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Scaling the Independent Axis

o Let y(t) = x(at + b)
@ Can be done in two ways
o Shift first and then scale:

w(t) = x(t + b)
y(t) = w(at)
= x(at + b)
e Scale first and then shift:

w(t) = x(at)

y(t) = w(t+ b/a) shift by b/a, not b
= x[a(t + b/a)]
= x(at + b)
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An Aspect of Scaling in Discrete-Time

Consider y[n] = x[n/2]

y[n] is defined for even values of n only

Wrong: y[odd] =0
Right: y[odd] = undefined
e Usual to set y[odd] =0

o but the above does not follow automatically from original
definition

For a discrete-time signal, y[a] = undefined if a ¢ Z
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Scaling Need Not Be Affine Only

e Consider x(t) =1for0 <t <1
e What is y(t) = x(e?)?

@ Mellin Transform:
Xu(s) = / x(t) " dt
0
= / x(e "t et dt

—00

Laplace transform of x(e™*)
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Periodic Signals

@ exp(jwon) is periodic with period N only if wo/2m = k/N
o exp(jQot) is periodic for any Qg with period T = 27/Qq
@ exp(jwon) and exp(—jwon) are two distinct exponentials

e Their frequency content is the “same” but one cannot be
expressed as a (complex) constant times the other

@ Harmonics in the discrete-time case may “oscillate more
rapidly” but their fundamental periods need not be different

o xk[n] = cos(2wnk/11): All x¢'s have the same period, i.e., 11

e This is not so for its continuous-time counterpart
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Sinusoid With Time-Varying Frequency

If the frequency of a sinusoid is constant, i.e., o, the signal is
x(t) = sin(Qot)

Consider time-varying frequency i.e, Q(t)

@ Is it correct to write x(t) = sin(Q(t) - t)?
o Wrong! i.e., in general, the above is not correct
t
o x(t) =sin(¢(t)), where ¢(t) = / Q(r)dr
—00
e MATLAB:

> phi = cumsum(omega) ;
> x = sin(phi);
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Impulse Response

@ An LTI system has to have its initial conditions set to zero
before exciting by an impulse to obtain h(t) (or h[n])

o Otherwise the impulse response won't be unique
@ All systems—both linear and non-linear have impulse response

o In the case of an LTI system, h completely describes the system

e For nonlinear systems h is not that useful
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The Impulse Function

@ An impulse is not a function in the usual sense

@ Definition:

i(t)=0 t#0 (1)
/ 5(t)dt = 1 (2)
e Wrong: 4(0) = o0
o Consider xa(t) = % for A <t <2A (where A >0)

@ In the limit
x(t) = A”TOXA(t)
= 4(t)
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The Impulse Function

@ xa(0) = 0 for all values of A
e Hence, in the limit, x(0) =0
@ To show x(t) =0 for t # 0:

e For any ty > 0, however small, there always exists a small
enough value of A such that xa(t) =0

Vito>0,3Apst VA <Ay, XA(to):O

e Hence, d(ty) = AlITOXA(tO) =0
o Since ty is arbitrary, 5(t) =0 for t # 0

@ A function defined by (1) and (2) is not unique

e J(t) should be called as a functional or generalized function
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The Impulse Function

@ Be extremely careful when dealing with delta functions

e J(t) is actually an abbreviation for a limiting operation

@ 0(t) is like a live wire!
o Inside an integral, they are well-behaved: safe to use them

e Bare §(t) can give erroneous results if not carefully used

@ Products or quotients of generalized functions not defined

o Consider §(t) = d(t) xo(t) = /OO o(r)o(t—7)dr

— 00

e At t = 0 is there a contradiction?

