Car-following models: A delayed dynamical view of transportation networks

Gopal Krishna Kamath M

Research advisors: Dr. Krishna Jagannathan and Dr. Gaurav Raina
PhD Seminar 1

Department of Electrical Engineering
Indian Institute of Technology Madras

August 7, 2017
(1) *Microscopic:* Individual element (vehicle) dynamics
Modeling transportation networks

(1) **Microscopic**: Individual element (vehicle) dynamics

(2) **Mesoscopic**: Small groups of homogeneous elements (vehicles)
(1) *Microscopic*: Individual element (vehicle) dynamics

(2) *Mesoscopic*: Small groups of homogeneous elements (vehicles)

(3) *Macroscopic*: Evolution of aggregate quantities; flow, density, etc
(1) **Microscopic**: Individual element (vehicle) dynamics

(2) **Mesoscopic**: Small groups of homogeneous elements (vehicles)

(3) **Macroscopic**: Evolution of aggregate quantities; flow, density, etc
Car-following models

Class of dynamical models
- Temporal variation of acceleration, velocity, position
- Mimic human drivers’ decisions
- Circular loop/infinite highway
Car-following models

- Class of dynamical models
 - Temporal variation of acceleration, velocity, position
 - Mimic human drivers’ decisions
 - Circular loop/infinite highway

- Basic philosophy
 - Synchronize velocity with vehicle directly ahead
Car-following models

Class of dynamical models
- Temporal variation of acceleration, velocity, position
- Mimic human drivers’ decisions
- Circular loop/infinite highway

Basic philosophy
- Synchronize velocity with vehicle directly ahead

Examples

- Classical car-following model[1]
- Optimal velocity model[2]
- Intelligent driver model[3]

Two variants of car-following models

Circular loop
Two variants of car-following models

Circular loop

Infinite highway
Overview

Problems statement

Insight into control laws that yield desirable traffic flow
Overview

Problems statement
Insight into control laws that yield desirable traffic flow

Contributions
- Phenomenological insight into “phantom jams”
- Ensure lack of jerky vehicular motion (non-oscillatory convergence)
- Characterize time taken by platoon to equilibrate
Overview

Problems statement
Insight into control laws that yield desirable traffic flow

Contributions
- Phenomenological insight into “phantom jams”
- Ensure lack of jerky vehicular motion (non-oscillatory convergence)
- Characterize time taken by platoon to equilibrate

Design implications (autonomous vehicles)
Offer design guidelines to (i) stabilize traffic flow, (ii) increase resource utilization, and (iii) offer better ride quality (lack of jerky motion)
Car-following models: A delayed dynamical view of transportation networks
Model representations

Pictorial

![Diagram showing vehicle positions and distances](image)

Symbolic

- x_i: position of i^{th} vehicle from fixed reference
- \dot{x}_i: velocity of i^{th} vehicle
- \ddot{x}_i: acceleration of i^{th} vehicle
- y_i: distance between i^{th} and $(i-1)^{th}$ vehicle; $y_i = x_{i-1} - x_i$
- v_i: velocity of i^{th} vehicle relative to $(i-1)^{th}$ vehicle; $v_i = \dot{x}_{i-1} - \dot{x}_i$
Model representations

Pictorial

![Diagram showing vehicle positions and distances]

Symbolic

- \(x_i \): position of \(i^{th} \) vehicle from fixed reference
- \(\dot{x}_i \): velocity of \(i^{th} \) vehicle
- \(\ddot{x}_i \): acceleration of \(i^{th} \) vehicle
- \(y_i \): distance between \(i^{th} \) and \((i-1)^{th}\) vehicle; \(y_i = x_{i-1} - x_i \)
- \(v_i \): velocity of \(i^{th} \) vehicle relative to \((i-1)^{th}\) vehicle; \(v_i = \dot{x}_{i-1} - \dot{x}_i \)

Mathematical

\[
\dot{x}(t) = f(x(t), x(t - \tau_1), \ldots, x(t - \tau_N)), \quad x \in \mathbb{R}^N, \quad f \in C^k
\]
Existing models

Classical car-following model (CCFM)

\[\ddot{x}_i(t) = \alpha_i \frac{(\dot{x}_i(t))^m (\dot{x}_{i-1}(t-\tau) - \dot{x}_i(t-\tau))}{(x_{i-1}(t-\tau) - x_i(t-\tau))^l}, \quad i = 1, 2, \ldots, N \]

