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On Communication Over Unknown Sparse
Frequency-Selective Block-Fading Channels

Arun Pachai Kannu and Philip Schniter, Senior Member, IEEE

Abstract—This paper considers the problem of reliable com-
munication over discrete-time channels whose impulse responses
have length and exactly non-zero coefficients, and whose
support and coefficients remain fixed over blocks of
channel uses but change independently from block to block. Here,
it is assumed that the channel’s support and coefficient realizations
are both unknown, although their statistics are known. Assuming
Gaussian non-zero-coefficients and noise, and focusing on the
high-SNR regime, it is first shown that the ergodic noncoherent
channel capacity has pre-log factor � for any . It is then
shown that, to communicate with arbitrarily small error proba-
bility at rates in accordance with the capacity pre-log factor, it
suffices to use pilot-aided orthogonal frequency-division multi-
plexing (OFDM) with pilots per fading block, in conjunction
with an appropriate noncoherent decoder. Since the achievability
result is proven using a noncoherent decoder whose complexity
grows exponentially in the number of fading blocks , a simpler
decoder, based on � � pilots, is also proposed. Its -achievable
rate is shown to have pre-log factor equal to � �� with the
previously considered channel, while its achievable rate is shown to
have pre-log factor � �� when the support of the block-fading
channel remains fixed over time.

Index Terms—Bayes model averaging, compressed sensing,
fading channels, noncoherent capacity, noncoherent communica-
tion, sparse channels.

I. INTRODUCTION

W E consider the problem of communicating reliably over
an unknown sparse single-input single-output (SISO)

frequency-selective block-fading channel that is described by
the discrete-time complex-baseband input/output model

(1)

where is the channel-use index,
in the fading-block index, is the trans-

mitted signal, is the received signal, and is
additive white Gaussian noise (AWGN). Throughout, it will be
assumed that the channel length obeys . The channel
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is “sparse” in the sense that exactly of the channel taps
are non-zero during each fading block , where

the indices of these non-zero taps, collected in the set ,
can change with fading block . We will refer to this channel
as “strictly sparse” when , and as “non-sparse” when

. Furthermore, the channel is “unknown” in the sense
that the transmitter and receiver do not know the channel re-
alizations, although they do know the channel statistics, which
are described as follows.

Recalling that there are distinct -element sub-
sets of , we write this collection of subsets as

. We then assume that the channel support is drawn
so that the event occurs with prior probability ,
where is drawn independently of for . We
also assume that the vector containing the non-zero
taps has the circular Gaussian distribu-
tion1 , with independent of for

. Finally, we assume that with
independent of for . We im-

pose the power constraint , so
that the signal-to-noise ratio (SNR) becomes in (1).

Our channel model is motivated by the results of recent
channel-sounding experiments (e.g., [1]–[3]) which suggest
that, as the communication bandwidth increases, the channel
taps become sparse in that the majority of them
are “below the noise floor” [4, p. 2]. The same behavior can
be seen to manifest [5] in channel taps sampled from IEEE
802.15.4a [6] “ultra wideband” propagation-path-based con-
tinuous-time impulse responses after square-root-raised-cosine
pulse shaping.2 Clearly, the fact that we use exactly zero-valued
taps makes our channel model an approximation, albeit a
standard one (see, e.g., [4, p. 5]). In fact, our channel model
ignores many additional features3 of real-world channels in
order to facilitate an information-theoretic analysis. In addition,
it should be emphasized that we assume a channel with exactly

non-zero taps, as opposed to at most non-zero taps, and a

1For ease of presentation, we assume that all non-zero channel taps have equal
variance. All of our results except Lemma 1 and Corollary 1 remain valid for any
positive definite covariance matrix of ��� , and both Lemma 1 and Corollary 1
can be straightforwardly extended to the general case.

2Say that � ��� � � � ��� � � � is a continuous-time impulse
response based on � propagation paths. When the pulse shape � ��� is used at
the transmitter and � ��� is used at the receiver, and the baud interval is 	 , the
channel taps become � �
� � �� �� � � ��
	 �, where � denotes convolu-
tion. For a detailed derivation, see, e.g., [5].

3For example, in practice, the active taps �� �
�� and additive noise
might be non-Gaussian and/or correlated within a fading block; the active taps,
support, and noise might be statistically dependent and/or non-stationary across
fading blocks; and the linear channel assumption might break down due to
power-amplifier non-linearities.
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TABLE I
REVIEW OF COMMONLY USED VARIABLES, WHERE ��� DENOTES DEPENDENCE ON �TH FADING BLOCK

decoder that knows the channel statistics perfectly (including
, , , and ).

Notation: Above and in the sequel, we use lowercase bold-
face quantities to denote vectors, uppercase boldface quanti-
ties to denote matrices, and we use to denote the identity
matrix. Also, we use to denote transpose, conjugate,

conjugate transpose, pseudo-inverse, and the di-
agonal matrix created from vector . Furthermore, element-
wise multiplication, , and for
Hermitian positive semi-definite . Throughout, “ ” denotes
the base-2 logarithm. For random variables, we use to
denote expectation, auto-covariance, entropy, and

the mutual information between and . Finally, we write
for the cir-

cular Gaussian pdf with mean and positive definite co-
variance matrix , and we write to indicate that
random vector has this pdf. In Table I we list commonly used
quantities, along with their definitions.

