
Aspects of Continuous- and Discrete-Time
Signals and Systems

C.S. Ramalingam

Department of Electrical Engineering
IIT Madras

C.S. Ramalingam (EE Dept., IIT Madras) Networks and Systems 1 / 45



Scaling the Independent Axis

Let y(t) = x(at + b)

Can be done in two ways

Shift first and then scale:

w(t) = x(t + b)

y(t) = w(at)

= x(at + b)

Scale first and then shift:

w(t) = x(at)

y(t) = w(t + b/a) shift by b/a, not b

= x [a(t + b/a)]

= x(at + b)
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An Aspect of Scaling in Discrete-Time

Consider y [n] = x [n/2]

y [n] is defined for even values of n only

Wrong: y [odd] = 0

Right: y [odd] = undefined

Usual to set y [odd] = 0

but the above does not follow automatically from original
definition

For a discrete-time signal, y [a] = undefined if a 6∈ Z
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Scaling Need Not Be Affine Only

Consider x(t) = 1 for 0 < t ≤ 1

What is y(t) = x(et) ?

Mellin Transform:

XM(s) =

∫ ∞
0

x(t) ts−1 dt

=

∫ ∞
−∞

x(e−t) e−st dt︸ ︷︷ ︸
Laplace transform of x(e−t)
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Periodic Signals

exp(jω0n) is periodic with period N only if ω0/2π = k/N

exp(jΩ0t) is periodic for any Ω0 with period T = 2π/Ω0

exp(jω0n) and exp(−jω0n) are two distinct exponentials

Their frequency content is the “same” but one cannot be
expressed as a (complex) constant times the other

Harmonics in the discrete-time case may “oscillate more
rapidly” but their fundamental periods need not be different

xk [n] = cos(2πnk/11): All xk ’s have the same period, i.e., 11

This is not so for its continuous-time counterpart
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Sinusoid With Time-Varying Frequency

If the frequency of a sinusoid is constant, i.e., Ω0, the signal is
x(t) = sin(Ω0t)

Consider time-varying frequency i.e, Ω(t)

Is it correct to write x(t) = sin(Ω(t) · t) ?

Wrong! i.e., in general, the above is not correct

x(t) = sin(φ(t)), where φ(t) =

∫ t

−∞
Ω(τ) dτ

MATLAB:

� phi = cumsum(omega);
� x = sin(phi);
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Impulse Response

An LTI system has to have its initial conditions set to zero
before exciting by an impulse to obtain h(t) (or h[n])

Otherwise the impulse response won’t be unique

All systems—both linear and non-linear have impulse response

In the case of an LTI system, h completely describes the system

For nonlinear systems h is not that useful
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The Impulse Function

An impulse is not a function in the usual sense

Definition:

δ(t) = 0 t 6= 0 (1)∫ ∞
−∞

δ(t) dt = 1 (2)

Wrong: δ(0) =∞

Consider x∆(t) =
1

∆
for ∆ ≤ t ≤ 2∆ (where ∆ > 0)

In the limit

x(t) = lim
∆→0

x∆(t)

= δ(t)
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The Impulse Function

x∆(0) = 0 for all values of ∆

Hence, in the limit, x(0) = 0

To show x(t) = 0 for t 6= 0:

For any t0 > 0, however small, there always exists a small
enough value of ∆ such that x∆(t0) = 0

∀ t0 > 0, ∃ ∆0 s.t. ∀ ∆ < ∆0, x∆(t0) = 0

Hence, δ(t0) = lim
∆→0

x∆(t0) = 0

Since t0 is arbitrary, δ(t) = 0 for t 6= 0

A function defined by (1) and (2) is not unique

δ(t) should be called as a functional or generalized function
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The Impulse Function

Be extremely careful when dealing with delta functions

δ(t) is actually an abbreviation for a limiting operation

δ(t) is like a live wire!

Inside an integral, they are well-behaved: safe to use them

Bare δ(t) can give erroneous results if not carefully used

Products or quotients of generalized functions not defined

Consider δ(t) = δ(t) ∗ δ(t) =

∫ ∞
−∞

δ(τ) δ(t − τ) dτ

At t = 0 is there a contradiction?

