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A1. Basics of Terrestrial Radio Propagation

Distance
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10-100 m
(1-10 secs)

0.1 -1 m
(10-100 msecs)

Path Loss
(exponent n)

Long-term Fading

Short-term Fading
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A2. Path Loss -- Long Term Losses

 Free-space Propagation (n=2)  Received Power
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Aside1: Effective Area of Rx Antenna

2
2

From EM Theory, the effective area  of the Rx antenna
is related to the Rx antenna directivity   as follows 

(4 / )
where  is the wavelength of carrier
Example 1: For parabolic di
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Aside 2: Beam-width of Antenna

 3dB Beam-width  e.g., Parabolic dish antenna

2

For a parabolic antenna, the width in degrees at 
which the gain  (or ) reduces to half of it's va
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Received  Power

 Free-space Propagation (n=2)  Received Power

2

2

Substitution of  gives Rx power 
4

(4 / )
Taking this can be expressed in
a convenient Log (dBm) scale as

Watts

 1milliwatt = 0dB

(dBm) (dBm) (dBi) (dBi) (dB)
where
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Factors affecting Rx Power

 What about short-term fading?

In the presence of large-scale scatterers (buildings, usually)
a random variation is expected (also called long-term fading) 

(dBm) (dBm)
where  (in dB) is an random-va

R T T R d shadow cable

shadow

P P G G L L L
L

     

riable with pdf (0, ),  
and standard-deviation  is in dB scale  -- log-normal distribution;

 (in dB) is the RF cable loss (specified in dB/meter).
Shadow-loss, Cable-loss, and antenna mis-alignme

cableL






nt is sometimes 
clubbed into a single "Installation margin" term (in dB)  

(dBm) (dBm) (dB)R T T R d shadow cable fadingP P G G L L L L      
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Short-term Fading – Multipath Propagation

r(t) = 0 s(t-0) + 1 s(t-1) + 2 s(t-2) + 3 s(t-3) 

Two Effects --
(a) Fading
(b) Delay-Spread
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Multi-path Propagation -- contd.

r(t) = 0 s(t-0) + 1 s(t-1) + 2 s(t-2) + 3 s(t-3) 

channelInput 
(Tx signal)

Output
(Rx signal)

Impulse
Response h( t)

3 - 0

time

3

0

freq.

Frequency 
Response H(f ; t)
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How much Rx Power is required?

 Key Question: How to relate PR and SNR? 
 Answer: Understand receiver noise power!

Minimum  (dBm) required depends on SNR needed for a target BER!
This required SNR (specified in dB) 

bandwidt
is a f

h, RF 
unction of:

( design, Basea) Receiver Sensitivity band 
algorithms, archite

(
chtu

RP

f
)

(b) Digital Modulation and Coding used for gettin
re, implemen

g the target
tation

 BER 
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A3. Rx Noise Figure

 Why first-stage (usually LNA) noise dominates?

23

o

Thermal noise (passives) dominates over shot noise (actives);
at temperature  Kelvins, for bandwidth  Hz,
Noise Power = = 1.38 10  (Boltzmann const.)

Example 2: Room temp =300 K and 1M
o

T f
N f kT f k
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  Hz
Noise spectral density 174 dBm;
Noise power 174 60 ;
If Rx signal power  (say), then 

114 dBm
90 dBm 24SNR =  dB
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Typical Rx Chain
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Receiver Noise Figure
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 A2, 

n2=(F2-1)n0

Thus, even 2nd stage contributes very little to overall Rx noise figure!
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Rx Sensitivity –
Impact of Noise Figure and Modulation used

 With diversity reception, turbo-coding, etc., required SNR 
for QPSK to (get same BER) would further reduce

oExample 2 (contd.): Room temp =300 K and 1MHz
Noise power 174 60 ;
a) If Rx noise fig

114 dBm
108 dure 6 dB  noise floor rises to 

(for RF-BB combo chip,  could reflect base-band ac
Bm

curacy

T f
kT f

F
F

 
  


 

 

-3

 as well!)

b) Let QPSK be used. For BER=10 ,  QPSK requires in AWGN
channels (and in the absence of FEC), an SNR=6.7dB

 minimum signal strength required is --108+6.7=  101.3 dBm
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A4. Link Budget -- GSM Example

