EE 613 Estimation Theory - HW 8

October 08, 2008

1. (8.3) For the signal model

$$
s[n]= \begin{cases}A & 0 \leq n \leq M-1 \\ -A & M \leq n \leq N-1\end{cases}
$$

find the LSE of A and the minimum LS error. Assume that $x[n]=s[n]+\omega[n]$ for $n=0,1, \ldots, N-1$ are observed. If now $\omega[n]$ is WGN with variance σ^{2}, find the PDF of LSE.
2. (8.4) Show that

$$
(\mathbf{x}-\mathbf{H} \boldsymbol{\theta})^{T}(\mathbf{x}-\mathbf{H} \boldsymbol{\theta})=(\mathbf{x}-\mathbf{H} \hat{\boldsymbol{\theta}})^{T}(\mathbf{x}-\mathbf{H} \hat{\boldsymbol{\theta}})+(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta})^{T} \mathbf{H}^{T} \mathbf{H}(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta})
$$

where

$$
\hat{\boldsymbol{\theta}}=\left(\mathbf{H}^{T} \mathbf{H}\right)^{-1} \mathbf{H}^{T} \mathbf{x}
$$

Use this to argue that $\boldsymbol{\theta}=\hat{\boldsymbol{\theta}}$ is the LSE.
3. (8.11) In this problem we prove that a projection matrix \mathbf{P} must be symmetric. Let $\mathbf{x}=\boldsymbol{\xi}+\boldsymbol{\xi}^{\perp}$ where $\boldsymbol{\xi}$ lies in a subspace which is the range of the projection matrix or $\mathbf{P x}=\boldsymbol{\xi}$, and $\boldsymbol{\xi}^{\perp}$ lies in the orthogonal subspace of $\mathbf{P} \boldsymbol{\xi}^{\perp}=\mathbf{0}$. For arbitrary vectors, \mathbf{x}_{1}, x_{2} in R^{N} show that

$$
\mathbf{x}_{1}^{T} \mathbf{P} \mathbf{x}_{2}-\mathbf{x}_{2}^{T} \mathbf{P} \mathbf{x}_{1}=0
$$

by decomposing \mathbf{x}_{1} and \mathbf{x}_{2} as discussed above. Finally, prove the desired result.
4. (8.12) Prove the following properties of the projection matrix

$$
\mathbf{P}=\mathbf{H}\left(\mathbf{H}^{T} \mathbf{H}\right)^{-1} \mathbf{H}^{T}
$$

(a) \mathbf{P} is idempotent.
(b) \mathbf{H} is positive semidefinite.
(c) The eigenvalues of \mathbf{H} are either 1 or 0 .
5. (8.25) If the signal model is

$$
s[n]=A+B(-1)^{n} \quad n=0,1, \ldots, N-1
$$

and N is even, find the LSE of $\boldsymbol{\theta}=[A B]^{T}$. Now assume that $A=B$ and repeat the problem using the constrained LS approach. Compare your results.
\qquad

