible
transmitted phases, which we denote as §,,. The two outputs of the quadrature multipliers
are delayed by one symbol interval T’ and multiplied by cos 8,, and —sind,,. Thus, we
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1
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These two signals are added together to generate the error signal

- 1 N
e(t) = gr(@)sin(¢ — ¢) + Enc(t) sin(¢ — ¢ — Om)

i -
+ é‘ns(t) cos(¢p — ¢ — bm)
-+ double-frequency terms (7.5.74)

This error signal is the input to the loop filter that provides the control signal for the
VCO. '

We observe that the two quadrature noise components in Equation (7.5.74) ap-
pear as additive terms and no ferm involves a product of two noise components as
in the output of the Mth power-law device. Consequently, there is no power loss re-
sulting from nonlinear operations on the received signal in the DFPLL. The M-phase
decision-feedback tracking loop also has a phase ambiguities of 27k/M, necessitating
the need for differentially encoding the information sequence prior to transmission and
differentially decoding the received sequence at the detector to recover the information.

Differential-Phase Modulation and Demodulation. The performance of
ideal, coherent phase modulation/demodulation is closely attained in communication
systems that transmit a carrier signal along with the information signal. The carrier-
signal component, usually referred to as a pilot signal, may be filtered from the received
signal and used to perform phase-coherent demodulation. However, when no separate
carrier signal is transmitted, the receiver must estimate the carrier phase from the
received signal. As indicated in the Section 7.5.5, the phase at the output of a PLL has
ambiguities of multiples of 27/M, necessitating the need to differentially encode the
data prior to modulation. This differential encoding allows us to decode the received
data at the detector in the presence of the phase ambiguities.

Tn differential encoding, the information is conveyed by phase shifts between any
two successive signal intérvals. For example, in binary-phase modulation the informa-
tion bit 1 may be transmitted by shifting the phase of the carrier by 180° relative to
the previous carrier phase, while the information bit 0 is transmitted by a zero-phase
shift relative to the phase in the preceding signaling interval. In four-phase modula-
tion, the relative phase shifts between successive intervals are 0°, 90°, 180°, and 270°,
corresponding to the information bits 00, 01, 11, 10, respectively. The generalization
of differential encoding for M > 4 is straightforward. The phase-modulated signals
resulting from this encoding process are called differentially encoded. The encoding is
performed by a relatively simple logic circuit preceding the modulator.

Demodulation and detection of the differentially encoded phase-modulated signal
may be performed as described in the preceding section using the output of aPLL to
perform the demodulation. The received signal phase ®, = tan~! r,/r1 at the detector
is mapped into one of the M possible transmitted signal phases {6} that is closest to
©,. Following the detector is 2 relatively simple phase comparator that compares the
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phases of the detected signal over two consecutive intervals to extract the transmitted
information. Thus, phase ambiguities of 277 /M are rendered imrelevant.

A differentially encoded phase-modulated signal also allows another type of
demodulation that does not require the estimation of the carrier phase. Instead, the
phase of the received signal in any given signaling interval is compared to the phase
of the received signal from the preceding signaling interval. To elaborate, suppose that
we demodulate the differentially encoded signal by multiplying r(z) with cos 27 f ¢
:and sin 27 f,¢ and integrating the two products over the interval T'. At the kth signaling
interval, the demodulator output is

re = /& /O 4 p, (7.5.75)

where B_k is the phase angle of the transmitted signal at the kth signaling interval, ¢ is
the carrier phase, and n; = ny. + jng, is the noise vector. Similarly, the received signal
vector at the output of the demodulator in the preceding signaling interval is

ree1 = /& /OO Ly (7.5.76)

The decision variable for the phase detector is the phase difference between these two
comp%ex numbers. Equivalently, we can project r, onto re—; and use the phase of the
resulting complex number; i.e.,

rirg_ =& el @ =b-) | fe e"'(e"""’)n};__1 F € e IOy, mny_q  (7.577)

which, in the absence of noise, yields the phase difference 6 — 6. Thus, the mean
value of rr}_, is independent of the carrier phase. Differentially encoded PSK signaling
that is demodulated and detected as described above is called differential PSK (DPSK).

The demodulation and detection of DSPK using matched filters is illustrated in
figure 7.44. If the pulse g7 (r) is rectangular, the matched filters may be replaced by
integrators, which are also called integrate-and-dump filters.

() Matched s
O/ filter ampler
cos 2f,t
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by T —>~ comparator decision
A 4
sin 27ft
X
() Matched
o/ filter Sampler

Figure 7.44 Block diagram of DPSK demodulator.
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7.5.6 Demodulation and Detection of Quadrature Amplitude
Modulated Signals

Let us assume that a carrier-phase offset is introduced in the transmissiop 'of the sigpal
through the channel. In addition, the received signal is corrupted by additive Gaussian
noise. Hence, r{¢) may be expressed as .

r(t) = Amcgr(t) cos@ufct + @) + Amsgr () sin(2r fet + @) +n (1) (7.5.78)

Suppose that an estimate & of the carrier phase is available at the demodulator.
Then, the received signal may be correlated with the two basis functions

@) = \/g—gr (t) cos@rfot + )
4

Pa(t) = \/;2"81'(?) sin(2r fot + )
t4

as illustrated in Figure 7.45, and the outputs of the correlators are sampled and passed

(7.5.79)
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Figure 7.45" Demodulation and detection of QAM signals.
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to the detector.
The input to the detector consists of the two sampled components #;, 75, where
& =&/2)
71 = Ancn/E500S(§ = §) + Ams/E; sin(¢ — §) + 1 sin — 1, cos (7.5.80)
72 = Ame/E SN — ) + Ans/E cos(p — ) +nesing —ngcosd
We observe that the effect of an imperfect phase estimate is twofold. First, the desired
signal components in r; and r, are reduced in amplitAude by the factor cos(¢p — ¢). In
turn, this reduces the SNR by the factor cos?(¢ — ¢). Second, there is a leakage of
the quadrature signal 'gomponents into the desired sighal. This signal leakage, which
is scaled by sin{¢ — ¢), causes a significant performance degradation unless ¢ — ¢
is very small. This point serves to emphasize the importance of having an accurate
cartier-phase estimate in order to demodulate the QAM signal.
The optimum detector computes the distance metrics

Dsw) =lr—sal®, m=1,2,...,M (7.5.81)

and selects the signal corresponding to the smallest value of D(r, s,,). If a correlation
metric is used in place of a distance metric, it is important to recognize that correlation
metrics must employ bias correction because the QAM signals are not equal energy
signals.

v Carrier-Phase Estimation. As we have indicated above, the demodulation
of a QAM signal requires a carrier that is phase-locked to the phase of the received
carrier signal. Carrier-phase estimation for QAM can be accomplished in a number of
different ways depending on the signal-point constellation and the phase relationships
of the various signal points.

For example, let us consider the 8-point QAM signal constellation shown in
Figure7.17(b). The signal points in this constellation have one of two possible amplitude
values and eight possible phases. The phases are spaced 45° apart. This phase symmetry
allows us to use a PLL driven by the output of an 8th power-law device that generates a
carrier component at 8 f,, where f; is the carrier frequency. Thus, the method illustrated
in Figure 7.42 may be used in general for any QAM signal constellation that contains
signal points with phases that are multiples of some phase angle 6, where L8 = 360°
for some integer L. '

Another method for extracting a carrier-phase estimate ¢ from the received M. -ary
QAM signal is the DFPLL previously described in Section 7.5.5. The basic idea in the
DFPLL is to estimate the phase of the QAM signal in each signal interval and remove
the phase modulation from the carrier. The DFPLL may be used with any QAM signal,
irrespective of the phase relationships among the signal points.To be specific, let us
express the received QAM signal in the form

r(t) = Angr () c0s2n fot + 6, + @) +n(?), (7.5.82)

where 6, is the phase of the signal point and ¢ is the carrier phase. This signal is
demodulated by crosscorrelating r (¢) with v (¢) and yr, {£), which are given by Equation
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(7.5.79). The sampled values at the output of the correlators are
r1 = An/Es 080y + & — $) +1c OO + ¢ — @) — s sin6y + ¢ — §)
ry = A/ sin(G, + ¢ — §) +nesin(6, + ¢ — @) — s sin6s + ¢ — )
Now suppose that the detector, based on r; and ry, has made the correct decision
on the transmitted signal point. Then we multiply r; by —sin 6, and ry by cos 8,. Thus,
we obtain
—ry8iné, = —4p \/Z': cos(6, +¢ — $) sin 8, -+ noise component
= Ap+/E;[—sinb, cos 8, cos(@ — ) + sin’ 8, sin(¢ — $)]
+ noise component '
r,cosb, = Am\/z—i': sin(6, + ¢ — $) cos 8, + noise component
= An\/E;[51n6, 036, cos(¢ — §) + cos” b, sin(g — §)]
-+ noise component

(7.5.83)

(7.5.84)

By adding these two terms we obtain an error signal e(f), given as

e(t) = rycosby — rysiné,
= Am\/a sin(¢ — 43) + noise components (7.5.85)

This error signal is now passed to the loop filter that drives the VCO. Thus, only
the phase of the QAM signal is used in obtaining an estimate of the carrier phase.
Consequently, the general block diagram for the DFPLL, given in Figure 7.43, also
applies to carrier-phase estimation for an M-ary QAM signal.

As in the case of digitally phase-modulated signals, the method described above
for carrier-phase recovery results in phase ambiguities. This problem is solved generally
by differential encoding of the data sequence at the input to the modulator.

75.7 Demodulation and Detection
of Frequency-Modulated Signals

Let us assume that the FSK signals are transmitted through an additive white Gaussian
noise channel. Furthermore, we assume that each signal is delayed in the transmis-
sion through the channel. Consequently, the filtered received signal at the input to the
demodulator may be expressed as

r() ‘= 4/ %Jis— cos(2r fit +2nmAft + ) + (1) (7.5.86)

where ¢,, denotes the phase shift of the mth signal (due to the transmission delay) and
n(t) represents the additive bandpass noise, which may be expressed as
n(r) = n.(t) cos 2 ft — ns(t) sin 2m fot (7.5.87)

The demodulation and detection of the M FSK signals may be accomplished by
one of two methods. One approach is to estimate the M carrier-phase shifts {¢,} and
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Figure 7.46 Phase-coherent demodulation of M-ary FSK signals.

perform phase-coherent demodulation and detection. As an alternative method, the
carrier phases may be ignored in the demodulation and detection of the FSK signals.
The latter is called noncoherent demodularion and detection.

In phase-coherent demodulation, the received signal 7 (¢) is correlated with each
of the M possible received signals cos (27 fot +2nmAft +¢m), m =0,1,..., M —1,
where {¢} are the carrier phase estimates. A block diagram illustrating this type of
demodulation is shown in Figure 7.46. It is interesting to note that when O F P, M=
0,1, ..., M—1 (imperfect phase estimates), the frequency separation required for signal
orthogonality at the demodulator is Af = 1/ 7 (see Problem 7.51), which is twice the
minimum separation for orthogonality when ¢ = ¢.

The requirement for estimating M carrier phases makes coherent demodulation
of FSK signals extremely complex and impractical, especially when the number of

“signals is large. Therefore, we shall not consider coherent detection of FSK signals.

Instead, we now consider a method for demodulation and detection that does not
require knowledge of the carrier phases. The demodulation may be accomplished as
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Figure 7.47 Demodulation of M-ary FSK signa_ls for noncoherent detection.

inFi 7. In thi ignal waveform, or a total
shown in Figure 7.47. In this case there are two corre;lators persigna m, :
of 2M correlators, in general. The received signal is correlated with the basis functions
(quadrature carriers) 1/ Z cos (2 f,t -+ 2mmAfz) and /E sin@nfit + 2wmAf1) for
m=0,1,..., M —1.The 2 outputs of the correlators are sampled'at the end qf the
signal interval and the 2M samples are passed to the detector. Thus, if the mth signal
is transmitted, the 2M samples at the detector may be gxpressed as

sin2n (k —m)AST cos2n{k —m)AfT —1
”“:\/‘g—‘[ TG AT T T m G- mAfT

cos 2k — m)AFT — 1 sin2w(k — m)AST | ] s
”“:‘/’Z[ e mAfT 0 T oG —mArT S0 fm |+ 7

sin ¢m] + Age

(7.5.88)

where ny, and ny; denote the Gaussian noise components in the sampleFl outputs.

Section 7.5 Optimum Receiver for Digitally Modulated Signals 401

‘We observe that when & = m, the sampled values to the detector are
Tme = —\/—5:003¢m + nme
rmiy = \/5—55m¢m + s

Furthermore, we observe that when & # m, the signal components in the samples 7y,
and rys will vanish, independent of the values of the phase shift ¢, provided that the
frequency separation between successive frequencies is Af = 1/T. In such a case, the
other 2(M — 1) correlator outputs consist of noise only; i.c.,

(7.5.89)

Tke = Npe, Ths = Ngy, kF#EmM (7.5.90)

In the following development, we assume that Af = 1/T, so that the signals are or-
thogonal. '

It is easily shown (see Problem 7.52) that the 2}/ noise samples {1} and {r,)
are zero-mean, mutually uncorrelated Gaussian random variables with equal variance
a? = Ny/2. Consequently, the joint PDF for 1,,. and r,,; conditioned on ¢, is

T Prnes s | Pr) = 2”1 > e—[(fmc-\/f_xms G )+ (s — /% s $)) /20 (7.591)
[e2
and for m # k, we have
Frelrie i) = 5= =Rl f20? (7.5.92)

2rol
Given the 2M observed random variables {ry., ris, k=1, 2, ..., M}, the optimum
detector selects the signal that corresponds to the maximum of the posterior probabilities
Plsy was transmitted [1] = P(s, 1), m=1,2,...,M - (7.593)

where r is the 2M dimensional vector with elements {re., 75, k=1,2, ..., M}. Letus
derive the form for the optimum noncoherent detector for the case of binary ESK. The
generalization to M-ary FSK is straightforward.

Optimum Detector for Binary FSK.  In binary orthogonal FSK, the two pos-
terior probabilities are

Je(r181)P(sy)

P(s;|r) =
1 7@ (7.5.94)
Psy|1) = Je(ris2)P(s) )
fe(®)
and, hence, the optimum detection rule may be expressed as
P(s;ir) Z P(sz | 1) . (7.5.95)
or, equivalently,
fe|s)Ps) 3 £ [52)P(s2) (7.5.96)

@ 5 A@
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where ¥ is the four-dimensional vector r = (Fi¢, Fis, T2es T2s)- The relation in Equa-
tion (7.5.96) simplifies to the detection rule

felrls) 2 P(s2) '
JEN T > e (7.5.97
@) 5 P )

The ratio of PDFs in the left-hand side of Equation (7.5.97) is the likelihood ratio,
which we denote as '

_ fe(x]s) | 7508
A= 2T 7599

The right-hand side of Equation (7.5.97) is the ratio of the two prior probabilities, which

takes the value of unity when the two signals are equally probable.
The PDFs f.(r|sy) and fr(r]sy) in the likelihood ratio may be expressed as

2
A1) = flraes 725) /0 Foirres r1s | 60) Fin (@1) At
(7.5.99)

27
felr]s) = fr,(r1e, 11s) | Fer(rae. s | 02) F (@2) d

where fr, (Fre» Tms | Om) a0 fr, (Tie, Tas), m # k, are given by Equations (7.5.91) and
(7.5.92), respectively. Thus, the carrier phases ¢; and ¢, are eliminated by simply

aVefaging f T (rmc: Tms | ¢m) - i
The uniform PDF for ¢,, represents the most ignorance regarding the phases of

the carriers. This is called the least favorable PDF for ¢,,. With fp, (pr) = 1/27,0 <
$m < 21, substituted into the integrals given in Equation (7.5.99), we obtain

1 2T
- / Fo (Emes s | ) A
21 Jo

2
— 1 e—(r,ic+r,f,,+5:)/202 __1_ / 8 /B (rme €08 fu s sin g )/o? dem (7.5.100)
2ra? 21 Jo.
But
2 E(r2 +r2
_1_/ i Ve lrme oS Gutrs s/ g = I s ’"CZ ms) (7.5.101)
2w 0 o

where Ip(x) is the modified Bessel function of order zero. This function is a monoton-
ically increasing function of its argument as {llustrated in Figure 7.48. Ip(x) has the
power series expansion

od 2k

B = o (75.102)

= 22 (k)2
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Iy(x)

Figure 7.48 Graph of Io(x).

From (7.5.97)—(7.5.99), we obtain the likelihood ratio A(r) in the form

X = b (6 +5)/7") 2 P (7.5.103)
fo (\/m/az) S P(s) 3.

Thus, the optimum detector computes the two envelopes ry = rl +r? and rp=
\/72 +rZ and the corresponding values of the Bessel function Io(y/&r}/0?) and

Io(1/Esr3 /o?) to form the likelihood ratio. We observe that this computation requires
knowledge of the noise variance o2 and the signal energy &;. The likelihood ratio is then
compared with the threshold P(s;)/ P (s;) to determine which signal was transmitted.

A significant simplification in the implementation of the optimum detector occurs
when the two signals are equally probable. In such a case, the threshold becores unity
and, due to the monotonicity of the Bessel function, the optimum detector rule simplifies
to

A(

Sy

\/ i+ 52 3 +rd (7.5.104)
2

Thus, the optimum detector bases its decision on the two envelopes r; = /73, + 71,

and ry = 1/r2, +r% and, hence, it is called an envelope detector.
We observe that the computation of the envelopes of the received signal samples
at the output of the demodulator renders the carrier signal phases {¢} irrelevant in the
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Figure 7.49 Demodulation and square-law detection of binary FSK signals.

decision as to which signal was transmitted. Equivalently, the decision may be based

on the computation of the squared envelopes r12 and rZ, in which case the detector is
called a square-law detector. Figure 7.49 shows the block diagram of the dequulator
and the square-law detector. : :

The generalization of the optimum demodulator and detector to M-ary orthog-
onal FSK signals is straightforward. As illustrated in Figure 7.47, the output of the
optimum demodulator at the sampling instant consists of the 2M vector components
(Fic, T1s» T2cs 251 - - - » TMe» Tas)- Then, the optimum noncoherent detector computes the

M envelopes as

Tm = AfTE T2, m=12,....M (7.5.105)

Thus, the unknown carrier phases of the received signals are rendered irrelevant to the
decision as to which signal was transmitted. When all the M signals are equally likely
to be transmitted, the optimum detector selects the signal corresponding to the 1argest
envelope (or squared envelope). In the case of nonequally prol?a_ble. transmlt.ted signals,
the optimum detector must compute the M posterior probabilities in Equ_atlon (7.5.93)
and then select the signal corresponding to the largest posterior probability.
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7.6 PROBABILITY OF ERROR FOR SIGNAL DETECTION
IN ADDITIVE WHITE GAUSSIAN NOISE

In this section, we evaluate the performance of the detector in terms of the probability
of error when the additive noise is white and Gaussian. First, we consider binary
modulation and, then, M-ary types of modulation.