- \(\alpha_i \): sensitivity coefficient of \(i^{th} \) driver
- \(\tau \): common reaction delay
- \(m \in [-2, 2], l \in \mathbb{R}_+ \): model parameters
Existing models

Classical car-following model (CCFM)

\[\ddot{x}_i(t) = \alpha_i \frac{(\dot{x}_i(t))^m (\dot{x}_{i-1}(t-\tau) - \dot{x}_i(t-\tau))}{(x_{i-1}(t-\tau) - x_i(t-\tau))^l}, \quad i = 1, 2, \ldots, N \]

- \(\alpha_i \): sensitivity coefficient of \(i^{th} \) driver
- \(\tau \): common reaction delay
- \(m \in [-2, 2], l \in \mathbb{R}_+ \): model parameters

Optimal velocity model (OVM)

\[\ddot{x}_1(t) = a \left(V(x_N(t - \tau) - x_1(t - \tau)) - \dot{x}_1(t - \tau) \right) \]

\[\ddot{x}_i(t) = a \left(V(x_{i-1}(t - \tau) - x_i(t - \tau)) - \dot{x}_i(t - \tau) \right), \quad i = 2, 3, \ldots, N \]

- \(a \): common sensitivity coefficient
- \(\tau \): common reaction delay
- \(V(\cdot) \): optimal velocity function
Optimal velocity functions

Properties

- **Monotonic increasing**: $y_1 > y_2 \implies V(y_1) > V(y_2)$
- **Upper bounded**: $\exists V^b$ such that $V(y) \leq V^b \quad \forall y$
- **Continuously differentiable**: $V \in C^1(\mathbb{R}_+)$
Optimal velocity functions

Properties

- **Monotonic increasing**: \(y_1 > y_2 \implies V(y_1) > V(y_2) \)
- **Upper bounded**: \(\exists V^b \) such that \(V(y) \leq V^b \ \forall y \)
- **Continuously differentiable**: \(V \in C^1(\mathbb{R}_+) \)

Examples

- **Bando model**: \(V(y) = V_0 \left(\tanh \left(\frac{y-y_m}{\bar{y}} \right) + \tanh \left(\frac{y_m}{\bar{y}} \right) \right) \)
- **Underwood model**: \(V(y) = V_0 e^{-\frac{2ym}{y}} \)
- **Trigonometric model**: \(V(y) = V_0 \left(\tan^{-1} \left(\frac{y-y_m}{\bar{y}} \right) + \tan^{-1} \left(\frac{y_m}{\bar{y}} \right) \right) \)
- **Hyperbolic model**: \(V(y) = \begin{cases} 0, & y \leq y_0, \\ V_0 \left(\frac{(y-y_0)_n}{(\bar{y})^n+(y-y_0)_n} \right), & y \geq y_0. \end{cases} \)

Proposed models

Reduced classical car-following model (RCCFM)

\[
\dot{v}_i(t) = \beta_{i-1}(t - \tau_{i-1})v_{i-1}(t - \tau_{i-1}) - \beta_i(t - \tau_i)v_i(t - \tau_i)
\]

\[
\beta_i(t) = \alpha_i (\dot{x}_0(t) - v_0(t) - \cdots - v_i(t))^m, \quad i = 1, 2, \ldots, N
\]
Proposed models

Reduced classical car-following model (RCCFM)

\[
\dot{v}_i(t) = \beta_{i-1}(t - \tau_{i-1})v_{i-1}(t - \tau_{i-1}) - \beta_i(t - \tau_i)v_i(t - \tau_i)
\]

\[
\beta_i(t) = \alpha_i (\dot{x}_0(t) - v_0(t) - \cdots - v_i(t))^m, \quad i = 1, 2, \ldots, N
\]

Modified optimal velocity model (MOVM)

\[
\dot{v}_1(t) = \ddot{x}_0(t) + a (\dot{x}_0(t - \tau_1) - V(y_1(t - \tau_1)) - v_1(t - \tau_1))
\]

\[
\dot{v}_k(t) = a (V(y_{k-1}(t - \tau_{k-1})) - V(y_k(t - \tau_k)) - v_k(t - \tau_k))
\]

\[
\dot{y}_i(t) = v_i(t), \quad i = 1, 2, \ldots, N, \quad k = 2, 3, \ldots, N
\]
Agenda for analysis