Example 2 :  Communication link budget for GSM uplink
Given = 100milliwatts, =2dBi, =15dBi, cable loss of 2dB, 
and no (zero) allowance for shadow loss or fading loss, co
maximum link dista

mpute
n

 the
T T RP G G

-3

 possible (in meters) for a GSM phone with 
a 5dB noise figure operating in the 800MHz band. 
GSM uses 200KHz channelisation (bandwidth), and requires a 
SNR=7dB to achieve the target BER=10 . As

ce

sume 
o

2

1m 1

'

1

0

m

free-space
propagation on the uplink (i.e., exponent =2), & =300 K.  
Recall:    (dBm)  (dBm)
which conveniently 

4where at 1m,  10log , and  

R T T R cable
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GSM Link Budget -- assumptions

 In noise limited coverage, link budget is easier to understand
 Example: Frequency planned systems
 GSM can deploy reuse 1/7, 1/4 or even 1/3 

 Typical link-budget for GSM will include
 Noise figure for BS/UE (corresponding to UL or DL)
 Fade Margin – for mobile users
 Indoor Penetration Loss – for indoor/pedestrian users
 These will be added to Ld

 Safe to add interference margin also for reuse 1/3, but frequency 
hopping and other interference averaging schemes are used to make 
the CCI (nearly) vanish!
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Summary for Part A

 A1. Terrestrial Wireless Propagation
 A2. Path Loss – Long Term, Short Term
 A3. Noise Figure of Receiver
 A4. Example: GSM Link Budget

 Points to ponder: 
 What happens when the coverage and capacity are co-channel 

interference (cross-talk) limited?
 Example: All DS-CDMA and OFDM-Cellular systems using reuse 1/1
 Sensitivity is defined by SIR (or SINR) and not merely by SNR

 What about sensitivity of SDR and Cognitive radios?
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IEEE 802.16
(10 to 66 GHz)

Access Systems Overview –
WAN,MAN, and LAN Systems
(not shown: PAN, HAN, VAN )

IEEE 802.11a,b,g,n
IEEE 802.15.3 (UWB)

Zigbee, Bluetooth

cpe

x IEEE 802.16d/e  .16m
x IEEE 802.20 (UMB)
x HSDPALTELTE-A
x HDR (EV-DO)
x 3G-DECT

2-10km, LoS

1-3km, non-LoS

sw
itc

h

ba
se

-s
ta

tio
n

or, Fiber(Ethernet)

x Flarion
x SOMA
x Arraycomm
x Pre-WiMax
x Wibro

MAN
(non-LoS, mobile,

ped, and fixed)

WAN
(LoS, fixed)

LAN
(near LoS, 
ped, fixed)
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Key Advances in Air-Interface

Transmit Diversity

Sectorisation

Freq. Hopping

Multi-user
Detection

Power Control

VAD, VBR Receive Diversity

Fixed Beamforming

ST or STF Coding

Spatial Multiplexing

Precoding

Link
Adaptation

(H-ARQ)

ReRe--use use 
EfficiencyEfficiency

Range, MobilityRange, Mobility

Spectral Spectral 
EfficiencyEfficiencyDCS

Conv. Turbo &
LDPC Coding

OFDM/OFDMA

MC-CDMA

Interference
Management
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Why OFDMA for Broadband Access?

 Why not CDMA or TDMA? 
 DS-CDMA cannot support high bit rates efficiently
 TDMA (or any other single-carrier Tx) requires higher peak power

 Advantages of OFDM/OFDMA 
 Closed-loop modes in multi-user OFDM/OFDMA can more 

effectively “ride the wave”  multi-user diversity
 Greater flexibility in resource allocation

 However, what about
 PAPR, especially on the uplink?
 Protection from co-channel interference?
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DS-CDMA versus OFDM

channelInput 
(Tx signal)

Output
(Rx signal)

Impulse
Response h(t)

time

3

0

freq.