7.6.1 Probability of Error for Binary Modulation

Let us consider binary PAM baseband signals, where the two signal waveforms are
51(2) = gr(t) and 53(t) = —gr(¢), where g7(¢) is an arbitrary pulse which is nonzero
in the interval 0 < 7 < T}, and zero elsewhere.

Since s51(2) = — s2(2), these signals are said to be antipodal. The epergy in the
pulse gr(r) is equal to the energy per bit &. As in Section 7.2, PAM signals are 1ED-
resented geometrically as one-dimensional vectors. Hence, for binary PAM, the signal
points are 51 = /& and s, = —/&,. Figure 7.50 illustrates the two signal points.

Let us assume that the two signals are equally likely and that signal s, (£) was
transmitted. Then, the received signal from the (matched filter or correlation-type)
demodulator is

r=si+n=1+/& +n (7.6.1)

where n represents the additive Gaussian noise component which has zero mean and
variance o, = No/2. In this case, the decision rule based on the correlation metric given
by Equation (7.5.44) compares r with the threshold zero. If 7 > 0, the decision is made
in favor of s;(¢) and if < 0, the decision is made that s, (#) was transmitted. Clearly,
the two conditional PDFs.of r are

1

flrls) = = e~ T~~EY /Ny (7.6.2)
~ 0
[
f(r l .5'2) = T[NO e €0/ No (76.3)
These two conditional PDFs are shown in Figure 7.51.
G & : . 4
i © Figure 7.50  Signal points for antipodal
2 . 0 i signals.

flrisy)

Figure 7.51 Conditional PDF's of two signals.
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Given that s; () was transmitted, the probability of error is simply the probability
thatr <0; ie.,

0
P(e]sl)z/ p(r|sy)dr (7.6.4)
[e2]
1 0 JEN/N, 5
= == / e~ T—VES /Mo gy (7.6.5)
TN J—c0

—a/2Ep{ N
- L / B g (7.66)
27 J-o0

e dx 7.6.7

1 00
- 21 / /2E,/No

—ol. % | 7.6.8
_Q< N0> ’ ( v)

where Q(x) is the Q-function defined previously in Section 5.1. Si.rrllilarly, if we as-
summe that §,(¢) was transmitted, r = —+/& + n and the probability that r >0 is
also Pe|s) = Q(\/%). Since the signals 5;(z) and sp(r) are equally likely to be
transmitted, the average probability of error is

1
P = —;—P(elsl)JrEP(eiSz)

28, :
— i (7.6.9)
-o( %)

We should observe two important characteristics of this performance measure.
First, we note that the probability of error depends only ontheratio & /Ngandnotonany .
other detailed characteristics of the signals and the noise. Second, we note that 2&5/ J‘Vo
is also the output SNR from the matched filter (and correlation-type) dexpodulator. The
ratio £,/ Np is usually called the signal-to-noise ratio (SNR), or SNR/b.1t.

We also observe that the probability of error may be expressed in terms of the
distance between the two signals s; and 5p. From Figure 7.50, we observ;: tha} the two
signals are separated by the distance dis = 2./E,. By substituting &, = d},/4in (7.6.9)

we obtain
[d |- (7.6.10)
Py = Q( ZNO)

This expression illustrates the dependence of the exror pr(?bability on the distance
between the two signal points. It can be shown that Equatxpn §7.6.10) can }?e used
- for computing the error probability of any binary communication system with two

equiprobable messages.
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Figare 7.52 Signal points for
orthogonal signals.

Next, let us evaluate the error probability for binary orthogonal signals. Recall
the binary PPM is an example of binary orthogonal signaling. In this case, the signal
vectors s; and s, are two-dimensional, as shown in Figure 7.52, and may be expressed,
according to Equation (7.3.8), as

s1 = (V& 0) (7.6.11)

52 = (0,vE3) (7.6.12)
where &, denotes the energy for each of the waveforms. Note that the distance between
these signal points is djz = /2.

To evaluate the probability of error, let us assume-that s; was transmitted. Then,
the received vector at the output of the demodulator is

r = [\/£+ ni, nz] (7.6.13)

We can now substitute for r into the correlation metrics given by Equation (7.5.44)
to obtain C(x, s1) and C(x, s). Then the probability of error is the probability that
C(x, s3) > C(r, 57). Thus,

Plels) = PIC(r,s5)> Crr,s)] = Plny —my >vE] - (7.6.14)

Since n; and n, are zero-mean, statistically independent Gaussian random variables,
each with variance Ny/2, the random variable x = ny — n; is zero mean Gaussian with
variance Ng. Hence,

Png—n >~E) = X2 gy (7.6.15)

1 loe]
a—————l e
/27 Ny /Jgf

! e gy (7.6.16)

o]
h 21 L fE N,

=0 (4 /m) (7.6.17)



i

408 Digital Transmission through Gaussian Noise Channel Chapter 7

Due to symumetry, the same error probability is obtained when we assume that s; is
transmitted. Consequently, the average error probability for binary orthogonal signals

18
_of&
Py = Q( No) (7.6.18)

If we compare the probability of error for binary antipodal signals with that for
binary orthogonal signals, we find that orthogonal signals require a factor of two more
energy to achieve the same error probability as antipodal signals. Since 10log42 =
3 dB, we say that orthogonal signals are 3-dB poorer than antipodal signals. The
difference of 3 dB is simply due to the distance between the two signal points, which
is d2, = 2&, for orthogonal signals, whereas d, = 4E,, for antipodal signals.

The error probability versus 201ogq &,/ No for these two types of signals is shown
in Figure 7.53. As observed from this figure, at any given error probability, the &,/ Ny
required for orthogonal signals is 3-dB more than that for antipodal signals.

7.6.2 Probability of Error for M-ary PAM

In this section, we derive the probability of error for M-ary PAM transmitted over an
AWGN channel. Recall that baseband M -ary PAM signals are represented geometri-
cally as M one-dimensional signal points with values

sm=[Eshn, m=12...M (7.6.19)

where £, is the epergy of the basic signal pulse gr(z). The amplitude values may be
expressed as '

An=0@m—1-M), m=1,2,....M (7.6.20)
where the distance between adjacent signal points is 24/&,.

As previously indicated in Section 7.2, the PAM signals have different energies,
denoted as {&y}. The average energy is

1 M
_ 7,621
Eav i "f\—:_:lgm ( )
5 M
= Eg S em—1- M)? (7.6.22)
m=1
2 _
_ &M 1) (1.6.23)
R
2 —_—
- (M . 1>sg (7.6.24)
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Figure 7.53 Probability of error for binary signals.

» Equivﬂently, we may characterize these signals in terms of their average power, which

18

Eav M?*—1\ &
P, =2 = ce
T ( 3 ) - (7.6.25)

_ .The average probability of error for M-ary PAM can be determined from the
decision rule that maximizes the correlation metrics given by Equation (7.5.44). Equiv-
aler-ltly, the detector compares the demodulator output r with a set of M — 1 thresholds
which are placed at the midpoints of successive amplitude levels, as shown in Fig—,
ure 7.54. Thus, a decision is made in favor of the amplitude level that is closest to 7.
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Figure7.54 Placement of thresholds at midpoints of successive amplitude levels.

The placing of the thresholds as shown in Figure 7.54, helps in evaluating the
probability of error. We note that if the mth amplitude level is transmitted, the demod-

ulator output is

r =Sy n= \/—(‘,’;Am +n (7.6.26)

o variable n has zero mean and variance 0% = Np/2.Onthe basis thatall
amplitude levels are equally likely a priord, the average probability of a symbol error is
simply the probability that the noise variable n exceeds in magnitade one-half of the -
distance between levels. However, outside levels £(M — 1)

is transmitted, an error can occur in one direction only. Thus, we have

. where the nois

when either one of the two

Py = Mﬂ; tp (lr — 5] > /5g) (1.627)
M—1 2 [ _g
—X /No
M-l [ o#Max (7.629)
M \/ﬂNO /&

— 0
_M-11 e dx (7.6.29)

T M 2w g

Gt 2% 7.6.30
== Q(,/N()) (7.6.30)

in terms of the average

The error probability in Equation (7 6.30) can alsobe expressed
tion (7.6.25), we note that

transmitted power. From Equa
3 (7.6.31)

£ = —5—Pal

T M2-1

in Equation (7.6.30),
in terms of the average power as

M- 6Pl \ " 6.3
Pu="y Q(\/ (M2—1)N0) (632

By substituting for &
symbol error for PAM

we obtain the average probability ofa
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or, equivalently,

2M-1) 6¢,
Py = av

where &, = P,,T is the average energy.
In plotting the probability of a symbol error for M i
1] -ary signals such as M-
PA;VI, itis customary tq use the average SINR/bit as the basic parameter. Since T = ]f;‘z
and k = log, M, Equation (7.6.33) may be expressed as

2M -1 6(log, M)E
Py = o
S 2 (W ) (7.634)

where gy = PuuTs is the average bit energy and &pg,/No is the ave i
F1gure 7.55 illustrates the probability of a symbol error a;va/fuglction of 10§Zgge S;SI:,]R//in/to
}wth _M as a parameter. Note that the case M = 2 corresponds to the error égob;’;ﬂity
or binary antipodal signals. We also observe that the SNR/bit increases by over 4 dB
for every factor of two increase in M. For large M, the additional SNR/bit required t
increase M by a factor of two approaches 6 dB. e

Bandpass PAM Signals. In this case, the i i
Equation (1860, i se, the input to the detector, as shown in

rzAm gg/2+n

=Sn+n
where the Gaussian random variable n has mean E[r] = 0 and variance
o? = E[n*]
4T T
= [ [ emonewoy@add
No /T 2 No
=— )dt = —
2 Jo ¥ 5

Following the development for baseband PAM signals, the probability of a symbol

error is
M-1
Py = TP(lr — sl > 1/E4/2) (7.6.35)

Cam-n [ [€ |
=~ ( ﬁi) (7.6.36)
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Figure 7.55 Probability of a symbol error for PAM.

Then, we relate the average transmitted energy to &,. We have

Eay = Py T

M
-_-ng

m=]

m=1

M?—1

6

&

£ M
2
=7g§ @m—1—-M)

Chapter7

(7.6.37)

(7.6.38)

(7.6.39)

(7.6.40)
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Hence,
6P, T
E = 7.6.41
$ = 3B o1 ( )

Substitution of Equation (7.6.41) into Equation (7.6.36) yields the desired form for the
probability of error for M-ary PAM; i.e.,

_2m-1) ([ 6r,T
Pe=—""7 Q(.(MZ—I)NO)

This is exactly the same result as the probability of a symbol error for M-ary
PAM transmission over a baseband AWGN channel.

(7.6.42)

76.3 Probability of Error for Phase-Coherent PSK Modulation

In this section, we shall evaluate the probability of error for M -ary phase modulation
in AWGN with the optimum demodulator and detector. The optimum detector based
on the phase metzic given by Equation (7.5.68) will be used in this computation. It is
assumed that a perfect estimate of the received carrier phase is available. Consequently,
the performance that we derive below is for ideal phase-coherent modulation.

Let us consider the case in which the transmitted signal phase is 6 = 0, corre-
sponding to the signal ug(¢). Hence, the transmitted signal vector is

so = (v/&,0) (7.6.43)
and the received signal vector has components
rnn=+&+n
1= Ve, (7.6.44)
¥y = Rg

Because ne and n; are jointly Gaussian random varjables, it follows that rrandr,
are jointly Gaussian random variables with E[r;] = /&, E[r;] = 0 and ol =02 =
Ng/2 = o?. Consequently,

Sl ) = I N e
2 2 2

(7.6.45)

r

The detector metric is the phase ®, = tan™' r;/r;. The PDF of ©, is obtained bya

change in variables from (ry, r2) to
=y/ri+r
(7.6.46)

This change in variables yields the joint PDF

fre ,6) = Fvaz exp{—(? + & ~ 24/Evc0s6,)/207)  (1.647)
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-3.14 -2.51 -1.88 ~126 —0.63 000 06 126 18 251-3.4 ~Figure7.56 Probability density function

8 p(6) for p, = 1,2,4, 10.

Tntegration of fv.e, (v, &) over the range of v yields fe, (8,),1.e.,

oQ
fo,(6) = /0 Frio.(v,6,) dv ' (716.48)
= Zie-f’: i’ 6 / 7 pem VT2 gy (1.6.49)
T 0

where for convenience, we have defined the symbol SNR as p; = &;/No. Figure 756

illustrates fo_(6,) for several values of the SNR parameter o; when the transmitted

phase is zero. Note that fo, (6;) becomes narrower and more peaked about 6, = 0 as’

the SNR p, increases. .
When uo(?) is transmitted, a decision error is made if the noise causes the phase to

fall outside the range —7 /M < ©, <x/M. Hence, the probability of a symbol error is ‘

/M .
Py=1-— / " o @40 | (7.6.50)

- /M
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In general, the integral of fp, (§) does notreduce to a simple form and must be evaluated
numerically, except for ¥ = 2and M = 4.

For binary-phase modulation, the two signals u4(r) and u; (¢) are antipodal and,
hence, the error probability is

Pr=0 < —> (7.6.51)

When M = 4, we have in effect two binary-phase modulation signals in phase quadra-
ture. With a perfect estimate of the carrier phase, there is no crosstalk or interference
between the signals on the two quadrature carriers and, hence, the bit exror probability
is identical to that in Equation (7.6,51). On the other hand, the symbol error probability
for M = 4 is determined by noting that

P.=(1-P) = {1 -0 (ﬁ/%)} (7.6.52)

where P, is the probability of a correct decision for the 2-bit symbol. The result in Equa-
tion (7.6.52) follows from the statistical independence of the noise on the quadrature
carriers. Therefore, the symbol error probability for M = 4 is

Pi=1-P, (7.6.53)

o 2% 1 28,
_2Q< :7\,;) 1—5Q( Voﬂ (7.6.54)

For M > 4, the symbol error probability Py is obtained by numerically integrating
Equation (7.6.50). Figure 7.57 illustrates this error probability as a function of the
SNR/bitfor M =2, 4, 8, 16, and 32. The graphs clearly illustrate the penalty in SNR/bit
as M increases beyond M = 4. For example, at Py = 1073, the difference between
M =4 and M = 8is approximately 4 dB, and the difference between M =8 and M =16
is approximately 5 dB. For large values of M, doubling the number of phases requires
an additional 6 dB/bit to achieve the same performance.

An approximation to the error probability for large values of M and for large SNR
may be obtained by first approximating fg, (6).For & /Ny » 1and |©,| <n /2, fe,(6;)

is well approximated as
v 2 ’
fo,(6,) = 4 ?pi oS 6, g 205’6 (7.6.55)

By substituting for fe,(¢,) in Equation (7.6.50) and performing the change in variable
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from 6, to u = 2./0s §in 8,, we find that

/M 2
Py l— / 1/-2& cos 6, e+ O 4o,
—x/M T . .

2 dy

2 /""
~ 21 Jf2p;sinw (M
LT
=2Q( 2pssm—M>
LT
=20 (\/kab smﬁ

where k =log, M and ps = kprW; note that
ility is good for all values of M. For examp
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signal phases. When a Gray code is used in the mapping, two k-bit symbols correspond-
ing to adjacent signal phases differ in only a single bit. Because the most probable errors
due to noise result in the erroneous selection of an adjacent phase to the true phase,
most k-bit symbol errors contain only a single bit error. Hence, the equivalent bit-error
probability for M-ary-phase modulation is well approximated as

1
Py % =Py (7.6.60)

The performance analysis given above applies to phase-coherent demodulation
with conventional (absolute) phase mapping of the information into signal phases. As
previously indicated in Section 7.5.5, when phase ambiguities result in the estimation
of the carrier phase, the information symbols are differentially encoded at the transmit-
ter and differentially decoded at the receiver. Coherent demodulation of differentially
encoded phase-modulated signals results in a higher probability of error than the error
probability derived for absolute-phase encoding. With differentially encoded signals,
an error in the detected phase due to noise will frequently result in decoding errors
over two consecutive signaling intervals. This is especially the case for error probabil-
ities below 10~ Therefore, the probability of error for differentially encoded M-ary
phase-modulated signals is approximately twice the probability of error for M-ary-
phase modulation with absolute-phase encoding. However, a factor-of-2 increase in the
error probability translates into a relatively small loss in SNR, as can be seen from
Figure 7.57.

7.6.4 Probability of Error for DPSK

Let us now consider the evaluation of the error probability performance of a DPSK
demodulator and detector. The derivation of the exact value of the probability of error
for M-ary DPSK is extremely difficult, except for M == 2. The major difficulty is en-
countered in the determination of the PDF for the phase of the random variable rir;_,
given by Equation (7.5.77). However, an approximation to the performance of DPSK
is easily obtained, as we now demonstrate.

Without loss of generality, suppose the phase difference 6 — Gy = 0. Fur-
thermore, the exponential factors ¢~/ @19 and ¢/ @—%) i Equation (7.5.77) can be
absorbed into the Gaussian noise components 71 and r, (see Problem 4.29), with-
out changing their statistical properties. Therefore, 7,77, in Equation (7.5.77) can be
expressed as

T’kr':——l = (S: -+ \/Z(/’lk =+ nz_l) -+ nknz_l (7661)

The complication in determining the PDF of the phase is the term nn}_,. However,
at SNRs of practical interest, the term ngnj_; is small relative to the dominant noise
term +/&; (n + nj_,). If we neglect the term n;n}_; and we also normalize rri_q by
dividing through by +/&;, the new set of decision metrics become '

x = /& +Re(n +ni_))

(7.6.62)
y =Im(n +ni_))
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The variables x and y are uncorrelated Gaussian random variables with identical vari-
ances o2 = Np. The phase is

®, = tan~12 (7.6.63)
P

At this stage we have a problem that is identical to the one we solved previously
for phase-coherent demodulation and detection. The only difference is that the noise
variance is now twice as large as in the case of PSK. Thus, we conclude that the
performance of DPSK is 3-dB poorer than that for PSK. This result is relatively good
for M >4, but it is pessimistic for M = 2 in the sense that the loss in binary DPSK
relative to binary PSK is less than 3 dB at large SNR. This is demonstrated next.

In binary DPSK, the two possible transmitted phase differences are zero and
7 radians. As a consequence, only the real part of ryry_, is needed for recovering the

information. We express the real part as

Re(rprp_y) = %(Fkﬁf_l +rpre-t)
Because the phase difference between the two successive signaling intervals is zero, an
error is made if Re(rgry_;) is less than zero. The probability that rerg_y FrEte-1 <0
is a special case of a derivation, given in Appendix A, concerned with the probability
that a general quadratic form in complex-valued Gaussian random variables is less than
zero. The result for the error probability of binary DPSK is

. :
P = 5 e P (7.6.64)

where pp = £/ Ny is the SNR/bit.

The graph of Equation (7.6.64) is shown in Figure 7.58. Also shown in this figure
is the probability of error for binary PSK. We observe that at error probabilities below
1074, the difference in SNR between binary PSK and binary DPSK is less than 1 dB.

