EE 613 Estimation Theory - HW 8

October 08, 2008

1. (8.3) For the signal model

$$s[n] = \begin{cases} A & 0 \le n \le M - 1\\ -A & M \le n \le N - 1 \end{cases}$$

find the LSE of A and the minimum LS error. Assume that $x[n] = s[n] + \omega[n]$ for $n = 0, 1, \ldots, N-1$ are observed. If now $\omega[n]$ is WGN with variance σ^2 , find the PDF of LSE.

2. (8.4) Show that

$$(\mathbf{x} - \mathbf{H}\boldsymbol{\theta})^T (\mathbf{x} - \mathbf{H}\boldsymbol{\theta}) = (\mathbf{x} - \mathbf{H}\hat{\boldsymbol{\theta}})^T (\mathbf{x} - \mathbf{H}\hat{\boldsymbol{\theta}}) + (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta})^T \mathbf{H}^T \mathbf{H} (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta})$$

where

$$\hat{\boldsymbol{\theta}} = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{x}$$

Use this to argue that $\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}$ is the LSE.

3. (8.11) In this problem we prove that a projection matrix **P** must be symmetric. Let $\mathbf{x} = \boldsymbol{\xi} + \boldsymbol{\xi}^{\perp}$ where $\boldsymbol{\xi}$ lies in a subspace which is the range of the projection matrix or $\mathbf{Px} = \boldsymbol{\xi}$, and $\boldsymbol{\xi}^{\perp}$ lies in the orthogonal subspace of $\mathbf{P\xi}^{\perp} = \mathbf{0}$. For arbitrary vectors, \mathbf{x}_1 , \mathbf{x}_2 in \mathbb{R}^N show that

$$\mathbf{x}_1^T \mathbf{P} \mathbf{x}_2 - \mathbf{x}_2^T \mathbf{P} \mathbf{x}_1 = 0$$

by decomposing \mathbf{x}_1 and \mathbf{x}_2 as discussed above. Finally, prove the desired result.

4. (8.12) Prove the following properties of the projection matrix

$$\mathbf{P} = \mathbf{H}(\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T$$

- (a) \mathbf{P} is idempotent.
- (b) **H** is positive semidefinite.
- (c) The eigenvalues of \mathbf{H} are either 1 or 0.
- 5. (8.25) If the signal model is

$$s[n] = A + B(-1)^n$$
 $n = 0, 1, ..., N - 1$

and N is even, find the LSE of $\boldsymbol{\theta} = [A \ B]^T$. Now assume that A = B and repeat the problem using the constrained LS approach. Compare your results.