Frequency 
Response H(f)

DS-CDMA can exploit
time-diversity 

OFDM can exploit
freq. diversity
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B1. OFDM Fundamentals
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Continuous Time Signals and Systems
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Discrete Time Signals and Systems
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0

Discrete Fourier Transform (DFT): 
If [ ] is a finite sequence of length , then it is computationally beneficial to define

only a finite, periodic basis set { } such that 
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Linear Convolution remains
valid for the DTFT

Enables FFT based
efficient implementation
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Matrix Notation for DFT
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DFT and Circular Convolution

?domain"-time"in represent  ][][][ domain"frequency "  does what Now, .2

1,,1,0at  evaluate  we UC thearound  where,2),(][ Here, 1.
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zero-padding
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Linear vs Circular Convolution

If FFT engines are cheap, then for finite duration sequences:

(a) Implement filtering, i.e., [ ] [ ] using [ ] [ ] by zero-padding
(this is to use CC to implement LC -- Refer: any DSP book!)

(b) In 

h n x n h n x n  

OFDM, impact of channel distortion, i.e., [ ] [ ],  is mitigated by adding
a cyclic prefix to [ ],  and transform this to [ ] [ ]

h n x n
x n h n x n


 %
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OFDM Principle – DFT Perspective

.t  easily thaseen  becan it  and
, as written be alsocan  ][][ that Recall

FFIFF
FxX

H
NN

H

kXnx






[ ] [ ]

and it can be shown that [ ] [ ] [ ], 0,1, , 1.
In other words, 
(a)  is a bank of orthogonal Tx filters (eigen filters)
(b)  is a bank of orthogona

H CP h n x n CP

H

Y k H k X k k N

      
  





F FX x x y y Y

F
F

%% %
K

l Rx filters ( )matched filter bank
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Condition for Orthogonality (in t domain)

Time

T

T= “useful” symbol period
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Sync Basis Functions (in f domain)

(a) Shape gets “scaled” by
Channel Freq. Response
(b) Sampling instant gets “upset” 
by frequency offset and fading

|)(|])[(power  ICI Worstcase
12/

2/

22

f
fiSincndE

N

Ni
ICI 
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FDM vs OFDM

 Courtesy: any text-book on modern digital 
communications
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Tx Waveform (Magnitude)
over an OFDM Symbol

CP

Time

T
T+CP

CP
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FEC IFFT

DAC

Linear
PA

add cyclic extension

bits

fc

OFDM symbol

Pulse shaper
&

view this as a time to
frequency mapper

Generic OFDM Transmitter

Complexity (cost) is transferred back from the digital to the analog domain!

Serial to
Parallel
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AGC

fc

VCO

Sampler FFT

+FEQ

Error

Int.+Frac.

Slot &

Freq. Offset
Estimation

Timing
Sync.

(of all tones sent in one OFDM symbol)

Generic OFDM Receiver

Recovery
P/S and

Detection
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B2. Other Block Modulation Schemes
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Block Tx flavours

 Multi-Carrier with
 Cyclic Prefix  OFDM
 Zero-Padding 

 Single-Carrier with
 Cyclic Prefix
 Zero-Padding
 Unique-Word

 Generalised Multicarrier
 Including FDOSS, DFT-spread OFDMA, etc.

 CP-less OFDM  Offset QAM OFDM
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Single Carrier & Generalised Multi-Carrier (GMC)

 Single Carrier with CP offers
 Low PAPR
 Freq. Diversity (since each QAM symbol “sees” the entire BW)
 Ability for multiplexing (of different user streams on down-link)
 However, not suitable for up-link

 (a) high peak power requirement ( lower link margin)
 (b) multiplexing requires CP between every user burst ( inefficient)

 Generalised Multi-carrier modulation for the Uplink
 Provides narrow-banding => higher link margin!
 Provides freq. domain multiplexing – spectrally efficient

 F-DOSS – Freq. Domain Orthogonal Spread Spectrum
 Chang & Chen, IEEE Comm. Letters, Nov.2000

 Interleaved OFDMA (I-OFDMA) or DFT spread OFDMA 
 3GPP LTE has adopted this for UL
 Confusingly enough, LTE calls it “Single-carrier FDMA (SC-FDMA)”
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Conventional 
OFDM

Conventional OFDM
(FDE is optional)

FFT
Frequency
Domain
Equaliser

Remove
CP

Rx
Algos.

Detection
& P/S

IFFT Add
CP

Tx
Mod.