@ Because area is unity, the zero width implies infinite height

o Conventionally, height is proportional to area
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Difference Between Continuous- and

Discrete-Time Impulses

@ Discrete-time impulse:

1 n=20
0 n#0

d[n] =

o Perfectly well-behaved function, unlike its continuous-time
counterpart

o Under scaling, these two functions behave very differently:
o d(at) = | | o(t)
o dlan] = 4[n]
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Unit Step and Sinc Functions

1 t>0

0 t<o0
e u(0) = undefined

o u(0) can be defined to be 0, 1, or any number

o u(t) =

@ There are two types of sinc functions:
sin(m Q)
wQ
CTFT of (CT) rectangular window; aperiodic

sin(Nw/2)

sin(w/2)
DTFT of (DT) rectangular window; periodic

e Analog Sinc:

e Digital Sinc:

a.k.a Dirichlet kernel (diric function in MATLAB)
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Convolution

@ See Java applets at http://www. jhu.edu/~signals

@ The “x" symbol is just notation

y(t) = x(t) * h(t)
y(ct) = cx(ct) = h(ct) (prove this!)
# x(ct) * h(ct)

@ Convolution is a “smoothing” operation

@ Apply the eigensignal exp(jQ2t) to an LTI system with impulse
response h(t)

e Output is H(Q2) - exp(jQ2t)  (reminiscent of Ax = Ax)

o H(Q) is the eigenvalue corresponding to exp(jQt)

o This eigenvalue is nothing but the Fourier transform of h(t)
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Discrete-Time Convolution

@ The familiar one:

[e.9]

vl = 3" xalkl xeln— K]

k=—o0
@ Leave the first signal x;[k] unchanged
e For x;[k]:
o Flip the signal: k becomes —k, giving xa[—K]
e Shift the flipped signal to the right by n

samples:
k becomes k — n
xo[—k] = xo[—(k — n)] = xo[n — K]

o Carry out sample-by-sample multiplication and sum the
resulting sequence to get the output at time index n, i.e. y[n]
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What happens to periodic signals?

@ Suppose both signals are periodic (with same period)

xi[n+ N] = xi[n]
x2[n—i—N] = x2[n]

Then xq[k] x2[ng — k] will also be periodic (with period N)

@ For each value of ny we get a different periodic signal
(periodicity is N in all cases)

@ |y[n]| will be either 0 or co
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Circular Convolution

N-1

I £ 3 5[k %ln — K]

k=0

@ y[n] is periodic with period N
@ n— k can be replaced by (n— k)n (“n— k mod N")
e "“Circular” Convolution:  y[n] = X1[n] ® X2[n]

N—-1

> sk %l(n—kn]  n=01,... N-1
k=0

o]
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Examples
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0 6 0 6 0 6
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Relationship Between Linear and Circular Convolution

@ If x1[n] has length P and x2[n| has length Q, then
xi[n] * x2[n] is P+ Q — 1 long (e.g., 6 +4—1=09)

e N > max (P, Q). In general
x1[n] ® X2[n] # x1[n] * x2[n] n=0,1,...,N—-1
@ Circular convolution can be thought of as repeating the result

of linear convolution every N samples and adding the results
(over one period)
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Example (cont'd)

4

il

. -
I il
oo

e Butif N>P+Q -1

X1[n] @ X2[n] = x1[n] * x2[n] n=0,1,..., N-—1
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Linear Convolution via Circular Convolution

e If N > 9 one period of circular convolution will be equal to
linear convolution.

1 1
0 6 8 0 4 8
4

) hr;ﬂ h;rﬂ
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LTI Systems

@ Books differ in definition:
o Oppenheim/Willsky:

@ Initial conditions are not accessible
@ |If present, the system is defined to be quasi-linear

o Lathi:

@ Initial conditions are accessible
@ Treated as separate sources = system is still linear

Not consistent with his black-box definition
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LTI Systems

@ “Non-causal systems are not realizable”

e True only if independent variable is time

e In an image, “future” sample is either to the right or top of
current pixel

1Q 1Q 1Q
1Q 1Q 1Q
O 1 O O 1 1 O
Vo Vo
v 2 V573

e Beware of loading! If the two sections are connected through a

: . 1
voltage-follower, overall transfer function will be —
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Eigensignals of LTI Systems

e exp(jQot) is an eigensignal
o So is exp(jwon)
@ Is cos(Qpt) an eigensignal?

o Nol

o If a certain condition is satisfied, cos(€pt) can be an
eigensignal. Derive this condition!

