Aspects of Continuous- and Discrete-Time Signals and Systems

C.S. Ramalingam

Department of Electrical Engineering
IIT Madras

Scaling the Independent Axis

- Let $y(t)=x(a t+b)$
- Can be done in two ways
- Shift first and then scale:

$$
\begin{aligned}
w(t) & =x(t+b) \\
y(t) & =w(a t) \\
& =x(a t+b)
\end{aligned}
$$

- Scale first and then shift:

$$
\begin{aligned}
w(t) & =x(a t) \\
y(t) & =w(t+b / a) \quad \text { shift by } b / a, \text { not } b \\
& =x[a(t+b / a)] \\
& =x(a t+b)
\end{aligned}
$$

An Aspect of Scaling in Discrete-Time

- Consider $y[n]=x[n / 2]$
- $y[n]$ is defined for even values of n only
- Wrong: $y[$ odd $]=0$

Right: $\quad y[$ odd $]=$ undefined

- Usual to set $y[$ odd $]=0$
- but the above does not follow automatically from original definition
- For a discrete-time signal, $y[a]=$ undefined if $a \notin \mathbb{Z}$

Scaling Need Not Be Affine Only

- Consider $x(t)=1$ for $0<t \leq 1$
- What is $y(t)=x\left(e^{t}\right)$?
- Mellin Transform:

$$
\begin{aligned}
X_{M}(s) & =\underbrace{\int_{0}^{\infty} x(t) t^{s-1} d t}_{\text {Laplace transform of } x\left(e^{-t}\right)} \\
& =\underbrace{\infty}_{-\infty} x\left(e^{-t}\right) e^{-s t} d t
\end{aligned}
$$

Periodic Signals

- $\exp \left(j \omega_{0} n\right)$ is periodic with period N only if $\omega_{0} / 2 \pi=k / N$
- $\exp \left(j \Omega_{0} t\right)$ is periodic for any Ω_{0} with period $T=2 \pi / \Omega_{0}$
- $\exp \left(j \omega_{0} n\right)$ and $\exp \left(-j \omega_{0} n\right)$ are two distinct exponentials
- Their frequency content is the "same" but one cannot be expressed as a (complex) constant times the other
- Harmonics in the discrete-time case may "oscillate more rapidly" but their fundamental periods need not be different
- $x_{k}[n]=\cos (2 \pi n k / 11)$: All x_{k} 's have the same period, i.e., 11
- This is not so for its continuous-time counterpart

Sinusoid With Time-Varying Frequency

- If the frequency of a sinusoid is constant, i.e., Ω_{0}, the signal is $x(t)=\sin \left(\Omega_{0} t\right)$
- Consider time-varying frequency i.e, $\Omega(t)$
- Is it correct to write $x(t)=\sin (\Omega(t) \cdot t)$?
- Wrong! i.e., in general, the above is not correct
- x(t) $=\sin (\phi(t))$, where $\phi(t)=\int_{-\infty}^{t} \Omega(\tau) d \tau$
- MATLAB:

$$
\begin{aligned}
& \gg \mathrm{phi}=\text { cumsum(omega); } \\
& >\mathrm{x}=\sin (\text { phi) } ;
\end{aligned}
$$

Impulse Response

- An LTI system has to have its initial conditions set to zero before exciting by an impulse to obtain $h(t)$ (or $h[n]$)
- Otherwise the impulse response won't be unique
- All systems-both linear and non-linear have impulse response
- In the case of an LTI system, h completely describes the system
- For nonlinear systems h is not that useful
- An impulse is not a function in the usual sense
- Definition:

$$
\begin{align*}
\delta(t) & =0 \quad t \neq 0 \tag{1}\\
\int_{-\infty}^{\infty} \delta(t) d t & =1 \tag{2}
\end{align*}
$$

- Wrong: $\delta(0)=\infty$
- Consider $x_{\Delta}(t)=\frac{1}{\Delta}$ for $\Delta \leq t \leq 2 \Delta \quad($ where $\Delta>0)$
- In the limit

$$
\begin{aligned}
x(t) & =\lim _{\Delta \rightarrow 0} x_{\Delta}(t) \\
& =\delta(t)
\end{aligned}
$$