7.6.5 Probability of Error for CAM

To determine the probability of error for QAM, we must specify the signal-point constel-
lation. We begin with QAM signal sets that have M = 4 points. Figure 7.59 illustrates
two 4-point signal sets. The firstis a four-phase-modulated signal and the second is a
QAM signal with two amplitude levels, labeled A; and A,, and four phases. Because
the probability of error is dominated by the minimum distance between pairs of signal
points, let us impose the condition that doin = 2A for both signal constellations and let
us evaluate the average transmitter power, based on the premise that 2ll signal points
are equally probable. For the four-phase signal we have

Py = %(4)/&2 = 4? (7.6.65)

For the two-amplitude, four-phase QAM, we place the points on circles of radii A and
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Figure 7.59 Two 4-point signal constellations.

/3A. Thus, dpin = 24, and

17./3 A?
Pav = - - 2 —_— = 2
) {2<2>A +2 ) } A (7.6.66)

which is the same average power as the M = 4-phase signal constellation. Hence, for all
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practical purposes, the error-rate performance of the two signal sets is the same. In other
words, there is no advantage of the two-amplitude QAM signal set over M =4-phase
modulation.

Next, let us consider M =8 QAM. In this case, there are many possible signal
constellations. We shall consider the four signal constellations shown in Figure 7.60,
all of which consist of two amplitudes and have a minimum distance between signal
points of 24. The coordinates (Amc, Ams) for each signal point, normalized by A, are
given in the figure. Assuming that the signal points are equally probable, the averag
transmitted signal power is :

P, :-1—§M:1(A2 + A2))
av Mm=12 nmc ms
M

Y]

m=1

(arzzc + a:u (76'67)

where (@me, Gms) are the coordinates of the signal points, normalized by A.

® @

Figure 7.60 Four 8-point QAM signal constellations.
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The first two signal sets in Figure 7.60 contain signal points that fall on a rect-
angular grid and have P,, = 3A2. The third signal set requires an average transmitted
power P, = 3.41A2, and the fourth requires P,, = 2.36A2. Therefore, the fourth
signal set requires approximately 1-dB less power than the first two and 1.6-dB less
power than the third to achieve the same probability of error. This signal constellation
is known to be the best 8-point QAM constellation because it requires the least power
for a given minimum distance between signal points.

For M > 16, there are many more possibilities for selecting the QAM signal points
in the two-dimensional space. For example, we may choose a circular multiamplitude
constellation for M = 16, as shown in Figure 7.61. In this case, the signal points at a
given amplitude level are phase rotated by /4 relative to the signal points at adjacent
amplitude levels. This 16-QAM constellation is a generalization of the optimum 8-QAM
constellation. However, the circular 16-QAM constellation is not the best 16-point QAM
signal constellation for the AWGN channel. '

Rectangular QAM signal constellations have the distinct advantage of being easily
generated as two PAM signals impressed on phase-quadrature carriers. In addition,

_ they are easily demodulated as previously described. Although they are not the best

M-ary QAM signal constellations for M > 16, the average transmitted power required
to achieve a given minimum distance is only slightly greater than the average power
required for the best M-ary QAM signal constellation. For these reasons, rectangular
M-ary QAM signals are most frequently used in practice.

For rectangular signal constellations in which M = 2F where k is even, the QAM
signal constellation is equivalent to two PAM signals on quadrature carriers, each having
M =2+? signal points. Because the signals in the phase-quadrature components are
perfectly separated by coherent detection when ¢ = @, the probability of error for QAM

- is easily determined from the probability of error for PAM. Specifically, the probability

1
/

Figure 7.61 Circular 16-point QAM
M=16 signal constellation.
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of a correct decision for the M-ary QAM systerﬁ is
Po=(1-Ps)° (7.6.68)

where P, /7 is the probability of error of a+/ M-ary PAM with one-half the average power
in each quadrature signal of the equivalent QAM system. By appropriately modifying
the probability of error for M-ary PAM, we obtain

1 3 En
Prm=2{1-— —_ 7.6.69
=2 JM)Q< M—lNo) (7669
where &£,/ N is the average SNR/symbol. Therefore, the probability of a symbol error
for the M-ary QAM is

Pu=1-(1-Pz)’° (7.6.70)

We note that this result is exact for M = 2% when k is even. On the other hand, when
% is odd, there is no equivalent +/M-ary PAM system. This is no problem, however,
because it is rather easy to determine the error rate for a rectangular signal set. If we
employ the optimum detector that bases its decisions on the optimum distance metrics
given by Equation (7.5.41), itis relatively straightforward to show that the symbol error
probability is tightly upper-bounded as

35411
roz =122 (S5 )|

3k5bau
<40 (Q/ m) (7.6.71)

for any k > 1, where Epqy/No is the average SNR/bit. The probability of a symbol error
is plotted in Figure 7.62 as a function of the average SNR/bit.

Ttisinteresting to compare the performarice of QAM with that of phase modulation
for any given signal size M, because both types of signals are two-dimensional. Recall
that for M-ary phase modulation, the probability of a symbol error is approximated as

Py ~20 ( 2ps sin f—) (1.6.72)

2

M

where p, is the SNR/symbol. For M-ary QAM, we may use the expression in Equa-
tion (7.6.69). Because the error probability is dominated by the argument of the O-
function, we may simply compare the arguments of O.for the two signal formats. Thus,

the ratio of these two arguments is

= ﬂ]‘g:_}l (7.6.73)
2sin" /M

For example, when M =4, we have %y, = 1. Hence, 4-PSK and 4-QAM yield com-

parable performance for the same SNR/symbol. On the other hand, when M >4 we
find that Ry > 1, so that M-ary QAM vyields better performance than M-ary PSK.

M
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Figore 7.62 Probability of a symbol error for QAM.

Table 7.1 illustrates the SNR advantage of QAM over PSK for sevéral values of M. For
example, we observe that 32-QAM has a 7-dB SNR advantage over 32-PSK.

7.6.6 Probability of Error for M-ary Orthogonal Signals

We recall that PPM is a modulation method that results in orthogonal signals whose
vector space representation is given by Equation (7.4.11). Note that all signals have
equally energy, denoted as &;. )

For equal energy orthogonal signals, the optimum detector selects the signal
resulting in the largest crosscorrelation between the received vector r and each of the
M possible transmitted signal vectors {$,}, i.e.,

v
CE,Sn) =T Sw= ) riSme, m=12,..., M (7.6.74)
k=1
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TABLE 7.1 SNR ADVANTAGE OF
M-ARY QAM OVER M-ARY PSK

M 10logyo R
8 1.65

16 4.20

32 ‘ 7.02

64 9.95

To evaluate the probability of error, let us suppose that the signal s; is transmitted.
Then the received signal vector is

r= (\/a—l—nl,nz,m,...,nM) (7.6.75)

where n1, 1z, . . ., Ay are zero-mean, mutually statistically independent Gaussian ran-
dom variables with equal variance o2 = No/2. In this case, the outputs from the bank

of M correlators are
Cx,s1) = V& WE +n1)
C(r,8) = Ena (7.6.76)

C(r’ SM) = '\/—gan

Note that the scale factor +/C; may be eliminated from the correlator outputs by dividing
each output by /&;. Then, with this normalization, the PDF of the first correlator output

(r1 =& +n1)is

L = BRI 6.77

) = g r=VE M (7.677)
«/”NO
and the PDFs of the other M — 1 correlator outputs are
1 2
= iMoo = LM (7.6.78)
fr (xm)— «/_—e % , 2,3,.. R
" ijO

It is mathematically convenient to first derive the probability that the detector
makes a correct decision. This is the probability that r; is larger than each of the other
M — 1 correlator outputs nz, 13, . . . , Ay This probability may be expressed as

o0 N
P, = / P(ny <ry,n3 <7p, ..., 0y <r1|r)fr(rs) dri (7.6.79)
o ‘
where P(ny <ry,n3<ry,...ny<ri|r;) denotes the joint probability that ng,

ns, ..., ny are all less than ry, conditioned on any given r;. Then this joint qub—
ability is averaged over all r;. Since the {rn} are statistically independent, the joint
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probability factors into a product of M — 1 marginal probabilities of the form
Ty
P(nm<r1|r1)=/ fr,,,(xm)dx,,,: m=2,3,...,. M
—CQ

1 2l Ng —p
= 7 / e dx (7.6.80)

-o )

These probabilities are identical for m = 2,3, ... M and, hence, the joint probability
under consideration is simply the result in Equation (7.6.80) raised to the (M — 1)
power. Thus, the probability of a correct decision is

M1
_ [ 2r?
r=[" [1—,@(\/7\,;)] Pl (7.6.81)

and the probability of a k-bit symbol error is
Py=1-P, . (7.6.82)

Therefore,

1 o]
Pu= =

The same expression for the probability of error is obtained when any one of
the other M — 1 signals is transmitted. Since all the M signals are equally likely, the
expression for Py given in Equation (7.6.83) is the average probability of a symbol
error. This expression can be evaluated numerically.

In comparing the performance of various digital modulation methods, it is desir-
able to have the probability of error expressed in terms of the SNR/bit, £,/ Ny, instead
of the SNR/symbol &,/ Np. With M = 2¥, each symbol conveys k bits of information
and, hence, & = k&;. Thus, Equation (7.6.83) may be expressed in terms of &,/ Ny by
substituting for £s. .

Sometimes, it is also desirable to convert the probability of a symbol error into
an equivalent probability of a binary digit error. For equiprobable orthogonal signals,
all symbol errors are equiprobable and occur with probability

Pu__ Py
M—1" 2%—-1

{1 =[1— Q)M 1) e~ &/2/NoP /2 g (7.6.83)

(7.6.84)

Furthermore, there are (Z) ways in which # bits out of & may be in error. Hence,
the average number of bit errors per k-bit symbol is
k k-1
- n P M 2
—_— kP 7.6.85
Z”<k>2k—1 F_ M (7.6.85)

n=1
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and the average bit-error probability is just the result in Bquation (7.6.85) divided
by k, the number of bits/symbol. Thus,

2k-—-1 P e

P = E,-c—_—l—PM =~ —2—‘, k >? 1 (7.6.86)

The graphs of the probability of a binary digit efror as a function ojf the SNR/bit,

£,/ Ny, are shown in Figure 7.63for M = 2,4, 8,16, 32, 64. This figure 1%1ustrat-es that
by increasing the mimber M of waveforms, one can reduce the SNR/bit requl_rsed to
achieve a given probability of a bit error. For example, to achieve a if’b = 107, the
required SNR/bit is a little more than 12 dB for M = 2, butif M is 1n_creased to 64
signal waveforms (k = 6 bits/symbol), the required SNR/bit is approxunzftely 6 dB.
Thus, a savings of over 6 dB (a factor of four reduction) is realized in transmitter powert
(or energy) required to achieve a P = 1075 by increasing M from M =2to M = 64..

Section 7.6 Probability of Error for Signal Detection 427

What is the minimum required £,/Np to achieve an arbitrarily small probability
of error as M — oo0? This question is answered next.

_A Union Bound on the Probability of Error.  Let us investigate the effect
of increasing M on the probability of error for orthogonal signals. To simplify the
mathematical development, we first derive an upper-bound on the probability of a
symbol error which is much simpler than the exact form given in Equation (7.6.83).

Recall that the probability of error for binary orthogonal signals is given by

" Equation (7.6.17). Now, if we view the detector for M orthogonal signals as one

that makes M — 1 binary decisions between the correlator output C(r, $1) that con-
tains the signal and the other M — 1 correlator outputs C(r,sm),m=2,3, ..., M,
the probability of error is upper-bounded by the union bound of the M — 1 events.
That is, if E; represents the event that C(r, s,,) > C(r, ;) for m # 1, then we have
Py = P(UM L E) < Y1, P(E;). Hence,

Py<(M—1)P=M—-1DOWE/No) < MQ(V&/No)  (7.687)

This bound can be simplified further by upper-bounding Q(/&;/No) [see Equa-
tion (4.1.7)]. We have

O(VENo) < g5/ (1.6.88)
Thus,

PM < Me—S,/ZNQ — zke-—k&,/ZNo
—k(Ey/Np—21n2)/2

7.6.89
Py <e (- )
As k> oo, or equivalently, as M — oo, the probability of error approaches zero expo-
nentially, provided that &,/ Ny is greater than 2 In 2; i.e.,

E N
—Nb— >21n2=1.39(1.42dB) (7.6.90)
0

The simple upper-bound on the probability of error given by Equation (7.6.89)
implies that as long as SNR > 1.42 dB, we can achieve an arbitrarily low Py However,
this union-bound is not a very tight upper-bound at a sufficiently low SNR due to the
fact that the upper-bound for the Q-function in Equation (7.6.88) is lcose. In fact, by
more elaborate bounding techniques, it is shown in Section 9.4 that the upper-bound in
Equation (7.6.89) is sufficiently tight for £, /Ny < 4 In 2. For £,/ Ny > 4 In 2, a tighter
upper-bound on Py is

2
Py < 2¢~H(/BulMo—/2) (1.6.91)

Consequently, Py — 0 as k — co, provided that

% >In2=0.693 (—1.6 dB) (7.6.92)
0

Hence —1.6 dB is the minimum required SNR/bit to achieve an arbitrarily small prob-
ability of error in the limit as £ — oo (M — o0). This minimum SNR/bit (—1.6 dB)
is called the Shannon limit for an additive white Gaussian noise channel.
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7.6.7 Probability of Error for M-ary Biorthogonal Signals

As previously indicated in Section 7.4.2, a set of M =2* biorthogonal signals are
constructed from #/2 orthogonal signals by including the negatives of the orthogonal
signals. Thus, we achieve a reduction in the complexity of the demodulator for the

biorthogonal signals relative to that for the orthogonal signals, since the former is .

implemented with M/2 crosscorrelators or matched filters, whereas the latter requires
M matched filters or crosscorrelators.

To evaluate the probability of error for the optimum detector, let us assume that
the signal 51(¢) corresponding to the vector s; = (/&;, 0, O 0) was transmitted.
Then, the received signal vector is '

r= (V& +ni,na, ..., nup) (1693)

where the {n} are zero-mean, mutually statistically independent and identically dis-
tributed Gaussian random variables with variance 2 = Ny/2. The optimum detector
decides in favor of the signal corresponding to the largest in magnitude of the cross-
correlators .
M2 '
Csm) =T Sp=) risme, m=1,2,...,M/2 (7.6.94)
k=1 -
while the sign of this largest term is used to decide whether s,, () or —s, () was
transmitted. According to this decision rule, the probability of a correct decision is
equal to the probability that r; = /&, +n; > Oand r; exceeds [Pl = 1| form =2,
3,...,M/2. Bui,

1 2 1 "/ Mo/ 2
P(n, <rln>0)= e Mo dx = e * 1% dx
~ 7Ny S, V2 Jr 1y W72
(7.6.95)
Then, the probability of a correct decision is
ri/~/Nol2 2 §-1
P.= / J_ . e 2 dx F(r) dn
—ri/+/ g
Upon substitution for f(ry), we obtain
M4
vha/26,/Ng 2
/ JIETN, L/ﬁ / (v+/26,/Ng) " dx} i (7:6:0
(] v+ o

where we have used the PDF of r; given in Equation (7.6.77). Finally, the probability
of a symbol ertor Py = 1 — P,.

P; and, hence, Py may be evaluated numerically for different values of M from
(7.6.74). The graph shown in Figure 7.64 illustrates Py as a function of &,/ N, where
& = k&, for M = 2,4, 8, 16, and 32. We observe that this graph is similar to that
for orthogonal signals (see Figure 7.63). However, in this case, the probability of error

—
3
[ w (8]

Py Probability of a symbol error
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SNR/bit, dB for biorthogonal signals.

for M = 4 is greater than that for M = 2. This is due to the fact that we have plotted
the symbol error probability Py in Figure 7.64. If we plot the equivalent bit error
probability we would find that the graphs for M = 2 and M = 4 coincide. As in the
case of orthogonal signals, as M — co (or k£ — ©0), the minimum required &, /N to
achieve an arbitrarily small probability of erroris —1.6 dB, the Shannon limit,

7.6.8 Probability of Error for M-ary Simplex Signals

Next we consider the probability of error for M simplex signals. Recall from Sec-
tion 7.4.3 that simplex signals are a set of M equally correlated signals with mutual
crosscorrelation coefficient vy, = —1/(M — 1). These signals have the same mini-
mum separation of +/2&; between adjacent signal points in M-dimensional space as
orthogonal signals. They achieve this mutual separation with a transmitted energy of
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E(M — 1)/M, which is less than that required for orthogonal signals by a factor of
(M — 1)/M. Consequently, the probability of error for simplex signals is identical to
the probability of error for orthogonal signals, but this performance is achieved with a
savings of

101og(1 — ymn) = 10log

7 4B (7.6.97)

in SNR.
7.6.9 Probability of Error for Noncoherent Detection of FSK

Let us consider M-ary orthogonal FSK signals that are detected noncoherently. We
assume that the M signals are equally probable a priori and that s;(f) was transmitted
inthe interval 0 <t <7T.

The M-decision metrics at the detector are the M envelopes

Tm=ofr2 72 m=1,2... M (7.6.98)

where

Tie = \/Zcos $1 +nic

r1s = V€ siny +nyg (7.6.99)
and '

Tme = Mme, Mm=2,3,...,M
(7.6.100)

Tms =Hms, M=2,3,....,. M

The additive noise components {i,c} and {ns} are mutually statistically independent
zero-mean Gaussian variables with equal variance o2 = Np/2. Thus, the PDFs of the
random variables at the input to the detector are

2no? o2

2 2
Jalrie, ris) = 1 ot e 207 10( _‘?L(rlc_i_rl_s)_) (7.6.101)

Fou e ms) = 5~ S e RNy =03, M (7.6.102)
o

Let us make a change in variables in the joint PDFs given by Equations (7.6.101) and
(7.6.102). We define the normalized variables '

/2 2
Tme + Tins

g (7.6.103)

~1Vms

Rp =

®,, = tan

Fme
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Clearly, 7me = 0 Ry, €08 ©, and 7y = 0 R,y 8in &, The Jacobian of this transformation
is

o Cos Oy osin®,

3= =0*Rp (7.6.104)

" |-0R,sin®, oR,cos®,

R 26
Frio(Ry, ©) = = e~ RIFE/ND2 L [ [ R, (7.6.105)
277,' No

Ry,
Frue, Rm, O) = 5 el M =23 ... M (7.6.106)

Consequently,

Finally, by averaging fz,e, (Rm, @n) over ©,,, the factor of 27 is (see Problem 4.31)
eliminated from Equations (7.6.105) and (7.6.106). Thus, we find that R; has a Rice
probability distribution and R,,, m =2, 3, ..., M are each Rayleigh distributed.

