

Comparing Complexity (of TDMA, DS-CDMA, & OFDM Transceivers)								
•	TDMA	CDMA	OFDM					
Timing Sync.	Easy, but requires overhead (sync.) bits	Difficult, and requires sync. channel (code)	Very elegant, requiring no extra overhead					
Freq. Sync.	Easy, but requires overhead (sync.) bits	More difficult than TDMA	Gross Sync. Easy Fine Sync. is Difficult					
Timing Tracking	Modest Complexity	Complexity is high in Asynchronous W-CDMA	Usually not required within a burst/packet					
Freq. Tracking	Easy, decision-directed techniques can be used	Modest Complexity (using dedicated correlator)	Modest complexity					
Channel Equalisation	Modest to High Complexity (depending on bit-rate and extent of delay-spread)	RAKE Combining in CDMA usually more complex than equalisation in TDMA	FDE is arguably easy – but careful choice essential					
Analog Front-end (AGC, PA, VCO, etc)	Very simple (especially for CPM signals)	Fairly Complex (power control loop)	Complexity or cost is very high (PA back-off is necessary)					
June 2008	ine 2008 K.Giridhar – RF Fundamentals & Cellular OFDM Technology 84							

TeNeT Group IIT Madras Of TDMA, DS-CDMA, & OFDM Transceivers)								
•	TDMA	CDMA	OFDM					
Fade Margin (for mobile apps.)	Required for mobile applications	Modest requirement (RAKE gain vs power- control problems)	Required for mobile applications					
Range	Very easy to increase cell sizes	Range increase by reducing allowed noise rise (capacity)	Difficult to support large cells (PA , AGC limitations)					
Re-use & Capacity	Modest (in TDMA) and High in MC-TDMA	Modest	Re-use planning is not crucial, but will help					
FEC Requirements	FEC optional for voice	FEC is usually inherent (to increase code decorrelation)	FEC is vital even for fixed wireless access					
Variable Bit-rate Support	Low to modest support	Very elegant methods to support VBR & VAD	Powerful methods to support VBR (for fixed access)					
Spectral Efficiency	Modest	Poor to Low	Very High (& Higher Peak Bit-rates)					
June 2008	K.Giridhar – R.	F Fundamentals & Cellular OFDM Tec	hnology 85					

•				TeNeT Group IIT Madras				
Spectral Efficiency of 2G Standards								
Nar	me Bai	ndwidth	Bit-rate	Efficiency				
IS -	- 136 30	KHz.	48.6 Kbps	1.62				
ତ୍ର 🖕 GSI	M 200) KHz.	270.8 Kbps	1.35				
- SI • Jac	- 95 1.2	5 MHz.	9.6 Kbps	0.007 x N users				
C ■CT2	2 100) KHz.	72 Kbps	0.72				
	CT 1.7	28 MHz.	1.152 Mbps	0.66				
E (<u>PH</u> :	S 300) KHz.	384 Kbps	1.28				
★ IEEE 802.11b 1/22 to 11/22 = 0.045 to 0.50; 802.11a 54/20=2.70 bits/s/Hz								
Multi-antenna techniques can yield much higher spectral efficiencies								
June 2008		K.Giridhar - RF Funda	umentals & Cellular OFDM Technol	<i>logy</i> 90				

