Aspects of Continuous- and Discrete-Time Signals and Systems

C.S. Ramalingam

Department of Electrical Engineering IIT Madras

Scaling the Independent Axis

• Let
$$y(t) = x(at+b)$$

- Can be done in two ways
 - Shift first and then scale:

$$w(t) = x(t+b)$$

$$y(t) = w(at)$$

$$= x(at+b)$$

• Scale first and then shift:

$$w(t) = x(at)$$

$$y(t) = w(t + b/a) \qquad \text{shift by } b/a, \text{ not } b$$

$$= x[a(t + b/a)]$$

$$= x(at + b)$$

An Aspect of Scaling in Discrete-Time

- Consider y[n] = x[n/2]
- y[n] is defined for even values of n only
- Wrong: y[odd] = 0
 Right: y[odd] = undefined
- Usual to set y[odd] = 0
 - but the above does not follow automatically from original definition
- For a discrete-time signal, y[a] = undefined if $a \notin \mathbb{Z}$

Scaling Need Not Be Affine Only

- Consider x(t) = 1 for $0 < t \le 1$
- What is $y(t) = x(e^t)$?
- Mellin Transform:

$$X_{M}(s) = \int_{0}^{\infty} x(t) t^{s-1} dt$$
$$= \underbrace{\int_{-\infty}^{\infty} x(e^{-t}) e^{-st} dt}_{\text{Laplace transform of } x(e^{-t})}$$

- $\exp(j\omega_0 n)$ is periodic with period N only if $\omega_0/2\pi = k/N$
 - $\exp(j\Omega_0 t)$ is periodic for any Ω_0 with period $T=2\pi/\Omega_0$
- $\exp(j\omega_0 n)$ and $\exp(-j\omega_0 n)$ are two distinct exponentials
 - Their frequency content is the "same" but one cannot be expressed as a (complex) constant times the other
- Harmonics in the discrete-time case may "oscillate more rapidly" but their fundamental periods need not be different
 - $x_k[n] = \cos(2\pi nk/11)$: All x_k 's have the same period, i.e., 11
 - This is not so for its continuous-time counterpart

Sinusoid With Time-Varying Frequency

- If the frequency of a sinusoid is constant, i.e., Ω_0 , the signal is $x(t) = \sin(\Omega_0 t)$
- Consider *time-varying* frequency i.e, $\Omega(t)$
- Is it correct to write $x(t) = \sin(\Omega(t) \cdot t)$?

• Wrong! i.e., in general, the above is not correct

•
$$x(t) = \sin(\phi(t))$$
, where $\phi(t) = \int_{-\infty}^{t} \Omega(\tau) \, d au$

• MATLAB:

>> phi = cumsum(omega); >> x = sin(phi); An LTI system has to have its initial conditions set to zero before exciting by an impulse to obtain h(t) (or h[n])

• Otherwise the impulse response won't be unique

- All systems—both linear and non-linear have impulse response
 - In the case of an LTI system, h completely describes the system
 - For nonlinear systems *h* is not that useful

The Impulse Function

- An impulse is not a function in the usual sense
- Definition:

$$\delta(t) = 0 \qquad t \neq 0 \tag{1}$$

$$\int_{-\infty}^{\infty} \delta(t) \, dt = 1 \tag{2}$$

• Wrong:
$$\delta(0) = \infty$$

• Consider
$$x_{\Delta}(t) = rac{1}{\Delta}$$
 for $\Delta \leq t \leq 2\Delta$ (where $\Delta > 0$)

In the limit

$$egin{aligned} & x(t) = \lim_{\Delta o 0} x_\Delta(t) \ & = \delta(t) \end{aligned}$$

The Impulse Function

• $x_{\Delta}(0) = 0$ for all values of Δ

• Hence, in the limit, x(0) = 0

• To show
$$x(t) = 0$$
 for $t \neq 0$:

 For any t₀ > 0, however small, there always exists a small enough value of Δ such that x_Δ(t₀) = 0

$$\forall t_0 > 0, \exists \Delta_0 \text{ s.t. } \forall \Delta < \Delta_0, \ x_{\Delta}(t_0) = 0$$

• Hence,
$$\delta(t_0) = \lim_{\Delta \to 0} x_{\Delta}(t_0) = 0$$

- Since t_0 is arbitrary, $\delta(t) = 0$ for $t \neq 0$
- A function defined by (1) and (2) is not unique
 - $\delta(t)$ should be called as a functional or generalized function