The probability of a correct decision is simply the probability that Ry > R, and
Ry > Ra,...and Ry > Ry. Hence,

PC=P(R2<R],R3<R1,...,RM<R1)
0
=/ P(Ry<Ri,R3 <Ry,..., Ry < Ri|Ry =x)fr,(x)dx (7.6.107)
0

Because the random variables R,,,m = 2,3, ..., M are statistically 1.i.d., the joint
probability in Equation (7.6.107) conditioned on R; factors into a product of & — 1
identical terms. Thus,

P = /w[P(Rz < Ry | Ry = x)M fr, () dx (7.6.108)
0 .

where

P(Ry < Ry | Ry =x) = /0 Faur) dra

=1 (7.6.109)
The (M — 1)st power of Equation (7.6.109) may be expressed as '
M-l
11— = N1y (M 1) ne /2 (7.6.110)
n
n=0

Substitution of this result in Equation (7.6.108) and integration over x yields the prob-
ability of a correct decision as

M-1

M-1\ 1

Po=3 (1) ( ) — A/ (7.6.111)
= n n+1

where p; = &/ Ny is the SNR/symbol. Then, the probability of a symbol error which



432 Digital Transmission through Gaussian Noise Channel Chapter7

is Py = 1 — P, becomes

M-l M—-1\ 1 »
Py = —1 "+1< oo/ (D) 6.
=y (—1) T et (7.6.112)

n=1
where p, = &,/ Np is the SNR/bit.
For binary FSK (M = 2), Equation (7.6.112) reduces to the simple form

1
Py == 5 emP12 : (7.6.113)

We observe that the performance of noncoherent FSK is 3-dB worse than binary DPSK.
For M > 2, we may compute the probability of a bit error by making use of the
relationship

Py = Py (7.6.114)

2k -1
which was established in Section 7.6.6. Figure 7.65 shows the bit-error probability as
function of the SNR/bit g, for M = 2,4, 8, 16, 32. Just as in the case of coherent
detection of M-ary orthogonal signals (see Section 7.6.6), we observe that for any
given bit-error probability, the SNR/bit decreases as M increases. It will be shown in
Chapter 9 that, in the limit as M — oo (or k = logy M — 00), the probability of a
bit-error Fp can be made arbitrarily small provided that the SNR/bit is greater than the
Shannon Limit of —1.6 dB.

7.6.10 Comparison of Modulation Methods

The digital modulation methods described in this chapter can be compared in a number
of ways. For example, one can compare them on the basis of the SNR required to
achieve a specified probability of error. However, such a comparison would not be very
meaningful unless it were made on the basis of some constraint, such as a fixed data
rate of transmission.

Suppose that the bit rate R;, is fixed, and let us consider the channel bandwidth
required to transmit the various signals. If we employ M-ary PAM, where M = 2%, the
channel bandwidth required to transmit the signal is simply the bandwidth of the signal
pulse gr (), which depends on its detailed characteristics. For our purposes, we assume
that gr(#) is a pulse of duration T and that its bandwidth W is approximately 1/2T,
where T is the symbol interval. In one symbol interval we can transmit & information
bits, so T = k/Ry seconds. Hence, the channel bandwidth required to transmit the
M-ary PAM signal is

W = Ryp/2k = Ry/21og, M Hz ' (7.6.115)

If the PAM signal is transmitted at bandpass as a double-sideband suppressed

carrier signal, the required channel bandwidth is twice that for the baseband channel.

However, the bandwidth of the bandpass PAM signal can be reduced by a factor of
two by transmitting only one of the sidebands, either the upper or the lower sideband
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Figure 7.65 Probability of a bit error for noncoherent detection of orthogonal FSK
signals.

of the bandpass signal. Thus, the required channel bandwidth of the single-sideband
bandpass PAM signal is exactly the same as the bandwidth of the baseband signal.

In the case of QAM, the channel bandwidth is (approximately) W = 1/T, but
since the information is carried on two quadrature carriers, T = 2k/ R, where k is th
number of information bits/carrier. Hence, '

W= Rb/Zk = Rb/ZIOgZ MPAM
= Rb/ 10g2 MQAM (76116)

where the number of signals for M-ary QAM, denoted as Mqan, is equal to the square
of the number Mpay of PAM signals.
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For M-ary-phase modulation, the channel bandwidth required to transmit the
multiphase signalsis W = 1/T, where T = k/R;. Hence,

W = Ry/k = Ry/log, M (7.6.117)

Note that PAM, QAM, and PSK signals have the characteristic that, for a fixed bit rate
Ry, the channel bandwidth decreases as the number of signals M increases. This means
that with increasing M the system becomes more bandwidth efficient. On the other
hand examination of Figures 7.55, 7.57, and 7.62 shows that in all these systems, at
a given &,/ Ny, increasing M increases the error probability and thus deteriorates the

performance. In other words, in these systems increasing M increases the bandwidth

efficiency and decreases the power efficiency. This is a direct consequence of the fact
that in these systems the dimensionality of the signal space N is one (for PAM) or two
{for PSK and QAM) and is independent of M.

Orthogonal signals have totally different bandwidth requirements. For example, if
we employ PPM signals, the symbol interval T is subdivided into M subintervals of du-
ration T’/ M and pulses of width T'/M are transmitted in the corresponding subintervals.
Consequently, the channel bandwidth required to transmit the PPM signals is

W = M/2T = M/2(k/Ry) = MR,/2log, M Hz

An identical result is obtained if the M orthogonal signals are constructed as M-ary-
FSK with minimum frequency separation of 1/27 for orthogonality. Biorthogonal and
simplex signals result in similar relationships as PPM (orthogonal). In the case of
biorthogonal signals, the required bandwidth is one-half of that for orthogonal signals.
From the bandwidth relation for orthogonal signals, it is seen that for a fixed Ry,
increasing M increases the bandwidth proportional to A4/ (2 log, M). This shows that
in this case increasing M decreases the bandwidth efficiency of the system. On the other
hand, examination of Figures 7.63 and 7.64 shows that in these systems, for a fixed
&y /Ny, increasing M improves the performance of the system and, thus, improves
the power efficiency of the system. It is also interesting to note that in orthogonal,

biorthogonal, and simplex signaling schemes, the dxmens&onahty of the space is not
fixed and increases with increasing M.

From the above discussion, it is clear that the characteristics of PAM, PSK, and
QAM on one hand and orthcgonal, biorthogonal, and simplex schemes on the other
hand are completely different and, therefore, their applications are also quite different.

A compact and meaningful comparison of these modulation methods is one that
is based on the normalized data rate R,/ W (bits per second per hertz of bandwidth)
versus the SNR/bit (£, /Np) required to achieve a glven error probability. For PAM and
orthogonal signals, we have

R
PAM: ’Wb“ = 21og, Mpans (7.6.118)

QAM: % = log, Moam (7.6.119)
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PSK: -2 = log, Mrsk (7.6.120)
R 2log, M
orthogonal: Wb = —9—3—— (7.6.121)

Figure 7.66 illustrates the graph of R,/ W (measure of bandwidth efficiency) versus
(Ey/No) (measure of power efficiency) for PAM, QAM, PSK, and orthogonal signals
for the case in which the symbol error probability is Py = 107>. We observe that,
as discussed before, in the case of PAM, QAM, and PSK, increasing the number of
signal points M results in a higher bit rate to bandwidth ratio R,/ W. However, the cost
of achieving the higher data rate is an increase in the SNR/bit. Consequently, M-ary

Coherent detection
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£ - M=4PAM M=8 PAM (SSB)
£ gl (ssB)
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E M=16
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Figure 7.66 Comparison of several modulation methods at 10~ symbol error
probability.
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TABLE 7.2 QAM SIGNAL CONSTELLATIONS

Number of signal  Increase in average

points M power (dB) relative to M = 2
4 3.
8 6.7
16 10.0
32 132
64 16.2
128 192

PAM, QAM, and PSX are appropriate for communication channels that are bandwidth
limited, where we desire a bit rate-to-bandwidth ratio R,/ W > 1, and where there is

sufficiently high SNR to support multiple signal amplitudes and phases. Telephone

channels are examples of such bandlimited channels.

We have already observed that the cost of doubling the number of phases (in-
creasing the number of bits/symbol by one bit) in PSK approaches 6 dB (a factor of 4)
in additional transmitted power for large M. A similar comparison for QAM indicates
that the increase in transmitted power is approximately 3 dB/additional bit/symbol.
Table 7.2 gives the factor 10log, (M — 1)/3, which represents the increase in average
power required to maintain a given level of performance for QAM as the number of
signal points in the rectangular constellation increases. Thus, we observe that QAM
(and PAM) is preferable to PSK for large signal constellation sizes.

In contrast to PAM, QAM, and PSK, M-ary orthogonal signals yield a bit rate-
to-bandwidth ratio of R,/ W < 1. As M increases, R,/ W decreases due to an increase
in the required channel bandwidth. However, the SNR/bit required to achieve a given
error probability (in this case, Py = 107°) decreases as M increases. Consequently,
M-ary orthogonal signals, as well as biorthogonal and simplex signals, are appropriate
for power-limited channels that have sufficiently large bandwidth to accommodate a
large number of signals. In this case, as M — oo, the error probability can be made as
small as desired, provided that &/ Ny > 0.693 (— 1.6 dB). This is the minimum SNR/bit
required to achieve reliable transmission in the limit as the channel bandwidth W — oo
and the corresponding bit rate-to-bandwidth ratio R,/ W — 0.

7.7 PERFORMANCE ANALYSIS FOR WIRELINE AND RADIO
COMMUNICATION CHANNELS

In the transmission of digital signals through an AWGN channel, we have observed that
the performance of the communication system, measured in terms of the probability
of error, depends on the received SNR, &,/ Ny, where & is the transmitted energy/bit
and Np/2 is the power-spectral density of the additive noise. Hence, the additive noise
ultimately limits the performance of the communication system.

In addition to the additive noise, another factor that affects the performance of a
communication system is channel attenuation. As indicated in Chapter 5, all physical
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channels, including wirelines and radio channels, are lossy. Hence, the signal is at-
tenuated as it travels through the channel. The simple mathematical model for the
attenuation shown previously in Figure 5.18 may also be used for the purpose of digital
communication. Consequently, if the transmitted signal is s (2), the received signal is

() =as®) +n@) (7.7.1)

Then, if the energy in the transmitted signal is &, the energy in the received
signal is &2&,. Consequently, the teceived signal has an SNR &2,/ Np. As in the case

. of analog communication systems, the effect of signal attenuation in digital commu-

nication systems is to reduce the energy in the received signal and, thus, to render the
communication system more vulnerable to additive noise.

‘Recall that in analog communication systems, amplifiers called repeaters are used
to periodically boost the signal strength in transmission through the channel. However,
each amplifier also boosts the noise in the system. In contrast, digital communication
systems allow us to detect and regenerate a clean (noise-free) signal in a transmission

“channel. Such devices, called regenerative repeaters, are frequently used in wireline

and fiber optic communication channels.

7.7.1 Regenerative Repeaters

The front end of each regenerative repeater consists of a demodulator/detector that
demodulates and detects the transmitted digital information sequence sent by the pre-
ceding repeater. Once detected, the sequence is passed to the transmitter side of the
repeater which maps the sequence into signal waveforms that are transmitted to the
next repeater. This type of repeater is called a regenerative repeater.

Since a noise-free signal is regenerated at each repeater, the additive noise does
not.accurnulate. However, when errors occur in the detector of a repeater, the errors are
propagated forward to the following repeaters in the channel. To evaluate the effect of
errors on the performance of the overall system, suppose that the modulation is binary
PAM, so that the probability of a bit error for one hop (signal transmission from one
repeater to the next repeater in the chain) is

e

Since errors occur with low probability, we may ignore the probability that any one bit
will be detected incorrectly more than once in transmission through a channel with X
repeaters: Consequently, the number of errors will increase linearly with the number
of regenerative repeaters in the channel and, therefore, the overall probability of error
may be approximated as

P,=KQ ( 2]\%) (71.72)

In contrast, the use of K analog repeaters in the channel reduces the received SNR
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by K and, hence, the bit-error probability is

28
Py~ Q ( KA‘;O) (713)

Clearly, for the same probability of error performance, the use of regenerative repeaters
results in a significant savings in transmitter power compared with analog repeaters.
Hence, in digital communication systems, regenerative repeaters are preferable. How-
ever, in wireline telephone channels that are used to transmit both analog and digital
signals, analog repeaters are generally employed.

Example 7.7.1
A binary digital communication system transmits data over a wireline channel of length
1000 Km. Repeaters are used every 10 Km to offset the effect of channel attenuation.
Determine the &,/ Ny that is required to achieve a probability of a bit error of 1073 if
(1) analog repeaters are employed, and (2) regenerative repeaters are employed.
Solution The number of repeaters used in the system is K = 100. If regenerative re-
peaters are used, the &, /Ny obtained from Equation (7.7.2) is

107° = 100Q ( 3}%)
[}
-7 _ lng

which yields approximately 11.3 dB. If analog repeaters are used, the & /Ng obtained
from Equation (7.7.3) is

-5 _ 2‘Sb
107 =2 (\/ 100N0)

which yields an £, /Ny of 29.6 dB. Hence, the difference on the required SNR is about
18.3 dB, or approximately, 70 times the transmitter power of the digital communication
system.

7.7.2 Link Budget Analysis for Radio Channels

In the design of radio communication systems that transmit over LOS microwave satel-
lite channels, we must also consider the effect of the antenna characteristics in deter-
mining the SNR at the receiver that is required to achieve a given level of performance.
The system design procedure is described next. !

Suppose that a transmitting antenna radiates isotropically in free space at a power
level Pr watts, as shown in Figure 7.67. The power density at a distance d from the
antenna is Pr/4wd® W/m?. If the transmitting antenna has directivity in a particular
direction, the power density in that direction is increased by a factor called the antenna
gain Gr. Then, the power density at a distance.d is PrGr J4md* Wim?. The product
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Figure 7.67 Antenna that radiates
isotropically in free space.

PrGr is usually called the effective isotropically radiated power (EIRP), which is
basically the radiated power relative to an isotropic antenna for which G = 1.

A receiving antenna pointed in the direction of the radiated power gathers a portion
of the power that is proportional to its cross-sectional area. Hence, the received power
extracted by the antenna is expressed as

PrGrAg
Pr=——m
, 4 d?
where Az is the effective area of the antenna. The basic relationship between the
antenna gain and its effective area, obtained from basic electromagnetic theory, is
GrA?
A R = R m2
4r

where A is the wavelength of the transmitted signal.
If we substitute for Ay from Equation (7.7.5) into Equation (7.7.4), we obtain the

expression for the received power as

PrGrGr
~ (rd/n)?
The factor (4rd/A)* = &, is the free-space path loss. Other losses, such as atmospheric

losses, that may be encountered in the transmission of the signal are accounted for
by introducing an additional loss factor &,. Therefore, the received power may be

expressed as

(7.1.4)

(7.7.5)

3 (1.7.6)

PrGrGp
Pr= - 2 7.7.7
R X (7.7.7)
or, equivalently,

Prleaw = Prlaw + Grla + Grlee — Lslas — ZLalan (7.7.8)

The effective area for an antenna generally depends on the wavelength X of the
radiated power and the physical dimension of the antenna. For example, a parabolic
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(dish) antenna of diameter D has an effective area

Ap = 7 (7.7.9)

where & D?/4 is the physical area and 7 is the illumination efficiency faétor, which is
typically in the range 0.5 < 7 < 0.6. Hence, the antenna gain for a parabolic antenna of
diameter D is

xD\? .
Gr=n1 -/ parabolic antenna (7.7.10)

As a second example, a horn antenna of physical area A has an efficiency factor
of 0.8, an effective area of Az = 0.84, and a gain of

104
P

Another parameter that is related to the gain (directivity) of an antenna is its
beamwidth, denoted as ©p and illustrated in Figure 7.68. Usually, the beamwidth

is measured as the —3-dB width of the antenna pattern. For example, the —3-dB
beamwidth of a parabolic antenna is approximately

®p 2 704/D deg

Gg = horn antenna (7710

Beamwidth ©5

(a) Beamwidth

0 o

2 Figure 7.68 A narrow beam antenna
(b) Antenna pattern and its radiation pattern.
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so that Gy is inversely proportional to ©%. Hence, a decrease of the beamwidth by a
factor of two, which is obtained by doubling the diameter, increases the antenna gain
by a factor of four (6 dB).

Example 7.7.2
A satellite in geosynchronous orbit (36,000 km above the earth’s surface) radiates 100 W of
power (20 dBW). The transmitting antenna has a gain of 18 dB, so that the EIRP = 38 dBW.
The earth station employs a 3-meter parabolic antenna and the downlink is transmitting
at a frequency of 4 GHz. Determine the received power.

Solution The w'avelength A = 0.075 m. Hence, the free-space path loss is
brd
£l = 201og (—?) =195.6 dB

Assuming 7 = 0.5, the antenna.gain is 39 dB. Since no other losses are assumed,
Prlag =20+ 18+39 —195.6
= —118.6 dABW
or, equivalently,
Pp=25x10""W

We may carry the computation one step further by relating the & /N, required to
achieve a specified level of performance to Pg. Since,

& _TyPr 1 Pg
No  No ReNp

Pr _ R <ﬁ> (7.7.13)
) No No req

where (€, / No)req is the required SNR/bit to achieve the desired performance. The relation
in Equation (7.7.13) allows us to determine the bit rate R,. We have

, P g :
1010g,0 Ry = (JL> ~ 10log;o (-”) (7.7.14)
No /e No/ req
Example 7.7.3

If (€4/No)req = 10 dB, determine the bit rate for the satellite communication system
in Example 7.7.2. Assume that the receiver front-end has a noise temperature of 300 K,
which is typical for a receiver in the 4 GHz range.

Solution Since Ty = 290 K and 7, = 10K, it follows that
No=kT =4.1x 1072 W/Hz
or, equivalently, ~203.9 dBW/Hz. Then,

P
(—5> = —118.6 +203.9
Ny @B

(1.7.12)

it follows that

= 85.3dB/Hz
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Therefore, from Bquation (7.7.14) we obtain
10log,q Ry = 85.3 — 10
=753
or, equivalently, ‘
Ry = 33.9 x 10° bps

We conclude that this satellite channel can support a bit rate of 33.9 Mbps.

7.8 SYMBOL SYNCHRONIZATION

In a digital communication system, the output of the receiving filter y(r) must be
sampled periodically at the symbol rate, at the precise sampling time instants #, =
mT + 1o, where T is the symbol interval and 7p is a nominal time delay that accounts
for the propagation time of the signal from the transmitter to the receiver. To perform this
periodic sampling, we require a clock signal at the receiver. The process of extracting
such a clock signal at the receiver is usually called symbol synchronization or fiming
recovery. )

Timing recovery is one of the most critical functions that is performed at the
receiver of a synchronous digital communication system. We should note that the
receiver must know not only the frequency (1/T") at which the outputs of the matched
filters or correlators are sampled, but also where to take the samples within each symbol
interval. The choice of sampling instant within the symbol interval of duration T is
called the timing phase.

The best timing phase corresponds to the time instant within the symbol intervat
where the output of the receiver filter is a maximum. In a practical communication
system, the receiver clock must be continuously adjusted in frequency (1/7) and in
timing phase 7, to compensate for frequency drifts between the oscillators used in the
transmitter and receiver clocks and, thus, to optimize the sampling time instants of the
matched filter or correlator outputs.

Symbol synchronization can be accomplished in one of several ways. In some
communication systems the transmitter and receiver clocks are synchronized to a mas-
ter clock, which provides a very precise timing signal. In this case, the receiver must
estimate and compensate for the relative time delay between the transmitted and re-
‘ceived signals. Such may be the case for radio communication systems that operate in
the very low frequency (VLF) band (below 30 kHz), where precise clock signals are
transmitted from a master radio station.

