EE 613 Estimation Theory - HW 1

August 1, 2008

1. (1.3) Let $x=\theta+\omega$, where ω is a random variable with $\operatorname{PDF} f_{\omega}(\omega)$. If θ is a deterministic parameter, find the PDF of x in terms of f_{ω} and denote it by $f(x ; \theta)$. Next, assume that θ is a random variable independent of ω and find the conditional PDF $f(x \mid \theta)$. Finally, do not assume that θ and ω are independent and determine $f(x \mid \theta)$. What can you say about $f(x ; \theta)$ versus $f(x \mid \theta)$?
2. (2.1) The data $\{x[0], x[1], \ldots, x[N-1]\}$ are observed where $x[n]$'s are independent and identically distributed (i.i.d.) as $\mathcal{N}\left(0, \sigma^{2}\right)$. We wish to estimate the variance σ^{2} as

$$
\hat{\sigma}^{2}=\frac{1}{N} \sum_{n=0}^{N-1} x^{2}[n]
$$

Is this an unbiased estimator? Find the variance of $\hat{\sigma}^{2}$ and examine what happens as $N \rightarrow \infty$.
3. (2.9) This problem illustrates what happens to an unbiased estimator when it undergoes a nonlinear transformation. Consider the example discussed in class: $x[n]=A+\omega[n]$, where $\omega[n]$ is zero-mean, white, Gaussian noise. If we choose to estimate the unknown parameter $\theta=A^{2}$ by

$$
\hat{\theta}=\left(\frac{1}{N} \sum_{n=0}^{N-1} x[n]\right)^{2}
$$

can we say that the estimator is unbiased? What happens as $N \rightarrow \infty$?
4. (2.11) Given a single observation $x[0]$ from the distribution $\mathcal{U}[0,1 / \theta]$, it is desired to estimate θ. It is assumed that $\theta>0$. Show that for an estimator $\hat{\theta}=g(x[0])$ to be unbiased we must have

$$
\int_{0}^{\frac{1}{\theta}} g(u) d u=1
$$

Next prove that a function g cannot be found to satisfy this condition for all $\theta>0$.