Symbol
Mapping
& S/P

For Coded OFDM, 
LLRs got from CE
(no division by H)

CE
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Tx -- low-complexity, TDMA
Rx -- implements SC-FDE; 

Linear Equaliser or DFE

Single Carrier Trasmission
(FDE is mandatory!)

Rx
Demod.

Add
CP

(of QAM
symbols)

Tx
Mod.

Symbol
Mapping

FFT
Frequency
Domain
Equaliser

Sub.
CP

D
et

ec
to

r

to permit FDE Decision
Feedback

Filter

IFFT
-

Divide by H

CE

For Coded SC system, 
LLRs obtained here
(after division by H)
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Block Modulation -- “Evolution” to GMC

 GMC offers more flexibility in tone allocation than 
FDOSS

Bl
oc

k 
M

od
.

SC+CP

MC+CP

OFDM

OFDMA

For UL
(Narrow-banding)

FDOSS

Low PAPR +
Narrow-banding

GMC

CP-less
MC

Offset QAM OFDM 
Computationally costly
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Let KP=N, where N is FFT size,
K – No. of uplink users
P – No. of subcarriers per user

Generalised MC with CP – F-DOSS, IFDMA

Repeat
K times
(in time)

Tx
Mod.

Take P
QAM

Symbols

user #1 Add
CP

n
N

j
e

02


Repeat
K times
(in time)

Tx
Mod.

Take P
QAM

Symbols

user #2 Add
CP

n
N

j
e

12


Repeat
K times
(in time)

Tx
Mod.

Take P
QAM

Symbols

user #K Add
CP

nK
N

j
e

)1(2




Assumptions:
All K users are freq. synchronised
(within 1% in 802.16e)
All K users are ranged 
(well within CP length)

Peak power reduced by 1/K
.
.
.
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Let KP=N, where N is FFT size,
K – No. of uplink users
P – No. of subcarriers per user

Generalised MC – DFT-spread OFDMA (SC-FDMA)

PxP
Mixing 
Matrix

Tx
Mod.

Take P
QAM

Symbols

user #1 Add
CP

1,,12,1,1
carriers-subon  placed Samples
 KNKK 

Mixing Matrix can simply 
be a P point DFT matrix!

NxN
IFFT

PxP
Mixing 
Matrix

Tx
Mod.

Take P
QAM

Symbols

user #2 Add
CP

2,,22,2,2
carriers-subon  placed Samples
 KNKK 

NxN
IFFT

PxP
Mixing 
Matrix

Tx
Mod.

Take P
QAM

Symbols

user #K Add
CP

NKKK ,,3,2,
carriers-subon  placed Samples



NxN
IFFT

To mimic FDOSS

.

.

.
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F-DOSS: FDE at Base Station

Rx
Demod.

FFT

&Copy
Minus

CP

Z.I.– Interleave with K-1
zeroes to suppress noise

Frequency
Translation

Assuming all K UL
users are ranged

FDE for
user #2

D
et

ec
to

r

Z.I.+

IFFT

user #2
Truncate

(to P)

FDE for
user #K

D
et

ec
to

r

Z.I.+

IFFT

user #K
Truncate

(to P)

FDE for
user #1

D
et

ec
to

r

Z.I.+

IFFT

user #1
Truncate

(to P)

P sub-carriers
1,K+1,2K+1,…,(N-K+1)

.

.

.
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I-FDMA to DFT-spread OFDMA -- Motivation

 F-DOSS & I-FDMA offer
 Low PAPR ( better link margin compared to OFDMA)
 Low Computational complexity
 But, flexibility is limited 

 since each user stream goes thro uniformly spaced (K-spaced) subcarriers also 
called “frequency comb”

 DFT spread OFDMA
 Some PAPR increase+ increase in computational complexity
 But, ensures more flexibility

 User stream can occupy any P out of N sub-carriers (like OFDMA)
 Question: Does this “ensure” better CCI averaging in reuse-1 systems?
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I-OFDMA: FDE at Base Station

Rx
Demod.

FFT

(+ De-
Mux)

Minus
CP

Frequency
Translation

FDE for
user #K

D
et

ec
to

r

user #K

FDE for
user #1

D
et

ec
to

r

user #1
P sub-carriers

1,K+1,2K+1,…,(N-K+1)
OR, any P P-pt

IDFT

P-pt
IDFT

.