Another method for achieving symbol synchronization is for the transmitter to
simultaneocusly transmit the clock frequency 1/7 or a multiple of 1/7 along with
the information signal. The receiver may simply employ a narrowband filter tuned
to the transmitted clock frequency and, thus, extract the clock signal for sampling.
This approach has the advantage of being simple to implement. There are several
disadvantages, however. One is that the transmitter must allocate some of its available
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power to the transmission of the clock signal. Another is that some small fraction of
the available channel bandwidth must be allocated for the transmission of the clock
signal. In spite of these disadvantages, this method is frequently used in telephone
transmission systems that employ large bandwidths to transmit the signals of many
users. In such a case, the transmission of a clock signal is shared in the demodulation
of the signals among the many users. Through this shared use of the clock signal, the
penalty in transmitter power and in bandwidth allocation is reduced proportionally by
the number of users.

A clock signal can also be extracted from the received data signal. There are a num-
ber of different methods that can be used at the receiver to achieve self-synchronization.
Below we consider four approaches to the problem of achieving symbol synchroniza-
tion from the received signal.

7.8.1 Early-Late Gate Synchronizers

One method for generating a symbol timing signal at the receiver exploits the symmetry
properties of the signal at the output of the matched filter or correlator. To describe this
method, let us consider the rectangular pulse s(¢), 0 <t < T, shown in Figure 7.69(a).
The output of the filter matched to s(¢) attains its maximum value at time ¢t = T, as
shown in Figure 7.69(b). Thus, the output of the matched filter is the time autocorrelation
function of the pulse s(z). Of course, this statement holds for any arbitrary pulse shape,
so the approach that we describe applies in general to any signal pulse. Clearly, the
proper time to sample the output of the matched filter for a maximum outputisatz = T';
i.e., at the peak of the correlation function.

s@
A
0 T t
(2)
Matched filter output
Optimum sample
Early sample | Late sample
I
|
Pl
Pl
! ! !
0 T—8T T T+& 2T
. Figure 7.69 (a) Rectangular signal pulse
() and (b) its matched filter output.
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In the presence of noise, the identification of the peak value of the signal is
generally difficult. Instead of sampling the signal at the peak, suppose we sample
early, att =T — 8T and late at t=T +5T. The absolute values of the early sampic?s
|y[m (T —8T)]| and the late samples [y[m(T + &1} will be smaller (on.the average in
the presence of noise) than the samples of the peak value |y(mT)|. Since the auto-
correlation function is even with respect to the optimum sampling time ¢t = T, the
absolute values of the correlation functionatt = T — 8T and ¢t = T + 8T are equal.
Under this condition, the proper sampling time is the midpoint between ¢ = T8 T'and
t = T +87. This condition forms the basis for the early-late gate symbol synch;omzer.

Figure 7.70 illustrates the block diagram of an early—late gate synchronizer. In
this figure, correlators are used in place of the equivalent matched ﬁ%ters. Tl}e two
corzelators integrate over the symbol interval T, but one correlator starts integrating 6T
early relative to the estimated optimum sampling time and t'he o_ther integrator starts
integrating 67 late relative to the estimated optimum sampling time. An érror signal
is formed by taking the difference between the absolute values of the two cprrelator
outputs. To smooth the noise corrupting the signal samples, the error signal is pa_ssed
through a lowpass filter. If the timing is off relative to the optimum sampling time,
the average error signal at the output of the lowpass filter is nonzero, and the clock

—{ X )} for (OF: 3 Sampler [—> Magnitude
Advance
by &
Received ] .
i Symbol Loo
signal waveform vCO ﬁlteg 4___%;.
generator -
Symbol
timing
Delay
byd

> ( X > Jg Ot Sampler J—"‘ Magnitude

Figuare 7.70 Block diagram of early-late gate synchronizer.
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signal is either retarded or advanced, depending on the sign of the error. Thus, the
smoothed error signal is used to drive a voltage-controlled oscillator (VCO), whose
output is the desired clock signal that is used for sampling. The output of the VCO is
also used as a clock signal for a symbol waveform generator that puts out the same
basic pulse waveform as that of the transmitting filter. This pulse waveform is advanced
and delayed and then fed to the two correlators, as shown in Figure 7.70. Note that if
the signal pulses are rectangular, there is no need for a signal pulse generator within
the tracking loop.

‘We observe that the early—late gate synchronizer is basically a closed-loop control
system whose bandwidth is relatively narrow compared to the symbol rate 1/7. The
bandwidth of the loop determines the quality of the timing estimate. A narrowband
loop provides more averaging over the additive noise and, thus, improves the quality
of the estimated sampling instants, provided that the channel propagation delay is
constant and the clock oscillator at the transmitter is not drifting with time (drifting
very slowly with time). On the other hand, if the channel propagation delay is changing
with time and, or, the transmitter clock is also drifting with time, then the bandwidth of
the loop must be increased to provide for faster tracking of time variations in symbol
timing. This increases the noise in the loop and degrades the quality of the timing
estimate.

In the tracking mode, the two correlators are affected by adjacent symbols. How-
ever, if the sequence of information symbols has zero mean, as is the case for PAM and
some other signal modulations, the contribution to the output of the correlators from
adjacent symbols averages out to zero in the lowpass filter.

An equivalent realization of the early-late gate synchronizer that is somewhat
easier to implement is shown in Figure 7.71. In this case, the clock from the VCO is
advanced and delayed by 87, and these clock signals are used to sample the outputs of
the two correlators.

7.8.2 Minimum Mean-Square-Error Method

Another approach to the problem of timing recovery from the received signal is based
on the minimization of the mean-square-error (MSE) between the samples at the output
of the receiver filter and the desired symbols. We assume that the baseband signal at
the transmitter is of the form

oo

v(t) = Y a;gr(z—nf) (7.8.1)

n=-—od

where {a,} is the data sequence and T is the symbol interval. To be specific, we assume
that v(z) is a PAM baseband signal and the data sequence {a, } is a zero-mean, stationary
sequence with statistically i.i.d. elements. Therefore, the signal v(¢) has zero mean; i.e.,
Efv(2)] = 0. Furthermore, as illustrated in the next chapter, the autocorrelation function
of v(z) is periodicin T and, hence, v(t) is a cyclostationary process.
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Figure 7.71 Block diagram of early-late gate synchronizer—an alternative form.

The received signal at the output of the matched filter at the receiver may be
expressed as

[}
YO = D . x( —nT — 1) +v() (1.8.2)
n=—cQ )
where x(t) = gr(t) % gr(t), gr(?) is the impulse response of the receiver filter, v ()
represents the noise at the output of the receiver filter and 7 (zo < T') represents the

timing phase.
The MSE between the output of the receiver filter and the desired symbol at the

mth symbol interval is defined as

MSE = E{lyn (%) — an]’} (7.8.3)
where !
Yn(@) = Y. @ux(mT —nT — 1) +v(mT) (7.84)

Since the desired symbol a,, is not known a priori at the receiver, we may use the output
of the detector, denoted as ,,, for the mth symbol; i.e., we substitute 4, for ay, in the
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MSE expression. Hence, the MSE is redefined as
MSE = E{[yn(t0) — &m]’} (7.8.5)

The minimum of (MSE) with respect to the timing phase 7, is found by differen-
tiating Equation (7.8.5) with respect to p. Thus, we obtain the necessary condition

dYm
Z [Ym(w6) — &m]—y-d—f(o@ =0 (7.8.6)

An interpretation of the necessary condition in Equation (7.8.6) is that the optimum
sampling time corresponds to the condition that the error signal [y, (7o) — &) is un-
correlated with the derivative dy,,(10)/d7s. Since the detector output is used in the
formation of the error signal [y, (7o) — &x, ], this timing phase-estimation method is said
to be decision-directed.

Figure 7.72 illustrates an implementation of the system that is based on the condi-
tion given in Equation (7.8.6). Note that the summation operation is implemented as a
lowpass filter, which averages a number of symbols. The averaging time is roughly
equal to the reciprocal of the bandwidth of the filter. The filter output drives the

- voltage-controlled oscillator (VCO), which provides the best MSE estimate of the

timing phase 1g.

Sampler o N
. ) ¥ @ a
Re'ccwed I Filter / - nr Detector
signal PG
Y
+ —
d
=0
ym(TO) - aJﬂ
Sampler
e ®
Lowpass
filter
vCo *—-—I

Figure 7.72 Timing recovery based on minimization of MSE.
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7.8.3 Maximum-Likelihood Methods

In the ML criterion, the optimum symbol timing is obtained by maximizing the likeli-
hood function.

A®) =) GnYm(0) (787

where y.. (7o) is the sampled output of the receiving filter given by Equation (7.8.4),
From amathematical viewpoint, the likelihood function can be shown to be proportional
to the probability of the received signal (vector) conditioned on a known transmitted
signal. Physically, A(zp) is simply the output of the matched filter or correlator at the
recejver averaged over a number of symbols.

A necessary condition for 7 to be the ML estimate is that

dA(z) dym(10)

et > tm =0 (7.8.8)
This result suggests the implementation of the tracking loop shown in Figure 7.73. We
observe that the product of the detector output &,, with dy,, (t9)/dty is averaged by a
lowpass filter that drives the VCO. Since the detector output is used in the estimation
method, the estimate % is decision-directed.

As an alternative to the use of the output symbols from the detector, we may
use a nondecision-directed method that does not require knowledge of the information
symbols. This method is based on averaging oVer the statistics of the symbols. For
example, we may square the output of the receiving filter and maximize the function

2
Aao(m) = ) y:(w) (7.8.9)
m
d
. Sampler %(T)-
Recejve Filter d .. e 0
signal 80 at) e

&H! /
Sampler Detector g\ 9

\

Lowpass

veo : filter

Figure 7.73 Decision-directed ML timing recovery method for baseband PAM. »
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Figure 7.74 Nondecision-directed estimation of timing for baseband PAM.

with respect to 7p. Thus, we obtain

dAs (1) Ay (7o)
28280 23y (i 2 7.8.1
= 2 I (T0) o 0 (7.8.10)

The condition for the optimum 7y given by Equation (7.8.10) may be satisfied by
the implementation shown in Figure 7.74. In this case, there is no need to know the
data sequence {a,,}. Hence, the method is nondecision-directed.

7.8.4 Spectral-Line Methods

Since the signal component at the output of the receiver filter is periodic with period T,
we can recover a clock signal with frequency 1/ T by filtering out a signal component at
f =1/T.We observe, however, that E{y(z)] = 0 because E (a,) = 0. Therefore, y(¢)
cannot be used directly to generate a frequency component at f = 1/7. On the other
hand, we may perform a nonlinear operation on y(¢) to generate power at f = 1/T
and its harmonics.

Let us consider a square-law nonlinearity. If we square the signal y(¢) given by
Equation (7.8.2) and take the expected value with respect to the data sequence {a,}, we
obtain

E[y*)]=E Z z Opmx(t —mT — 1o)x(t —nT — 1p) | + noise component

<Q
= cra2 Z x2(t —nT — 7o) + noise component (7.8.11)
n=--co

where 02 = E[a?]. Since E[y*(#)] > 0, we may use y*(t) to generate the desired
frequency component.
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Let us use the Poisson Sum Formula on the signal component (see Problem 2.23)
to express Equation (7.8.11) in the form of a Fourier series. Hence,

,
aa2 Z x*(t —nT —1p) = UTH Z CpelZFme-T/ T (7.8.12)
n m

where
b /m
Cm =/_°°X(f)X (—f—-f) af (7.8.13)

By design, we assume that the transmitted signal spectrum is confined to frequencies
below 1/7T. Hence, X(f) = 0 for {f| > 1/T and, consequently, there are only three
nonzero terms (m = 0, 1) in (7.8.12). Therefore, the square of the signal component
contains a dc component and a component at the frequency 1/7.

The above development suggests that we square the signal y(z) at the output of
the receiving filter and filter y%(¢) with a narrowband filter B(f) tuned to the symbol
rate 1/ 7. If we set the filter response B(1/T) == 1, then

2 2
O 12t —10) ) T O 2
£ R 4 o = = —(t - 7.8.14
7 efcie T T cieos — (t — 10) ( )

so that the timing signal is a sinusoid with a phase of —2m 7 /T, assuming that X (f)
is real. We may use alternate zero crossings of the timing signal as an indication of the
correct sampling times. However, the alternate zero crossings of the signal given by
Equation (7.8.14) occur at

2n A T
—( — = 4k + 1)— 7.8.15
7 (@ —71) = @k+1) 5 ( )
or, equivalently, at
T
t =kT+'L’0+E (7.8.16)

which is offset in time by T'/4 relative to the desired zero crossings. In a practical
system the timing offset can be easily compensated either by relatively simple clock
circuitry or by designing the bandpass filter B( f) to have a /2 phase shiftat f = 1/7.
Figure 7.75 illustrates this method for generating a timing signal at the receiver.

Sampler Output
Received i utpyl
efel"e Filter 1/ o—
signal &r®
‘[ Clock
Narrowband
/2
Sq;arileaw || filter 5 phase .
v tuned to 1/T shift Figure 7.75 Symbol timing based on
B spectral-line method.
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Figure 7.76 Dlustration of the slope of
the sinusoid at the zero crossing as a
function of the amplitude.

The additive noise that corrupts the signal will generally cause fluctuations in
the zero crossings of the desired signal. The effect of the fluctuations will depend on
the amplitude ¢; of the mean timing sinusoidal signal given by Equaticn (7.8.14). We
note that the signal amplitude ¢; is proportional to the slope of the timing signal in
the vicinity of the zero crossing as shown in Figure 7.76. Therefore, the larger the
amplitude ¢, the larger will be the slope and, consequently, the timing errors due to
the noise will be smaller. From Equation (7.8.13) we observe that ¢; depends on the
amount of spectral overlap of X (f) and X(1/T — f). Thus, ¢; depends on the amount
by which the bandwidth of X ( f) exceeds the Nyquist bandwidth 1/27T';i.e., c; depends
on the excess bandwidth of the signal, which is defined as the band of frequencies of
the signal X (f) beyond f = 1/27T. If the excess bandwidth is zero, ie., X(f) = 0,
for | f| > 1/2T, then ¢; = 0, and this method fails to provide a timing signal. If the
excess bandwidth is large, say /2T where o = 1/2 or 1, the timing signal amplitude
will be sufficiently large to yield relatively accurate symbol timing estimates.

7.8.5 Symbol Synchronization'for Carrier-Modulated Signals

The symbol-timing synchronization methods described in Section 7.8.4 for baseband
signals apply as well to bandpass signals. Because any carrier-modulated signal can be
converted to a baseband signal by a simple frequency translation, symbol timing can
be recovered from the received signal after frequency conversion to baseband.

For QAM signals the spectral-line methods described in Section 7.8.4 have proved
to be particularly suitable for timing recovery. Figure 7.77 illustrates a spectral-line
method which is based on filtering out a signal component at the frequency 1/27T
and, squaring the filter output to generate a sinusoidal signal at the desired symbol
rate 1/ T. Because the demodulation of the QAM signal is accomplished as described
above, by multiplication of the input signal with the two quadrature-carrier signals
¥ (1) and ¥~ (), the in-phase and quadrature signal components at the outputs of the
two correlators are used as the inputs to the two bandpass filters tuned to 1/27. The
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Figure 7.77 Block diagram of timing recovery method for QAM.

two filter outputs are squared (rectified), summed, and then filtered by a narrowband
filter tuned to the clock frequency 1/7T. Thus, we generate a sinuscidal signal that is
the appropriate clock signal for sampling the outputs of the correlators to recover the
information.

In many modern communication systems, the received sighal is processed (de-
modulated) digitally after it has been sampled at the Nyquist rate or faster. In such a
case, symbol timing and carrier phase are recovered by signal-processing operations
performed on the signal samples. Thus, a PLL for carrier recovery is implemented as
a digital PLL and the clock recovery loop of a type described in this section is also
implemented as a digital loop. Timing recovery methods based on sampled signals have
been described and analyzed by Mueller and Muller (1976).

7.9 FURTHER READING

The geometrical representation of digital signals as vectors was first used by Kotelnikov
{1947), and by Shannon (1948) in his classic papers. This approach was popularized
by Wozencraft and Jacobs (1965). Today this approach to signal analysis and design is
widely used. Similar treatments to that given in the text may be found in most books
on digital communications.

The matched filter was introduced by North (1943), who showed that it maximized
the SNR. Analysis of various binary and M-ary modulation signals in AWGN were
performed in the two decades following Shannon’s work. Treatments similar to that
given in this chapter may be found in most books on digital communications.

A number of books and tutorial papers have been published on the topic of time
synchronization. Books that cover both carrier-phase recovery and time synchronization
have been written by Stiffler (1971), Lindsey (1972), and Lindsey and Simon (1973),
Meyr and Ascheid (1992), and Mengali and D’ Andrea (1997). The tutorial paper by
Franks (1980) presents a very readable introduction to this topic.
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Symbol synchronization for carrier-modulated signals is a topic that has been
treated thoroughly and analyzed in many journal articles. Of particular importance are
the journal papers by Lyon (1975a,b) that treat tizning recovery for QAM signals and
the paper by Mueller and Muller (1976) that describes symbol timing methods based
on digital processing of signal samples.

PROBLEMS

7.1 Determine the average energy of a set of M PAM signals of the form
Sm(t) =S¥ (?), m=12,....,.M
0<t<T

where

Sm=1/EgAm, m=1,2,.... M

The signals are equally probable with amplitudes that are symmetric about zero
and are uniformly spaced with distance d between adjacent amplitudes as shown
in Figure 7.11.

7.2 Show that the correlation coefficient of two adjacent signal points corresponding
to the vertices of an &V-dimensional hypercube with its center at the origin is
given by

and their Euclidean distance is

d=2&]N

7.3 Consider the three waveforms v, () éhown in Figure P-7.3.

1. Show that these waveforms are orthonormal.
2. Express the waveform x (¢) as a weighted linear combination of ¥, (), n =

1,2,3,if
-1, O0=<r=<1
x(f) = 1, 1=<r<3
-1, 3<1<4

and determine the weighting coefficients.

7.4 Use the orthonormal waveforms in Problem P-7.3 to approximate the function

x(t) = sin(mt/4)
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Figure P-7.3

over the interval 0 < ¢ < 4 by the linear combination

3
2O = ()

n=}1

1. Determine the expansion coefficients {c,} that minimize the mean-square
approximation error

: 4
— = 2
E._/O [x@) — 2] dt

2. Determine the residual mean square error Epig-
7.5 Consider the four waveforms shown in Figure P-7.5.

1. Determine the dimensionality of the waveforms and a set of basis functions.

2. Use the basis functions to represent the four waveforms by vectors sy, $2,
S3, S84. .
3. Determine the minimum distance between any pair of vectors.
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Figure P-7.5

7.6 Determine a set of orthonormal functions for the four signals shown in Fig-

ure P-7.6.