- Non-linear DDEs; hard to analyze \Rightarrow study local properties
Agenda for analysis

- Non-linear DDEs; hard to analyze \implies study local properties
- Determine equilibrium; linearize models about this equilibrium
Agenda for analysis

- Non-linear DDEs; hard to analyze \Rightarrow study local properties
- Determine equilibrium; linearize models about this equilibrium
- Study linearized systems for (i) no delay, (ii) small delay and (iii) arbitrary delay; use of characteristic equation
Agenda for analysis

- Non-linear DDEs; hard to analyze \(\Rightarrow\) study local properties

- Determine equilibrium; linearize models about this equilibrium

- Study linearized systems for (i) no delay, (ii) small delay and (iii) arbitrary delay; use of characteristic equation

- For arbitrary delays, how do systems lose local stability?
 Hopf bifurcation \(\Rightarrow\) emergence of oscillations (limit cycles)
Agenda for analysis

- Non-linear DDEs; hard to analyze \implies study local properties

- Determine equilibrium; linearize models about this equilibrium

- Study linearized systems for (i) no delay, (ii) small delay and (iii) arbitrary delay; use of characteristic equation

- For arbitrary delays, how do systems lose local stability? Hopf bifurcation \implies emergence of oscillations (limit cycles)

- Use higher order terms, center manifold theory and Poincaré normal forms to determine orbital stability of limit cycles and type of Hopf
Local stability analysis

Equilibrium

RCCFM: \(v_i^* = 0 \ \forall i \)

MOVM: \(v_i^* = 0, \ y_i^* = V^{-1}(\dot{x}_0) \ \forall i \)
Local stability analysis

Equilibrium

\[\text{RCCFM: } v_i^* = 0 \ \forall i \]
\[\text{MOVM: } v_i^* = 0, \ y_i^* = V^{-1}(\dot{x}_0) \ \forall i \]

Linearized model

RCCFM

\[\dot{v}_i(t) = \beta^*_{i-1} v_{i-1}(t - \tau_{i-1}) - \beta^*_i v_i(t - \tau_i), \]
\[\beta^*_i = \alpha_i (\dot{x}_0)^m, \ i \in \{1, 2, \ldots, N\} \]
Local stability analysis

Equilibrium

- **RCCFM:** \(v_i^* = 0 \) \(\forall i \)
- **MOVM:** \(v_i^* = 0, \, y_i^* = V^{-1}(\dot{x}_0) \) \(\forall i \)

Linearized model

- **RCCFM**
 \[
 \dot{v}_i(t) = \beta_{i-1}^* v_{i-1}(t - \tau_{i-1}) - \beta_i^* v_i(t - \tau_i),
 \]
 \[
 \beta_i^* = \alpha_i(\dot{x}_0)^m, \, i \in \{1, 2, \ldots, N\}
 \]

- **MOVM**
 \[
 \dot{v}_i(t) = du_{i-1}(t - \tau_{i-1}) - du_i(t - \tau_i) - av_i(t - \tau_i),
 \]
 \[
 \dot{u}_i(t) = v_i(t), \, d = aV'(y_i^*), \, i \in \{1, 2, \ldots, N\}
 \]
Absence of delays \implies stability

Dynamics without delays

- **RCCFM**
 \[\dot{v}_i(t) = \beta_{i-1}^* v_{i-1}(t) - \beta_i^* v_i(t), \quad i \in \{1, 2, \ldots, N\} \]

- **MOVM**
 \[\dot{v}_i(t) = du_{i-1}(t) - du_i(t) - av_i(t), \]
 \[\dot{u}_i(t) = v_i(t), \quad i \in \{1, 2, \ldots, N\} \]

 Can be expressed as $\dot{x} = Ax$
Absence of delays \implies stability

Dynamics without delays

- **RCCFM**
 \[\dot{v}_i(t) = \beta^*_{i-1} v_{i-1}(t) - \beta^*_i v_i(t), \ i \in \{1, 2, \ldots, N\} \]

- **MOVM**
 \[\dot{v}_i(t) = du_{i-1}(t) - du_i(t) - av_i(t), \]
 \[\dot{u}_i(t) = v_i(t), \ i \in \{1, 2, \ldots, N\} \]

- Can be expressed as $\dot{x} = Ax$

Eigenvalues of dynamics matrix

- **RCCFM:** $\lambda_i = -\beta^*_i \ \forall i$
- **MOVM:** $\lambda = \frac{-a \pm \sqrt{a^2 - 4d}}{2}$

\implies RCCFM and MOVM are always locally stable for zero delays
Why? What?

