
2292 IEEE COMMUNICATIONS LETTERS, VOL. 17, NO. 12, DECEMBER 2013

Throughput Optimal Multi-Slot Sensing Procedure for a Cognitive Radio
Umashankar G and Arun Pachai Kannu

Abstract—We consider a cognitive radio system with M
primary channels where users’ data transmissions follow a slotted
structure. We consider the scenario where the channel availability
statistics are correlated across channels as well as across time
slots. In each slot, the cognitive user (CU) senses channels one
by one until a suitable channel is found for data transmission.
CU adapts the data rate based on the channel’s fading gain.
We employ a Markov chain model to capture the channel
availability statistics across the slots. We address the problem
of finding optimal sensing order/procedure in every slot based
on the history of sensed channels (including the previous slots), in
order to maximize the total CU throughput over N -slots. Using
theory of optimal stopping, we derive recursive expressions for
the optimal multi-slot CU throughput and find the optimal multi-
slot sensing order/procedure using dynamic programming. We
also study few sub-optimal sensing procedures. Using numerical
results, we illustrate the gains in exploiting the correlation of
channel availability statistics.

Index Terms—Spectrum sensing order, cognitive radio
throughput, dynamic programming, Markov channel, optimal
stopping rule.

I. INTRODUCTION

COGNITIVE users perform spectrum sensing to find a free
licensed channel and use it for data transmission. Note

that channel in this paper refers to a slice of the frequency
spectrum. Due to hardware limitations, we consider a practical
constraint that a cognitive user (CU) can not sense more than
one channel simultaneously. We consider the scenario where
primary users have a slotted structure for data transmissions.
CU needs to have an order in which it senses the channels
until it finds a suitable channel available (free from primary
users) for data transmission. This sensing order problem was
first analyzed in [1] where the channel availability statistics
are assumed to be known as well as unknown but random.
Here optimization is performed to maximize CU throughput
under the assumption that the channel availability statistics
are independent across slots. However, measurement studies
have shown that there is correlation in the spectrum occupancy
across time and frequency [2], [3]. In our paper, we find the
optimal sensing procedure to maximize the CU throughput
over multiple time slots with the channel availability statistics
being correlated across time slots as well as across channels.
We also propose a low-complexity Greedy sensing approach.
Using numerical results, we show the throughput gains of
proposed approaches over existing procedures in the literature.

II. SYSTEM MODEL

Primary users’ data transmission follow a slotted structure
as shown in Figure 1. Let M be the number of primary
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Fig. 1. Slot structure for N = 3 slots.

channels and their fading SNR values are assumed to be i.i.d.
across channels and slots, with exponential distribution of
mean parameter Γ. In each slot, CU keeps sensing channels
one by one until it finds a suitable channel for its data
transmission. We assume that CU can neither go back to
transmit on a previously skipped channel nor proceed to
transmit on an un-sensed channel. Suppose, in a given slot,
CU starts data transmission after sensing k channels, then
the data rate (reward) obtained for that slot is given by
rk = D−kD̃

D log(1 + γ) where D is slot duration, D̃ is per-
channel sensing duration and γ is the SNR of the channel CU
chose for data transmission. For convenience, defining τ = D̃

D
and cn = 1− nτ , we have rk = ck log(1 + γ).

We consider the scenario where the spectral occupancy
statistics are correlated across both channels and time slots.
Channels’ busy-free status is represented using a M -length
binary string which we refer as the availability state of the
channels. Let Qn denote the channels’ availability state at
the nth time slot where Qn = q corresponds to the binary
string of 2M − q with q ∈ {1, · · · , 2M}. Let µ0 denote
the initial probability vector of size 2M , with its qth entry
being the probability Pr{Q0 = q}. Since µ0 specifies the
initial joint probability mass function, it provides the complete
characterization of initial channel availability statistics. We
use Markov chain model as in [3], [4] to capture the time
correlation of channel availability statistics. State transitions
across slots happen in Markovian manner with pm,j denoting
the conditional probability of state in next slot Qn+1 = j
given current state Qn = m where m, j ∈ {1, · · · , 2M}. We
are interested in maximizing the total CU throughput over N
slots, by finding the order of channels to be sensed in every
slot and the corresponding SNR thresholds to stop sensing
when a free channel is found. Our multi-slot throughput opti-
mization problem faces two major challenges, namely partial
observability and tradeoff between present slot reward (rates)
and future slots’ rewards. Addressing these issues, we find the
optimal sensing procedure using dynamic programming. For
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Fig. 2. Sensing Procedure Tree for single slot, 3 channel case.

unslotted systems, with random sensing order, [5] solved the
problem of when a CU should access/release/skip a channel
based on fading conditions.

