Introduction to the Fast-Fourier Transform (FFT) Algorithm

C.S. Ramalingam

Department of Electrical Engineering IIT Madras

The Discrete Fourier Transform (DFT)

DFT of an N-point sequence x_n, n = 0, 1, 2, ..., N - 1 is defined as

$$X_{k} = \sum_{n=0}^{N-1} x_{n} e^{-j\frac{2\pi k}{N}n} \qquad k = 0, 1, 2, \cdots, N-1$$

- An N-point sequence yields an N-point transform
- X_k can be expressed as an *inner product*:

$$X_{k} = \begin{bmatrix} 1 & e^{-j\frac{2\pi k}{N}} & e^{-j\frac{2\pi k}{N}2} & \dots & e^{-j\frac{2\pi k}{N}(N-1)} \end{bmatrix} \begin{bmatrix} x_{0} \\ x_{1} \\ \vdots \\ x_{N-1} \end{bmatrix}$$

The Discrete Fourier Transform (DFT)

• Notation:
$$W_N = e^{-j\frac{2\pi}{N}}$$
. Hence,

$$X_{k} = \begin{bmatrix} 1 & W_{N}^{k} & W_{N}^{2k} & \dots & W_{N}^{(N-1)k} \end{bmatrix} \begin{bmatrix} x_{0} \\ x_{1} \\ \vdots \\ x_{N-1} \end{bmatrix}$$

 By varying k from 0 to N − 1 and combining the N inner products, we get the following:

$$X = Wx$$

• W is an $N \times N$ matrix, called as the "DFT Matrix"

The DFT Matrix

$$\mathbf{W} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & W_N & W_N^2 & \cdots & W_N^{N-1} \\ 1 & W_N^2 & W_N^4 & \cdots & W_N^{2(N-1)} \\ & & \vdots & \\ 1 & W_N^{N-1} & W_N^{2(N-1)} & \cdots & W_N^{(N-1)(N-1)} \end{bmatrix}_{N \times N}$$

 \bullet The notation \boldsymbol{W}_{N} is used if we want to make the size of the DFT matrix explicit

How Many Complex Multiplications Are Required?

- Each inner product requires N complex multiplications
 - There are N inner products
- Hence we require N^2 multiplications
- However, the first row and first column are all 1s, and *should* not be counted as multiplications
 - There are 2N 1 such instances
- Hence, the number of complex multiplications is $N^2 2N + 1$, i.e., $(N 1)^2$

- Each inner product requires N-1 complex additions
 - There are *N* inner products
- Hence we require N(N-1) complex additions

- No. of complex multiplications: $(N-1)^2$
- No. of complex additions: N(N-1)
- The operation count for multiplications and additions assumes that W^k_N has been computed offline and is available in memory
 - If pre-computed values of \mathcal{W}_N^k are not available, then the operation count will increase
- We will assume that all the required W_N^k have been pre-computed and are available

• For large N,

 $(N-1)^2 \approx N^2$ $N(N-1) \approx N^2$

- Hence both multiplications and additions are $O(N^2)$
- If $N = 10^3$, then $O(N^2) = 10^6$, i.e., a million!
- This makes the straightforward method slow and impractical even for a moderately long sequence

- Suppose N is even and we split the sequence into two halves.
 - Each sequence has N/2 points
- Suppose we compute the $\frac{N}{2}$ point DFT of each sequence
 - Multiplications: $2 \times \left(\frac{N}{2}\right)^2 = \frac{N^2}{2}$
- Suppose we are able to combine the individual DFT results to get the originally required DFT
 - Some computational overhead will be consumed to combine the two results
- If $\frac{N^2}{2}$ + overhead < N^2 , then this approach will reduce the operation count

Let N = 8

- Straightforward implementation requires, *approximately*, 64 multiplications
- The "divide and conquer" approach requires, *approximately*, $2 \times \left(\frac{8}{2}\right)^2$ + overhead, i.e., 32 + overhead multiplications
- Questions:
 - Can the two DFTs be combined to get the original DFT?
 - If so, how? What is the overhead involved?
 - Will 32 + overhead be less than 64?