Because area is unity, the zero width implies infinite height

Conventionally, height is proportional to area
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Difference Between Continuous- and
Discrete-Time Impulses

Discrete-time impulse:

δ[n] =

 1 n = 0

0 n 6= 0

Perfectly well-behaved function, unlike its continuous-time
counterpart

Under scaling, these two functions behave very differently:

δ(at) =
1

|a|
δ(t)

δ[an] = δ[n]
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Unit Step and Sinc Functions

u(t) =

 1 t > 0

0 t < 0

u(0) = undefined

u(0) can be defined to be 0, 1, or any number

There are two types of sinc functions:

Analog Sinc:
sin(πΩ)

πΩ
CTFT of (CT) rectangular window; aperiodic

Digital Sinc:
sin(N ω/2)

sin(ω/2)
DTFT of (DT) rectangular window; periodic

a.k.a Dirichlet kernel (diric function in Matlab)
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Convolution

See Java applets at http://www.jhu.edu/~signals

The “∗” symbol is just notation

y(t) = x(t) ∗ h(t)

y(ct) = c x(ct) ∗ h(ct) (prove this!)

6= x(ct) ∗ h(ct)

Convolution is a “smoothing” operation

Apply the eigensignal exp(jΩt) to an LTI system with impulse
response h(t)

Output is H(Ω) · exp(jΩt) (reminiscent of Ax = λx)

H(Ω) is the eigenvalue corresponding to exp(jΩt)

This eigenvalue is nothing but the Fourier transform of h(t)
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Discrete-Time Convolution

The familiar one:

y [n] =
∞∑

k=−∞
x1[k] x2[n − k]

Leave the first signal x1[k] unchanged

For x2[k]:

Flip the signal: k becomes −k , giving x2[−k]

Shift the flipped signal to the right by n

samples:
k becomes k − n
x2[−k]→ x2[−(k − n)] = x2[n − k]

Carry out sample-by-sample multiplication and sum the
resulting sequence to get the output at time index n, i.e. y [n]
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What happens to periodic signals?

Suppose both signals are periodic (with same period)

x1[n + N] = x1[n]

x2[n + N] = x2[n]

Then x1[k] x2[n0 − k] will also be periodic (with period N)

For each value of n0 we get a different periodic signal
(periodicity is N in all cases)

|y [n]| will be either 0 or ∞

C.S. Ramalingam (EE Dept., IIT Madras) Networks and Systems 15 / 45



Circular Convolution

y [n]
?
=

N−1∑
k=0

x̃1[k] x̃2[n − k]

y [n] is periodic with period N

n − k can be replaced by 〈n − k〉N (“n − k mod N”)

“Circular” Convolution: ỹ [n] = x̃1[n]©∗ x̃2[n]

ỹ [n]
def
=

N−1∑
k=0

x̃1[k] x̃2[〈n − k〉N ] n = 0, 1, . . . ,N − 1
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Relationship Between Linear and Circular Convolution

If x1[n] has length P and x2[n] has length Q, then
x1[n] ∗ x2[n] is P + Q − 1 long (e.g., 6 + 4− 1 = 9)

N ≥ max (P,Q). In general

x̃1[n]©∗ x̃2[n] 6= x1[n] ∗ x2[n] n = 0, 1, . . . ,N − 1

Circular convolution can be thought of as repeating the result
of linear convolution every N samples and adding the results
(over one period)
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Example (cont’d)
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But if N ≥ P + Q − 1

x̃1[n]©∗ x̃2[n] = x1[n] ∗ x2[n] n = 0, 1, . . . ,N − 1
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Linear Convolution via Circular Convolution

If N ≥ 9 one period of circular convolution will be equal to
linear convolution.

0 86

1

*

=

4

0 8

0 84

1

C.S. Ramalingam (EE Dept., IIT Madras) Networks and Systems 20 / 45



LTI Systems

Books differ in definition:

Oppenheim/Willsky:

1 Initial conditions are not accessible

2 If present, the system is defined to be quasi-linear

Lathi:

1 Initial conditions are accessible

2 Treated as separate sources ⇒ system is still linear

Not consistent with his black-box definition
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LTI Systems

“Non-causal systems are not realizable”

True only if independent variable is time

In an image, “future” sample is either to the right or top of
current pixel
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Beware of loading! If the two sections are connected through a

voltage-follower, overall transfer function will be
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Eigensignals of LTI Systems

exp(jΩ0t) is an eigensignal

So is exp(jω0n)

Is cos(Ω0t) an eigensignal?