III. OPTIMAL SENSING PROCEDURE

A. Preliminaries

Consider the sensing procedure optimization over a single
slot (N=1). In this case, the sensing procedure can be denoted
by a tree as in Figure 2. Each node in the tree is denoted
by the pair (channel index, reward threshold). The channel
index specifies the channel to be sensed when we arrive at
that node. If the sensed channel is free and the instantaneous
reward (data rate based on SNR of that channel) is above the
threshold specified for that node, sensing stops. Otherwise,
we skip and proceed to the next node depending on the
outcome of the sensing. Clearly, when we reach the last
node in the sensing tree, we have to use that channel if
found free (i.e., the reward threshold is zero). Our goal is
to maximize the expected throughput of the cognitive user.
Let XP denote the expected rate we get when we find a
channel to be free (after k sensings) and stop if rk ≥ T
for some threshold T . To compute XP , we also need to
know the expected rate (denote by XS) we get when we skip
the currently sensed free channel when rk < T . We have,

XP =
∫
rk<T

XS
e−

γ
Γ

Γ dγ +
∫
rk>T

cklog(1 + γ) e
− γ

Γ

Γ dγ, which
can be rewritten as

XP = XSPr(rk < T )+TPr(rk > T )+cke
1
Γψ(

e
T
ck

Γ
) (1)

where ψ(x) =
∫∞
x

e−t

t dt. According to the optimal stopping
theory [1], the stopping threshold should be equal to the
expected future reward, i.e., T = XS , in which case,

XP = T + fk(T ), (2)

and the function fk(T ) := cke
1
Γψ( e

T
ck

Γ ) will be used later in
the throughput recursions.

The history of sensed channels is maintained using set R
and set S denote the list of yet unsensed channels, in a given
slot. For example if S = {1, 2} and R = {(3, F ), (4, B)} it
means that we have sensed channel 3 and found it to be free
and also sensed channel 4 and found it busy and the channels
remaining to be sensed are 1 and 2. The pair (S,R) denotes a
situation in our sensing process. Let X(S,R) denote the max-
imum expected throughput we get in that slot using the optimal

procedure after having reached the sensing situation (S,R).
Let X i(S,R) denote the maximum expected reward we get if
we choose to sense channel i from the set S and let T i(S,R)
be the corresponding optimal stopping threshold. As discussed
earlier, optimal stopping threshold is equal to the maximum
expected future reward, i.e., T i(S,R) = X(S\{i},R ∪
{(i, F )}). Using (2) and denoting the size of R by |R|, we

have the recursion, X i(S,R) = θi
(
f|R|+1(X(S\{i},R ∪

{(i, F )}))+X(S\{i},R∪{(i, F )})
)
+(1−θi)X(S\{i},R∪

{(i, B)}) where θi is the probability that channel i is free,
taking the history R into account. Now the required reward
becomes X(S,R) = maxi∈S X i(S,R). Note that setting
optimal thresholds T i(S,R) requires computation of max-
imum expected reward in a subsequent sensing situation
X(S\{i},R ∪ {(i, F )}). For each possible sensing tree, we
find the maximum throughput with the computation of stop-
ping thresholds done by backward recursion (from the final
nodes for which stopping thresholds are zero). Single-slot
optimal sensing procedure maximizing X({1, · · · ,M},∅) is
found by searching over all the possible sensing trees using a
dynamic program (similar to [1]).