A. Preliminaries

Throughout the paper, we assume that the prefix sam-
ples are chosen as a cyclic prefix (CP),
i.e., for .

In this case, we can write the th block observations
as

(2)

where ,
, and

is the circulant matrix with first column
. An equivalent model results4 from

converting all signals into the frequency domain:

(3)

where , , ,
, and where denotes the -dimensional unitary

discrete Fourier transform (DFT) matrix. Noting that
, the model (3) establishes that, when viewed in the

frequency domain, the frequency-selective channel (2) reduces
to a set of non-interfering scalar subchannels with average5

4Model (3) follows directly from (2) using the fact that ��� �
��� �������� ���� .

5The average subchannel SNR of � follows from the fact that
������ � � � �.
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subchannel SNR . Although the subchannels are non-inter-
fering, the subchannel gains within the th block (i.e., the el-
ements of the vector ) are correlated in a way that depends
on the channel support , as will be detailed in the sequel. For
capacity analysis, we assume that the number of fading blocks

is arbitrarily large, and we ignore overhead due to the prefix,
consistent with [7], [8]. Some implications of this choice are
discussed below.

B. Existing Results on Noncoherent Channel Capacity

Much is known about the fundamental limits of reliable
communication over the unknown non-sparse channel in the
high-SNR regime (i.e., ). For example, assuming that
communication occurs over an arbitrarily large number of
fading blocks , the ergodic capacity , in bits per
channel use, obeys [7], [8]

(4)

In other words, the “multiplexing gain” [9] of the non-sparse
channel (i.e., the pre-log factor in its ergodic capacity expres-
sion) equals . Furthermore, it is possible to achieve
this multiplexing gain using pilot aided transmission (PAT),
which uses signal-space dimensions of each fading block
to transmit a known pilot signal and the remaining
dimensions to transmit the data [7], [8]. In the sequel, we use
the term “spectrally efficient” to describe a communication
scheme whose achievable rate expression has a pre-log factor
matching that of the channel’s ergodic capacity expression (i.e.,
the channel’s multiplexing gain).

C. Our Contributions

In this paper, we study the fundamental limits of reliable
communication over the unknown sparse channel (1) in the
high-SNR regime. First, we show that the ergodic capacity

obeys

(5)

for any sparsity such that . Comparing
(5) to (4), it is interesting to notice that the channel’s multi-
plexing gain depends on the number of non-zero taps and
not the channel length , even though the locations of these
taps are unknown. Second, we show
that the sparse frequency-selective block-fading channel admits
spectrally efficient PAT, just as its non-sparse variant does. In
other words, for an -sparse channel, one can construct a PAT
scheme that uses only pilots per fading block to attain an
achievable rate that grows with SNR at the maximum pos-
sible rate, regardless of the channel length . We establish this
result constructively, by specifying a particular OFDM-based
PAT scheme and a corresponding decoder, which—as we will
see—can be interpreted as a joint channel-support/data decoder.
Because our decoder is computationally demanding (e.g., it re-
quires the evaluation of up to support
hypotheses), we also consider a much simpler PAT decoder and

find that its -achievable-rate has a pre-log factor of ,
for any error-rate .

In stating the above pre-log factors, we emphasize that the
overhead due to the OFDM prefix has been ignored (for con-
sistency with [7], [8]). If, instead, the overhead was included,
then the pre-log factor of the non-sparse channel’s ergodic ca-
pacity (4) would read as , and that for the sparse channel
(5) would read as . Although the increase in pre-log
factor resulting from channel sparsity, i.e., , is not as
pronounced as when the prefix is ignored, i.e., , the two
values are very similar when , which is the typical
case in practice.

D. Relation to Compressed Channel Sensing

The problem of communicating over sparse channels has
recently gained a significant amount of attention through the
framework of compressed channel sensing (CCS), as seen by
the recent overview article [4] and the long list of papers cited
therein. In CCS, it is assumed that pilots are embedded during
transmission, and that channel estimation is performed using
pilot-only observations (i.e., without the aid or interference
from data). CCS then exploits channel sparsity to reduce the
number of pilots needed for accurate channel estimation, in the
hopes of increasing spectral efficiency. As an example, for the

-subcarrier OFDM scenario described by (3), CCS results
[4] show that, when pilot subcarriers
are chosen uniformly at random, any deterministic -length
channel with sparsity at most yields a CCS estimate

such that

(6)
where is a constant. The success probability in (6) grows with

and , but not with SNR (see [4] for details). Further-
more, in the special case that the observations are noise-free,
it is known that exactly data-free observations are both nec-
essary and sufficient for perfect recovery [10].