Motivated by self-driven cars; expected to have very small delays
Why? What?

- Motivated by self-driven cars; expected to have very small delays
- Use Taylor’s series expansion on time variable
Dynamics for small delays

Why? What?
- Motivated by self-driven cars; expected to have very small delays
- Use Taylor’s series expansion on time variable
- Replace $x(t - \tau)$ by $x(t) - \tau \dot{x}(t)$
Why? What?

- Motivated by self-driven cars; expected to have very small delays
- Use Taylor’s series expansion on time variable
- Replace $x(t - \tau)$ by $x(t) - \tau \dot{x}(t)$
- Dynamics can be expressed in the form $\dot{x} = Ax$
Why? What?

- Motivated by self-driven cars; expected to have very small delays
- Use Taylor’s series expansion on time variable
- Replace $x(t - \tau)$ by $x(t) - \tau \dot{x}(t)$
- Dynamics can be expressed in the form $\dot{x} = Ax$

Conditions for local stability

RCCFM: $\beta_i^* \tau_i < 1 \ \forall i$

MOVM: $\max(a, \tilde{d}) \tau_i < 1 \ \forall i$
Dynamics for small delays

Why? What?

- Motivated by self-driven cars; expected to have very small delays
- Use Taylor’s series expansion on time variable
- Replace $x(t - \tau)$ by $x(t) - \tau \dot{x}(t)$
- Dynamics can be expressed in the form $\dot{x} = Ax$

Conditions for local stability

- RCCFM: $\beta_i^* \tau_i < 1 \ \forall i$
- MOVM: $\max(a, \bar{d}) \tau_i < 1 \ \forall i$

Note

- Above conditions are sufficient for local stability
Why? What?

- Motivated by self-driven cars; expected to have very small delays
- Use Taylor’s series expansion on time variable
- Replace $x(t - \tau)$ by $x(t) - \tau \dot{x}(t)$
- Dynamics can be expressed in the form $\dot{x} = Ax$

Conditions for local stability

RCCFM: $\beta_i^* \tau_i < 1 \ \forall i$

MOVM: $\max(a, \tilde{a}) \tau_i < 1 \ \forall i$

Note

- Above conditions are **sufficient** for local stability
- Dependence on reaction delay & parameters \Rightarrow **co-design** essential
Locally stable region for arbitrary delay

Characteristic equation

RCCFM: $\lambda + \beta_i e^{-\lambda \tau_i} = 0$

MOVM: $\lambda^2 + (a\lambda + d)e^{-\lambda \tau_i} = 0$
Locally stable region for arbitrary delay

Characteristic equation

<table>
<thead>
<tr>
<th>Model</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCCFM</td>
<td>$\lambda + \beta^*_i e^{-\lambda \tau_i} = 0$</td>
</tr>
<tr>
<td>MOVM</td>
<td>$\lambda^2 + (a\lambda + d)e^{-\lambda \tau_i} = 0$</td>
</tr>
</tbody>
</table>

Necessary and sufficient condition for local stability

- **RCCFM**
 \[
 \tau_i < \frac{\pi}{2\beta^*_i} \forall i
 \]

- **MOVM**
 \[
 \tau_i < \frac{1}{\chi} \tan^{-1} \left(\frac{\chi}{d} \right) \quad \forall i,
 \]
 where \(\chi = \sqrt{\frac{a(a + \sqrt{a^2 + 4d^2})}{2}} \)
Locally stable region for arbitrary delay

Characteristic equation

RCCFM: \(\lambda + \beta_i^* e^{-\lambda \tau_i} = 0 \)

MOVM: \(\lambda^2 + (a \lambda + d) e^{-\lambda \tau_i} = 0 \)

Necessary and sufficient condition for local stability

- RCCFM
 \[\tau_i < \frac{\pi}{2 \beta_i^*} \forall i \]