7.7 Consider a set of M orthogonal signal waveforms s,,(2), 1 <m <M, 0<t <T,
all of which have the same energy £. Define a new set of M waveforms as

lM
sS®) =5, —— > slt),
n(®) =m0 =2 3 (@)

k=1

Show that the M signal waveform {s;, (¢)} have equal energy, given by

& =W -1)EIM
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and are equally correlated, with correlation coefficient

177, , 1
Vi = 7 A Sp(B)s, (1) dt = “—1
7.8 Suppose that two signal waveforms 5;(#) and s5,(¢) are orthogonal over the in-
terval (0, T). A sample function n(z) of a zero-mean, white noise process is
crosscorrelated with s;(¢), and s2(2), to yield

T
n1=/0 s1(Hn(t) dt

a
n2=/0 so(O)ne) dr

Prove that E(n ny) = 0.
7.9 A binary digital communication system employs the signals

501 =0, 0=<t<T
st =4, 0<t<T
for transmitting the information. This is called on-off signaling. The demodulator

crosscorrelates the received signal r(r) with 5;(f) and samples the output of the
correlator atz = 7.

1. Determine the optimum detector for an AWGN channel and the optimum
threshold, assuming that the signals are equally probable.

2. Determine the probability of error as a function of the SNR. How does
on-off signaling compare with antipodal signaling?
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7.10 A binary PAM communication system employs rectangular pulses of duration 7,
and amplitudes =£A to transmit digital information at a rate R, = 10° bps. If the
power-spectral density of the additive Gaussian noise is Np/2, where Ny = 1072
‘W/Hz, determine the value of A that is required to achieve a probability of error
P,=10"%.

7.11 Inabinary PAM system for which the two signals occur with unequal probabilities
(p and 1 — p), the optimum detector is specified by Equation (7.5.54).

1. Determine the average probability of error as a function of (&,/Ny) and p.
2. Evaluate the probability of eror for p = 0.3 and p = 0.5, with & /Ny = 10.

7.12 A binary PAM communication system is used to transmit data over an AWGN
channel. The prior probabilities for the bits are P(a,, = 1) = 1/3 and P(a, =
-1) =2/3. :

1. Determine the optimum threshold at the detector.
2. Determine the average probability of error.

7.13 Binary antipodal signals are used to transmit information over an AWGN channel.
The prior probabilities for the two input symbols (bits) are 1/3 and 2/3.

1. Determine the optimum maximum-likelibood decision rule for the detector.
2. Determine the average probability of error as a function of &£,/ No.

7.14 The received signal in a binary communication system that employs antipodal
signals is

r@) =st)+n)
where s(2).is shown in Figufe P-7.14 and n(t) is AWGN with power-spectral
density No/2 W/Hz.

(@)
A

1 2 3 t

Figure P-7.14

1. Sketch the impulse response of the filter matched to s(z).
2. Sketch the output of the matched filter to the input s (¢).
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3. Determine the variance the noise of the output of the matched filter at = 3.
4. Determine the probability of error as a function of A and Np.

7.15 A matched filter has the frequency response
{ — g=ifT
H(f)=—
j2nf

1. Determine the impulse response A(t) corresponding to H (f).
2. Determine the signal waveform to which the filter characteristic is matched,

7.16 Prove that when a sinc pulse g7 (¢) is passed through its matched filter, the output
is the same sinc pulse.
7.17 The demodulation of the binary antipodal signials

&, 0<t=<T

otherwise

51(t) = —5(t) =

can be accomplished by use of a single integrator, as shown in Figure P-7.17,

which is sampled pericdically at t = kT, k = 0, £1, &2, .... The additive noise
is zero-mean Gaussian with power-spectral density of % W/Hz.

Output
H=s,O+n® . decision
_ e f;() dr —2;(0—-» Detector  p—>
t=kT
R
o AAA o0
CT "l';i t=kT+7 T<<LT
o— T —
Figure P-7.17

1. Determine the output SNR of the demodulator at ¢t = T.

2. Tf the ideal integrator is replaced by the RC filter shown in Figure P-7.17,
determine the output SNR as a function of the time constant RC.

3. Determine the value of RC that maximizes the output SNR.

7.18 Sketch the impulse response of the filter matched to the pulses shown in Figure
P-7.18. Also determine and sketch the outputs of each of the matched filters.
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7.19 Three messages my, m,, and my are to be transmitted over an AWGN channel
with noise power-spectral density Ezﬂ The messages are

1 0<r<T
s1(6) =

0, otherwise
1 o0=<t=<Z®
) =-s@=<~1 I=<t<T

0, otherwise

1. What is the dimensionality of the signal space?

2. Find an appropriate basis for the signal space (Hint: You can find the basis
without using the Gram-Schinidt procedure).

3. Draw the signal constellation for this problem.
4. Derive and sketch the optimal decision regions R1, Ry, and R3.

5. Which of the three messages is more vulnerable to errors and why? In other
words which of P (Brror | 5; transmitted), i = 1,2, 3 is larger?
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7.20 In this chapter we showed that an optimal demodulator can be realized as:
= A correlation-type demodulator
* A matched-filter type demodulator

where in both cases ¥;(2), 1 < j < N, were used for correlating r(z), or design-
ing the matched filters. Show that an optimal demodulator for a general M- -ary
communication system can also be designed based on correlating r(z) with s; ®),

1 <i< M, or designing filters that are matched to s;(z)’s, 1 <i < M. Precisely
describe the structure of such demodulators by giving their block diagram and all

relevant design parameters, and compare their complexity with the complexity of
the demodulators obtained in the text.

7.21 In a binary antipodal signalling scheme the signals are given by

24 T
T O<t=3
510 =—2(0) =24(1~ %) L<r<7
0, otherwise

The channel is AWGN and S, (f) = % The two signals have prior probabilities
prand pp=1-py.

1. Determine the structure of the optimal receiver.

2. Determine an expression for the error probability.

3. Plot error probability as a function of p; for 0 < p; < 1.

7.22 In an additive white Gaussian noise channel with noise power-spectral density of
2 , two equiprobable messages are transmitted by

4, 0<t=T
s1(t) = .
0,  otherwise

A(l-4%) 0=<r<T
5(t) = (t-7) .
0, otherwise
1. Determine the structure of the optimal receiver.
2. Determine the probability of error.

7.23 Consider a signal detector with an input

r_ﬂ:A+n

where +A and A occur with equal probabxhty and the poise variable n is

characterized by the (Laplacian) pdf shown in Figure P-7.23.

1. Determine the probability of error as a function of the parameters A and o

2. Determine the “SNR” required to achieve an error probability of 1075, How
does the SNR compare with the result for a Gaussian PDF?
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Figure P-7.23

7.24 A Manchester encoder maps an information 1 into 10 and a 0 into 01. The signal
waveforms corresponding to the Manchester code are shown in Figure P-7.24.
Determine the probability of error if the two signals are equally probable.

5 5(0)
A A~
0 T t 0 T H
-A -4
Figure P-7.24

7.25 A three-leve]l PAM system is used to transmit the output of a memoryless ternary
source whose rate is 2000 symbols/sec. The signal constellation is shown in
Figure P-7.25. Determine the input to the detector, the optimum threshold that
minimizes the average probability of error, and the average probability of error.

-A 0 A

Figure P-7.25

7.26 Consider ébiorthogonal signal set with M = 8 signal points. Determine a union
bound for the probability of a symbol error as a function of £,/Ny. The signal
points are equally likely a priori.
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7.27

7.28

7.29

Digital Transmission through Gaussian Noise Channel

Consider an M-ary digital communication system where M =2V, and N is the -

dimension of the signal space. Suppose that the M signal vectors lie on the
vertices of a hypercube that is centered at the origin, as illustrated in Figure 7.29.
Determine the average probability of a symbol error as a function of £ / No where
s is the energy/symbol, Np/2 is the power-spectral dcn31ty of the AWGN, and
all signal points are equally probable.

Consider the signal waveform

s(t)=> eap(t—nT)
k=1

where p(z) is a rectangular pulse of unit amplitude and duration 7¢. The {¢;} may
be viewed as a code vector ¢ = [¢1, ¢, ..., Cnl, Where the elements ¢; = X1,
Show that the filter matched to the waveform s (¢) may be realized as a cascade of
a filter matched to p(¢) followed by a discrete-time filter matched to the vector c.
Determine the value of the output of the matched filter at the sampling instant
t=nT,.

A speech signal is sampled at a rate of 8 kHz, logarithmically compressed and
encoded into a PCM format using 8 bits/sample. The PCM data is transmitted

' throu gh an AWGN baseband channel via M-level PAM. Determine the bandwidth

7.30

required for transmission when (a) M =4, (b)) M =38, and (c) M = 16.

Two eqmprobable messages are transmitted v1a an additive white Gaussian noise
channel with noise power-spectral density of J = 1. The messages are transmit-
ted by the following two signals

) = 1 0=r=1
1) = 0, otherwise

and s, (2) = s; (¢ — 1). It is intended to implement the recetver using a correlation
type structure, but due to imperfections in the design of the correlators, the struc-
ture shown in Figure P-7.30 has been implemented. The 1mperfect10n appears in
the integrator in the upper branch where instead of fo we have fo . The decision

J:.s( ) T

r{) Decision
device
2 s
L O

Figure P-7.30

[
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device, therefore, observes r; and ry and based on this observation has to decide
which message was transmitted. What decision rule should be adopted by the
decision device for an optimal decision?

7.31 A Hadamard matrix is defined as a matrix whose elements are =1 and its row

7.33

vectors are pairwise orthogonal. In the case when n is a power of 2, ann x n
Hadamard matrix is constructed by means of the recursion

1 1 H,
H2 = [l _1} H’)n - [gn ——H,J

1. Let ¢; denote the ith row of an n x n Hadamard matrix as defined above.
Show that the waveforms constructed as

sit) =y _cuplt —kT.),

k=1

i=1,2,...,n

are orthogonal, where p(t) is an arbitrary pulse confined to the time interval
0<t<T.

2. Show that the matched filters (or crosscorrelators) for the n waveforms
{s:(1)} can be realized by a single filter (or correlator) matched to the pulse
p(t) followed by a set of n crosscorrelators using the code words {¢;}.

7.32 The discrete sequence

=+, k=12,...n

represents the output sequence of samples from a demodulator, where ¢ =
=41 are elements of one of two possible codewords, ¢; =[1,1,..., 1] and ¢y =
[1,1,...,1,-1,...,—1]. The codeword ¢, has w elements which are +1 and
n — w elements which are ~1, where w is some positive integer. The noise

sequence {r;} is white Gaussian with variance .

1. What is the optimum maximum-likelihood detector for the two possible
transmitted signals?

2. Determine the probability error as a function of the parameter (o2, &, w).
3. What is the value of w that minimizes the error probability?

A baseband digital communication system employs the signals shown in Fig-
ure P-7.33(a) for transmission of two equiprobable messages. It-is assumed the
communication problem studied here is a “one shot” communication problem,
that is, the above messages are transmitted just once and no transmission takes
place afterwards. The channel has no attenuation (¢ = 1) and the noise is AWG
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with power-spectral density %
1. Find an appropriate orthonormal basis for the representation of the signalg

2. In a block diagram, give the precise specifications of the optimal receive;
using matched filters. Label the block diagram carefully.

3. Find the error probability of the optimal receiver.

4. Show that the optimal receiver can be implemented by using just one filter
[see block diagram shown in Figure P-7.33(b)]. What are the characteristics
of the matched filter and the sampler and decision device?

5. Now assume the channel is not ideal, but has an impulse response of c(¢) =
() + %8 @ — g). Using the same matched filter you used in the previous
part, design an optimal receiver.

6. Assuming that the channel impulse response is c(¢) = 8(t) +ad(t — %),
where a 1s a random variable uniformly distributed on [0, 1], and using the
same matched filter, design the optimal receiver.

5,1 55(0).

A o I
0 I Lf 0 .1:. T ¢
2 2
@
AWGN
h(%)
Input Matched Sampler and | OVFU
" pler an
~——~ Modulator \_J filter decision
®)

Figure P-7.33

’

7.34 Suppose that binary PSK is used for transmitting information over an AWGN with
power-spectral density of Ny/2 = 10~19 W/Hz. The transmitted signal energy is
&y = AT /2, where T is the bitinterval and A is the signal amplitude. Determine
the signal amplitude required to achieve an error probability of 1079, if the data
rate is (a) 10 kbps, (b) 100 kbps, (c) 1 Mbps.
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7.35 Consider the signal

A
u(t) = Fteos2xfet, 0<t<T
0, otherwise

1. Determine the impulse response of the matched filter for the signal.

2. Determine the output of the matched filter at t = T.

3. Suppose the signal u(¢) is passed through a correlator which correlates the
input u(#) with #(z). Determine the value of the correlator outputats = 7.
Compare your result with that in part (2).

7.36 A carrier component is transmitted on the quadrature carrier in a communication
system that transmits information via binary PSK. Hence, the received signal has
the form :

v(t) = £/2P; cos@r fit + ¢) + /2P sin(2r fot + ¢) +n(t)
where ¢ is the carrier phase and n(t) is AWGN. The unmodulated carrier com-
ponent is used as a pilot signal at the receiver to estimate the carrier phase.

1. Sketchablock diagram of the receiver, including the carrier-phase estimator.

2. Tllustrate mathematically the operations involved in the estimation of the
carrier-phase ¢.

3. Express the probability of error for the detection of the binary PSK signal
as a function of the total transmitted power Pr = P; + P, What is the loss
in performance due to the allocation of a portion of the transmitted power
to the pilot signal? Evaluate the loss for P,/ Py = 0.1.

7.37 In the demodulation of a binary PSK signal received in white Gaussian noise, a
phase-locked loop is used to estimate the carrier-phase ¢.

1. Determine the effect of a phase error ¢ — ¢ on the probability of error.
2. What is the loss in SNR if the phase error ¢ — ¢ = 45°7

7.38 Suppose that the loop filter [see Equation (5.2.4)] for a PLL has the transfer

function
1
Gis)y=——+
) s++2
1. Determine the closed-loop transfer function H (s) and indicate if the loop
is stable.

2. Determine the damping factor and the natural frequency of the loop.

7.39 Consider the PLL for estimating the carrier phase of a signal in which the loop
filter is specified as

G(s) =

1+7:1s
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1. Determine the closed-loop transfer function H (s) and its gain at f = 0.
2. For what range of value of 7; and K is the loop stable?

7.40 The loop filter G(s) in a PLL is implemented by the circuit shown in Fig-

ure P-7.40. Determine the system function G(s) and express the time constants

7, and 1 [see Equation (5.2.4)] in terms of the circuit parameters.

Ry

Ry
Input i Output
T o
o

Figare P-7.40

7.41 The loop filter G(s) in a PLL is implemented with the active filter shown in

Figure P-7.41. Determine the system function G(s) and express the time constants v

1, and 1, [see Equation (5.2.4)] in terms of the circuit parameters.

R C
wj
|

Figure P-7.41

7.42 Consider the four-phase and eight-phase signal constellations shown in Fig-
ure P-7.42. Determine the radii r; and rp of the circles, such that the distance

a1
7 X

=4

M=8

Figure P-7.42
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between two adjacent points in the two constellations is 4. From this result, de-
termine the additional transmitted energy required in the 8-PSK signal to achieve
the same error probability as the four-phase signal at high SNR, where the prob-
ability of error is determined by errors in selecting adjacent points.

7.43 Consider the two 8-point QAM signal constellation shown in Figure P-7.43. The
minimum distance between adjacent points is 2A. Determine the average trans-
mitted power for each constellation assuming that the signal points are equally
probable. Which constellation is more power efficient?

@ ®

Figure P-7.43

7.44 The 16-QAM signal constellation shown in Figure P-7.44 is an international stan-
dard for telephone-line modems (called V.29). Determine the optimum decision
boundaries for the detector, assuming that the SNR is sufficiently high so that
errors only occur between adjacent points.

7.45 Specify a Gray code for the 16-QAM V.29 signal constellation shown in Prob-
lem 7.44.

7.46 Consider the octal signal-point constellations iri Figure P-7.46.

1. The nearest neighbor signal points in the 8-QAM signal constellation are
separated in distance by A units. Determine the radii @ and ? of the inner
and outer circles.

2. The adjacent signal points in the 8-PSK are separated by a distance of A
units. Determine the radius 7 of the circle.

3. Determine the average transmitter powers for the two s1gna1 constellations
and compare the two powers. What is the relative power advantage of one
constellation over the other? (Assume that all signal points are equally
probable).

7.47 Consider a digital communication system that transmits information via QAM
over a voice-band telephone channel at a rate 2400 symbols/second. The additive
noise is assumed to be white and Gaussian.
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€5
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1
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-5
Figure P-7.44

8-PSK

Figure P-7.46

7
1. Determine the &,/Np required to achieve an error probability of 1075 at
4800 bps.
2. Repeat (1) for a bit rate of 9600 bps.
3. Repeat (1) for a bit rate of 19,200 bps.
4, What conclusions do you reach from these results.
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7.48 Consider the 8-point QAM signal constellation shown in Figure P-7.46.

1. Isitpossible to assign three data bits to each point of the signal constellation
such that nearest (adjacent) points differ in only one bit position?

2. Determine the symbol rate if the desired bit rate is 90 Mbps.

3. Compare the SNR required for the 8-point QAM modulation with that of
an 8-point PSK modulation having the same error probability.

4. Which signal constellation, 8-point QAM or 8-point PSK, is more immune
to phase errors? Explain the reason for your answer.

7.49 In Section 7.4.1 it was shown that the minimum frequency separation for orthog-
onality of binary FSK signals with coherent detection is A f = %T- However a
lower error probability is possible with coherent detection of FSK if A f is in-
creased beyond . Show that the minimum value of Af is 8713 and determine
the probability of error for this choice of Af.

7.50 The lowpass equivalent signal waveforms for three signal sets are shown in Fig-
ure P-7.50. Each set may be used to transmit one of four equally probable mes-
sages over an additive white Gaussian noise channel with noise power-spectral
density le '

1. Classify the signal waveforms in set I, set II, and set III. In other words,
state the category or class to which each signal set belongs.

2. What is the average transmitted energy for each signal set?

3. For signal set I, specify the average probability of error if the signals are
detected coherently.

4. For signal set I1, give a union bound on the probability of a symbol error if
the detection is performed (a) coherently and (b) noncoherently.

5. Is it possible to use noncoherent detection on signal set III? Explain.

6. Which signal set or signal sets would you select if you wished to achieve a
bit rate to bandwidth ( %) ratio of at least 2. Explain your answer.

7.51 Consider the phase-coherent demodulator for M-ary FSK signals as shown in
Figure 7.45. ’

1. Assume that the signal

2E,
uglt) = y/—T—Scos27rfcz, 0<t<T

was transmitted and determine the output of the M — 1 correlators atz = T,
corresponding to the signals u,, (1), m = 1,2, ..., M — 1, when ¢,y # G-

2. Show that the minimum frequency separation required for the signal or-
thogonality at the demodulator when ¢,, # Pmis Af = %
7.52 In the demodulation and noncoherent detection of M -ary FSK signals, as
illustrated in Figure 7.47, show that the 2M noise samples given in Equations
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1. Sketch a block diagram of the receiver (demodulator and detector) that
employs noncoherent (envelope) detection.

2. Determine the probability density functions for the two possible decision
variables at the detector corresponding to the two possible received signals.