The Impulse Function

- Be extremely careful when dealing with delta functions
 - $\delta(t)$ is actually an abbreviation for a limiting operation
- $\delta(t)$ is like a live wire!
 - Inside an integral, they are well-behaved: safe to use them
 - Bare $\delta(t)$ can give erroneous results if not carefully used
- Products or quotients of generalized functions not defined

• Consider
$$\delta(t) = \delta(t) * \delta(t) = \int_{-\infty}^{\infty} \delta(\tau) \, \delta(t - \tau) \, d\tau$$

- At *t* = 0 is there a contradiction?
- Because area is unity, the zero width implies infinite height
 - Conventionally, height is proportional to area

Difference Between Continuous- and Discrete-Time Impulses

• Discrete-time impulse:

$$\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$$

- Perfectly well-behaved function, unlike its continuous-time counterpart
- Under scaling, these two functions behave very differently:
 δ(at) = 1/|a|δ(t)

•
$$\delta[an] = \delta[n]$$

Unit Step and Sinc Functions

•
$$u(t) = \left\{ egin{array}{cc} 1 & t > 0 \\ 0 & t < 0 \end{array}
ight.$$

• u(0) =undefined

• u(0) can be defined to be 0, 1, or any number

• Analog Sinc:
$$\frac{\sin(\pi \Omega)}{\pi \Omega}$$

CTFT of (CT) rectangular window; aperiodic

• Digital Sinc:
$$\frac{\sin(N \omega/2)}{\sin(\omega/2)}$$

DTFT of (DT) rectangular window; periodic

a.k.a Dirichlet kernel (diric function in MATLAB)

Convolution

- See Java applets at http://www.jhu.edu/~signals
- The "*" symbol is just notation

$$y(t) = x(t) * h(t)$$

$$y(ct) = c x(ct) * h(ct)$$
 (prove this!)

$$\neq x(ct) * h(ct)$$

- Convolution is a "smoothing" operation
- Apply the eigensignal $\exp(j\Omega t)$ to an LTI system with impulse response h(t)
- Output is $H(\Omega) \cdot \exp(j\Omega t)$ (reminiscent of $Ax = \lambda x$)
 - $H(\Omega)$ is the eigenvalue corresponding to $\exp(j\Omega t)$
 - This eigenvalue is nothing but the Fourier transform of h(t)

Discrete-Time Convolution

• The familiar one:

$$y[n] = \sum_{k=-\infty}^{\infty} x_1[k] x_2[n-k]$$

- Leave the first signal x₁[k] unchanged
- For *x*₂[*k*]:
 - Flip the signal: k becomes -k, giving $x_2[-k]$
 - Shift the *flipped* signal to the *right* by *n*
 - samples: k becomes k - n $x_2[-k] \rightarrow x_2[-(k - n)] = x_2[n - k]$
- Carry out sample-by-sample multiplication and sum the resulting sequence to get the output at time index n, i.e. y[n]

• Suppose both signals are periodic (with same period)

$$x_1[n + N] = x_1[n]$$

 $x_2[n + N] = x_2[n]$

Then $x_1[k] x_2[n_0 - k]$ will also be periodic (with period N)

- For each value of n₀ we get a different periodic signal (periodicity is N in all cases)
- |y[n]| will be either 0 or ∞

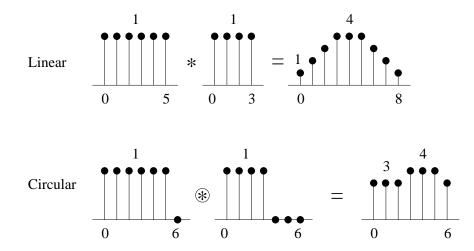
Circular Convolution

$$y[n] \stackrel{?}{=} \sum_{k=0}^{N-1} \tilde{x}_1[k] \ \tilde{x}_2[n-k]$$

- y[n] is periodic with period N
- n k can be replaced by $\langle n k \rangle_N$ (" $n k \mod N$ ")
- "Circular" Convolution: $\tilde{y}[n] = \tilde{x}_1[n] \circledast \tilde{x}_2[n]$

$$\tilde{y}[n] \stackrel{\text{def}}{=} \sum_{k=0}^{N-1} \tilde{x}_1[k] \tilde{x}_2[\langle n-k \rangle_N] \qquad n=0,1,\ldots,N-1$$

