EE5330: Digital Signal Processing

Tutorial 3

(September 2, 2013)

1. Let $X(z)$ be a rational function that does not have a pole at $z=\infty$. Show that $d X(z) / d z$ has a zero of order at least 2 at $z=\infty$. What can you say about the function $z \frac{d X(z)}{d z}$?
2. The correlation between two sequences $x[n]$ and $y[n]$ is denoted as $r_{x y}[n]$ and defined as

$$
r_{x y}[n]=\sum_{k=-\infty}^{\infty} x[k] y[k-n]
$$

Let $S_{x y}(z)$ denote the z-transform of $r_{x y}[n]$.
(a) Express $S_{x y}(z)$ in terms of $X(z)$ and $Y(z)$.
(b) Let $x[n]=a^{n} u[n]$, where $|a|<1$. Find the simplified expression for $S_{x x}(z)$.
3. An LTI system is described by the system function

$$
H(z)=\frac{\left(1-\frac{1}{2} z^{-2}\right)}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-\frac{1}{4} z^{-1}\right)}, \quad|z|>\frac{1}{2}
$$

Determine the impulse response of the system and the difference equation that relates the input and output.
4. Find the causal inverse z-transform of the following functions:

$$
X_{1}(z)=\frac{z^{3}}{z-1} \quad X_{2}(z)=\frac{4 z^{2}+8 z}{4 z^{2}-5 z+1} \quad X_{3}(z)=\frac{4}{z^{3}(2 z-1)}
$$

5. Find all inverse transforms of the function

$$
X(z)=\frac{z}{(z-1)^{2}(z-2)}
$$

6. (a) If $x[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z), x_{1}[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X_{1}(z)$, and $X_{1}(z)=X\left(z^{N}\right)$, express $x_{1}[n]$ in terms of $x[n]$.
(b) Use the result from the previous part to find the causal inverse pz-transform of the function $X_{1}(z)=z^{N} /\left(z^{N}-1\right)$.
7. Determine the inverse z-transform using the specified method for each of the following: (a) $\frac{1-\frac{1}{3} z^{-1}}{1+\frac{1}{3} z^{-1}}$; right-sided sequence, long-division, (b) $\frac{3}{z-\frac{1}{4}-\frac{1}{8} z^{-1}}$; stable sequence, partial-fraction expansion, (c) $\ln (1-4 z),|z|<\frac{1}{4}$, power-series method.
8. The following facts are given about and LTI system characterized by $h[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} H(z)$: (i) $h[n]$ is real-valued, (ii) $h[n]$ is right-sided, (iii) $\lim _{z \rightarrow \infty} H(z)=1$, (iv) $H(z)$ has two zeros, and (v) $H(z)$ has a complex-valued pole on the circle defined by $|z|=3 / 4$. Is the system causal? Is it stable?
9. Consider the following z-transform pairs:

$$
u[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{1-z^{-1}} \quad e^{-|n|} \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1-e^{-2}}{\left(1-e^{-1} z^{-1}\right)\left(1-e^{-1} z\right)}
$$

along with their associated RoCs. Find the z-transform of $e^{-|n|} u[n]$ using the product theorem. That is, evaluate

$$
\frac{1}{2 \pi j} \oint_{c} \frac{1}{1-\tau^{-1}} \frac{1-e^{-2}}{\left(1-e^{-1} \frac{\tau}{z}\right)\left(1-e^{-1} \frac{z}{\tau}\right)} \frac{d \tau}{\tau}
$$

In what region does the contour of integration C lie?
10. If $X(z)=\log \left(1+2 z^{-1}\right)$ with RoC $|z|>2$, find $x[n]$.
11. Find the inverse z-transform of the following functions: (i) $X(z)=\sin \left(z^{2}\right)$ with RoC $z \in \mathbb{C}$, (ii) $X(z)=e^{1 / z}$ with $\operatorname{RoC} z \in \mathbb{C} \backslash\{0\}$.
12. Find all inverse transforms of the function

$$
X(z)=\frac{-1+\frac{5}{2} z^{-1}-\frac{5}{4} z^{-2}}{\left(1-z^{-1}\right)\left(1-\frac{1}{2} z^{-1}\right)^{2}}
$$

13. Let $x[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z)$. The sequence $y[n]$ is defined as

$$
y[n]=\sum_{k=-\infty}^{n} x[k]
$$

What is $Y(z)$ and its associated RoC?
14. Let $x[n]=\sum_{k=-n}^{n} a^{|k|}$ for $n \geq 0 ; y[n]=0$ for $n<0$. It is further given that $|a|<1$. Find $X(z)$.
15. Consider $x[n]=\sum_{k=1}^{n} w[k]$. Verify that $x[n]$ can be written as $(w[n] \cdot u[n-1]) * u[n]$. Let $w[n]=a^{n}$ where $|a|<1$. Using the product theorem, find the z-transform of $w[n] \cdot u[n-1]$. Using this result, find $X(z)$.