3. Derive the probability of error for the detector.

s1{8) 59(2) 53 54(8)
- 34 — .

7.54 Digital information is to be transmitted by carrier modulation through an additive
Gaussian noise channel with a bandwidth of 100 kHz and Ny = 1010 W/Hz.
Determine the maximum rate that can be transmitted through the channe! for four-
phase PSK, binary FSK, and four-frequency orthogonal FSK which is detected
noncoherently.

7.55 Consider a transmission line channel that employs # — 1 regenerative repeaters
plus the terminal receiver in the transmission of binary information. We assume
that the probability of error at the detector of each receiver is p and that errors
among repeaters are statistically independent.

SetI

0] $9() £5(2) $4(8)

1. Show that the binary error probability at the terminal receiver is
SetT

1 n
s5(0) P = -2-[1 - ({1-=2p)]

2. If p = 107 and n = 100, determine an approximate value of P,.

of—1 |
~A

7.56 A digital communication system consists of a transmission line with 100 digital

OB

.

S @B
I

.

Sl oS 2
I

2 2 (regenerative) repeaters. Binary antipodal signals are used for transmitting the
Set I information. If the overall end-to-end error probability is 107¢, determine the
. probability of error for each repeater and the required £,/Ny to achieve this
Figure P-7.50 performance in AWGN. :
7.57 A radio transmitter has a power output of Pr = 1 watt at a frequency of

10° Hz (1 GHz). The transmitting and receiving antermas are parabolic dishes

(7.5.88) and (7.5.89) are zero-mean, mutually independent Gaussian random vari-
: with diameter D = 3 meters.

ables with equal variance o2 = %

7.53 In on-off keying of a carrier-modulated signal, the two possible signals are 1. Determine the antenna gains.

2. Determine the EIRP for transmitter.

3. The distance (free space) between the transmitting and receiving antennas
is 20 km. Determine the signal power at the output of the receiving antenna
in dBm.

sot) =0, 0<t<Ty

5100 = %{é—cos%rfct, 0<t<T,
V T

The corresponding received signals are 7.58 A radio communication system transmits at a power level of 0.1 watt at 1 GHz.
The transmitting and receiving antennas are parabolic, each having a diameter of

r{t) = n(), 0<t=Tp one meter. The receiver is located 30 km from the transmitter.

r(t) = ZT&JCOS(ZﬂfCZ-I-Qb)-l—n(I), 0<t<Ty
\} b

where ¢ is the carrier phase and n(r) is AWGN.

1. Determine the gains of the transmitting and receiving antennas.
2. Determine the EIRP of the transmitted signal.
3. Determine the signal power from the receiving antenna.
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7.59

7.60

7.61

7.62

7.63
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A satellite in synchronous orbit is used to communicate with an earth station at
a distance of 4 x 107 m. The satellite has an antenna with a gain of 15 dB and 3
transmitter power of 3 W. The earth station uses a 10 m parabolic antenna with ap
efficiency of 0.6. The frequency band is at f = 10 GHz. Determine the received
power level at the output of the receiver antenna.

A spacecraft in space located 108 meters from the earth is sending data at a rate

of R bps. The frequency band is centered at 2 GHz and the transmitted power.
is 10 W. The earth station uses a parabolic antenna, S0 m in diameter, and the .

spacecraft has an antenna with a gain of 10 dB. The noise temperature of the
receiver front end is T = 300 K. '

1. Determine the received power level.

2. If the desired &,/Np = 10 dB, determine the maximum bit rate that the -

spacecraft can transmit.

Consider the front-end of the receiver shown in the block diagram in Fig-

ure P-7.61. The received signal power at the input to the first amplifier is —113
dBm, and the received noise power-spectral density is —175 dBm/Hz. The band-
pass filter has a bandwidth of 10 MHz, and gains and noise figures are as shown
Determine the SNR P/ P, at the input to the demodulator.

Ban;ipass To
filtér demodulator
G=10dB G=-1dB G=125dB
F=5dB Local F=2dB E=5dB
oscillator
Figure P-7.61

A satellite in geosynchronous orbit is used as a regenerative repeater in a digital
communication system. Let us consider the satellite-to-earth link in which the
satellite antenna has a gain of 6 dB and the earth-station antenna has a gain
of 50 dB. The downlink is operated at a center frequency of 4 GHz, and the
signal bandwidth is 1 MHz. If the required (€5 Np) for reliable communication is
15 dB, determine the transmitted power for the satellite downlink. It is assumed
that Ng = 4.1 x 1072 W/Hz.

One of the Mariner spacecrafts that traveled to the planet Mercury sent its data
to earth through a distance of 1.6 x 10'* m. The transmitting antenna had a gain
of 27 dB and operated at a frequency f = 2.3 GHz. The transmitter power was
17 W. The earth station employed parabolic antenna with a 64-m diameter and an
efficiency of 0.55. The receiver had an effective noise temperature of 7, = 15K
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It the desired SNR/bit (£,/No) was 6 dB, determine the data rate that could have
been supported by the communication link.

7.64 Show tpat Fhe early-late gate synchronizer illustrated in Figure 7.70 is a close
approximation to the timing recovery system illustrated in Figure P-7.64.

Sampler
@ 3 Matched o
filter sga(’)
20 vco Loop fx)
dt filter o
Sampler
O~
Figure P-7.64

7.65 Based on a ML criterion, determine a carrier-phase estimation method for binary
on-off keying modulation.
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Digital Transmission through
Bandlimited AWGN Channels

In the preceding chapter, we considered digital communication over an AWGN channel
and evaluated the probability of error performance of the optimum receiver for several
different types of baseband and carrier-modulation methods. In this chapter, we treat
digital communication over a channel that is modeled as a linear filter with a bandwidth
limitation. Bandlimited channels most frequently encountered in practice are telephone
channels, microwave LOS radio channels, satellite channels, and underwater acoustic
channels.

In general, a linear filter channel imposes more stringent requirements on the
design of modulation signals. Specifically, the transmitted signals must be designed
to satisfy the bandwidth constraint imposed by the channel. The bandwidth constraint
generally precludes the use of rectangular pulses at the output of the modulator. Instead,
the transmitted signals must['be shaped to restrict their bandwidth to that available on the
channel. The design of bandlimited signals is one of the topics treated in this chapter.

We will see that a linear filter channel distorts the transmitted signal. The channel
distortion results in intersymbol interference at the output of the demodulator and leads
to an increase in the probability of error at the detector. Devices or methods for correcting
or undoing the channe] distortion, called channel equalizers, are then described.

3.1 DIGITAL TRANSMISSION THROUGH BANDLIMITED CHANNELS

A bandlimited channel such as a telephone wireline is characterized as a linear filter
with impulse response ¢(¢) and frequency response C(f ), where

cw) = / " e as G

—0o0
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[l

8N

Figure 8.1 Magnitude and phase
-responses of bandlimited channel.

If the channel is a baseband channel that is bandlimited to B, Hz, then C(f) =0 for
| f1> B.. Any frequency components at the input to the channel that are higher than
E?c Hz will not be passed by the channel. For this reason, we consider the design of
signals for transmission through the channel that are bandlimited to W = B, Hz, as
shown in Figure 8.1. Henceforth, W will denote the bandwidth limitation of the signal
and the channel.

Now, suppose that the input to a bandlimited channel is a signal waveform g7 (2).
Then, the response of the channel is the convolution of gr (f) with ¢(¢); i.e.,

(@) = / c(D)gr(t —1)dr =c(®) » gr (1) (8.1.2)

-

or, when expressed in the frequency domain, we have

H(f)=CNHGr(f) (8.1.3)

where Gr(f) is the spectrum (Fourier transform) of the signal g7 (z) and H(f) is the
spectrum of h(¢). Thus, the channel alters or distorts the transmitted signal g7 (2).

Let us assume that the signal at the output of the channel is corrupted by AWGN.
Then, the signal at the input to the demodulator is of the form h(t) + n(z), where n()
denotes the AWGN. Recall from the preceding chapter that in the presence of AWGN,

[
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a demodulator that employs 2 filter which is matched to the signal h(¢) maximizes the
SNR at its output. Therefore, let us pass the received signal k(¢) + n(z) through a filter
that has a frequency response -

Gr(f) = H*(f) e7/¥0 (8.1.4)

where 1; is some nominal time delay at which we sample the filter output.
The signal component at the output of the matched filter at the sampling instant

t=1lyis

Yot = / \H(H)Pdf = &, (8.1.5)

which is the energy in the channel output 4(¢). The noise component at the output of
the matched filter has a zero mean and a power-spectral density

N .
5:(f) = S HF ®.1.6)
Hence, the noise power at the output of the matched filter has a variance

bl No [*® No€
a=[ sndar=7 [ impar == 8.17)

—o0 2 Jex 2

The SNR at the output of the matched filter is
/S &2 2&n

—1 = = — : 8.1.8
(N > o No&w/2  No @18

This is the result for the SNR at the output of the matched filter that was obtained in the
Chapter 7 except that the received signal energy &y has replaced the transmitted signal
energy &. Compared to the previous result, the major difference in this development
is that the filter impulse response is matched to the received signal A(t) instead of the
transmitted signal. Note that the implementation of the matched filter at the receiver
requires that 4 () or, equivalently, the channel impulse response c(t) must be known to
the receiver. :

Example 8.1.1
The signal pulse g7 (), defined as

1 2 T
- i <t <
gr(t) 2[1+cosT (t 2)} 0<t<T

is transmitted through a baseband channel with frequency-response characteristic as shown
in Figure 8.2(2). The signal pulse is illustrated in Figure 8.2(b). The channel output is
corrupted by AWGN with power-spectral density Np/2. Determine the matched filter to
the received signal and the output SNR.
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Figure 8.2 Th.e signal pulse in (b) is transmitted through the ideal bandlimited
channel shown in (a). The spectrum of gr(¢} is shown in (c).

Solution This problem is most easily solved in the frequency domain. First, the spectrum
of the signal pulse is

Gr(f) = = SBEIL__onr

2 nfT(1— f2T%)
_T sine fT  _opr
T 2(l- f27y

The spectrum |Gz (f)]? is shown in Figure 8.2(c). Hence,

H(f) = C(HGT ()
:{&leﬂsw

0, otherwise
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‘ Then, the signal component at the output of the filter matched to H(f) is

w
&=/l&dﬁﬂ
-w

af

1 /W (sinzf T)?
T @) oy F20 - TR

T T sn?wa J
= o
@) J_wr &*(l —a?)?

The variance of the noise component is

Ny (¥ Noé,
o#f/twmﬁb%
-w

SY %
NJ, No

In this example, we observe that the signal at the input to the channel is no

Hence, the output SNR is

bandlimited. Hence, only a part of the transmitted signal energy is received. The amount

of signal energy at the output of the matched filter depends on the value of the channe

bandwidth W when the signal pulse duration is fixed (see Problem 8.1). The maximum *

value of £,, obtained as W — c¢o, is

o0 T
mu&=/|®UWﬁ=Ag%wr

In the above development, we considered the transmission and reception of only -
a single signal waveform gr(z) through a bandlimited channel with impulse response
(). We observed that the performance of the system is determined by &, the energy -,

in the received signal 4(z). To maximize the received SNR, we have to make sure that

the power-speciral density of the transmitted signal matches the frequency band of the. -
channel. To this end we must study the power-spectral density of the input signal. This -
will be done in Section 8.2. The impact of the channel bandwidth limitation is felt
when we consider the transmission of a sequence of signal waveforms. This problem

is treated in the following section.

8.11 ngital PAM Transmission through Bandlimited
Baseband Channels

Let us consider the baseband PAM communication system illustrated by the functional

block diagram in Figure 8.3. The system consists of a transmitting filter having an

impulse response gr(#), the linear filter channel with AWGN, a receiving filter w'ith ;
impulse response g (¢), a sampler that periodically samples the output of the receiving -
filter, and a symbol detector. The sampler requires the extraction of a timing signal from

the received signal as described in Section 7.8. This timing signal serves as a clock that
specifies the appropriate time instants for sampling the output of the receiving filter.

Section 8.1 Digital Transmission through Bandlimited Channels 479
Transmitting Receiving
Input dat; “0 | Chaonel (o L B 10)] *T)
_— ﬂ’ filter = ;(j:e filter Sampler Y Detector Ouiput dag
G (N Gl

Noise
)

Symbol
timing
estimator

Figure 8.3 Block diagram of digital PAM system.

First we consider digital communications by means of M-ary PAM. Hence, the
input binary data sequence is subdivided into k-bit symbols and each symbol is mapped
into a corresponding amplitude level that amplitude modulates the output of the trans-
mitting filter. The baseband signal at the output of the transmitting filter (the input to
the channel) may be expressed as

[+
v(i) = Y angr(t —nT) (8.1.9)
n=--0Q
where T = k/ Ry, is the symbol interval (1/T = R,/ k is the symbol rate), R, is the bit
rate, and {a,} is a sequence of amplitude levels corresponding to the sequence of k-bit
blocks of information bits. ,
The channel output, which is the received signal at the demodulator, may be
expressed as
‘o0
r)= Y agh(t —nT) +n() (8.1.10)
n=—c0
where A(z) is the impulse response of the cascade of the transmitting filter and the
channel; ie., &(t) = c(t) * g7(2), c(#) is the impulse response of the channel, and n(z)
represents the AWGN.

The received signal is passed through a linear receiving filter with impulse re-
sponse gg(r) and frequency response G (f). If gg () is matched to A(z), then its output
SNR is 2 maximum at the proper sampling instant. The output of the receiving filter
may be expressed as

o]
YO = Y aux(t —nT)+v() (8.1.11)
n=—0co
where x(¢) = h(z) % gr{t) = gr(t) = c(t) * gg(t) and v(r) = n(z) * gr(¢) denotes the
additive noise at the output of the receiving filter.

To recover the information symbols {a,}, the output of the recetving filter is

sampled periodically, every T seconds. Thus, the sampler produces

YT)= > aux(mT —nT) +v(nT) (8.1.12)

n=—0Q



4380 Digital Transmission through Bandlimited AWGN Channels Chapter 8

or, equivalently,

)
Ym = § UnXm—p + Vi

n=—00

= X0Gm + Z AnXm—n + Vm (8.1.13)

nFEm

where x,, = x(mT), V,, = v(mT),andm =0, +1,+2,.... A timing signal extracted .
from the received signal as described in Section 7.8 is used as a clock for sampling the -

received signal.
The first term on the right-hand side (RHS) of Equation (8.1.13) is the desired

symbol a,,, scaled by the gain parameter xg. When the receiving filter is matched to the

received signal A (1), the scale factor is

%0 = /_ R dr = / \H(HPdF

w
= /W [Gr(HPIC(HIPSf = & (8.1.14)

as indicated by the development of Equations (8.1.4) and (8.1.5). The second term
on the RHS of Equation (8.1.13) represents the effect of the other symbols at the

sampling instant r = m T, called the intersymbol interference (IST). In general, ISI causes

adegradation in the performance of the digital communication system. Finally, the third
term, Vn, that represents the additive noise, is a zero-mean Gaussian random variable
with variance 62 = Ny& /2, previously given by Equation (8.1.7).

By appropriate design of the transmitting and receiving filters, it is possible to
satisfy the condition x, = 0 for n $# 0, so that the ISI term vanishes. In this case, the
only term that can cause errors in the received digital sequence is the additive noise.
The design of transmitting and receiving filters is considered in Section 8.3.

8.1.2 Digital Transmission through Bandlimited
Bandpass Channels ’

The development given in Section 8.1.1 for baseband PAM is easily extended to carrier
modulation via PAM, QAM, and PSK. In a carrier-amplitude modulated signal, the
baseband PAM given by v(z) in Equation (8.1.9) modulates the carrier, so that the
transmitted signal u(¢) is simply .

u(t) = v(t) cos 2m fot (8.1.15)

Thus, the baseband signal v(#) is shifted in frequency by fz.

A QAM signal is a bandpass signal which, in its simplest form, may be viewed as '
two amplitude-modulated carrier signals in phase quadrature. That is, the QAM signal -

may be expressed as

u(t) = v (t) cos 2m fot + vs () sin2m ft (8.1.16)
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where

vet) = ) Gncgr(t —nT)

8.1.17)

o0

vs() = > angr(t —nT)

n=—00

and .{a,w} and {a, } are the two sequences of amplitudes carried on the two quadrature
carriers. A more compact mathematical representation of the baseband signal is the
equivalent complex-valued baseband signal

v() = v () — jus ()

o
= Z (@ne = Jans)gr (@t —nT)

n=—00
o0
= Y agr(t—nT) (8.1.18)

whgre the sequence {a, = anc — jau,} is now a complex-valued sequence representing
the signal points from the QAM signal constellation. The corresponding bandpass QAM
signal u(¢) may also be represented as

u(t) = Re[v(t)e/ ] (8.1.19)

. In a similar manner, we can represent a digital carrier-phase modulated signal as
in Equation (8.1.19), where the equivalent baseband signal is

v(t) = Y angr(t —nT) (8.1.20)

n=--cQ

and the sequence {a, } takes the value from the set of possible (phase) values {e—/2%m/M
m=0,1,..., M—1}. Thus, all three carrier-modulated signals, PAM, QAM, and PSK

. can be represented as in Equations (8.1.19) and (8.1.20), where the only difference is

in the values taken by the transmitted sequence {a,}. .

The signal v(¢) given by Equation (8.1.20) is called the equivalent lowpass signal.
In the case of QAM and PSK, this equivalent lowpass signal is a baseband signal which
is complex-valued because the information-bearing sequence {a,} is complex-valued,
In the case of PAM, v(¢) is a real-valued baseband signal.

When transmitted through the bandpass channel, the received bandpass signal
may be represented as

- w(r) =Re[r()e/] (8.1.21)
where 7 (¢) is the equivalent lowpass (baseband) signal, which may be expressed as
o0 .
r@) = Y ah(t —nT) +n@) {8.1.22)

n=—0oQ
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Figure 8.4 Conversion of the bandpass received signal to baseband.

and where, as in the case of baseband transmission, A (¢) is the impulse response of
the cascade of the transmitting filter and the channel; i.e., 2(z) = c(z) x gr (), where
¢(t) is the impulse response of the equivalent lowpass channel and n(z) represents the
additive Gaussian noise expressed as an equivalent lowpass (baseband) noise.

The received bandpass signal can be converted to a baseband signal by multiplying
w(t) with the quadrature carrier signals cos2r f.t and sin 27 f,t and eliminating the
double frequency terms by passing the two quadrature components through separate
lowpass filters, as shown in Figure 8.4. Each one of the lowpass filters is assumed to have
an impulse response gr(#). Hence, we can represent the two quadrature components
at the outputs of these lowpass filters as an equivalent complex-valued signal of the
form

YO = > awx(t—nT) +v() (8.1.23)

n=—00

which is identical to the form given by Equation (8.1.11) for the real baseband signal.
Consequently, the signal design problem for bandpass signals is basically the same as -
that described in Section 8.1.1 for baseband signals.

In Section 8.3, we consider the design of bandlimited transmitting and receiving -
filters that either eliminate ISI or control ISI. However, first we will determine the power-
spectral density of the transmitted digital signal. Thus, we will establish the relationship
between the spectral characteristics of the transmitted signal and the channel bandwidth

requirements.