Examples



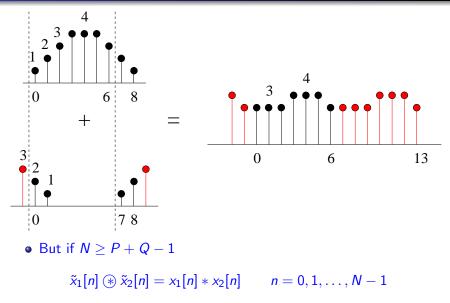
Relationship Between Linear and Circular Convolution

- If $x_1[n]$ has length P and $x_2[n]$ has length Q, then $x_1[n] * x_2[n]$ is P + Q - 1 long (e.g., 6 + 4 - 1 = 9)
- $N \ge \max(P, Q)$. In general

 $\tilde{x}_1[n] \circledast \tilde{x}_2[n] \neq x_1[n] * x_2[n]$ n = 0, 1, ..., N-1

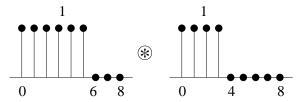
• Circular convolution can be thought of as repeating the result of linear convolution every *N* samples and adding the results (over one period)

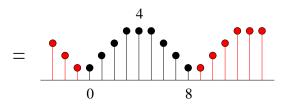
Example (cont'd)



Linear Convolution via Circular Convolution

 If N ≥ 9 one period of circular convolution will be equal to linear convolution.

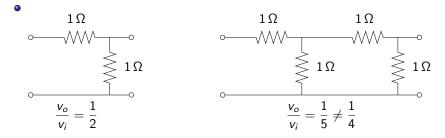




- Books differ in definition:
 - Oppenheim/Willsky:
 - Initial conditions are not accessible
 - If present, the system is defined to be quasi-linear
 - Lathi:
 - Initial conditions are accessible
 - ② Treated as separate sources ⇒ system is still linear Not consistent with his black-box definition

LTI Systems

- "Non-causal systems are not realizable"
 - True only if independent variable is time
 - In an image, "future" sample is either to the right or top of current pixel



• Beware of loading! If the two sections are connected through a voltage-follower, overall transfer function will be $\frac{1}{4}$

Eigensignals of LTI Systems

- $\exp(j\Omega_0 t)$ is an eigensignal
 - So is $\exp(j\omega_0 n)$
- Is $\cos(\Omega_0 t)$ an eigensignal?

• No!

- If a certain condition is satisfied, $\cos(\Omega_0 t)$ can be an eigensignal. Derive this condition!
- Is $\exp(j\Omega_0 t) u(t)$ an eigensignal?

• No!

LCCDE

- Networks containing only *R*, *L*, and *C* give rise to linear, constant-coefficient, differential equations
 - The DE coefficients are a function of *R*, *L*, and *C*, and network topology
 - If R, L, and C vary with time, the DE coefficients will also be a function of time \Rightarrow linear time-varying system
- Maths approach: complementary function, particular integral
 - Complementary function: natural modes only
 - Particular integral: response due to forcing function
- EE approach: zero-input response, zero-state response
 - Zero-input response: natural modes only
 - Zero-state response: natural modes + response due to forcing function

- Particular Integral:
 - Depends only on the applied input
 - Does not contain any unknown constants
 - Sometimes misleadingly called "steady-state" response
 - What if the input is a decaying exponential?
- Complementary Function
 - Independent of input, depends only on DE coefficients
 - CF of *n*-th order DE has *n* unknown constants ⇒ need *n* auxiliary conditions to evaluate them
 - Auxiliary conditions are called "initial conditions" only if they are specified at t = 0

- To solve DE, we need auxiliary conditions, which are typically of the form x(t₀), x'(t₀), x"(t₀), etc.
 - Typically, $t_0 = 0$ i.e., we are given initial conditions
- In circuit analysis, initial conditions are not given explicitly
- Instead, we are given capacitor voltages and inductor currents at $t = 0^-$
- From these we have to derive x(0), x'(0), etc. and then proceed to solve the DE