- $x_{\Delta}(0)=0$ for all values of Δ
- Hence, in the limit, $x(0)=0$
- To show $x(t)=0$ for $t \neq 0$:
- For any $t_{0}>0$, however small, there always exists a small enough value of Δ such that $x_{\Delta}\left(t_{0}\right)=0$

$$
\forall t_{0}>0, \exists \Delta_{0} \text { s.t. } \forall \Delta<\Delta_{0}, \quad x_{\Delta}\left(t_{0}\right)=0
$$

- Hence, $\delta\left(t_{0}\right)=\lim _{\Delta \rightarrow 0} x_{\Delta}\left(t_{0}\right)=0$
- Since t_{0} is arbitrary, $\delta(t)=0$ for $t \neq 0$
- A function defined by (1) and (2) is not unique
- $\delta(t)$ should be called as a functional or generalized function
- Be extremely careful when dealing with delta functions
- $\delta(t)$ is actually an abbreviation for a limiting operation
- $\delta(t)$ is like a live wire!
- Inside an integral, they are well-behaved: safe to use them
- Bare $\delta(t)$ can give erroneous results if not carefully used
- Products or quotients of generalized functions not defined
- Consider $\delta(t)=\delta(t) * \delta(t)=\int_{-\infty}^{\infty} \delta(\tau) \delta(t-\tau) d \tau$
- At $t=0$ is there a contradiction?
- Because area is unity, the zero width implies infinite height
- Conventionally, height is proportional to area

Difference Between Continuous- and Discrete-Time Impulses

- Discrete-time impulse:

$$
\delta[n]= \begin{cases}1 & n=0 \\ 0 & n \neq 0\end{cases}
$$

- Perfectly well-behaved function, unlike its continuous-time counterpart
- Under scaling, these two functions behave very differently:
- $\delta(a t)=\frac{1}{|a|} \delta(t)$
- $\delta[a n]=\delta[n]$

Unit Step and Sinc Functions

- $u(t)= \begin{cases}1 & t>0 \\ 0 & t<0\end{cases}$
- $u(0)=$ undefined
- $u(0)$ can be defined to be 0,1 , or any number
- There are two types of sinc functions:
- Analog Sinc: $\frac{\sin (\pi \Omega)}{\pi \Omega}$

CTFT of (CT) rectangular window; aperiodic

- Digital Sinc: $\frac{\sin (N \omega / 2)}{\sin (\omega / 2)}$

DTFT of (DT) rectangular window; periodic a.k.a Dirichlet kernel (diric function in Matlab)

- See Java applets at http://www.jhu.edu/~signals
- The "*" symbol is just notation

$$
\begin{aligned}
y(t) & =x(t) * h(t) \\
y(c t) & =c x(c t) * h(c t) \quad \text { (prove this!) } \\
& \neq x(c t) * h(c t)
\end{aligned}
$$

- Convolution is a "smoothing" operation
- Apply the eigensignal $\exp (j \Omega t)$ to an LTI system with impulse response $h(t)$
- Output is $H(\Omega) \cdot \exp (j \Omega t) \quad$ (reminiscent of $\mathbf{A} \mathbf{x}=\lambda \mathbf{x}$)
- $H(\Omega)$ is the eigenvalue corresponding to $\exp (j \Omega t)$
- This eigenvalue is nothing but the Fourier transform of $h(t)$

Discrete-Time Convolution

- The familiar one:

$$
y[n]=\sum_{k=-\infty}^{\infty} x_{1}[k] x_{2}[n-k]
$$

- Leave the first signal $x_{1}[k]$ unchanged
- For $x_{2}[k]$:
- Flip the signal: k becomes $-k$, giving $x_{2}[-k]$
- Shift the flipped signal to the right by n
samples:
k becomes $k-n$
$x_{2}[-k] \rightarrow x_{2}[-(k-n)]=x_{2}[n-k]$
- Carry out sample-by-sample multiplication and sum the resulting sequence to get the output at time index n, i.e. $y[n]$

What happens to periodic signals?

