HWS solutions (draft)

x(t) =u(t) y(t) = (et —3e 2)u(t)
Y(s si—si _ s(s+5
(b) H(s) = XES% = H% = (S+(1)(54)rz)
(Dl) H(S) =1+ (s+21s)252+2) 1 s—;-il + s—?—z
= h(t) = 5(t) — de~tu(t) + 6e*tu(t)
+5 _

(€) Y(s)= (s+1)s((ss+2))(s+4) = s T 2 T et
= y(t) = (Fe " +3e7 — Fe*)u(t)

_ _ jw(jw+5
(d) H(jw) = plalfes .

. 2

()| = 9
ZH(jw) = 90° + tan~}(¢) — tanfl(%) —tan" 1 (w)
w=2=y(t) = |H(j2)|cos(2t + LH(j2))
y(t) = 1.7cos (2t + 3.36°)

Q2a

Polesats = —5, —3.

Zeroats = 2.

The pole zero plot is shown in Fig.1. This system is BIBO stable as all the poles
are in LHP.
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Figure 1: Pole Zero plot for Q2a



Q2b

Polesats = -3, —2, —2.

Zeroats = —1.

The pole zero plot is shown in Fig.2. This system is BIBO stable as all the poles
are in LHP.
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Figure 2: Pole Zero plot for Q2b

Q2c

Polesats = 0, —2.

Zeroats = —0.25+0.66j, —0.25 — 0.66].

The pole zero plot is shown in Fig.3. This system is BIBO stable as the poles are
in LHP and the pole on the jw axis is simple.
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Figure 3: Pole Zero plot for Q2c



Q2d

Polesats = =2, +j, +j, —j, —J.

Zeroats = —0.5.

The pole zero plot is shown in Fig.. This system is NOT BIBO stable as there
are 2 poles each at +j and —j.
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Figure 4: Pole Zero plot for Q2d

Q3)

We can write the transfer function as

B (s+a)
Ao =K

where K is a constant and —a is the zero location.
The step response of this system is

K (s+a)
V(s)==——21 0
(s) s(s+1)2+1

Using partial fractions, we can write V(s) as

Kis + Kj K3

YOt

From this we can find K, KrandKs as
a

Kj = —=
1 2

1
Ko =—a+-
2 ﬂ+4

a
K3 =~
T2
The output term that is of interest is
K
(s+1)2+1
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The inverse transform gives

(—a+ 31) exp(—t) sin(t + ¢)

From this, we get

Q4

Let the transfer function be

(s) = (s+a)(s+b)
(s+1)2+1)
Using the eigenfunction property, for 6V DC input, the steady state response
is
: (jw +a)(jw +b)
6H(jO) = |~
(70) = | (jw+1)2+1)
= 3ab

} |w=0

From the given data, 3ab = 0.
For the input sin(f), the output of the system(again using eigenfunction
property) will be

[H(jw)|w=1sin(t + ¢)



Va2 +1Vh2 41
V5

From the steady resonpse given for sin(f),

[HG)I

4
0.6sin(t) + 0.8 cos(t) = sin(t + 5)

This implies that |[H(j)| = 1 and hence
a*+ >+ (ab)?+1=5

Solving for a and b, we get a = 0, b = 2. The transfer function of the system
is given by

s(s+2)

HE) = Grre

For the input sin(2t), the steady state current would be

|H(j2)|sin(2t + ZH(j2)) =

21/2
%— sin(2t 4 0.322)
Q5(a))
4[ L 2s } +
e 12(s) 13(s)




Writing KVL for the three loops give

Loopl : (1 + %)Il(s) - %12(5) — Vy(s)

~1 2 1
Loop2: —L(s) + (25 + 2)Da(s) = S13(s) =0
—1 1
Loop3 : TIZ(Z) +(1+ E)Ig(s) =0

And also Va(s) = I3(s) and Va(s) = (L(s) — I(s)) .
Solving the above equations, we get

I(s) = (s +1)Va(s)
Finding I (s) in terms of V,(s) using I>(s) and I3(s), we get

Li(s) =2(s*>+1)(s+1)—1

Using I3 (s) in the equation for loop 1, we get

V2 (S) 1

Vi(s) 2(s2+s+1)(s+1)

Figure 5: Magnitude spectrum of H(s)



Q6)

2-port ~ R
Netl\\llvork V,(s) L

{Vl]:[zn le}x{h]
Vo Zy Ly I

V1 =Vi— 11 X R,
— Vi=0L(Ro+Z11) + DLZp

Vo =Vo=1Zy +hZy=—LR;

(Zoo + Rp)

= L =—-1 Zon

From equations (1) and (2),

[ Z12Zy1 — (Z11 + Ro)(Zo + Ry)
Vi=1
Zn
\% Z
Y 21Rr
Vi (Z11+Ro)(Zn+Ry) — Z1pZy
Q7)
0 —r
2=} 0
From the Z matrix, Z11 =0,Z1p = —r,Zy1 =rand Zy» =0

Vi1 and V55 can be written as

Viv = hZn + 127y
Voy = Zy + 127
Viy = —rh

Voor =1l

sz/ = —IgZL(S)

From equations (4) and (5),

I —Ili’
10
substituting I, in(3)
Ve _ 127 (s)
L
Vi
Zin(s) = %11 =127 (s)

Given Z1(s) = &, Zin(s) = s r’C
Zin(s) is of the forn sL with inductance r>C
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