• From $\{x_n\}$ form two sequences as follows:

$$\{g_n\} = \{x_{2n}\}$$
 $\{h_n\} = \{x_{2n+1}\}$

- {g_n} contains the even-indexed samples, while {h_n} contains the odd-indexed samples
- The DFT of $\{x_n\}$ is

$$X_{k} = \sum_{n=0}^{N-1} x_{n} W_{N}^{nk}$$

= $\sum_{r=0}^{\frac{N}{2}-1} x_{2r} W_{N}^{(2r)k} + \sum_{r=0}^{\frac{N}{2}-1} x_{2r+1} W_{N}^{(2r+1)k}$
= $\sum_{r=0}^{\frac{N}{2}-1} g_{r} W_{N}^{(2r)k} + W_{N}^{k} \sum_{r=0}^{\frac{N}{2}-1} h_{r} W_{N}^{(2r)k}$

But,

$$W_{N}^{2rk} = e^{-j\frac{2\pi}{N}(2rk)} = e^{-j\frac{2\pi}{N/2}(rk)} = W_{N/2}^{rk}$$

and hence

$$X_{k} = \sum_{r=0}^{\frac{N}{2}-1} g_{r} W_{N/2}^{rk} + W_{N}^{k} \sum_{r=0}^{\frac{N}{2}-1} h_{r} W_{N/2}^{rk}$$
$$= G_{k} + W_{N}^{k} H_{k} \qquad k = 0, 1, \dots, N-1$$

•
$$\{G_k\}$$
 and $\{H_k\}$ are $\frac{N}{2}$ point DFTs

- The overhead for combining the two ^N/₂ point DFTs is the multiplicative factor W^k_N for k = 0, 1, ..., N − 1
 - W_N^k is called "twiddle factor"

The N/2 point DFTs {G_k} and {H_k} are periodic with period N/2

•
$$G_{k+\frac{N}{2}} = G_k$$

 $H_{k+\frac{N}{2}} = H_k$

•
$$W_N^{k+\frac{N}{2}} = -W_N^k$$

• Hence, if $X_k = G_k + W_N^k H_k$, then $X_{k+\frac{N}{2}} = G_k - W_N^k H_k$

• $W_N^k H_k$ needs to be computed only once for k = 0 to $\frac{N}{2} - 1$

• Thus, the multiplication overhead due to the twiddle factors is only $\frac{N}{2}$

Butterfly Diagram

•
$$X_k = G_k + W_N^k H_k$$

• $X_{k+\frac{N}{2}} = G_{k+\frac{N}{2}} + W_N^{k+\frac{N}{2}} H_{k+\frac{N}{2}}$
 $= G_k - W_N^k H_k$

Figure 9.4 Flowgraph of Decimation in Time algorithm for N = 8 (Oppenheim and Schafer, *Discrete-Time Signal Processing*, 3rd edition, Pearson Education, 2010, p. 726)

- For N = 8, the straightforward approach requires, *approximately*, 64 multiplications
- The "Divide and Conquer" approach, after the first stage, requires 32 + 4 = 36 multiplications
- Thus, this approach clearly reduces the number of additions and multiplications required

Reusing the "Divide and Conquer" Strategy

- The same idea can be applied for calculating the $\frac{N}{2}$ point DFT of the sequences $\{g_r\}$ and $\{h_r\}$
 - Computational savings can be obtained by dividing $\{g_r\}$ and $\{h_r\}$ into their odd- and even-indexed halves
- This idea can be applied recursively log₂ N times if N is a power of 2
 - Such algorithms are called radix 2 algorithms
- If $N = 2^{\gamma}$, then the final stage sequences are all of length 2
- For a 2-point sequence $\{p_0, p_1\}$, the DFT coefficients are

$$P_0 = p_0 + p_1$$
 $P_1 = p_0 - p_1$

Figure 9.11 Flowgraph of Decimation in Time algorithm for N = 8 (Oppenheim and Schafer, *Discrete-Time Signal Processing*, 3rd edition, Pearson Education, 2010, p. 730)

Overall Operation Count

- The direct method requires N^2 multiplications
- After the first split, $N^2 \longrightarrow 2\left(\frac{N}{2}\right)^2 + \frac{N}{2}$ • $\frac{N}{2}$ is due to the *twiddle factors*
- After the second split, $\left(\frac{N}{2}\right)^2 \longrightarrow 2\left(\frac{N}{4}\right)^2 + \frac{N}{4}$ Hence,

$$N^2 \longrightarrow 2\left(\frac{N}{2}\right)^2 + \underbrace{\frac{N}{2}}_{\text{first stage}} \longrightarrow 4\left(\frac{N}{4}\right)^2 + \underbrace{\frac{N}{2} + \frac{N}{2}}_{\text{second stage}}$$

• Generalizing, if there are $\log_2 N$ stages, the number of multiplications needed will be, *approximately*, $\frac{N}{2}\log_2 N$

Overall Operation Count

• If $W_N^{k+\frac{N}{2}} = -W_N^k$ is not considered, the overhead count will be N and not $\frac{N}{2}$

In this case,

- Hence the overall multiplication count will be $N \log_2 N$
- For *N* = 1024

 $N^2 = 1,048,576$ $N \log_2 N = 10,240$

Savings of two orders of magnitude!