.

.
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Some key issue in SC-FDMA vs OFDMA

 In coded GMC (SC-FDMA) and single-carrier systems 
 Freq. domain equalisation is a must !
 Noise enhancement could affect LLRs required for FEQ

 In GMC techniques 
 CE requires “lumped” pilots
 While OFDM/OFDMA can use “embedded” pilots

 How to track fast-fading channels ?

 What about Spatial Muxing on UL?
 Is ML receiver possible at low cost?
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B3. Case-study: Channel Estimation 
in WiMaX Downlink
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Pilot Subcarrier Placement

Based on Coherence Time
(Doppler Spread)
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For multiple Tx Antennas, either:
1) More pilots by orthogonal allocation
2) More pilots by puncturing data
3) Cyclic delay diversity (delay by CP)

Pilot Subcarrier

Data Subcarrier
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802.16e – Pilot Allocation Example

O-FUSC Band AMC
(1/1 and 1/3)

H
-A

R
Q

 M
AP
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IM
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PUSC
(1/1 or

1/3)

P
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bl

e 
(r

eu
se

 1
/3

)

Uplink
Sub-frame

FCH+
DL,UL
MAP

(1/1 or1/3
PUSC)

“Hopping/Sliding” Pilot Pattern

“Comb-type”
Pilot tones

Comb (reuse 1 typically) “Tile-based” pilots 
(data is allocated

around the pilot tones)
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ML and LS -- CFR Estimation

[ ] [ ] [ ] [ ], where [ ] is CFR
Dropping notation  and if only  pilots are available

, where noise  is AWGN

:  min ( | ),  where 

Assuming (or approx
P

P P P P P P

P P PP P P P P

k k k k k
k P

ML Criterion p
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LS Estimation – contd.
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PUSC Example -- Preamble and Pilot Patterns (N=512)

0                46               49             256          464            467
Guard band        Pilot carriers          DC null carrier       Guard band

“Well known” Channel Estimation Schemes (freq. / time):
1) LS + Linear Interpolation
2) 2D-MMSE
3) LS + FFT based Interpolation



28

June 2008 K.Giridhar – RF  Fundamentals & Cellular OFDM Technology 55

TeNeT Group
IIT Madras

CE Example: Preamble of 802.16d/e
FFT Based Interpolation – with Windowing

 Initially make an LS estimate on pilot tones
 Extrapolate LS estimate into guard bands by fitting a 

line through estimates near the edge

10parameter   windowHamming and

,1,1,0),
1

2()1(][










 Nn
N

nCosnW 

To reduce TD leakage -- apply a window function 
(say, Hamming window)  before taking IFFT
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FFT Based Interpolation – contd.1

 We get a smeared and non-causal impulse response

 Keep first L samples and last L1 samples and fill remaining 
samples with zero

- Select L based on the maximum tap delay (or pdp)  of 
channel

- Choice of L1 depends on the tap weight of first tap

 Take FFT and unwindow it to get the final estimate Ĥ[n]
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NMSE with and without windowing 
-- in FFT based Interpolation
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NMSE vs Symbol Index with 1st order and 3rd order AR Model 
-- for 10Hz Doppler

SNR = 0dB SNR = 25 dB
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NMSE vs Symbol Index with 1st order and 3rd order AR model
-- for 70Hz Doppler

SNR = 0dB SNR = 25 dB
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Channel Estimation – Ridiculous to the Sublime

Parametric CE

FFT based CE

Modified LS
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B4. Key Issues in Cellular OFDM/OFDMA
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Sources of Distortion in OFDM/OFDMA 

 Impact of the following on measurement model

 Additive, band-limited noise
 RF distortion (I-Q imbalance, clipping, IM, etc)
 Frequency offset
 Timing error
 In Mobile Broadband Cellular OFDM/OFDMA, we have

 Delay spread  accentuated due to large band-width
 Doppler spread  due to mobility
 Co-channel interference  due to cellular nature
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Interference Management is the Key!