Response to Suddenly Applied Input

- Excitation is applied at t = 0. In general, the output will contain both natural response and forced response
- For stable systems, natural response will die out
 - Forced response also will die out if the input is not periodic
- Therefore, in certain applications, we should avoid the initial portion of the output
 - Coloured noise is obtained by passing white noise sequence through a (discrete-time) filter
 - The output can be considered stationary only if the initial transients are discarded

• Resonance occurs even when a decaying input is applied

• Input:
$$x(t) = e^{-at} u(t)$$

• Impulse response: $h(t) = e^{-at} u(t)$

• Output:
$$y(t) = t e^{-at} u(t)$$

Time	Periodic	Non-Periodic
Continuous	Fourier Series	CT Fourier Transform
Discrete	DT Fourier Series	DT Fourier Transform
	(closely related to DFT)	

- Notation for frequency:
 - Continous-time signal: F, Ω
 - Discrete-time signal: f, ω

Continuous-Time Fourier Series

• The FS coefficients *a_k* can be plotted in two ways:

(i) a_k vs. k (ii) a_k vs. Ω

- If the a_k's are plotted as a function of k, the plots will be identical for x(t) and x(ct)
 - $\bullet\,$ The actual frequency content cannot be determined if Ω_0 information is not available
- If the a_k 's are plotted as a function of Ω , the scaling of the frequency axis will be clearly seen
- These two signals have very different FS coefficients!

• In general, there will be infinite number of harmonics

- Number of harmonics is finite
 - Equals N, where N is the periodicity
- Gibbs phenomenon does not exist in DTFS, since summation is finite
 - When all N terms are present, error is zero
- Closely related to the Discrete-Fourier Transform (DFT)
 - Efficient algorithm, called the Fast-Fourier Transform (FFT) exists for computing DFT coefficients

The Discrete Fourier Transform

• Given x[n], n = 0, 1, ..., N - 1 we define the DFT as

$$X[k] \stackrel{\text{def}}{=} \sum_{n=0}^{N-1} x[n] e^{-j2\pi nk/N}$$

- X[k] = X[k + N], i.e., only N distinct values are present
- The inversion formula is

$$\tilde{\mathbf{x}}[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j2\pi nk/N}$$

•
$$\tilde{x}[n] = x[n]$$
 for $n = 0, 1, ..., N - 1$

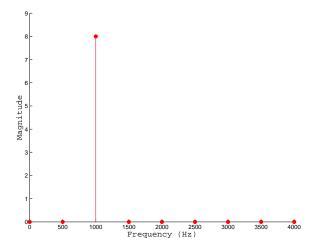
The Discrete Fourier Transform

- (non-periodic) $x[n] \xrightarrow{\text{DFT}} X[k] \xrightarrow{\text{IDFT}} \tilde{x}[n]$ (periodic)
- X[k] and the DTFS of the periodic signal whose fundamental period is x[n] are related by X[k] = N a_k
- The FFT algorithm is used for computing the DFT coefficients
 - FFT is just an *algorithm*. Wrong to call the result of the FFT as "FFT coefficients" or "FFT spectrum"
 - Wrong usage is well-entrenched in the literature
- We can zero-pad an *N*-point sequence with *L N* zeros and computed the *L*-point DFT:

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j2\pi nk/L}$$

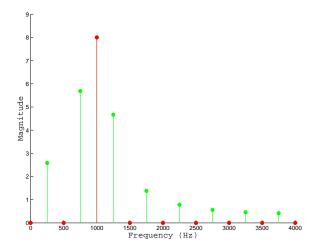
for k = 0, 1, ..., L - 1

Example



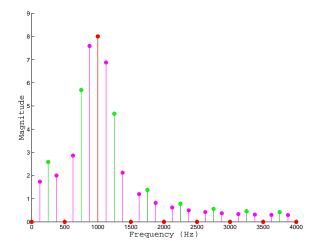
16-pt DFT of $x[n] = \sin(2\pi n/8)$, n = 0, 1, ..., 15

Example



32-pt DFT of $x[n] = \sin(2\pi n/8)$, $n = 0, 1, \dots, 15$

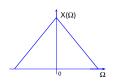
Example



64-pt DFT of $x[n] = \sin(2\pi n/8)$, $n = 0, 1, \dots, 15$

- The "+" and "-" signs in the forward and inverse transform definitions can be switched without changing anything fundamental
- X(Ω) and X(jΩ) are commonly used notations to denote the CTFT of x(t)
 - If you are given $X(\Omega)$ it is wrong to replace Ω by $j\Omega$ to get $X(j\Omega)$
 - X(jΩ) notation is useful only to show that it can be obtained from X(s) (Laplace transform) by replacing s by jΩ
- The importance of log scale for the *y*-axis should be emphasized when plotting magnitude frequency response

- Does x(t) contain DC component?
 - Note that $X(0) \neq 0$
- x(t) does not contain a DC component!