- MOVM
 \[\tau_i < \frac{1}{\chi} \tan^{-1} \left(\frac{\chi}{d} \right) \forall i, \]
 where \(\chi = \sqrt{\frac{a(a + \sqrt{a^2 + 4d^2})}{2}} \)

Note

- Delays increase \(\Longrightarrow \) loss of local stability
Locally stable region for arbitrary delay

Characteristic equation

RCCFM: \[\lambda + \beta_i^* e^{-\lambda \tau_i} = 0 \]

MOVM: \[\lambda^2 + (a \lambda + d) e^{-\lambda \tau_i} = 0 \]

Necessary and sufficient condition for local stability

- **RCCFM**
 \[\tau_i < \frac{\pi}{2 \beta_i^*} \quad \forall i \]

- **MOVM**
 \[\tau_i < \frac{1}{\chi} \tan^{-1} \left(\frac{\chi}{d} \right) \quad \forall i, \]

 where \(\chi = \sqrt{a(a + \sqrt{a^2 + 4\tilde{d}^2})} \)

Note

- Delays increase \(\implies \) loss of local stability
- Zero delay \(\implies \) condition trivially satisfied
Necessary and sufficient condition for local stability

When $\alpha_i \tau_i = c$, a real constant,

$$(\dot{x}_0)^m < \frac{\pi}{2c}$$
Locally stable region: RCCFM

Necessary and sufficient condition for local stability

When $\alpha_i \tau_i = c$, a real constant,

\[(\dot{x}_0)^m < \frac{\pi}{2c} \]

Stability boundary

![Stability boundary diagram](image-url)

$m < 0$

$m > 0$
Locally stable region: MOVM

Car-following models: A delayed dynamical view of transportation networks

SC: \(\max(a, \tilde{d}) \tau_i < 1 \)

N&SC: \(\tau_i < \frac{1}{\chi} \tan^{-1} \left(\frac{\chi}{d} \right) \)
On the stability boundary: MOVM

\[\tilde{v}, \tilde{y}(t) \times 10^{-3} \]

\[\text{Time (in seconds)} \]

\[\tilde{v}_3(t), \tilde{y}_3(t) \]

Car-following models: A delayed dynamical view of transportation networks
Loss of local stability: Hopf bifurcation

Hopf bifurcation

- Variation in parameter \Rightarrow topological equivalence destroyed
Hopf bifurcation

- Variation in parameter \implies topological equivalence destroyed
- Hopf bifurcation: conjugate pair of eigenvalues cross imaginary axis
Loss of local stability: Hopf bifurcation

Hopf bifurcation
- Variation in parameter \implies topological equivalence destroyed
- Hopf bifurcation: conjugate pair of eigenvalues cross imaginary axis

Choice of bifurcation parameter, κ
- Non-linear system $\dot{x} = \kappa f(x) = f_\kappa(x)$
Loss of local stability: Hopf bifurcation

Hopf bifurcation
- Variation in parameter \Rightarrow topological equivalence destroyed
- Hopf bifurcation: conjugate pair of eigenvalues cross imaginary axis

Choice of bifurcation parameter, κ
- Non-linear system $\dot{x} = \kappa f(x) = f_\kappa(x)$
 - Exogenous and non-dimensional
Hopf bifurcation

- Variation in parameter \Rightarrow topological equivalence destroyed
- Hopf bifurcation: conjugate pair of eigenvalues cross imaginary axis

Choice of bifurcation parameter, κ

- Non-linear system $\dot{x} = \kappa f(x) = f_\kappa(x)$
 - Exogenous and non-dimensional
 - Does not affect equilibrium
Loss of local stability: Hopf bifurcation

Hopf bifurcation
- Variation in parameter \iff topological equivalence destroyed
- Hopf bifurcation: conjugate pair of eigenvalues cross imaginary axis

Choice of bifurcation parameter, κ
- Non-linear system $\dot{x} = \kappa f(x) = f_\kappa(x)$
 - Exogenous and non-dimensional
 - Does not affect equilibrium
 - Captures complex dependence among model parameters
Loss of local stability: Hopf bifurcation

Hopf bifurcation
- Variation in parameter \Rightarrow topological equivalence destroyed
- Hopf bifurcation: conjugate pair of eigenvalues cross imaginary axis

