EC2102 Networks and Systems – HW 5 September 24, 2012

1. Sketch the following functions:

(a) $\operatorname{rect}(t/2)$, (b) $\operatorname{rect}((t-10)/8)$, and (c) $\operatorname{sinc}(t/5) \cdot \operatorname{rect}(t/10)$. $[\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}]$

2. Show that
$$\int_{-\infty}^{\infty} \operatorname{sinc}(x) dx = \int_{-\infty}^{\infty} \operatorname{sinc}^2(x) dx = 1.$$

- 3. For each of the following signals x(t), compute the Fourier transform $X(\omega)$.
 - (a) $x(t) = e^{-|t|/2}$

(b)
$$x(t) = \sin(2\pi t) \cdot [e^{-t}u(t)]$$

4. Let p(t) be periodic traingular pulse train shown below.

- (a) Calculate P_n , the exponential Fourier series coefficients of p(t). Sketch P_n vs. n. Calculate $P(\omega)$, the Fourier transform of p(t). Sketch $P(\omega)$ vs. ω .
- (b) Let x(t) be an aperiodic signal having Fourier transform $X(\omega)$. Define $y(t) = p(t) \cdot x(t)$. Find an expression for $Y(\omega)$, the Fourier transform of y(t).
- (c) Let $x(t) = \operatorname{sinc}(t)$. Sketch $Y(\omega)$.
- 5. Find the Fourier transform of x(t) shown below in three different ways:
 - (a) directly through integration,
 - (b) using the time-differentiation property of the Fourier transform, and
 - (c) using the Fourier transform of the $rect(\cdot)$ function and the convolution property of the Fourier transform.

Sketch the Fourier transform $X(\omega)$.

6. Find the Fourier transform $X(\omega)$ of the signal x(t) shown below.

- 7. Find the energy of the signal $x(t) = e^{-at}u(t)$. Determine the frequency W (in rad/s) so that the energy contributed by the spectral components of all the frequencies below W is 95% of the signal energy E_x .
- 8. If $f_1(t) = 2 \cdot \text{rect}(t/4)$ and $f_2(t) = \text{rect}(t/2)$, find $g(t) = f_1(t) \star f_2(t)$ and $G(\omega)$. Sketch the maginitude and phase of $G(\omega)$.
- 9. The Fourier transform of the triangular pulse x(t) shown below is $X(\omega) = \frac{1}{\omega^2}(e^{-j\omega} + j\omega e^{-j\omega} - 1)$. Using this, find the Fourier transforms of $x_1(t) = \text{rect}(t) \star \text{rect}(t)$ and $x_2(t) = \text{rect}(t/2)$.

10. Let $X(\omega)$ be the Fourier transform of the signal x(t) shown below. Do the following computations without explicitly evaluating $X(\omega)$.

 $\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ \hline & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$

(i) Find X(0). (ii) Evaluate $\int_{-\infty}^{\infty} X(\omega) d\omega$. (iii) Evaluate $\int_{-\infty}^{\infty} X(\omega) e^{j\omega} d\omega$. (iv) Evaluate $\int_{-\infty}^{\infty} |X(\omega)|^2 d\omega$. (v) Sketch the inverse Fourier transform of $\operatorname{Re}[X(\omega)]$.

11. Consider the circuit shown below to be an

LTI system with input $i_s(t)$ and output $v_0(t)$. Assume that the capacitor is initially uncharged. Using Fourier transforms, find the response to the input $i_s(t) = u(t)$ and sketch it.