In comparing the CCS approach to the approach that we
have taken, we notice that the two are fundamentally different.
For example, CCS yields guarantees on the performance of
channel estimation, but not on the rate of reliable communica-
tion. Also, CCS attacks the channel estimation problem using
a “non-random parameter estimation” framework, whereas
we approach channel estimation using a “random parameter
estimation” framework, since we consider ergodic capacity and
achievable rate, and are thus interested in average channel esti-
mation performance. A potential weakness to the CCS approach
is that it uses only pilot observations for channel estimation,
even though the data-dependent observations contain valuable
information about the unknown channel; our work (and related
empirical results in [5], [11], [12]) suggests that significant
gains can result from the use of joint channel-estimation and
data decoding. Strengths of CCS include the facts that i) CCS
focuses on reconstruction techniques that have polynomial
complexity in and ; ii) CCS focuses on reconstruction
techniques that do not need to know the distributions of the
signal and noise; iii) CCS guarantees like (6), which hold for
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any sparsity , can be further extended to cover the
case of approximately sparse (i.e., “compressible”) signals [4,
p. 5].

II. NONCOHERENT CAPACITY

In this section, we characterize the ergodic noncoherent ca-
pacity of the sparse frequency-selective block-fading channel
described in Section I. We focus on the high-SNR regime, i.e.,

.

Theorem 1: The ergodic noncoherent capacity of the sparse
frequency-selective block-fading channel, , in bits per
channel use, obeys for sparsity and
block length , whether or not the channel support realization

is known apriori.
Proof: Using the chain rule for mutual information [13], it

follows straightforwardly that

(7)

where denotes the mutual information between random
vectors and and where denotes the conditional mu-
tual information between and conditioned on . Then, since

, we can bound the first term in (7) as follows:

(8)

where denotes the entropy of . Because
, (7)–(8) yield the upper

bound .
Similarly, since , (7) implies that

and,
since , we also
have that . In
summary, we have that

(9)

Given knowledge of the support , the frequency-domain
vector is zero-mean Gaussian with a rank- covariance ma-
trix. Thus, [8, Theorem 1] implies that , the pre-log factor
of ergodic noncoherent capacity under knowledge of the sup-
port equals , i.e., . Since

(10)

where and where,
due to (9), differs from by
a bounded -invariant constant , the ergodic noncoherent
capacity

(11)

must also obey .

It is interesting to notice that the channel multiplexing gain
equals whether or not the support is apriori known.

III. PILOT AIDED TRANSMISSION AND DECODING

For the non-sparse frequency-selective block-fading channel,
it has been shown [7] that pilot aided transmission (PAT) is spec-
trally efficient as defined in Section I, i.e., that it is possible to
design a PAT scheme for which the pre-log factor in its achiev-
able rate expression coincides with the pre-log factor in the non-
coherent ergodic capacity expression (i.e., the channel multi-
plexing gain). The question remains as to whether PAT is spec-
trally efficient for sparse channels as well.

Interestingly, Theorem 1 showed that the multiplexing gain
of the sparse channel does not change with knowledge of
the channel support . Realizing6 that an -sparse channel
with known support has the same capacity characteristics
as a non-sparse length- channel, and recalling that PAT is
spectrally efficient for non-sparse channels, one might suspect
that PAT is spectrally efficient for sparse channels. As we
shall see, this is indeed the case. To prove this, we construct
an appropriate PAT scheme and a corresponding decoder, as
detailed in Sections III-A–III-C.

A. PAT Definition

For the transmission scheme outlined in Section I-A, we con-
sider a PAT scheme in which the elements in the frequency-do-
main transmission vector can be partitioned into a
pilot vector , created from , and a
data vector , created from .
Here, we use to denote the pilot subcar-
rier indices and to denote the corresponding data subcarrier
indices, where . Notice that exactly

signal-space dimensions (per fading block) have been allo-
cated to pilots, i.e., . For simplicity, we assume that
the pilot locations and pilot values do not change with the
fading block , and that the pilot values are constant modulus,
i.e., . By definition, the pilot quantities and
are known apriori to the decoder.

In the parallel subchannel model (3), we partition both
and in the same way as we did ,

yielding

(12)

(13)

where is a selection matrix constructed from rows of the
identity matrix, and is constructed similarly from

rows of the identity matrix. Another way to write and
, which will be useful in the sequel, is

(14)

(15)

where is formed from the non-zero elements of ,
is formed from rows and columns of the DFT

6The equivalence in pre-log factor between�-sparse channel with known sup-
port and a non-sparse length-� channel follows directly from [8, Theorem 1] and
the fact that, in both cases, ��� is zero-mean Gaussian with rank-� covariance
matrix.
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matrix , and is formed from rows and columns
of . Notice that, because is not apriori known to the de-
coder, neither are or .

To achieve an arbitrarily small probability of decoding error,
we construct codewords that span blocks, where is arbi-
trarily large. Thus, using to denote our code-
book, we partition each codeword into data vectors,
i.e., , for use in our PAT scheme. The
codewords are generated independently from a Gaussian dis-
tribution such that the has positive definite covariance ma-

trix for all , and such that is independent of for
. Denoting the number of codewords in the codebook by

, the average data rate is given by .

B. Optimal Decoding for PAT

The reader may naturally wonder: what is the optimal decoder
for the above PAT scheme in the case of the sparse channel de-
scribed in Section I, and how does it compare to optimal de-
coding in the non-sparse case? To answer these questions, we
detail the optimal decoder for the sparse and non-sparse cases
below. In the sequel, we use to denote the ma-
trix formed from columns of the DFT matrix , we use

to denote the matrix formed from rows of
, and we use to denote the matrix formed

from rows of .