Choice of bifurcation parameter, κ
- Non-linear system $\dot{x} = \kappa f(x) = f_\kappa(x)$
 - Exogenous and non-dimensional
 - Does not affect equilibrium
 - Captures complex dependence among model parameters

Transversality condition of Hopf spectrum

$$\text{Real} \left(\frac{d\lambda}{d\kappa} \right)_{\kappa = \kappa_{cr}} \neq 0$$
Transversality condition

RCCFM

\[
\text{Real} \left(\frac{d\lambda}{d\kappa} \right)_{\kappa = \kappa_{cr}} = \frac{2\beta_i^* \tau_i^2 \omega_0^2}{(2n+1)(1+\tau_i^2 \omega_0^2)\pi} > 0
\]
Transversality condition

RCCFM

\[
\text{Real } \left(\frac{d\lambda}{d\kappa} \right)_{\kappa=\kappa_{cr}} = \frac{2\beta^*_i \tau^2 \omega^2}{(2n+1)(1+\tau^2 \omega_0^2)} \pi > 0
\]

MOVVM

\[
\text{Real } \left(\frac{d\lambda}{d\kappa} \right)_{\kappa=\kappa_{cr}} = \frac{\kappa_{cr} \omega^2 \tau_i (\kappa_{cr}^2 \tilde{d} \cos(\omega_0 \tau_i) + \omega_0^2)}{(\kappa_{cr}^2 \tilde{d} \cos(\omega_0 \tau_i) + \omega_0)^2 + (\kappa_{cr}^2 \tilde{d} \sin(\omega_0 \tau_i))^2} > 0
\]
Transversality condition

RCCFM

\[
\text{Real} \left(\frac{d\lambda}{d\kappa} \right)_{\kappa = \kappa_{cr}} = \frac{2\beta_i^* \tau_i^2 \omega_0^2}{(2n+1)(1+\tau_i^2 \omega_0^2)\pi} > 0
\]

MOVM

\[
\text{Real} \left(\frac{d\lambda}{d\kappa} \right)_{\kappa = \kappa_{cr}} = \frac{\kappa_{cr} \omega_0^2 \tau_i (\kappa_{cr}^2 \tilde{d} \cos(\omega_0 \tau_i) + \omega_0^2)}{(\kappa_{cr}^2 \tilde{d} \cos(\omega_0 \tau_i) + \omega_0)^2 + (\kappa_{cr}^2 \tilde{d} \sin(\omega_0 \tau_i))^2} > 0
\]

Implications

- The eigenvalues move to right in Argand plane
Transversality condition

RCCFM

\[
\text{Real} \left(\frac{d\lambda}{d\kappa} \right)_{\kappa=\kappa_{cr}} = \frac{2\beta_i^* \tau_i^2 \omega_0^2}{(2n+1)(1+\tau_i^2 \omega_0^2)\pi} > 0
\]

MOVM

\[
\text{Real} \left(\frac{d\lambda}{d\kappa} \right)_{\kappa=\kappa_{cr}} = \frac{\kappa_{cr} \omega_0^2 \tau_i (\kappa_{cr}^2 \tilde{d} \cos(\omega_0 \tau_i) + \omega_0^2)}{(\kappa_{cr}^2 \tilde{d} \cos(\omega_0 \tau_i) + \omega_0)^2 + (\kappa_{cr}^2 \tilde{d} \sin(\omega_0 \tau_i))^2} > 0
\]

Implications

- The eigenvalues move to right in Argand plane
- Lost stability cannot be regained
Transversality condition

RCCFM

\[
\text{Real} \left(\frac{d\lambda}{d\kappa} \right)_{\kappa = \kappa_{cr}} = \frac{2\beta^*_i \tau_i^2 \omega_0^2}{(2n+1)(1+\tau_i^2 \omega_0^2)\pi} > 0
\]

MOVM

\[
\text{Real} \left(\frac{d\lambda}{d\kappa} \right)_{\kappa = \kappa_{cr}} = \frac{\kappa_{cr} \omega_0^2 \tau_i (\kappa_{cr}^2 \tilde{d} \cos(\omega_0 \tau_i) + \omega_0^2)}{(\kappa_{cr}^2 \tilde{d} \cos(\omega_0 \tau_i) + \omega_0)^2 + (\kappa_{cr}^2 \tilde{d} \sin(\omega_0 \tau_i))^2} > 0
\]