- Suppose both signals are periodic (with same period)

$$
\begin{aligned}
& x_{1}[n+N]=x_{1}[n] \\
& x_{2}[n+N]=x_{2}[n]
\end{aligned}
$$

Then $x_{1}[k] x_{2}\left[n_{0}-k\right]$ will also be periodic (with period N)

- For each value of n_{0} we get a different periodic signal (periodicity is N in all cases)
- $|y[n]|$ will be either 0 or ∞

Circular Convolution

$$
y[n] \stackrel{?}{=} \sum_{k=0}^{N-1} \tilde{x}_{1}[k] \tilde{x}_{2}[n-k]
$$

- $y[n]$ is periodic with period N
- $n-k$ can be replaced by $\langle n-k\rangle_{N}(" n-k \bmod N$ ")
- "Circular" Convolution: $\tilde{y}[n]=\tilde{x}_{1}[n] \circledast \tilde{x}_{2}[n]$

$$
\tilde{y}[n] \stackrel{\text { def }}{=} \sum_{k=0}^{N-1} \tilde{x}_{1}[k] \tilde{x}_{2}\left[\langle n-k\rangle_{N}\right] \quad n=0,1, \ldots, N-1
$$

Examples

Relationship Between Linear and Circular Convolution

- If $x_{1}[n]$ has length P and $x_{2}[n]$ has length Q, then $x_{1}[n] * x_{2}[n]$ is $P+Q-1$ long (e.g., $6+4-1=9$)
- $N \geq \max (P, Q)$. In general

$$
\tilde{x}_{1}[n] \circledast \tilde{x}_{2}[n] \neq x_{1}[n] * x_{2}[n] \quad n=0,1, \ldots, N-1
$$

- Circular convolution can be thought of as repeating the result of linear convolution every N samples and adding the results (over one period)

Example (cont'd)

- But if $N \geq P+Q-1$

$$
\tilde{x}_{1}[n] \circledast \tilde{x}_{2}[n]=x_{1}[n] * x_{2}[n] \quad n=0,1, \ldots, N-1
$$

Linear Convolution via Circular Convolution

- If $N \geq 9$ one period of circular convolution will be equal to linear convolution.

LTI Systems

- Books differ in definition:
- Oppenheim/Willsky:
(1) Initial conditions are not accessible
(2) If present, the system is defined to be quasi-linear
- Lathi:
(1) Initial conditions are accessible
(2) Treated as separate sources \Rightarrow system is still linear

Not consistent with his black-box definition

LTI Systems

- "Non-causal systems are not realizable"
- True only if independent variable is time
- In an image, "future" sample is either to the right or top of current pixel
-

- Beware of loading! If the two sections are connected through a voltage-follower, overall transfer function will be $\frac{1}{4}$

Eigensignals of LTI Systems

- $\exp \left(j \Omega_{0} t\right)$ is an eigensignal
- So is $\exp \left(j \omega_{0} n\right)$
- Is $\cos \left(\Omega_{0} t\right)$ an eigensignal?
- No!
- If a certain condition is satisfied, $\cos \left(\Omega_{0} t\right)$ can be an eigensignal. Derive this condition!
- Is $\exp \left(j \Omega_{0} t\right) u(t)$ an eigensignal?
- No!

LCCDE

- Networks containing only R, L, and C give rise to linear, constant-coefficient, differential equations
- The DE coefficients are a function of R, L, and C, and network topology
- If R, L, and C vary with time, the DE coefficients will also be a function of time \Rightarrow linear time-varying system
- Maths approach: complementary function, particular integral
- Complementary function: natural modes only
- Particular integral: response due to forcing function
- EE approach: zero-input response, zero-state response
- Zero-input response: natural modes only
- Zero-state response: natural modes + response due to forcing function
- Particular Integral:
- Depends only on the applied input
- Does not contain any unknown constants
- Sometimes misleadingly called "steady-state" response
- What if the input is a decaying exponential ?
- Complementary Function
- Independent of input, depends only on DE coefficients
- CF of n-th order DE has n unknown constants \Rightarrow need n auxiliary conditions to evaluate them
- Auxiliary conditions are called "initial conditions" only if they are specified at $t=0$
- To solve DE, we need auxiliary conditions, which are typically of the form $x\left(t_{0}\right), x^{\prime}\left(t_{0}\right), x^{\prime \prime}\left(t_{0}\right)$, etc.
- Typically, $t_{0}=0$ i.e., we are given initial conditions
- In circuit analysis, initial conditions are not given explicitly
- Instead, we are given capacitor voltages and inductor currents at $t=0^{-}$
- From these we have to derive $x(0), x^{\prime}(0)$, etc. and then proceed to solve the DE

