







## Analysis of Blocking in Multi-Stage Switches

- Difficult to do queueing analysis with Poisson call arrival model
- a middle stage can set up some calls but not others
$\Rightarrow$ may not be possible to set up - connection for one call arrival on one line but may be possible for an arrival on another line


## Lee Graph Approximation for 3-Stage Switch

- Probability of line utilisation $=p$ ( $\equiv$ traffic in Erlangs)
- assume each link between first stage and middle stage is utilised independently with probability $\mathrm{p}^{\prime}=\mathrm{np} / \mathrm{k}$
- utilisation of links from middle stage to third stage, and of third stage port outputs, are likewise $p$ and $p$ respectively
- queueing analysis for case when server is "idle" when some customer arrive (and sends them away), but not for some others, is very difficult
$\Rightarrow$ simplified approximate analysis
- probability of a particular path from first to third stage being free

$$
=\left(1-p^{\prime}\right)^{2} \text { : both links in series must be free }
$$

- probability of no path from first to third stage being free $=\left[1-\left(1-p^{\prime}\right)^{2}\right]^{\mathrm{k}}$ : all k parallel link-pairs must be busy $=\mathrm{P}_{\mathrm{B}}$

Dr Bhaskar
TNS/Sel2