Lemma 1: The maximum likelihood decoder for PAT over the
-sparse -length frequency-selective -block-fading channel

takes the form of (16) at the bottom of the page, where

is the pilot-aided channel-support pos-

terior, where is the -conditional pilot-aided MMSE es-
timate of and is its error covariance, which take the
form

(17)

(18)

and where denotes the MMSE estimate of con-

ditioned on the data hypothesis and based on the pilot-aided
channel statistics (17)–(18), i.e., see (19) at the bottom of the
page.

Proof: See Appendix A.

Paraphrasing Lemma 1, the optimal decoder (16) for
sparse-channel PAT first uses pilots to compute support
posteriors and support-conditional channel poste-

riors7 for each fading block . Then, it averages
over the support hypotheses to obtain a joint data-channel
decoding metric for each fading block . Finally, it searches for
the codeword that maximizes the product of the decoding met-
rics (over all fading blocks ). We note that optimal decoding is
an example of Bayes model averaging [14] and differs markedly
from the decoding approach implied in the compressed channel
sensing (CCS) framework [4], which aims to compute a single

sparse channel estimate for later use in
data decoding. We also note that ML decoding complexity
is8 .

For illustrative purposes, we compare the optimal decoder
for a sparse channel (as specified in Lemma 1 above) to the
optimal decoder for a non-sparse channel, as detailed below in
Corollary 1.

Corollary 1: The maximum likelihood decoder for PAT over
the non-sparse -length frequency-selective -block-fading
channel takes the form

(20)

where is the pilot-aided MMSE estimate of and
is its error covariance, which take the form

(21)

(22)

7Note that ���� � can be precomputed since they do not depend on the
observations.

8The term after the sum in (16) must be computed for every triple ��� �� ��� �,
where the complexity of each computation is��� � due to the matrix inversion
in (19).

(16)

(19)
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and where denotes the MMSE estimate of con-
ditioned on the data hypothesis and based on the pilot-aided
channel statistics (21)–(22), i.e., see equation (23) at the bottom
of the page.

To paraphrase Corollary 1, the optimal decoder (16) for
non-sparse-channel PAT computes a single pilot-aided MMSE

channel estimate , which is then used to construct a joint
data-channel decoding metric, for each fading block . Finally,
it searches for the codeword that minimizes the sum of the
decoding metrics (over ). It can be seen that optimal decoding
in the sparse case differs from that in the non-sparse cases by
the need to compute, at each fading block , the support poste-
riors and the corresponding support-conditional tap

estimates and then average the decoding metrics
over the support hypotheses.

C. Decoupled Decoding of PAT

For both sparse and non-sparse channels, the optimal decoder
of PAT, as detailed in Section III-B, takes the form of a joint-
channel/data decoder. In practice, for reasons of simplicity, de-
coding is often decoupled into two stages: i) pilot-aided channel
estimation and ii) coherent data-decoding based on the channel
estimate. We now detail a decoupled decoder for the sparse
channel of Section I and the PAT scheme of Section III that,
while suboptimal, performs well enough to yield spectrally ef-
ficient communication when provided with the correct value of
the channel support . In the sequel, we will refer to the case of
known as the support-genie case. Later, in Sections IV-A and
IV-B, we will propose schemes to reliably infer the support .

For our decoupled decoder, pilot-aided channel estimation
is accomplished in a support-hypothesized manner. More pre-
cisely, we compute—at each fading block —the pilot-aided

MMSE estimate of the non-zero taps under
channel-support hypothesis . To do this, we set

for the specified by (17).

Note that is a linear estimate due to the fact that
becomes Gaussian when conditioned on a particular support.
In contrast, the (support-unconditional) pilot-aided MMSE
estimate of is in general non-linear. The support-hypoth-

esized channel estimates and their covariances
are then used in coherent data decoding. (Note

that , where is given by
(18)). For coherent data decoding, we employ the weighted
minimum-distance (WMD) decoder, defined [15] as

(24)

where is a weighting matrix and . Writing
the observation as

(25)

the standard [15] choice for is a whitening matrix for the

“effective noise” . We note that the covariance

(and thus ) depends on , , and .
For the achievable rate of the decoupled-decoder PAT system

to grow logarithmically with , the effective noise must
satisfy certain properties. Towards this aim, we establish that,
with pilot tones, the support hypothesized channel esti-
mation error variance decays at the rate of as , if and
only if the support hypothesis is correct.

Lemma 2: Say that is prime. Then, for any pilot pattern
such that , there exists a constant such that the channel

estimation error obeys for all if

and only if , i.e., is the true channel-support of
th block.