Response to Suddenly Applied Input

- Excitation is applied at $t=0$. In general, the output will contain both natural response and forced response
- For stable systems, natural response will die out
- Forced response also will die out if the input is not periodic
- Therefore, in certain applications, we should avoid the initial portion of the output
- Coloured noise is obtained by passing white noise sequence through a (discrete-time) filter
- The output can be considered stationary only if the initial transients are discarded
- Resonance occurs even when a decaying input is applied
- Input: $x(t)=e^{-a t} u(t)$
- Impulse response: $h(t)=e^{-a t} u(t)$
- Output: $y(t)=t e^{-a t} u(t)$

CTFT, DTFT, CTFS, DTFS

Time	Periodic	Non-Periodic
Continuous	Fourier Series	CT Fourier Transform
Discrete	DT Fourier Series (closely related to DFT)	DT Fourier Transform

- Notation for frequency:
- Continous-time signal: F, Ω
- Discrete-time signal: f, ω

Continuous-Time Fourier Series

- The FS coefficients a_{k} can be plotted in two ways:
(i) a_{k} vs. k (ii) a_{k} vs. Ω
- If the a_{k} 's are plotted as a function of k, the plots will be identical for $x(t)$ and $x(c t)$
- The actual frequency content cannot be determined if Ω_{0} information is not available
- If the a_{k} 's are plotted as a function of Ω, the scaling of the frequency axis will be clearly seen
- These two signals have very different FS coefficients!

- In general, there will be infinite number of harmonics

Discrete-Time Fourier Series

- Number of harmonics is finite
- Equals N, where N is the periodicity
- Gibbs phenomenon does not exist in DTFS, since summation is finite
- When all N terms are present, error is zero
- Closely related to the Discrete-Fourier Transform (DFT)
- Efficient algorithm, called the Fast-Fourier Transform (FFT) exists for computing DFT coefficients
- Given $x[n], n=0,1, \ldots, N-1$ we define the DFT as

$$
X[k] \stackrel{\text { def }}{=} \sum_{n=0}^{N-1} x[n] e^{-j 2 \pi n k / N}
$$

- $X[k]=X[k+N]$, i.e., only N distinct values are present
- The inversion formula is

$$
\tilde{x}[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j 2 \pi n k / N}
$$

- $\tilde{x}[n]=x[n]$ for $n=0,1, \ldots, N-1$
- (non-periodic) $x[n] \xrightarrow{\text { DFT }} X[k] \xrightarrow{\text { IDFT }} \tilde{x}[n]$ (periodic)
- $X[k]$ and the DTFS of the periodic signal whose fundamental period is $x[n]$ are related by $X[k]=N a_{k}$
- The FFT algorithm is used for computing the DFT coefficients
- FFT is just an algorithm. Wrong to call the result of the FFT as "FFT coefficients" or "FFT spectrum"
- Wrong usage is well-entrenched in the literature
- We can zero-pad an N-point sequence with $L-N$ zeros and computed the L-point DFT:

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi n k / L}
$$

for $k=0,1, \ldots, L-1$

Example

16-pt DFT of $x[n]=\sin (2 \pi n / 8), n=0,1, \ldots, 15$

Example

32-pt DFT of $x[n]=\sin (2 \pi n / 8), n=0,1, \ldots, 15$

Example

64-pt DFT of $x[n]=\sin (2 \pi n / 8), n=0,1, \ldots, 15$

Continuous-Time Fourier Transform

- The " + " and " - " signs in the forward and inverse transform definitions can be switched without changing anything fundamental
- $X(\Omega)$ and $X(j \Omega)$ are commonly used notations to denote the CTFT of $x(t)$
- If you are given $X(\Omega)$ it is wrong to replace Ω by $j \Omega$ to get $X(j \Omega)$
- $X(j \Omega)$ notation is useful only to show that it can be obtained from $X(s)$ (Laplace transform) by replacing s by $j \Omega$
- The importance of log scale for the y-axis should be emphasized when plotting magnitude frequency response

Continuous-Time Fourier Transform

- Does $x(t)$ contain DC component?
- Note that $X(0) \neq 0$
- $x(t)$ does not contain a DC component!