Input Sequence Order

• Recall that, for N = 8, the first split requires the data to be arranged as follows:

 $x_0, x_2, x_4, x_6, x_1, x_3, x_5, x_7$

 In the second and final split, the data appear in the following order:

 $x_0, x_4, x_2, x_6, x_1, x_5, x_3, x_7$

• The final order is said to be in "bit reversed" form:

Original	Binary Form	Reversed Form	Final
0	000	000	0
1	001	100	4
2	010	010	2
3	011	110	6
4	100	001	1
5	101	101	5
6	110	011	3
7	111	111	7

An Algorithm For Sequence Reversal

- Consider the card sequence 7, 8, 9, 10, J, Q, K, A
- First, reverse pairwise:
 - 8, 7, 10, 9, Q, J, A, K
- Then swap the adjacent pairs:

• 10, 9, 8, 7, A, K, Q, J

• Finally, swap the two groups of 4 (each group is half the original size):

• A, K, Q, J, 10, 9, 8, 7 Done!

How To Use It For Bit Reversal

- The first step of swapping of bits pairwise can be done with bitwise AND/OR and bit shift operators
- Pick out the even and odd bits by using masks
 - ABCDEFGH & 01010101 = 0B0D0F0H
 ABCDEFGH & 10101010 = A0C0E0G0
- Left shift the first result and right shift the second result
 - B0D0F0H0
 - 0A0C0E0G
- Bitwise OR the above results
 - $B0D0F0H0 \oplus 0A0C0E0G = BADCFEHG$
- Pairwise bit swapping accomplished!

C Code For Bit Reversal

```
unsigned reverse_bits(unsigned input)
{
//works on 32-bit machine
input = (input & 0x5555555) << 1 | (input & 0xAAAAAAAA) >> 1;
input = (input & 0x33333333) << 2 | (input & 0xCCCCCCCC) >> 2;
input = (input & 0x0F0F0F0F) << 4 | (input & 0xF0F0F0F0) >> 4;
input = (input & 0x00FF00FF) << 8 | (input & 0xFF00FF00) >> 8;
input = (input & 0x0000FFFF) << 16 | (input & 0xFFF00000) >> 16;
return input;
}
```

- Bit reversal for the entire array can take a large overhead if performed inefficiently
- There are several efficient algorithms for sorting an array in bit-reversed order
 - *Bit reversal on uniprocessors* by Alan H. Karp, SIAM Review, Vol. 38, March 1996, pp. 1–26
 - http://www-graphics.stanford.edu/~seander/ bithacks.html#BitReverseTable

In-Place Computation

- Notation:
 - First stage: $X_k^{(0)} = x_k$

• Last stage:
$$X_k^{(\log_2 N)} = X_k$$

- For the *m*-th stage butterfly
 - Input: $X_p^{(m-1)}$, $X_q^{(m-1)}$
 - Output: $X_p^{(m)}$, $X_q^{(m)}$
- The corresponding equations are

$$X_{p}^{(m)} = X_{p}^{(m-1)} + W_{N}^{r} X_{q}^{(m-1)}$$
$$X_{q}^{(m)} = X_{p}^{(m-1)} - W_{N}^{r} X_{q}^{(m-1)}$$

In-Place Computation

- $X_p^{(m-1)}$ and $X_q^{(m-1)}$ are needed for computing $X_p^{(m)}$ and $X_q^{(m)}$
- They are not needed for any other pair

Hence

$$X_p^{(m)} \longleftarrow X_p^{(m-1)}$$

 $X_q^{(m)} \longleftarrow X_q^{(m-1)}$

• This is called "in-place computation"

In-Place Computation

- x_0 and x_4 are not needed once that butterfly is computed
- Hence they can be overwritten with the results of the butterfly computation
 - Same is true for other pairs also

 Another method of splitting the input sequence into half is as follows:

 $x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7$

- Similar savings are obtained in this case also
- The output X_k will now appear in bit reversed order
- This method is called as the Decimation in Frequency algorithm

Prime Factor Algorithms

- When *N* is not a power of 2 but is a composite number, it can be expressed in terms of its prime factors
 - Example: $N = 6 = 3 \times 2$
- We can now split the given sequence into 3 segments of 2 samples each
 - $x_0, x_3, x_1, x_4, x_2, x_5$
- Three 2-point DFTs are computed and combined to get the final DFT
- Significant computational savings is obtained, as before
- Efficient algorithms exist even when *N* is prime!
 - http://en.wikipedia.org/wiki/Rader's_FFT_algorithm