Proof: We begin by recalling that, under support hy-
pothesis , the frequency-domain channel coeffi-
cients are related to the non-zero channel taps via

, where contains columns of the uni-

tary DFT matrix . Thus, , the -conditional pilot-aided

MMSE estimate of is related to , the -conditional

MMSE pilot-aided estimate of , via .
Because the columns of are orthonormal, the estimation
error obeys

(26)

Plugging (14) into (17), the estimation error

becomes

(27)

(23)
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Then, since is independent of ,

(28)

We now make a few observations about and .
When is prime, the Chebotarev theorem [16], [17] guaran-
tees that any square submatrix of the -DFT matrix will be
full rank. Hence, any tall submatrix of will also be full rank.
Then, because , it follows that will be full
rank for all , as will . Furthermore, when , it

follows that .
To proceed, we use the singular value decomposition

, where is a full-rank diagonal matrix and
where and are both unitary. Then

(29)

where is full-rank diagonal with non-zero elements
, using to denote the singular value in

.
In the case that , we have , and so

(30)

(31)

(32)

(33)

(34)

Thus, we have the upper bound

with .

For the case , we have , and so we

can use the previously defined SVD quantities to write

, where is some non-zero matrix.
It then follows that

(35)

(36)

(37)

As established above, as . Since
is diagonal with elements , the second

term in (37) also vanishes as . The third term in (37),
however, converges to the quantity
as , where denotes pseudo-inverse. Now,
since and are distinct full rank matrices with

, it follows that
and hence . So there does not exist

such that for all .

Corollary 2: Lemma 2, and several other results in the paper,
are stated under prime , arbitrary , and . The re-
quirement that is prime can be relaxed in exchange for the
following restrictions on and .

1) The set does not form a group with respect to
modulo- addition, nor a coset of a subgroup of

under modulo- addition.
2) The channel length obeys .

Proof: Throughout the paper, the prime- property is used
only to guarantee that certain square submatrices of the -DFT
matrix remain full rank. When forming these submatrices,
we use row indices from (where
and ) and column indices from (where

and ). In the case that is
prime, the Chebotarev theorem [16], [17] guarantees that our
square submatrix will be full rank, as discussed in the proof
of Lemma 2. However, even when is not prime, our square
submatrix will be full rank whenever both and do not
form groups with respect to modulo- addition, nor cosets of
subgroups of w.r.t modulo- addition [10,
p.491]. These conditions on and are ensured by the two
conditions stated in the corollary.

For a given communication scheme, we say that a rate (in
bits per channel use) is achievable if the probability of decoding
error can be made arbitrarily small at that rate. Now, using the
bound on the estimation error variance from Lemma 2, we es-
tablish that when the true channel support is apriori known at
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receiver (i.e., the support-genie case), the achievable rates sat-
isfy , where denotes the number
of pilot tones.

Lemma 3: Say that is prime, and that the true channel
support is known apriori at the receiver for each fading block.
Then, for any pilot pattern such that , the achiev-
able rate of the support-hypothesized estimator-decoder satis-
fies .

Proof: The achievable rate of WMD decoding under
imperfect channel state information (CSI) and Gaussian coding
was studied in [15], where the rate expressions were obtained
under certain restrictions on the statistical properties of the
imperfect CSI. In the support-genie case, our support-hy-
pothesized channel estimator satisfies all of the standard
requirements in [15] except for time-invariance, since the
support varies over the fading blocks. However, our model
does satisfy the alternative ergodic condition in [15]. To see
this, we need to verify that, for any function , we have

,
using to denote the index of the true support during the

th fading block, and . Let us

define for . Then it
follows that,

(38)

(39)

(40)

(41)

Hence [15, Theorem 2] can be applied to find the achievable
rates for our decoupled decoding scheme under the support
genie. In particular, by rewriting the data observations from
(25) as

(42)

for effective noise , it
follows [15] that the achievable rate (in bits per channel use)
is shown in (43) at the bottom of the page, where

for defined in (25). Similar to (40)–(41), we can

rewrite (43) as (44) at the bottom of the page. When ,
Lemma 2 specifies that there exists some constant such that

for all . In this case, the eigenvalues of
will be positive and bounded from above for all , and

thus eigenvalues of will be positive and bounded from
below for all . Thus, using a standard high-SNR analysis (see,
e.g., [18] for details), for any , from
which the stated result of this lemma follows.

In [7], it has been shown that, for -length non-sparse
channels, PAT can be designed to achieve data rates that satisfy

, for . Our Lemma 3 can be
interpreted as an extension of the result from [7] to -length

-sparse channels with known support.

IV. CHANNEL-SUPPORT DECODING

In summary, the PAT scheme of Section III-A and the de-
coupled decoder of Section III-C will suffice for spectral effi-
cient communication over the sparse frequency-selective block-
fading channel if we can establish a reliable means of deter-
mining the correct support (i.e., such that ). In this
section, we consider schemes for reliably decoding the channel
support of each block.

A. Data-Aided Support Decoding

In this section, we show that, with prime , the pilot aided
transmission (PAT) scheme defined in Section III-A is spec-
trally efficient for the sparse frequency-selective block-fading
channel. In other words, when the -length channel is -sparse,
it is sufficient to sacrifice only signal-space dimensions to
maintain an achievable rate that grows at the same rate as
channel capacity in the high-SNR regime. To show this, we
construct a so-called data-aided support decoder (DASD) that
leverages certain error-detecting capabilities in the codebook

. We first describe the error detection mechanism and later
propose a procedure for channel support decoding.