- If it did, there would be an impulse at $\Omega=0$
- DC component is defined by

$$
\begin{aligned}
\text { DC component } & =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T}^{T} x(t) d t \\
& =\lim _{T \rightarrow \infty} \frac{1}{T} X(0) \\
& =0
\end{aligned}
$$

if $X(0)$ is finite

Continuous-Time Fourier Transform

$$
\int_{-\infty}^{\infty} \frac{x}{x^{2}+a^{2}} d x \stackrel{?}{=} 0
$$

- "The integrand is an odd function and hence the integral is zero"
- Wrong! The above is true only if the limits are finite
- What is zero is the Cauchy Principal Value:

$$
\lim _{T \rightarrow \infty} \int_{-T}^{T} \frac{x}{x^{2}+a^{2}} d x=0
$$

Upper and lower limits approach infinity at the same rate

- Weaker condition

Relationship Between CTFT and CTFS

- Consider a periodic signal $x(t)$ with FS coefficients a_{k}
- The CTFT of $x(t)$ is related to the FS coefficients:
- $X\left(k \Omega_{0}\right)=2 \pi \cdot a_{k} \cdot \delta\left(\Omega-k \Omega_{0}\right)$
- $X(\Omega)=0$ for $\Omega \neq k \Omega_{0}$
- Plot of a_{k} vs. Ω is a simple stem plot
- Plot of $X(\Omega)$ vs. Ω contains impulses, whose strengths are as given above

Continuous-Time Fourier Transform

The basic theorems

107

R. Bracewell, The Fourier Transform and Its Applications, McGraw-Hill, 2nd edition, 1986, p. 107

Pig. 6.7 The effect of ahifting a corinusoid.

Discrete-Time Fourier Transform

- The DTFT of an aperiodic sequence $x[n]$ is defined as

$$
X(\omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}
$$

- $X(\omega+2 \pi)=X(\omega) \quad$ periodicity is 2π
- For a finite duration sequence, the limits go from 0 to $N-1$
- Notation for DTFT: $X(\omega)$ or $X\left(e^{j \omega}\right)$
- If you are given $X(\omega)$, it is wrong to replace ω by $e^{j \omega}$ to get $X\left(e^{j \omega}\right)$
- $X\left(e^{j \omega}\right)$ is useful in relating the DTFT to $X(z)$
- $x[n]$ can be thought of as the FS coefficients of the periodic signal $X(\omega)$

DFT: Sampled-Version of the DTFT

- One can view the DFT coefficients $X[k]$ as samples of the DTFT taken at the points $\omega=2 \pi k / N$:

$$
\begin{aligned}
X[k] & =\left.X(\omega)\right|_{\omega=2 \pi k / N} \\
& =\sum_{n=0}^{N-1} x[n] e^{-j(2 \pi k / N) n}
\end{aligned}
$$

Sampling Introduces Periodicity in the Time Domain!

- Sampling in the frequency domain leads to periodic repetition in the time domain
- Repetition period is N
- If we sample the DTFT at $L(>N)$ points, the repetition period will be $L(>N)$
- If $x[n]$ is of duration N, then $X(\omega)$ has to be sampled at least at N points to avoid aliasing in the time domain
- That is why $X[k] \xrightarrow{\text { IDFT }} \tilde{x}[n]$, and not $x[n]$

Signals and their Transforms

$\left.0_{00000000_{0}} \varphi^{\varphi}\right|_{0000000000}$

Periodic in one domain \Longrightarrow discrete in the other domain
Discrete in one domain $\stackrel{?}{\Longrightarrow}$ periodic in the other domain?
Think about this!