Implications

- The eigenvalues move to right in Argand plane
- Lost stability cannot be regained
- Reaction delay is increased \(\Rightarrow \) system loses local stability
Overview

Using Poincaré normal forms and center manifold theory\(^1\)

- supercritical/subcritical Hopf
- orbital stability of limit cycles

Hopf bifurcation analysis

Overview

Using Poincaré normal forms and center manifold theory\[1\]

- supercritical/subcritical Hopf
- orbital stability of limit cycles

Style of analysis

- Let q be complex eigenvector of Jacobian $Df_\kappa(x^*)$ of $\dot{x} = f_\kappa(x)$
- Reduce flow of $f_\kappa(x)$ to a lower-dimensional manifold (center manifold) which is invariant under flow tangential to q-plane
- Rewrite dynamics on center manifold using single complex variable
- Determine sign of first Lyapunov coefficient and Floquet exponent to establish type of Hopf and orbital stability of emergent limit cycles

Bifurcation diagrams

Amplitude (relative velocity)

Bifurcation parameter, κ

RCCFM, $m > 0$

$\begin{align*}
m &= 1 \\
m &= 1.5 \\
m &= 2
\end{align*}$
Bifurcation diagrams

Amplitude (relative velocity) vs Bifurcation parameter, κ

- $m = -1$
- $m = -1.5$
- $m = -2$

RCCFM, $m < 0$
Bifurcation diagrams

Bando model

Amplitude (relative velocity)

Bifurcation parameter, κ
Bifurcation diagrams

Amplitude (relative velocity)

\[y_i^* = 1 \]
\[y_i^* = 2 \]
\[y_i^* = 3 \]

Bifurcation parameter, \(\kappa \)

Underwood model
Avoiding jerky motion: non-oscillatory convergence

Why? What?

- Oscillations in state variables \implies jerky vehicular motion
Avoiding jerky motion: non-oscillatory convergence

Why? What?

- Oscillations in state variables \implies jerky vehicular motion
- Appropriate parameter design \implies good road ride quality
Avoiding jerky motion: non-oscillatory convergence

Why? What?

- Oscillations in state variables \implies jerky vehicular motion
- Appropriate parameter design \implies good road ride quality
- Mathematically, eigenvalues should be real and negative
Avoiding jerky motion: non-oscillatory convergence

Why? What?

- Oscillations in state variables \Rightarrow jerky vehicular motion
- Appropriate parameter design \Rightarrow good road ride quality
- Mathematically, eigenvalues should be real and negative

Necessary and sufficient condition for non-oscillatory convergence

RCCFM: $\tau_i < \frac{1}{e\beta_i^*} \quad \forall i$

MOVM: $\tau_i < \frac{1}{md} \ln \left(\frac{-a(m+1)}{m^2d} \right) \quad \forall i$
Avoiding jerky motion: non-oscillatory convergence

Why? What?
- Oscillations in state variables \implies jerky vehicular motion
- Appropriate parameter design \implies good road ride quality
- Mathematically, eigenvalues should be real and negative

Necessary and sufficient condition for non-oscillatory convergence

RCCFM: $\tau_i < \frac{1}{e\beta_i^*} \quad \forall i$

MOVM: $\tau_i < \frac{1}{md} \ln \left(\frac{-a(m+1)}{m^2d} \right) \quad \forall i$

How do these conditions compare with stability conditions?
Region of non-oscillatory convergence: MOVM

$$\tau_{noc} = \frac{1}{md} \ln \left(\frac{-a(m+1)}{m^2 d} \right)$$

$$\tau_{cr} = \frac{1}{\chi} \tan^{-1} \left(\frac{\chi}{d} \right)$$
Why? What?

- Vehicle leaves platoon \implies perturbation
Time for platoon equilibration: rate of convergence

Why? What?

- Vehicle leaves platoon \implies perturbation
- How long for platoon to equilibrate?
Why? What?

- Vehicle leaves platoon \Rightarrow perturbation
- How long for platoon to equilibrate?
- Related to rate of convergence
Time for platoon equilibration: rate of convergence

Why? What?
- Vehicle leaves platoon \Rightarrow perturbation
- How long for platoon to equilibrate?
- Related to rate of convergence

Mathematical formulation
- Obtain “dimensionless” characteristic equation (Let $z = \lambda \tau$)

Time for platoon equilibration: rate of convergence

Why? What?