No!

If a certain condition is satisfied, cos(Ω0t) can be an
eigensignal. Derive this condition!

Is exp(jΩ0t) u(t) an eigensignal?

No!
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LCCDE

Networks containing only R, L, and C give rise to linear,
constant-coefficient, differential equations

The DE coefficients are a function of R, L, and C , and
network topology

If R, L, and C vary with time, the DE coefficients will also be
a function of time ⇒ linear time-varying system

Maths approach: complementary function, particular integral

Complementary function: natural modes only

Particular integral: response due to forcing function

EE approach: zero-input response, zero-state response

Zero-input response: natural modes only

Zero-state response: natural modes + response due to forcing
function
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LCCDE

Particular Integral:

Depends only on the applied input

Does not contain any unknown constants

Sometimes misleadingly called “steady-state” response

What if the input is a decaying exponential ?

Complementary Function

Independent of input, depends only on DE coefficients

CF of n-th order DE has n unknown constants ⇒ need n
auxiliary conditions to evaluate them

Auxiliary conditions are called “initial conditions” only if they
are specified at t = 0
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LCCDE

To solve DE, we need auxiliary conditions, which are typically
of the form x(t0), x ′(t0), x ′′(t0), etc.

Typically, t0 = 0 i.e., we are given initial conditions

In circuit analysis, initial conditions are not given explicitly

Instead, we are given capacitor voltages and inductor currents
at t = 0−

From these we have to derive x(0), x ′(0), etc. and then
proceed to solve the DE
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Response to Suddenly Applied Input

Excitation is applied at t = 0. In general, the output will
contain both natural response and forced response

For stable systems, natural response will die out

Forced response also will die out if the input is not periodic

Therefore, in certain applications, we should avoid the initial
portion of the output

Coloured noise is obtained by passing white noise sequence
through a (discrete-time) filter

The output can be considered stationary only if the initial
transients are discarded
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Resonance

Resonance occurs even when a decaying input is applied

Input: x(t) = e−at u(t)

Impulse response: h(t) = e−at u(t)

Output: y(t) = t e−at u(t)
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CTFT, DTFT, CTFS, DTFS

Time Periodic Non-Periodic

Continuous Fourier Series CT Fourier Transform

Discrete DT Fourier Series DT Fourier Transform

(closely related to DFT)

Notation for frequency:

Continous-time signal: F , Ω

Discrete-time signal: f , ω
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Continuous-Time Fourier Series

The FS coefficients ak can be plotted in two ways:

(i) ak vs. k (ii) ak vs. Ω

If the ak ’s are plotted as a function of k , the plots will be
identical for x(t) and x(ct)

The actual frequency content cannot be determined if Ω0

information is not available

If the ak ’s are plotted as a function of Ω, the scaling of the
frequency axis will be clearly seen

These two signals have very
different FS coefficients!

In general, there will be infinite number of harmonics
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Discrete-Time Fourier Series

Number of harmonics is finite

Equals N, where N is the periodicity

Gibbs phenomenon does not exist in DTFS, since summation
is finite

When all N terms are present, error is zero

Closely related to the Discrete-Fourier Transform (DFT)

Efficient algorithm, called the Fast-Fourier Transform (FFT)
exists for computing DFT coefficients
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The Discrete Fourier Transform

Given x [n], n = 0, 1, . . . ,N − 1 we define the DFT as

X [k]
def
=

N−1∑
n=0

x [n] e−j2πnk/N

X [k] = X [k + N], i.e., only N distinct values are present

The inversion formula is

x̃ [n] =
1

N

N−1∑
k=0

X [k] e j2πnk/N

x̃ [n] = x [n] for n = 0, 1, . . . ,N − 1
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The Discrete Fourier Transform

(non-periodic) x [n]
DFT−→ X [k]

IDFT−→ x̃ [n] (periodic)

X [k] and the DTFS of the periodic signal whose fundamental
period is x [n] are related by X [k] = N ak

The FFT algorithm is used for computing the DFT coefficients

FFT is just an algorithm. Wrong to call the result of the FFT
as “FFT coefficients” or “FFT spectrum”