In our DASD scheme, we attach error detection parity bits,
which we refer to as cyclic redundancy check (CRC) bits, to
the information bits prior to the channel-coding operation. At-
taching parity bits to the information bits is a commonly used

(43)

(44)
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mechanism to identify the decoding errors at the receiver [19].
Let us denote the information bit rate as , and the CRC bit rate
as , both in units of bits-per-channel-use. Then, over
channel uses, we use a total9 of bits for information and a
total of bits for CRC. Let denote the function which
specifies the parity bits for every set of information
bits. Specifically, is a “bin-
ning function” mapping information bits to corresponding CRC
bits, so that, for the information message , the corresponding
CRC bits are . Such is sometimes referred to as the
“auxiliary check message.” The channel-encoder then maps the
“composite message” , containing bits, to one
of the codewords in the codebook . (See Section III-A
for details on the codebook.) For clarity, we use “message” when
referring to channel-coder inputs, and “codeword” when refer-
ring to channel-coder outputs.

The DASD support decoding procedure is defined as follows.
For each hypothesis of support index

,

1) Compute conditional channel estimates

and using (17)–(18) with

and .
2) Compute the WMD codeword estimate according to

(24).
3) From the codeword , recover the corresponding com-

posite message .
4) Perform error detection on , i.e., check if

.
5) If no error is detected or there are no more hypotheses to

consider, stop and declare the decoded message as , else
continue with the next hypothesis .

The asymptotic performance of DASD is characterized by the
following theorem.

Theorem 2: For the -sparse frequency-selective
-block-fading channel with prime , the previously defined

PAT scheme, when used with pilots and DASD, yields an
achievable rate that obeys .
Hence, PAT is spectrally efficient for this channel.

Proof: In our proof, instead of considering a specific bin-
ning function , we consider the error performance averaged
over all possible random binning assignments and establish that

9For ease of presentation, we have ignored the flooring ���� and ���� and
the flooring error can be made negligible by choosing a large �.

the average error approaches zero. For a given support hypoth-
esis , the DASD computes the support-conditional channel
estimate and the corresponding WMD codeword estimate from
which the composite message bits are obtained, which we write
as . There are two situations under which the DASD
terminates, producing the final estimate : i) when

and , or ii) when . Here we use
to denote the last of the hypotheses. Note that, in all

other cases, an error is detected, and the DASD continues under
a different hypothesis .

We now upper bound the probability that the DASD infers
the wrong information bits, i.e., that . Say that
denotes the value of used to produce , i.e.,

. Notice that either 1) or 2) . In the
latter case, the support detector fails to detect the true support
when either 2a) and , where the
error was missed, or 2b) . Finally, notice that, if event
2b occurs, the DASD must have (falsely) detected an error under
the true support hypothesis, i.e., . Thus we can
partition the error event into three mutually exclusive
events:

E1) and ,
E2) and both and

.
E3) s.t. both and

.
We now analyze each of these three events.

Notice that E1 is the event of a data-decoding error under the
correct support hypothesis (i.e., ). We recall that the
correct-support-hypothesis case was analyzed in Section III-C,
under which PAT with decoupled decoding was found to be
spectrally efficient, having an achievable rate that obeys

. Thus, the probability of E1 can
be made arbitrarily small for any rates and such that

.
E2 characterizes the event in which the true support is falsely

discarded and data-decoding error results later (under an in-
correct support hypothesis). Recall that, when the support hy-
pothesis is incorrect, we cannot guarantee a low probability
of data-decoding error when communicating at rates that scale
as . The key, then, is to make the support-error
probability small. Towards this aim, we bound E2 as shown in
(45)–(49) at the bottom of the page. Thus, the probability of
E2 can be upper bounded by the probability of decoding error

(45)

(46)

(47)

(48)

(49)
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under the correct support-hypothesis, which (like ) can
be made arbitrarily small for any achievable rate.

E3 describes the event that both the detection of a support-
error is missed and a data-decoding error results. Like with
E2, the probability of data-decoding cannot be made arbitrarily
small under an incorrect support hypothesis, and so we hope
that the false alarm error is small. Towards this aim, we
begin by upper bounding the probability of the event E3 as
shown in (50)–(53) at the bottom of the page, where we
used the union bound in (53). Now, to find the probability
of missing a support-error, we assume that, when ,
the auxiliary check estimate is uniformly distributed
over all possibilities of . This can be justified by letting the
function be constructed by a random binning assignment
of the codewords onto bins, and averaging over the
ensemble of random binning assignments [20]. In this case,
for any , the probability of missing the detection of a
support-error becomes

(54)

so that

(55)

So, when , by choosing large enough, we can make
averaged over all the random binning CRC assignments

arbitrarily small. This implies that there exists a binning func-
tion for which can be made arbitrarily small.

Notice that the rate sacrificed to make arbitrarily
small does not grow with SNR . As long as we choose
the SNR-dependent information rate ,
where is an achievable rate for the sparse channel
with known support described in Lemma 3, we can con-
struct a codebook that guarantees arbitrarily small values
for . This codebook, when used in
conjunction with the binning function , ensures that

can be made
arbitrarily small. Since is fixed with respect to SNR , the
information rate of DASD satisfies .