 Co-channel interference (CCI) in OFDM needs to be 
managed at
 Antenna level (using multiple antennas)
 Channel processing level (interference aware CE)
 Detection level (interference nullers/combiners)
 Decoding level (CCI aware decoders)
 MAC level
 Scheduler level
 Co-operative communications
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CDF of SNR for Reuse-1/3 Cellular

SNR=1dB

SNR=15dB
(can support

16QAM rate 2/3)

-- 75% of users have SNR>10dB
-- Only 3% gave SNR < 0dB
-- Highest SNR can be ~ 35dB
-- Similar to single-cell deployment

Reuse 1/3
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CDF of SIR for Reuse-1/1 Cellular

SIR=1dB
QPSK rate 1/3

Reuse 1/1

Nearly 50% of users have SIR < 0dB
Highest SIR is only 15dB
About 35% of users see one strong CCI
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Downlink Rx (Mobile Station)

Sync Channel
Processing

ST
Decoder

HARQ
Combine

CTC
Decoder

-- Common Sync based
-- Preamble/CP based

-- Simple LS
-- FFT+Kalman

Tracking
(freq. & channel)

-- Sphere Decoder
(for Spatial Mux, 
2x2 Golden Code)

-- Incr. Redudancy
-- Chase Combining

CCI in Reuse-1 OFDMA can affect
all these algorithms severely!
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Impact on System Capacity 

QPSK 1/6

QPSK 1/3

QPSK 1/2 QPSK 2/3 16-QAM 1/2 16-QAM 2/3

0x5%+1/3x15%+2/3x20%+1x20%+4/3x20%+2x15%+8/3x5% = 1.07 bits/sec/Hz;
(this should be typical with non-ideal channel estimation etc.)

Wimax Document (Feb’06) claims for DL 2x2 1.8-2.0, and UL 2x2* 0.7-1.0 ; (17+2 in 10MHz)
* -- when 2 users co-operate in Spatial Muxing on UL 
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Broadband Wireless Research –
Multi-cell R&D

 Interference Management is possible using BS co-operation

 Exploit IP back-haul to BS; Semi-centralised “upper MAC”

AB

A

C

Co-operative
Scheduling

GigE back-haul (IP)
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B5. Example – Link Budget for 802.16d/e

(to be developed “live”)
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Summary of Part B

 OFDM Fundamentals and Overview of Cellular OFDM
 B1. What and Why of OFDM
 B2. Other Block Modulation Schemes
 B3. Case Study: Channel Estimation in WiMaX DL
 B4. Key Issues in Cellular OFDM/OFDMA
 B5. Example: Communication Link Budget – 802.16d/e

 What is IMT-advanced going to be?
 Spectrum indentified in WRC-2007
 IMT-A to be ratified by middle of 2010
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Some Learnings about 802.16m & LTE-A

 Air interface –
 Downlink : OFDM/OFDMA, TDD and FDD
 Uplink : OFDMA and SC-FDMA ?
 “Mandatory” : Packet Switching, Turbo/LDPC with HARQ, 2x2 

Baseline, Mobility support, do better than IMT-A requirements
 Multiple antenna techniques include:

 Virtual antenna and/or STBC, STFC
 Single user (SU) Spatial Mux and DL, Multi user (MU) SM on UL
 Precoding (Open-loop, Closed-loop, SU, MU)
 Co-operative MIMO
 Relaying

 “Optional” : Co-operative Relaying, Ad-hoc modes,  >4 Tx Ants per 
sector at BS, >2 Tx Ants at MS

 Fundamental air-interface issues are currently being discussed 
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Issues in/with BWA Standards (LTE & WiMaX)

 Pilot sub-carriers can be
 Localised or Distributed 
 At cell-edge, ‘pilots-on-pilots’  OR  ‘pilots-on-data’

 Data sub-carriers can be
 No power control; e.g., MAP symbols
 With power control  fractional freq. reuse (FFR)

 What will preamble enable?
 Easy synchronisation – Y
 Better coverage -- ?
 MIMO training -- ?
 Interference measurements -- ?