o Is exp(jQot) u(t) an eigensignal?

e Nol
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@ Networks containing only R, L, and C give rise to linear,
constant-coefficient, differential equations

e The DE coefficients are a function of R, L, and C, and
network topology

o If R, L, and C vary with time, the DE coefficients will also be
a function of time = linear time-varying system
@ Maths approach: complementary function, particular integral

o Complementary function: natural modes only

e Particular integral: response due to forcing function

o EE approach: zero-input response, zero-state response

e Zero-input response: natural modes only

e Zero-state response: natural modes + response due to forcing
function
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@ Particular Integral:

e Depends only on the applied input
o Does not contain any unknown constants

o Sometimes misleadingly called “steady-state” response
e What if the input is a decaying exponential ?

e Complementary Function

e Independent of input, depends only on DE coefficients

o CF of n-th order DE has n unknown constants = need n
auxiliary conditions to evaluate them

e Auxiliary conditions are called “initial conditions” only if they
are specified at t =0
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@ To solve DE, we need auxiliary conditions, which are typically
of the form x(to), x'(to), x"(to), etc.

e Typically, to = 0 i.e., we are given initial conditions
@ In circuit analysis, initial conditions are not given explicitly

@ Instead, we are given capacitor voltages and inductor currents
att =0~

@ From these we have to derive x(0), x’(0), etc. and then
proceed to solve the DE
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Response to Suddenly Applied Input

o Excitation is applied at t = 0. In general, the output will
contain both natural response and forced response

@ For stable systems, natural response will die out

e Forced response also will die out if the input is not periodic

@ Therefore, in certain applications, we should avoid the initial
portion of the output

e Coloured noise is obtained by passing white noise sequence
through a (discrete-time) filter

e The output can be considered stationary only if the initial
transients are discarded
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Resonance

@ Resonance occurs even when a decaying input is applied

o Input: x(t) = e 2" u(t)

Impulse response: h(t) = e 2" u(t)

Output: y(t) = te 2" u(t)
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CTFT, DTFT, CTFS, DTFS

Time Periodic Non-Periodic
Continuous | Fourier Series CT Fourier Transform
Discrete DT Fourier Series DT Fourier Transform

(closely related to DFT)

@ Notation for frequency:

e Continous-time signal: F, Q

e Discrete-time signal: f, w
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Continuous-Time Fourier Series

@ The FS coefficients a; can be plotted in two ways:
(i) a vs. k (ii) ax vs. Q

o If the ay’'s are plotted as a function of k, the plots will be
identical for x(t) and x(ct)

e The actual frequency content cannot be determined if Qg
information is not available

o If the ay’'s are plotted as a function of €, the scaling of the

frequency axis will be clearly seen \/

@ These two signals have very

different FS coefficients! \/\

@ In general, there will be infinite number of harmonics
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Discrete-Time Fourier Series

@ Number of harmonics is finite

e Equals N, where N is the periodicity

@ Gibbs phenomenon does not exist in DTFS, since summation
is finite

o When all N terms are present, error is zero

@ Closely related to the Discrete-Fourier Transform (DFT)

o Efficient algorithm, called the Fast-Fourier Transform (FFT)
exists for computing DFT coefficients
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The Discrete Fourier Transform

e Given x[n], n=0,1,..., N — 1 we define the DFT as

N-1
X[k = x[n] e 2mnk/N
n=0
e X[k] = X[k + N], i.e., only N distinct values are present
@ The inversion formula is
N—1

> 1 j27n
XM:Nmeka
k=0

e X[n] =x[n] forn=0,1,...,.N—1
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The Discrete Fourier Transform

@ (non-periodic) x[n] gait) X[k] IDFT X[n] (periodic)

e X[k] and the DTFS of the periodic signal whose fundamental
period is x[n] are related by X[k] = N ai

@ The FFT algorithm is used for computing the DFT coefficients

e FFT is just an algorithm. Wrong to call the result of the FFT
as “FFT coefficients” or “FFT spectrum”

e Wrong usage is well-entrenched in the literature

@ We can zero-pad an N-point sequence with L — N zeros and
computed the L-point DFT:

N-1

X[kl = > x[n] e /2mk/t

n=0
for k=0,1,...,L—1
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Magni t ude

° ° * ° . ° °
500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

16-pt DFT of x[n] =sin(27wn/8), n=0,1,...,15
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Magni t ude

° ° ° ° ° ° °
500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

32-pt DFT of x[n] =sin(27n/8), n=10,1,...,15
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Magni t ude
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Frequency (Hz)

64-pt DFT of x[n] =sin(27n/8), n=10,1,...,15
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Continuous-Time Fourier Transform

@ The “+" and “—" signs in the forward and inverse transform
definitions can be switched without changing anything
fundamental

e X(€Q) and X(jQ2) are commonly used notations to denote the
CTFT of x(t)

o If you are given X(Q) it is wrong to replace Q by jQ to get
X(jQ)

e X(jf2) notation is useful only to show that it can be obtained
from X(s) (Laplace transform) by replacing s by jQ

@ The importance of log scale for the y-axis should be
emphasized when plotting magnitude frequency response
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Continuous-Time Fourier Transform

@ Does x(t) contain DC component? @

o Note that X(0) #0

@ x(t) does not contain a DC component! s 3

o If it did, there would be an impulse at 2 =0

@ DC component is defined by

T
DC component = Tlij"nOO7 _Tx(t) dt
— i 1 %
T (0)
=0

if X(0) is finite
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Continuous-Time Fourier Transform

[e.e]
/ T =0
Ceo X2+ a

@ "“The integrand is an odd function and hence the integral is
zero"

@ Wrong! The above is true only if the limits are finite

@ What is zero is the Cauchy Principal Value:

T
) X
T—oo J_T X+ a
Upper and lower limits approach infinity at the same rate

o Weaker condition
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Relationship Between CTFT and CTFS

e Consider a periodic signal x(t) with FS coefficients aj

The CTFT of x(t) is related to the FS coefficients:

o X(on) = 27r'ak 5(9— on)
o X(2) =0 for Q # kQy

@ Plot of ax vs. Q is a simple stem plot

Plot of X() vs. Q contains impulses, whose strengths are as
given above
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Continuous-Time Fourier Transform

The basic theoren

m £ e 1]
R. Bracewell, The Fourier

[- , Transform and Its Appli-
|
>

; cations, McGraw-Hill, 2nd
- edition, 1986, p. 107

[
Fa Nl
E/ ; |
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Discrete-Time Fourier Transform

@ The DTFT of an aperiodic sequence x[n] is defined as

o0

X(w)= > x[n] e "

n=—o00
o X(w+27m)=X(w) periodicity is 27
e For a finite duration sequence, the limits go from 0 to N — 1

o Notation for DTFT: X(w) or X(e/*)

o If you are given X(w), it is wrong to replace w by e to get
X(ev)
o X(&/“) is useful in relating the DTFT to X(z)

@ x[n] can be thought of as the FS coefficients of the periodic
signal X(w)
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DFT: Sampled-Version of the DTFT

@ One can view the DFT coefficients X[k] as samples of the
DTFT taken at the points w = 2wk /N:

X[kl = X(@)l=2mr/n

N—-1
= Z X[n] e_j(27rk/N)n
n=0

o

Magni t ude
S

00 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

C.S. Ramalingam (EE Dept., IIT Madras) Networks and Systems 43 / 45



Sampling Introduces Periodicity in the Time Domain!

@ Sampling in the frequency domain leads to periodic repetition
in the time domain

@ Repetition period is N

o If we sample the DTFT at L (> N) points, the repetition
period will be L (> N)

e If x[n] is of duration N, then X(w) has to be sampled at least
at N points to avoid aliasing in the time domain

e That is why X[K] oy %[n], and not x[n]
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Signals and their Transforms
J L oonOooo%Q"ﬁ‘PMWee

Periodic in one domain — discrete in the other domain

Discrete in one domain = periodic in the other domain ?
Think about this!
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