EE5330: Digital Signal Processing

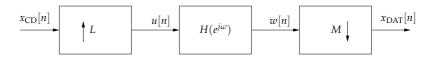
<u>Tutorial 7</u> (November 12, 2013)

1. Let $\phi(t)$ be a continuous-time aperiodic signal with CTFT $\Phi(\Omega)$. Let $\tilde{\phi}(t)$ be the periodic signal defined as $\tilde{\phi}(t) = \sum_{n} \phi(t + nT)$. Prove the following:

$$ilde{\phi}(t) = rac{1}{T} \sum_{k=-\infty}^{\infty} \Phi(k\Omega_0) \, e^{jk\Omega_0 t}$$

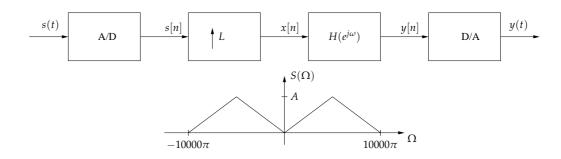
where $\Omega_0 = 2\pi/T$. Note that the above is nothing but the Fourier series expansion of the periodic signal $\tilde{\phi}(t)$.

- 2. A finite-energy continuous-time lowpass signal $x_c(t)$ is sampled at a rate that satisfies the condition $F_s \ge 2F_c$, where F_c is the highest frequency component in $x_c(t)$. Let x[n] denote the sampled signal. Develop a relationship between the energy of the continuous-time signal and that of its discrete-time counterpart.
- 3. A continuous-time signal $x_c(t)$ is composed of a linear combination of sinusoidal signals with frequencies F_1 Hz, F_2 Hz, F_3 Hz, and F_4 Hz. The sampling frequency F_s is 10 kHz, and the sampled signal is passed through an ideal LPF with cutoff frequency 4 kHz. The reconstructed signal is found to contain sinusoids with frequencies 350 Hz, 575 Hz, and 815 Hz. What are the possible values of F_1 , F_2 , F_3 , and F_4 ? Is your answer unique? If not, can you specify another set of possible values of these frequencies?
- 4. The left and right channels of an analog stereo audio signal are sampled at a 45-kHz rate, with each channel the being converted to a digital bit stream using a 12-bit A/D converter. Determine the overall bitrate after sampling and quantization.
- 5. Digital Audio Tape (DAT) drives have a sampling frequency of 48 kHz, whereas a Compact Disk (CD) player operates at a rate of 44.1 kHz. In order to record directly from a CD onto a DAT, it is necessary to convert the sampling rate from 44.1 to 48 kHz. Therefore, consider the following system for performing this sample rate conversion:



Find the smallest possible values for *L* and *M* and find the appropriate filter $H(e^{j\omega})$ to perform this conversion.

6. Suppose that we would like to slow a segment of speech to one-half its normal speed. The speech signal s(t) is assumed to have no energy outside of 5 kHz, and is sampled at a rate of 10 kHz, yielding the sequence s[n] = s(nT). The following system is proposed to create the slowed-down speech signal. Assume that $S(\Omega)$ is as shown in the figure.



- (a) Find the spectrum of x[n].
- (b) Suppose that the discrete-time filter is described by the difference equation

$$y[n] = x[n] + \frac{1}{2} \left(x[n+1] + x[n-1] \right)$$

Find the frequency response of the filter and describe its effect on x[n].

- (c) What is $Y(\Omega)$ in terms of $S(\Omega)$? Does y(t) correspond to slowed-down speech?
- 7. Consider the system whose input/output relationship is given by y[n] = x[Mn]. Which of the following signals can be downsampled by a factor of 2 without any loss of information? (a) $x[n] = \delta[n - n_0]$ for some unknown integer n_0 , (b) $x[n] = \cos(\pi n/4)$, (c) $x[n] = \cos(\pi n/4) + \cos(3\pi n/4)$, (d) $x[n] = \sin(\pi n/3)/(\pi n/3)$, and (e) $x[n] = (-1)^n \sin(\pi n/3)/(\pi n/3)$.
- 8. A certain system has three blocks in cascade. The input/output relationship for the first block is $x_d[n] = x[3n]$. For the second block, the output $x_e[n]$ is obtained by taking $x_d[n]$ and inserting 2 zeros between every sample. The final block is an ideal lowpass filter with cutoff frequency $\omega = \pi/3$ and gain 3. The LPF's output is denoted by $x_r[n]$. For which of the following signals is $x_r[n] = x[n]$? (a) $\cos(\pi n/4)$, (b) $\cos(\pi n/2)$, and (c) $\sin^2(\pi n/8)/(\pi^2 n^2)$.
- 9. Consider the usual discrete-time processing of continuous-time signals, consisting of the A/D converter, discrete-time filter, and the reconstruction filter to get the continuous-time output. The input x(t) has a CTFT that is triangular in shape, centred at $\Omega = 0$, with cutoff frequency $\Omega_0 = 2\pi(1000)$. The discrete-time filter is an ideal LPF with cutoff frequency ω_c . For $\omega_c = \pi/2$, what is the minimum sampling frequency needed for y(t) = x(t)?
- 10. (a) Let $x_c(t)$ be a lowpass signal whose spectrum is such that X(F) = 0 for $|F| > F_m/2$ Hz. What is the minimum sampling frequency needed for sampling $x^2(2t)$ to avoid aliasing?
 - (b) The continuous-time signal $x_c(t) = \sin(20\pi t) + \cos(40\pi t)$ is sampled with a sampling period *T* to obtain the discrete-time signal $x[n] = \sin\left(\frac{\pi n}{5}\right) + \cos\left(\frac{2\pi n}{5}\right)$.
 - i. Determine a choice for T consistent with this information.
 - ii. If your choice of T is unique, explain why. If not, specify another choice of T consistent with this information.

 \diamond