Wrong usage is well-entrenched in the literature

We can zero-pad an N-point sequence with L− N zeros and
computed the L-point DFT:

X [k] =
N−1∑
n=0

x [n] e−j2πnk/L

for k = 0, 1, . . . , L− 1
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Example
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16-pt DFT of x [n] = sin(2πn/8), n = 0, 1, . . . , 15
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32-pt DFT of x [n] = sin(2πn/8), n = 0, 1, . . . , 15
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Example
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64-pt DFT of x [n] = sin(2πn/8), n = 0, 1, . . . , 15

C.S. Ramalingam (EE Dept., IIT Madras) Networks and Systems 36 / 45



Continuous-Time Fourier Transform

The “+” and “−” signs in the forward and inverse transform
definitions can be switched without changing anything
fundamental

X (Ω) and X (jΩ) are commonly used notations to denote the
CTFT of x(t)

If you are given X (Ω) it is wrong to replace Ω by jΩ to get
X (jΩ)

X (jΩ) notation is useful only to show that it can be obtained
from X (s) (Laplace transform) by replacing s by jΩ

The importance of log scale for the y -axis should be
emphasized when plotting magnitude frequency response
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Continuous-Time Fourier Transform

Does x(t) contain DC component?

Ω

X(Ω)

0

Note that X (0) 6= 0

x(t) does not contain a DC component!

If it did, there would be an impulse at Ω = 0

DC component is defined by

DC component = lim
T→∞

1

T

∫ T

−T
x(t) dt

= lim
T→∞

1

T
X (0)

= 0

if X (0) is finite
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Continuous-Time Fourier Transform

∫ ∞
−∞

x

x2 + a2
dx

?
= 0

“The integrand is an odd function and hence the integral is
zero”

Wrong! The above is true only if the limits are finite

What is zero is the Cauchy Principal Value:

lim
T→∞

∫ T

−T

x

x2 + a2
dx = 0

Upper and lower limits approach infinity at the same rate

Weaker condition
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Relationship Between CTFT and CTFS

Consider a periodic signal x(t) with FS coefficients ak

The CTFT of x(t) is related to the FS coefficients:

X (k Ω0) = 2π · ak · δ(Ω− kΩ0)

X (Ω) = 0 for Ω 6= k Ω0

Plot of ak vs. Ω is a simple stem plot

Plot of X (Ω) vs. Ω contains impulses, whose strengths are as
given above
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Continuous-Time Fourier Transform

R. Bracewell, The Fourier
Transform and Its Appli-
cations, McGraw-Hill, 2nd
edition, 1986, p. 107
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Discrete-Time Fourier Transform

The DTFT of an aperiodic sequence x [n] is defined as

X (ω) =
∞∑

n=−∞
x [n] e−jωn

X (ω + 2π) = X (ω) periodicity is 2π

For a finite duration sequence, the limits go from 0 to N − 1

Notation for DTFT: X (ω) or X (e jω)

If you are given X (ω), it is wrong to replace ω by e jω to get
X (e jω)

X (e jω) is useful in relating the DTFT to X (z)

x [n] can be thought of as the FS coefficients of the periodic
signal X (ω)
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DFT: Sampled-Version of the DTFT

One can view the DFT coefficients X [k] as samples of the
DTFT taken at the points ω = 2πk/N:

X [k] = X (ω)|ω=2πk/N

=
N−1∑
n=0

x [n] e−j(2πk/N)n

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

Frequency (Hz)

M
a
g
n
i
t
u
d
e

C.S. Ramalingam (EE Dept., IIT Madras) Networks and Systems 43 / 45



Sampling Introduces Periodicity in the Time Domain!

Sampling in the frequency domain leads to periodic repetition
in the time domain

Repetition period is N

If we sample the DTFT at L (> N) points, the repetition
period will be L (> N)

If x [n] is of duration N, then X (ω) has to be sampled at least
at N points to avoid aliasing in the time domain

That is why X [k]
IDFT−→ x̃ [n], and not x [n]
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Signals and their Transforms

Periodic in one domain =⇒ discrete in the other domain

Discrete in one domain
?

=⇒ periodic in the other domain ?

Think about this!
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