- Vehicle leaves platoon \implies perturbation
- How long for platoon to equilibrate?
- Related to rate of convergence

Mathematical formulation[1]

- Obtain “dimensionless” characteristic equation (Let $z = \lambda \tau$)
- Substitute $z = \psi - \sigma$

Why? What?
- Vehicle leaves platoon \implies perturbation
- How long for platoon to equilibrate?
- Related to rate of convergence

Mathematical formulation\(^1\)
- Obtain “dimensionless” characteristic equation (Let $z = \lambda \tau$)
- Substitute $z = \psi - \sigma$
- Rate of convergence: Largest $\sigma \geq 0$ such that eigenvalues lie in open left half of Argand plane

\[^1\] F. Brauer, Decay rates for solutions of a class of differential-difference equations, 1979
Time for platoon equilibration: rate of convergence

Why? What?
- Vehicle leaves platoon ⟷ perturbation
- How long for platoon to equilibrate?
- Related to rate of convergence

Mathematical formulation[1]
- Obtain “dimensionless” characteristic equation (Let $z = \lambda \tau$)
- Substitute $z = \psi - \sigma$
- Rate of convergence: Largest $\sigma \geq 0$ such that eigenvalues lie in open left half of Argand plane
- Analytically intractable[2]

[1] F. Brauer, Decay rates for solutions of a class of differential-difference equations, 1979

[2] S. Chong et al., A simple, scalable, and stable explicit rate allocation algorithms for max-min flow control with minimum rate guarantee, 2001
Rate of convergence: RCCFM

\[\tau^* = \frac{1}{e\beta^*} = \tau_{noc} \]
Rate of convergence: MOVM

Car-following models: A delayed dynamical view of transportation networks
Rate of convergence: MOVM

![Graph showing reaction delay, τ, and sensitivity coefficient, a, with two lines labeled \(\tau_{cr} \) and \(\tau_{noc} \).]
Rate of convergence defined for pair of vehicles
Rate of convergence defined for \textit{pair} of vehicles

Using notion of \textit{settling time}, define time for pair to equilibrate
Rate of convergence defined for pair of vehicles

Using notion of settling time, define time for pair to equilibrate

Given $\epsilon > 0$, $t_i^e(\epsilon)$ be time for i^{th} pair to enter and subsequently remain within ϵ distance of equilibrium
Rate of convergence defined for pair of vehicles

Using notion of settling time, define time for pair to equilibrate

Given $\epsilon > 0$, $t_i^e(\epsilon)$ be time for i^{th} pair to enter and subsequently remain within ϵ distance of equilibrium

Time for platoon to equilibrate

$$T_x^e = \sum_{i=1}^{N} t_i^e, \ x \in \{RCCFM, MOV M\}$$
In a nutshell

Problems addressed

Insight into control laws that yield desirable traffic flow
In a nutshell

Problems addressed
Insight into control laws that yield desirable traffic flow

Contributions
- Phenomenological insight into “phantom jams”
- Characterize region of non-oscillatory convergence
- Characterize time taken by platoon to equilibrate
In a nutshell

Problems addressed

Insight into control laws that yield desirable traffic flow

Contributions

- Phenomenological insight into “phantom jams”
- Characterize region of non-oscillatory convergence
- Characterize time taken by platoon to equilibrate

Design implications (autonomous vehicles)

Offer design guidelines to (i) stabilize traffic flow, (ii) increase resource utilization, and (iii) offer better ride quality (lack of jerky motion)
Future work

- String stability of RCCFM/MOVM
Future work

- String stability of RCCFM/MOVM
- Robustness of RCCFM/MOVM to variations in parameter
Future work

- String stability of RCCFM/MOVM

- Robustness of RCCFM/MOVM to variations in parameter

- Effect of delayed acceleration feedback on RCCFM (preliminary results published)
Publications

Published

Submitted

Published

Submitted

In preparation

- G.K. Kamath, K. Jagannathan and G. Raina, “Local stability and Hopf bifurcation of the reduced classical car-following model,” submission planned to *Nonlinear Dynamics*
In preparation

- G.K. Kamath, K. Jagannathan and G. Raina, “Local stability and Hopf bifurcation of the reduced classical car-following model,” submission planned to *Nonlinear Dynamics*