As we have seen, the DASD achieves the optimal pre-log
factor, albeit at complexity10 , which
may be larger than that of the optimal decoder specified in
Lemma 1. In fact, we do not propose DASD for practical use,
but rather as a constructive means of proving the achievability
of the optimal pre-log factor, since the optimal decoder is
difficult to analyze directly. In Section V, we present a sim-
pler suboptimal decoding scheme that also has performance
guarantees.

B. Pilot-Aided Support Decoding

In this section, we propose a pilot-aided support decoder
(PASD) with complexity11 , which is sig-
nificantly less complex than both DASD and the optimal de-
coder in Lemma 1. Since only pilots are used to infer the channel
support, the complexity of support estimation grows linearly in

. PASD, however, requires one additional pilot dimension rel-
ative to DASD (i.e., ) and is only asymptotically reli-
able (i.e., the probability of support-detection error vanishes as

but is not guaranteed to be arbitrarily small at any finite
) unless the channel support is fixed over fading blocks

.
1) Pilot-Aided Support Estimation: We now present an

asymptotically reliable method to infer the channel support
that requires only pilots per fading block. For this,
we use the following normalized pilot observations:

(56)

where due to the constant-modulus assump-
tion on the pilots. Recalling that is constructed from

rows and columns of , and that is constructed
from rows and columns of , we henceforth use

to denote the matrix that projects onto the

10Note that the term to the right of the sum in the WMD decoder metric (24)
must be computed for every triple ��� �� ��� �, where the complexity of each
computation is ��� �. Subsequently, these terms must be summed for each of
� support-vector hypotheses.

11As described below, for support estimation, � instances of �� must be
computed, each with complexity ���	 �. Then, for (support-conditional)
WMD decoding, � �� instances of the term after the sum in (24) must be com-
puted, each with complexity ��� �.

(50)

(51)

(52)

(53)
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column space of , and to denote its orthog-
onal complement.

The pilot-aided support estimator (PASE) infers the support
index as that which minimizes the energy of the projection error

:

(57)

Clearly, the complexity of PASE is proportional to
. Thus, while the complexity of PASE is much less

than the DASD proposed in Section IV-A, we note that its com-
plexity may be significantly larger than classical compressive
sensing algorithms like basis pursuit, whose complexity is poly-
nomial in [21].

Theorem 3: For the -sparse frequency-selective
-block-fading channel with prime , and the previously

defined PAT scheme with arbitrarily placed pilots,
the probability of PASE support-detection error vanishes as

.
Proof: We first note that, due to the Chebotarev theorem

[16], [17], each is full rank when is prime and
. Also, each column of is linearly independent

of all columns in that are not equal to . Thus, each
defines a unique column space. We note that this property

does not hold when .
A PASE support-detection error results when

. The probability of this event
can be upper bounded as shown in (58)–(62) at the bottom
of the page, where the probability of error in (60) was
upper-bounded by making the left side of the inequality smaller
via . The upper bound (62) follows
from and ,

which hold because and are projection matrices.

Taking the SVD and defining

, we can rewrite (62) as
follows and upper bound further:

(63)

(64)

(65)

(66)

Above, denotes the largest singular value in and

. Notice that at least one of the columns

of lies outside the column space of . The projection
of those columns onto the subspace orthogonal to the column
space of will be non-zero implying that is not

identical to and hence the largest singular value .

Since is independent of ,

the random variable is F-distributed
with parameters . Since the cumulative distribution
function (cdf) of an F-distributed random variable vanishes as
its argument (in this case, ) approaches zero, the

probability of a PASE error vanishes as .

We now make a few comments about Theorem 3. To perfectly
recover any arbitrary deterministic -sparse impulse response
from noise-free frequency-domain samples, [10] established
that pilot tones are both necessary and sufficient. In contrast,
to perfectly recover an -sparse probabilistic Rayleigh-fading
impulse response, Theorem 3 establishes that noise-free
pilot observations suffice with probability one. In particular, the

(58)

(59)

(60)

(61)

(62)
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condition ensures that the set of that cannot be
recovered by the PASE support detector has probability 0 with
respect to the Gaussian distribution on the nonzero entries of

. To see this, notice that , but
also that only if . In partic-
ular, if , then .
This implies that the set of vectors for which
is in the range space of has measure zero with respect
to any continuous distribution on . Similar results on the
recovery of probabilistic sparse signals have also appeared
in [22].

2) Pilot-Aided Support Decoding: For pilot-aided support
decoding, we assume that the transmitter uses the PAT scheme
defined in Section III-A with pilots and prime . At
the receiver, the PASE scheme described in the previous section
is used to estimate the sparse channel support and, based on this
estimate, support-conditional channel estimation and decoupled
data decoding are performed as described in Section III-C.

We now study the -achievable rate of PAT with PASD. For
some and SNR , let denote the information rate
for which the probability of decoding error can be made less
than . Lemma 4 characterizes for PAT with PASD.

