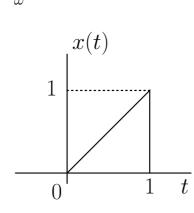
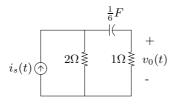
EC2102 Networks and Systems – HW 6 October 3, 2012

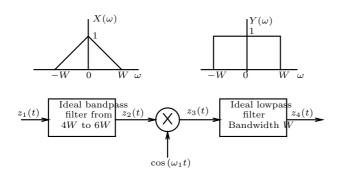
1. Show that the Fourier tranform of the triangular pulse x(t) shown below is $X(\omega) = \frac{1}{\omega^2} (e^{-j\omega} + j\omega e^{-j\omega} - 1).$



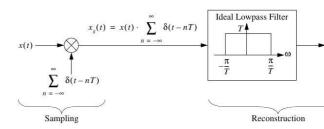
2. Consider the circuit shown below to be an LTI system with input $i_s(t)$ and output $v_0(t)$. Assume that the capacitor is initially uncharged. Using Fourier transforms, find the response to the input $i_s(t) = u(t)$ and sketch it.



3. x(t) and y(t) have Fourier transforms as shown below. Sketch the Fourier transform of the various signals $z_i(t)$ for i = 1, 2, 3, 4 in the system shown below given that $z_1(t) =$ $x(t) \cos(\omega_1 t) + y(t) \cos(\omega_2 t)$. Determine $z_4(t)$ in terms of x(t) and y(t)? Assume that $\omega_1 = \omega_2 - 2W = 5W$.

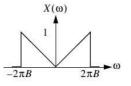


4. Sampling is the process whereby continuoustime signals are converted to discrete-time signals, while reconstruction is the inverse process. We will study sampling and reconstruction in depth at a later course.



In the sampling process, x(t), the signal to be sampled, is multiplied by the impulse train, yielding the sampled signal $x_s(t)$. In order to perform reconstruction, we pass $x_s(t)$ through the ideal lowpass filter, yielding the reconstructed signal $x_{sr}(t)$.

- (a) Write $X_s(\omega)$, the Fourier transform of $x_s(t)$, in terms of $X(\omega)$, the Fourier transform of x(t). Your answer should be an explicit, closed-form expression, not one involving a convolution integral.
- (b) Let x(t) have the Fourier transform shown.



Sketch $X_s(\omega)$ for the cases T = 1/(4B), 1/(2B), 1/B.

- (c) For the three cases considered in part (b), sketch $X_{sr}(\omega)$, the Fourier transform of $x_{sr}(t)$.
- (d) For an arbitrary signal x(t) that occupies a bandwidth of $2\pi B$ rad/s, what is the largest T such that $X_{sr}(\omega) = X(\omega)$, i.e., $x_{sr}(t) = x(t)$? Under these conditions, the original signal is reconstructed perfectly. This result is referred to as the Nyquist Sampling Theorem.
- 5. Suppose that $x(t) \longleftrightarrow X(\omega)$. Suppose that x(t) is periodic with period $T_0 = 2\pi/\omega_0$.

Show that $X(\omega)$ is of the form:

$$X(\omega) = 2\pi \sum_{n=-\infty}^{\infty} X_n \delta(\omega - n\omega_0)$$

Relate the coefficients X_n , $-\infty < n < \infty$ to the exponential Fourier series coefficients of x(t) and give a formula to find X_n , $-\infty < n < \infty$ in terms of x(t).

6. Suppose that $x(t) \longleftrightarrow X(\omega)$. Suppose that $X(\omega)$ is periodic with period $_0 = 2\pi/T_0$, i.e.,

$$X(\omega + k\omega_0) = X(\omega), \ \forall \omega$$

(a) Express $X(\omega)$ as a Fourier series:

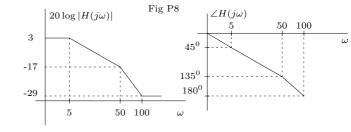
$$X(\omega) = \sum_{n=-\infty}^{\infty} x_n e^{-jn\omega T_0} \qquad (1)$$

The negative sign in the exponent is appropriate because this is a Fourier series in the frequency domain. Find an expression for the coefficients x_n , $-\infty < n < \infty$ in terms of $X(\omega)$. Hint: proceed as we did when we derived the time-domain Fourier series in class, i.e., multiply both sides of (1) by $e^{jm\omega T_0}$ and integrate over one period.

(b) Show that x(t) is of the form:

$$x(t) = \sum_{n=-\infty}^{\infty} x_n \delta(t - nT_0)$$

7. For a causal LTI system with real impulse response the Bode plot shown below, if the input is $x(t) = 0.5 \cos(4t+32^0)+1.5 \cos(30t+48^0)+2 \sin(75t+5^0)$, find the output y(t) of the system.



8. For each of the four signals x(t) given below: (1) calculate the unilateral Laplace transform X(s) and its ROC, (2) determine if $\{s|s = j\omega, \omega \in R\} \subset ROC$ and (3) calculate the inverse Fourier transform if possible, $y(t) = F^{-1}\{X(j\omega)\}$ and explain why x(t) = y(t) or $x(t) \neq y(t)$.

(a)
$$x(t) = u(t-2)$$

(b)
$$x(t) = e^{3t}u(t)$$

(c)
$$x(t) = te^t u(t)$$

- (d) $x(t) = \sin t \cdot u(t)$
- 9. For each of the four signals x(t) given below: (1) calculate the unilateral Laplace transform X(s) and its ROC and (2) if $\{s|s = j\omega, \omega \in R\} \subset ROC$, then calculate $X(j\omega)$, the Fourier transform of x(t).
 - (a) $x(t) = \sinh t \cdot u(t)$, where $\sinh t = (e^t e^{-t})/2$

(b)
$$x(t) = u(t) - u(t-3)$$

- (c) $x(t) = te^t u(t)$
- (d) $x(t) = \sin(\omega_0 t + \phi) \cdot u(t)$