DL subframe

Preamble

MAP

MIMO
midamble

Data Symbols
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User Requirements – Indian Perspective

 Based on the unified views expressed by the various cellular operators 
of India

• Broadband Wireless Consortium of India (BWCI)

• A strategic initiative of Centre of Excellence in Wireless Technology 
(CEWiT)

 BWCI has enunciated the service and technology requirements for 
India which IMT-A should address

 please also see  http://www.cewit.org.in/docms/ibwsi.pdf

 Requirements reflect the fact that wireless access will the only way by 
which broadband can reach 100million+ Indian users! 
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Indian Scenario – contd.

 Serve about 900 subscribers/cell/per operator that covers different 
market segments

 Cell radius varying between 100m and 20 Km

 Provide broadband services with limited spectrum per operator

• FDD 10+10=20MHz per operator

• TDD with 20MHz per operator (with sync between operators)

 Nearly 85% of the subscribers will be nomadic and indoors

 Need a minimum useful capacity per cell (per op.) of about 100 Mbps
DL, and 40 Mbps UL
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Example: With a FDD bandwidth of 10+10 MHz, spectral efficiency required is:

DL  100/10 = 10 bits/sec/Hz/cell

UL  40/10 = 4 bits/sec/Hz/cell

Sweet  spot

sweet spot

Avg. ~ 7 to 8 bits/sec/Hz/cell
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Reading Material
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Indian Institute of Technology Madras
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AGC

Sampler DFT
Error

-- Gross Freq. Offset
-- Channel Estimation

and Equalization

OFDM Receiver Algorithms -- Recap

Recovery
P/S and

Detection

Freq.

-- Fine Freq. Offset
-- Timing Estimation
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Impact of Large Freq. Offset (Δf)
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Residual Carrier Frequency offset

 Preamble can be used to estimate and compensate 
for the carrier freq offset during the initial 
synchronization procedure

 If the residual freq offset is assumed to be much 
smaller compared to subcarrier spacing,then at ith

subcarrier

 Constant phase shift in all sub carriers
 This offset is tracked using known pilot 

symbols  in every OFDM symbol
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Frequency Offset

 Carrier recovery and tracking critical for OFDM 
 Offsets can be comparable to sub-carrier spacing in OFDM
 Non-coherent detectors possible with differential coding

 Residual freq. offset causes
 constellation rotation in TDMA
 loss of correlation strength over integration window in CDMA 

(thereby admitting more CCI or noise)
 increased inter-channel interference (ICI) in OFDM 

 OFDM can easily compensate for gross freq. offsets 
(offsets which are an integral multiple of sub-carrier width)
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Slot and Timing Synchronization in OFDM

Example: 4 tones per slot (OFDM symbol)
T

self-symmetry can be 
exploited for non-
coherent timing recovery

zero tones

IFFT PA

T secs

t

IFFT PA

T secs

t

T/2 T

Traffic Slot

Preamble/Control Slot
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Impact of Sampling Clock Offset

 Sampling frequency offset induces time-variant timing offset
 Varies slowly across several frames, usually
 Let           be the timing offset of  kth OFDM symbol
 The induced phase rotation is proportional to the sub-

carrier index “i”
 When the timing offset exceeds the sampling interval, the 

FFT window needs to be shifted. 
 Known pilot symbols in every OFDM symbol are again used 

to track this offset
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Timing Synchronisation

 Timing recovery (at symbol level) is easily achieved in 
OFDM systems
 Can easily overcome distortions from delay spread

 Can employ non-coherent timing recovery techniques by 
introducing self-similarity
 => very robust to uncompensated frequency offsets

 If cyclic prefix is larger than the rms delay spread, range of 
(equally good) timing  phases become available
 => robust to estimation errors
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Comparing Complexity
(of TDMA,  DS-CDMA, & OFDM Transceivers)

Timing Sync.

Freq. Sync.

Timing Tracking

Freq. Tracking

Channel
Equalisation

Analog Front-end
(AGC, PA, VCO, etc)

TDMA OFDM
Very elegant, requiring

no extra overhead

CDMA
Easy, but requires

overhead (sync.) bits
Difficult, and requires
sync. channel (code)

Easy, but requires
overhead (sync.) bits More difficult than TDMA Gross Sync. Easy

Fine Sync. is Difficult

Modest Complexity Usually not required
within a burst/packet

Modest complexity

RAKE Combining in CDMA 
usually  more complex than 

equalisation in TDMA

Modest Complexity
(using dedicated correlator)

Easy, decision-directed
techniques can be used

FDE is arguably easy –
but careful choice essential

Complexity  or cost is 
very high (PA back-off

is necessary)

Very simple
(especially for CPM signals)

Complexity is high in
Asynchronous W-CDMA

Modest to High Complexity
(depending on bit-rate and

extent of delay-spread)

Fairly Complex
(power control loop)
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Comparing Performance
(of TDMA,  DS-CDMA, & OFDM Transceivers)

Fade Margin
(for mobile apps.)