Lemma 4: For the -sparse frequency-selective -block-
fading channel with prime , the previously defined PAT
scheme, when used with pilots and PASD, yields
an -achievable rate that, for any , obeys

.
Proof: From Theorem 3 we know that, under the condi-

tions stated in the lemma, there exists, for any , an SNR
above which the error of PASE is less than . In the case

that the support hypothesis is correct, the channel estimation
and decoupled decoding of Section III-C allow for the design
of a codebook that guarantees data decoding with error
probability less than at SNR . Furthermore, from Lemma
3, this codebook can be designed with a rate such that

. Putting these together, we obtain
the result of the lemma.

We note that, for any given finite SNR , it is not possible
to make , the PASD error probability, arbitrarily small. Thus,
the achievable rate of PAT with PASD equals zero for any
finite . This behavior contrasts that of PAT with DASD, which
had positive achievable rate for all .

Recall that, with the sparse block-fading channel model as-
sumed throughout the paper, the channel support changes
independently over fading blocks . We now consider a vari-
ation of this channel for which the support does not change12

over . For this fixed-support channel, it is possible to modify
PASE so that it recovers the support with an arbitrarily small
probability of error at any SNR , leading to the following
corollary of Lemma 4.

Corollary 3: For the -sparse frequency-selective -block-
fading channel with prime and a support that is
constant over the fading block index , the previously defined

12Although the support � remains fixed over �, the nonzero channel taps
��� still vary independently over �.

PAT scheme, when used with pilots and PASD, yields an
achievable rate that obeys .

Proof: For this channel, we use PASE with the metric

in place of the metric from (57). With
this modification, we obtain an error probability upper-bound
analogous to (66), but where the F-distributed random variable
has parameters . In particular,

(67)

For an F-distributed random variable with parameters
, the value of the cdf at any fixed point

decreases with . Thus, by choosing a suitably large , we
can make the PASE support-detection error arbitrarily small at
any SNR . The result of this lemma then follows from
Lemma 3.

V. CONCLUSION

In this paper, we considered the problem of communicating
reliably over frequency-selective block-fading channels whose
impulse responses are sparse and whose realizations are un-
known to both transmitter and receiver, but whose statistics
are known. In particular, we considered discrete-time channel
impulse responses with length and sparsity exactly ,
whose support and coefficients remain fixed over blocks of

channel uses but change independently from block to
block.

Assuming that the non-zero coefficients and noise are both
Gaussian, we first established that the ergodic noncoherent
channel capacity obeys for
any . Then, we shifted our focus to pilot-aided transmission
(PAT), where we constructed a PAT scheme and a so-called
data-aided support decoder (DASD) that together enable com-
munication with arbitrarily small error probability using only

pilots per fading block. Furthermore, we showed that the
achievable rate of this pair exhibits the optimal
pre-log factor, i.e., . The use of

pilots can be contrasted with “compressed OFDM channel
sensing,” for which pilots are known to suffice
for accurate channel estimation (with high probability) in the
presence of noise, and for which pilots are known to be
necessary and sufficient for perfect channel estimation in the
absence of noise.

Due to the complexity of DASD, we also proposed a simpler
pilot-aided support decoder (PASD) that requires only pi-
lots per fading block. For PASD, the -achievable rate

obeys, for any , with the pre-
viously considered channel, and its achievable rate
obeys when the sparsity pattern of
the block-fading channel remains fixed over fading blocks. We
note that, in recent work [11], [12], the authors have proposed
a loopy belief propagation based joint channel estimation and
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decoding scheme, with complexity , that shows em-
pirical performance that matches the anticipated pre-log factor
of .

The results of this work are only a first step towards the under-
standing of reliable communication over sparse channels. Im-
portant open questions concern rigorous analyses of the cases
that i) the inactive channel taps are not exactly zero-valued, ii)
the channel has at most (rather than exactly) active taps, iii)
the receiver does not know the channel statistics, iv) the channel
taps are correlated within and/or across blocks, and/or v) the ac-
tive channel taps are non-Gaussian.

APPENDIX

PROOF OF LEMMA 1

Proof: The maximum a posteriori (MAP) codeword esti-
mate is defined as shown in (68)–(69) at the bottom of the page,
where (69) results after applying Bayes rule and simplifying.

Assuming that codewords are uniformly distributed over , the
MAP codeword estimate reduces to the maximum likelihood
estimate (70)–(72) at the bottom of the page, where the de-
coupling in (71) is due to independent fading and noise across

fading-blocks. Recalling that, under the hypothesis ,
the pilot observations become

(73)

with , the posterior
is Gaussian. In particular,

(74)

where can be recognized as the -conditional pilot-aided
MMSE estimate of and as its error covariance:

(75)

(76)

Due to the linear Gaussian model (73), the MMSE estimate

is a linear function of : See equation (77)–(79) at the
bottom of the page where, for (79), we exploited the fact that

(68)

(69)

(70)

(71)

(72)

(77)

(78)

(79)



6632 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 10, OCTOBER 2011

(80)

(81)

(82)

(83)

(84)

has constant-modulus elements. Similarly, see (80)–(82) at
the top of the page.

Finally, since both pdfs in (72) are Gaussian, the integral can
be evaluated in closed form, reducing to (see, e.g., [23]) (83) at
the top of the page where does not depend on , and where

denotes the MMSE estimate of conditioned on

the data hypothesis and based on the pilot-aided prior sta-
tistics (74): See equation (84) at the top of the page.
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