 $\bullet\,$ If it did, there would be an impulse at $\Omega=0$

DC component is defined by

DC component
$$= \lim_{T \to \infty} \frac{1}{T} \int_{-T}^{T} x(t) dt$$
$$= \lim_{T \to \infty} \frac{1}{T} X(0)$$
$$= 0$$

if X(0) is finite

$$\int_{-\infty}^{\infty} \frac{x}{x^2 + a^2} dx \stackrel{?}{=} 0$$

- "The integrand is an odd function and hence the integral is zero"
- Wrong! The above is true only if the limits are finite
- What is zero is the Cauchy Principal Value:

$$\lim_{T\to\infty}\int_{-T}^{T}\frac{x}{x^2+a^2}\,dx=0$$

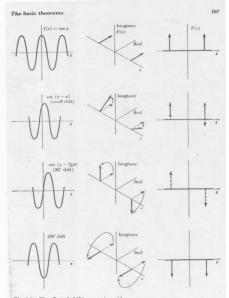
Upper and lower limits approach infinity at the same rate

• Weaker condition

Relationship Between CTFT and CTFS

- Consider a periodic signal x(t) with FS coefficients a_k
- The CTFT of *x*(*t*) is related to the FS coefficients:
 - $X(k \Omega_0) = 2\pi \cdot a_k \cdot \delta(\Omega k\Omega_0)$

- Plot of a_k vs. Ω is a simple stem plot
- Plot of X(Ω) vs. Ω contains impulses, whose strengths are as given above



R. Bracewell, *The Fourier Transform and Its Applications*, McGraw-Hill, 2nd edition, 1986, p. 107

Fig. 6.7 The effect of shifting a cosinusoid.

Discrete-Time Fourier Transform

• The DTFT of an aperiodic sequence x[n] is defined as

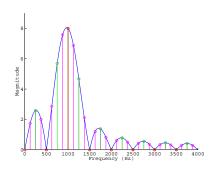
$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

- $X(\omega + 2\pi) = X(\omega)$ periodicity is 2π
- For a finite duration sequence, the limits go from 0 to N-1
- Notation for DTFT: $X(\omega)$ or $X(e^{j\omega})$
 - If you are given $X(\omega)$, it is wrong to replace ω by $e^{j\omega}$ to get $X(e^{j\omega})$
 - $X(e^{j\omega})$ is useful in relating the DTFT to X(z)
- x[n] can be thought of as the FS coefficients of the periodic signal X(ω)

DFT: Sampled-Version of the DTFT

 One can view the DFT coefficients X[k] as samples of the DTFT taken at the points ω = 2πk/N:

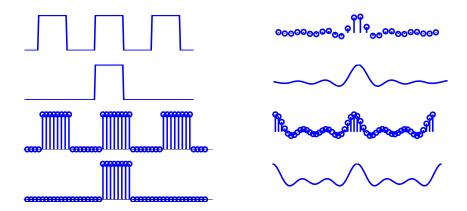
$$X[k] = X(\omega)|_{\omega = 2\pi k/N}$$
$$= \sum_{n=0}^{N-1} x[n] e^{-j(2\pi k/N)r}$$



Sampling Introduces Periodicity in the Time Domain!

- Sampling in the frequency domain leads to periodic repetition in the time domain
- Repetition period is N
- If we sample the DTFT at L (> N) points, the repetition period will be L (> N)
- If x[n] is of duration N, then X(ω) has to be sampled at least at N points to avoid aliasing in the time domain
- That is why $X[k] \xrightarrow{\text{IDFT}} \tilde{x}[n]$, and not x[n]

Signals and their Transforms



Periodic in one domain \implies discrete in the other domain Discrete in one domain $\stackrel{?}{\implies}$ periodic in the other domain ? Think about this!