Range

Re-use & Capacity

FEC Requirements

Variable Bit-rate
Support

Spectral Efficiency

TDMA OFDM

Required for mobile
applications

CDMA

Required for mobile
applications

Modest requirement
(RAKE gain vs power-

control problems)

Range increase by reducing
allowed noise rise (capacity)

Difficult to support large
cells (PA , AGC limitations)

Modest (in TDMA) and
High in MC-TDMA

Re-use planning is
not crucial, but will help

FEC is vital even for
fixed wireless access

FEC is usually inherent (to 
increase code decorrelation)FEC optional for voice

Powerful methods
to support VBR

(for fixed access)

Very High
(& Higher Peak Bit-rates)Modest

Modest 

Low  to modest support

Poor to Low

Very elegant methods
to support VBR & VAD

Very easy to increase
cell sizes
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Cellular Fundamentals

7-cell Re-use 3-cell Re-use

d

Most Common : 7-cell, 4, 3, and 1-cell re-use
Re-use Distance: sqrt(7d), sqrt(4d), d, 0

DS-CDMA:
Universal Reuse
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Handoff between Cells
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Handoff between Cells -- contd.

 Many techniques have been proposed to optimize the trade off 
between dropping and blocking probabilities

Blocking
Probability

Dropping
Probability

Reservation for users in Handoff (increasing L to R);
Or, equivalently, width of hand-off region

Optimum Point

1.0%

1.5%0.75%

0.50%

1.0%
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Overlays could increase capacity; 

Alternatively, repeaters can increase coverage

Overlay of Micro on Macro Cells
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Spectral Efficiency of 2G Standards

 Name Bandwidth Bit-rate Efficiency
 IS – 136 30 KHz. 48.6 Kbps 1.62
 GSM 200 KHz. 270.8 Kbps 1.35
 IS – 95 1.25 MHz. 9.6 Kbps 0.007 x N users

 CT2 100 KHz. 72 Kbps 0.72
 DECT 1.728 MHz. 1.152 Mbps 0.66
 PHS 300 KHz. 384 Kbps 1.28

m
ac

ro
m

ic
ro

IEEE 802.11b -- 1/22 to 11/22 = 0.045 to 0.50;   
802.11a -- 54/20=2.70 bits/s/Hz

Multi-antenna techniques can yield much higher spectral efficiencies
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A (the?) Golden Rule

 What is a fair yard-stick to compare various wireless communication 
standards ?

 Number of bits/sec/Hz per-cell site for a given QoS
 “Cherry-picking” of good users should be avoided
 Careful system-level simulation studies are required

 It is also essential to bring in cost (per connection)
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Factors Affecting Golden Rule

 Co-channel Interference
 in TDMA/FDMA -- this determines the re-use distance, and thereby, 

system capacity
 in CDMA -- this determines the number of users that can be 

supported by a single base-station

 Control Overheads
 gross bit-rate versus actual pay-load
 more control overhead could give more deployment flexibility 

and/or more services
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TDMA, CDMA, and OFDM based Standards 

 Time Division Multiple Access (TDMA) is the most 
prevalent wireless access system to date
 GSM, ANSI-136, EDGE, DECT, PHS, Tetra

 Direct Sequence Code Division Multiple Access (DS-
CDMA) became commercial  only in the mid 90’s
 IS-95(A,B,HDR,1x...),cdma-2000(3GPP2), W-CDMA (3GPP)

 Orthogonal Frequency Division Multiplexing (OFDM) is 
new kid to the wireless block
 IEEE 802.11g,n, UWB 
 IEEE 802.16d/e, IEEE 802.20
 3GPP LTE, 3GPP2 Rev.C, 802.16n, Advanced IMT-2000,….