First, we will derive the power spectrum of a baseband signal and, then, we consider
the power spectrum of the bandpass signal.
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8.2.1 The Power Spectrum of the Baseband Signal

As shown above, the equivalent baseband transmitted signal for a digital PAM, PSK,
or QAM signal is represented in the general form as

(=2

v(t) = Y angr(t—nT) (8.2.1)
where {a,} is the sequence of values selected from either a PAM, QAM, or PSK signal
constellation corresponding to the information symbols from the source, and g (2) is
the impulse response of the transmitting filter. Since the information sequence {a,} is
random, v(¢) is a sample function of a random process V (¢). In this section we evaluate
the power-density spectrum of V'(r). Our approach is to derive the autocorrelation
function of V() and then to determine its Fourier transform.

First, the mean value of V (7) is

ElV(®)l= Y Elalgr(t —nT)

n=--09

=my Yy gr(t—nT) (822)

n=—oo

where m, is the mean value of the random sequence {a,). Note that although m, is
a constant, the term ), g7 (¢t — nT) is a periodic function with period T. Hence, the
mean value of V {t) is periodic with period T'.

The autocorrelation function of V (¢) is

o]

Ryt 41,0 =E[V*OVE+1)] = Z Z Elaan)gr(t —nT)gr(t+1—mT)
Lo (8.2.3)

In general, we assume that the information sequence {a, } is wide-sense stationary with
aatocorrelation sequence

Ry(n) = E[a;an-}—m] 8.2.4)
Hence, Equation (8.2.3) may be expressed as

Ry(t+7,0)= > > Ralm—n)gr(t —nT)gr(t + 1 —mT)

n=—ca m=—0

it

> Ralm) S gr(t—nT)gr(t+7v—nT —mT) (8.2.5)

m=-=cd n=—00

‘We observe that the second summation in Equation (8.2.5), namely

> gr(t —nT)gr(t + 7 —nT —mT) (8.2.6)

n=—00
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is periodic with period T'. Consequently, the autocorrelation function Ry (¢ + 1, 1) 13'
periodic in the variable ¢; i.e.,

Ry(t+T+71,t+T)=Ry(t+r7,1) @27

Therefore, the random process V (¢) has a periodic mean and a periodic autocorrelation,
Such a random process is cyclostationary (see Definition 4.2.7).

The power-spectral density of a cyclostationary process can be determined by
first averaging the autocorrelation function Ry (£ -1, £) over a single period T and then
computing the Fourier transform of the average autocorrelation function (see Corollary
to Theorem 4.3.1). Thus, we have

_ Lo
Ry (7) =7 RV(H-‘L', t) dt

ZR(m)Z / grt —nT)gr(t + 1t —nT —mT)dt

m=—co n=—0Q
—nT+T/2
= Z R,(m) Z / gr(t)gr(t +1—mT)dt
== Z Ra(m)/ gr(lf)gr(t +17—mT)dt (8.2.8) -

We interpret the integral in Equation (8.2.8) as the Ume-autocorrelatwn function of -

gr (t) and define it as [see Equation (2.3. 1)]

Ry(r) = /_ " er®gr(+ ) dr (829

With this definition, the average autocorrelation function of V (z) becomes

Ry () =% > Ro(m)Ry(z —mT) (8.2.10)

m=—00

We observe that the expression for Ry (¢} in Equation (8.2.10) has the form of a
convolution sum. Hence the Fourier transform of Equation (8.2.10) becomes

Sy(f) = /_  Re(m)e I d

=— Z R (m)/ Ry(z —mT)e 177 de

111-—-00

= ?Sa(f);GT(f)lz (8.2.11)
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where S;(f) is the power spectrum of the information sequence {a,}, defined as

Sa(f)= D Ro(m)e~72/nT (8.2.12)

m=—0

and Gr(f) is the spectrum of the transmitting filter. |G (f)|? is the Fourier transform
of R, ().

gThe result in Equation (8 2.11) illustrates the dependence of the power-spectral
density Sy (f) of the transmitted signal on (1) the spectral characteristics G7(f) of the
transmitting filter and (2} the spectral characteristics S, (f) of the information sequence
{a.}. Both Gr(f) and 5, { f) can be designed to control the shape and form of the power
spectral density of the transmitted signal.

Whereas the dependence of Sy (f) on Gr(f) is easily understood, the effect of
the autocorrelation properties of the information sequence {a,} is more subtle. First, we
observe that for an arbitrary autocorrelation R, (m), the corresponding power-spectral
density S;(f) is periodic in frequency with period 1/7. In fact, we note that S,(f),
given by Equation (8.2.12), has the form of an exponential Fourier series with {R, m)}
as the Fourier coefficients. Consequently, the autocorrelation sequence {R,(m)} is
simply

1/2T )
R,(m)=T /_ Lz Sa(f)el T g1 (8.2.13)

Second, let us consider the case in which the information symbols in the sequence
{a,} are mutnally uncorrelated, Then,

Ra(m) = ol +m2, m=0 (8.2.14)
m2, m30 -

where o2 = E(a?) — m? is the variance of an information symbol. By substituting for
R, (m) into (8.2.12), we obtain the power-spectral density

C SN =l 4ml S e - (8.2.15)

M==—00

The term involving the summation on the RHS of Equation (8.2.15) is periodic with
period 1/ 7. It may be viewed as the exponential Fourier series of 2 periodic train of im-
pulses where each impulse has anarea 1/ T (see Table 2.1). Therefore, Equation (8.2.15)
can be expressed as

2 oo
Sa(f) =02 + ’—’%— S (f - %) (8.2.16)

Substitution of this expression into Sy () given by Equation (8.2.11) yields the desired
result for the power-spectral density of the transmitted signal V (+) when the sequence
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(%)

of information symbols is uncorrelated; i.e.,
A [e.<]

2
Sv(f)=Eor (O +22 3

m=—co

Equation (8.2.17) is purposely separated into two terms to emphasize the two different
types of spectral components. The first term o 2[G(f)|?/ T is the continuous spectrum
and its shape depends of G (f). The second term in Equation (8.2.17) consists of
discrete frequency components spaced 1/ T apart in frequency. Each spectral line has a
power that is proportional to |G (f)|? evaluated at f = m/T. We note that the discrets
frequency components can be eliminated by selecting the information symbol sequence
{a,} to have zero mean. This condition is usually imposed in digital-modulation methods
because discrete spectral lines are considered to be undesirable. To be specific, the mean
myg in digital PAM, PSK, or QAM signals is easily forced to be zero by selecting the
signal constellation points to be symmetrically positioned in the complex plane relative
to the origin. Under the condition that m, = 0, we have

0.2
Sy(f) = —T'-I-IGT(J‘)I2 (82.18)

Thus, the system designer can control the spectral characteristics of the transmitted

digital PAM signal. The following example illustrates the spectral shaping resulting

from g7 (¢).

Example 8.2.1 :
Determine the power-spectral density in Equation (8.2.17), when g7 (z) is the rectangular
pulse shown in Figure 8.5(a).

Solution The Fourier transform of g7 (2) is

_ esinnfT o
Gr(f)—AT—-—-ﬂfT e’
Hence,
2 o (sinmfT 2
[Gr(FI° = (AT) (———nfT )
= (AT)? sinc?(FT)

This spectrum is illustrated in Figure 8.5(b). We note that it contains nulls at multiples of
1/T in frequency and that it decays inversely as the square of the frequency variable. Asa
consequence of the spectral nulls in Gr(f), all but one of the discrete spectral components
in Equation (8.2.17) vanish. Thus, upon substitution for |Gr (f)? into Equation (8.2.17),
we obtain the result

sinwfT
xfT
= o2 A2Tsinc (FT) + A%m23(f)

2
Sy(f) = o2AT ( ) + A’m28(F)

2 . ',
8 <f - T) 8217

The expression for the power-spectral density of the transmitted signal given by
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Figure 8.5 A rectangular pulse g (#) and its energy density spectrum |G (f)[2

Example 8.2.2 illustrates the spectral shaping that can be achieved by operations
performed on the input information sequence.

Example 8.2.2
Consider a binary sequence {b,}, from which we form the symbols

an = by + by
The {b,} are assumed to be uncorrelated binary valued (1) random variables, each having

a zero mean and a unit variance. Determine the power-spectral density of the transmitted
signal.

Solution The autocorrelation function of the sequence {a,} is
Ry(m) = Elananim)
= E[(bn + b —1)(b,n+m + bn+m—1)}

2 m=0
=<1 m=ZI1

0, otherwise
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Figure 8.6 Power-density spectra for (a) information sequence and (b) PAM

modulated signal.

Hence, the power-spectral density of the input sequence is
Sa(f) = 2(1 +cos2afT)
=4cos’ nfT

and the corresponding power spectrum for the modulated signal is, from Equation (8.2.17),
4
Sy(f) = ?IGT(f)[2 cos?* nfT

Figure 8.6 illustrates the power-density spectrum Sg(f) of the input sequence, and the
corresponding Sy () when G () is the spectrum of the rectangular pulse.

As demonstrated in the example, the transmitted signal spectrum can be shaped
by having a correlated sequence {a,} as the input to the modulator.

8.2.2 The Power Spectrum of a Carrier—Moduiated Signal

In Section 8.2.1, we showed that the power spectrum of th'e equivalent baseband signal
v() given by Equation (8.2.1) for PAM, QAM, and PSK is

Sy(f) = %Sa(f)lGT(f)lz (8.2.19)
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where S, (f) is the power spectrum of the information sequence {a,}, defined as

Sa(f)= D" Ra(m)e =Sl (8.2.20)

m=-—od

and R,(m) is the autocorrelation of the information sequence {a,}; i.e.
Ro(m) = Ela,n4m] (8.2.21)

The relationship between the power spectrum of the baseband signal to the power
spectrum of the bandpass signal is relatively simple. Let us consider the bandpass PAM
signal as an example. The autocorrelation function of the bandpass signal

u(t) = v(t) cos 2 f,t
is
Ry(t+17,0)=E[UBUE + )]
= E[V(V( + 1)]cos 2 f.t cos 2m fo(t + 1)
= Ry(t + 7, t)cos2n fot cos 2m fo(t + 1)

By expressing the product of the two cosine functions in terms of the cosine of the
difference plus the sum of the two angles, we obtain

1
Ryt +,t) = ERy(l‘ + 7, D)[cos 2w ot + cos 27 f. (21 + 7)]

Then, the average of Ry (¢ + 7, t) over a single period T yields

Ry(m) = %Rv(r) cos 2 foT (8.2.22)

where the second term involving the double frequency term averages to zero for each
period of cos4m f,t. _

The Fourier transform of Ry (¢) yields the power spectrum of the bandpass signal
as

1
Sy(t) = ZISv(f ~ fo) +Sv(f + )] (8.2.23)

Although the derivation that resulted in Equation (8.2.23) was carried out for a bandpass
PAM signal, the same expression applies to QAM and PSK. The thtee bandpass signals
differ only in the autocorrelation R, (m) of the sequence {a,} and, hence, in the power
spectrurn S, (f) of {a,}.
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8.3 SIGNAL DESIGN FOR BANDLIMITED CHANNELS

Recall from Section 8.1.1 that the output of the transmitting filter in a digital PAM or
PSK or QAM communication system may be expressed as

[e+]
v(t) =Y G.gr(t—nT) (83.1)
n=—co
and the output of the channel, which is the received signal at the demodulator, may be
expressed as
(o
r() = Y ah(t—nT)+n{) (832)
n=—eQ
where h(t) = c(t) * gr(t), c(t) is the impulse response of the channel, g7 (¢) is the
impulse response of the transmitting filter, and n(z) is 2 sample function of an additive,
white Gaussian noise process. ‘

In this section, we consider the problem of designing a bandlimited transmitting
filter. The design will be done first under the condition that there is no channel distortion.
Later, we consider the problem of filter design when the channel distorts the transmitted
signal. Since H{ f) = C(f)Gr(f), the condition for distortion-free transmission is that
the frequency response characteristic C{f) of the channel have a constant magnitude
and a linear phase over the bandwidth of the transmitted signal; ie.,

Coe /2, |fI<W
0, ifl>Ww

where W is the available channel bandwidth, #, represents an arbitrary finite delay,
which we set to zero for convenience, and Cp is a constant gain factor which we set
to unity for convenience. Thus, under the condition that the channel is distortion-free,
H{f) = G¢(f) for | fI < W and zero for | f| > W. Consequently, the matched filter
has a frequency response H*(f) = G3(f) and its output at the periodic sampling times
t = mT has the form

aﬁ={ (8.3.3)

y(mT) = x(O)a, + Z apx(mT ~nT) +v(mT) . (8.34)
n#m .
or, more simply,
Y = Xolm + Z AnXm—n T Vm (8.3.5)
nm
where x(z) = gr(t) » gr(t) and v(z) is the output response of the matched filter to the

input AWGN process n(z).
The middle term on the RHS of Equation (8.3.5) represents the ISI. The amount

of ISI and noise that is present in the received signal can be viewed on an oscilloscope.

Specifically, we may display the received signal on the vertical input with the horizontal
sweeprate setat 1/ 7. The resulting oscilloscope display is called an eye pattern because.
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Figure 8.7 Eye patterns. (a) Examples of eye patterns for binary and quaternary
amplitude-shift keying (or PAM) and (b) Effect of IST on eye opening.

of its resemblance to the human eye. Examples of two eye patterns, one for binary PAM
and the other for quaternary (M = 4) PAM, are illustrated in Figure 8.7(a).

The effect of ISI is to cause the eye to close, thereby reducing the margin for
additive noise to cause errors. Figure 8.7(b) illustrates the effect of ISI in reducing the
opening of the eye. Note that ISI distorts the position of the zero crossings and causes
a reduction in the eye opening. As a consequence, the system is more sensitive to a
synchronization error and exhibits a smaller margin against additive noise.

Below we consider the problem of signal design under two conditions, namely,
(1) that there is no ISI at the sampling instants and (2) that a controlled amount of IST
is allowed.
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8.3.1 Design of Bandlimited Signals for Zero
{SI—The Nyquist Criterion

As indicated above, in a general digital communication system that transmits througly
a bandlimited channel, the Fourier ransform of the signal at the output of the receiving
filter is given by X (f) = Gr(/)C(FGr(S) where Gr(f) and Gr(f) denote the
transmitter and receiver filters frequency responses and C(f) denotes the frequency
response of the channel. We have also seen that the output of the receiving filter, sampled
att = mT is given by :

= .
¥m=xQam+ »  x@nT —nT)a, +v(mT) (8.3.6)
“am
To remove the effect of IS, it is necessary and sufficient that x(mT — nT) =0
for n # m and x(0) 5 O, where without loss of generality we can assume x(0) = 1t
This means that the overall communication system has to be designed such that

2(nT) = {(1) Z ';8 83.7)

In this section, we derive the necessary and sufficient condition for X (f) in order for
x(2) to satisfy the above relation. This condition is known as the Nyquist pulse-shaping
criterion or Nyquist condition for zero ISI and is stated in the following theorem.

Theorem 8.3.1 [Nyquist]. A necessary and sufficient condition for x(¢) to :
satisfy

x(nT) = {é . ;8 (8.3.8) |
is that its Fourier transform X (f) satisfy :
$ X<f+§>=f (839) |
Proof. In general, x(¢) is zt;x; inverse Fourier transform of X (f). Hence, ;
x() = /00 X(f)el> s df (83.10)
—o0

At the sampling instants ¢ = nT, this relation becomes _
o

x(nT) =/ X (/=T gf . (8.3.11).
—c0

Let us break up the integral in Equation (8.3.11) into integrals covering the finite range

The choice of x(0) is equivalent to the choice of a constant gain factor in the receiving filter. This .
constant gain factor has no effect on the overall system performance since it scales both the signal and the
noise.
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of 1/T. Thus, we obtain

ke (m+1)/2T )
x(nT) = Z / X(f)ejzﬂ’fanf
m=—oo ¥ (2m=1)/2T

i /1/2T x (f 4 %> eI g p

o —1/2T

/—I/ZT Li 5 (f—i— ;_)} JInT g

i

1/27

1/2T .
= Z(fHre I df (8.3.12)
—1/27
where we have defined Z(f) by
o .m
Z(f)= > X (f+ —> (8.3.13)
m==c0 T

vaiously, Z(f) is a periodic function with period £, and therefore it can be expanded
in terms of its Fourier series coefficients {z,} as

[oe]
Z(f)= Y zqe/™T (8.3.14)
n=—cQ
where
1
T .
Zn = T/ 1 Z(f)e T g (8.3.15)
Y TIT
Comparing Equations (8.3.15) and (8.3.12) we obtain .
Zn = T'x(—nT) (8.3.16)
Therefore, the necessary and sufficient conditions for Equation (8.3.8) to be satisfied
is that
T n=0 '
= 0, n#0 8.3.17)
which, when substituted into Equation (8.3.14), yields
Z(H=T (8.3.18)
or, equivalently,
= m
> X (f+-T—> =T (83.19)
m=—oQ

This concludes the proof of the theorem. ' "
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Figare 8.8 Plot of Z(f) for the case T < z.
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Figure 8.9 Plotof Z(f) forthecase T = ~—

Now, suppose that the channel has a bandwidth of W. Then C(f)=0 for
|1 > W and consequently, X (f) = 0 for | f| > W. We distinguish three cases:

1. T< EW’ or equivalently, 3 # > 2W. Since Z(f) = En=_oo X(f + %) consists of
nonoverlappmg teplicas of X (f), separated by = 7 as shown in Figure 8.8, there
is no choice for X {( f) to ensure Z(f) = T in this case, and there is no way that
we can design a system with no ISI.

2. T = z’w" or equlvalenﬂy, = 2W (the Nyquist rate). In this case, the replications
of X (f), separated by L 7+ ATe about te overlap as shown in Figure 8.9. It is clear
that in this case there exists only one X (f). that results in Z(f) = T, namely,

(T Ifl<W
X = {O, otherwise (8.320)

or, X (f) = TTI(5%), which results in
x(¢) = sinc (%) (8.321)

This means that the smallest value of T for which transmission with zero ISI is
possibleis T = W and for this value, x (¢) has to be a sinc function. The difficulty
with this choice of x(¢) is that it is noncausal and therefore nonrealizable. To
make it realizable, usually a delayed version of it; i.e., smc(—q) isused and 1 is
chosen such that for ¢ < 0, we have sinc(’—_T‘ﬂ) =~ 0. Of course with this choice of
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Figure 8.10 Plot of Z(f) for the case T > 1/2W.

x(t), the sampling time must also be shifted to mT + #o. A second difficulty with
this pulse shape is that its rate of convergence to zero is slow. The tails of x ()
decay as 1/, consequently, a small mistiming error in sampling the output of the
matched filter at the demodulator results in an infinite series of ISI components.
Such a series is not absolutely summable because of the 1/ rate of decay of the
pulse and, hence, the sum of the resulting ISI does not converge.

3. For T > ﬁ, Z(f) consists of overlapping replications of X (f) separated by
Tl—, as shown in Figure 8.10. In this case, there exist numerous choices for X (f),
such that Z(f) =

A particular pulse spectrum, for the 