B. Partial Observability

In the multi-slot sensing problem N > 1, we encounter the
partial observability situation. Since sensing in a slot stops
as soon as a free channel with suitable reward is found,
we may not know the exact channel availability state of
the current slot, resulting in a phenomenon known as partial
observability (PO). Nature of this PO depends on the sensing
history. Let Hn denote sensing history , up to time slot
n (including the sensings done in previous slots). PO class
denoted by C(Hn) ⊂ {1, · · · , 2M} is a collection of all the
possibilities of the current channel availability state Qn for
the given sensing history Hn. For instance, with M = 3
and H1 = {(1, F ), (3, F )} then we have (in binary format)
Q1 ∈ C(H1) = {111, 101}. We track the sensing history
using a belief vector. For the present slot n, belief vector µ is
composed of terms μn

k = Pr{Qn = k|Hn}, k = 1, · · · , 2M .
Some comments: 1) Belief vector needs to be updated after
each sensing. 2) Belief vector needs to be updated when we
move onto next slot using Markov process’s state transition
matrix. 3) Primary free probability for each channel (θi) has
to be computed using belief vector.

Denoting the entries in C(Hn) which correspond to chan-
nel i being free by C(Hn) ∩ {(i, F )}, we have θi(µ) =

Pr{channel i is free in slot n | Hn} =
∑

k∈C(Hn)∩{(i,F )} µn
k∑

k∈C(Hn) µ
n
k

.
Now, let us see how to update belief vector across slots.

Let μn+1
k denote the probability that the channel availability

state Qn+1 = k given sensing history Hn. Given that current
state is in PO class C(Hn), we have, due to Markovity,

μn+1
k = Pr{Qn+1 = k|Qn ∈ C(Hn)} =

∑
j∈C(Hn) pj,kµ

n
j∑

j∈C(Hn) µ
n
j

.

For notational convenience, we will use µu to denote µn+1 -
the across-slot belief vector update obtained above.

C. Throughput Recursion and Optimization

Let (S,R) be a sensing situation in the first slot where S
denotes set of channels available for sensing in the first slot



2294 IEEE COMMUNICATIONS LETTERS, VOL. 17, NO. 12, DECEMBER 2013

and the history of the sensing process is R (With notational
changes, the derivations can be carried out to a sensing
situation in any slot). The number of sensings already done in
the present slot is M−|S| where |S| denotes the size of S. Let
Xj(S,R,µ) be the maximum total expected reward we get
over the next j slots from the given sensing situation (S,R)
with the channel availability statistics given by the present
belief vector µ. We have X0(S,R,µ) = 0 and X1(S,R,µ)
is the single slot reward discussed in Section III-A. Note
that X1(∅,R,µ) = 0 and we are interested in maximizing
XN (D,∅,µ0) where D = {1, 2, ..,M} and µ0 denote the
initial channel availability statistics. For j > 1, the expected
optimal reward can be written as

Xj(S,R,µ) = X1(S,R,µ) + Fj−1(S,R,µ) (3)

where X1(S,R,µ) is the reward in the current slot and the
second term Fj−1(S,R,µ) is the total reward in the future
j − 1 slots. The optimal value of Xj(S,R,µ) is obtained
when the total sum is maximized. Here is where tradeoff
between present slot reward and future slot rewards arise, as
maximizing one term may not lead to the maximization of
other term. We have to maximize the sum together.

Let X i
j(S,R,µ) be the be the maximum expected reward

over next j slots if we sense the channel i ∈ S in the sensing
situation (S,R) and let T i

j (S,R) be the corresponding opti-
mal threshold to be used (for notational convenience, we have
suppressed the dependence on µ). Clearly, we have

i∗ = argmax
i∈S

X i
j(S,R,µ), (4)

Xj(S,R,µ) = X i∗
j (S,R,µ). (5)

Note that we need to find the optimal thresholds T i
j (S,R).

Towards that, we define F i
j (S,R,µ) as the reward in the

future j slots if we sense channel i ∈ S in situation
(S,R) of the current slot. Let us first derive the recursion
for the future reward term F i

j−1(S,R,µ). When we sense
the channel i ∈ S, three possible events can happen. (1)
Channel i is free with probability θi(µ) and instantaneous
rate r̃ = cM−|S|+1 log(1 + γ) is above threshold T i

j (S,R).
In this case we stop sensing in that particular slot and use
channel i. For convenience, we use the shorthand notation
T i
j (S,R) := T and Pr{r̃ > T i

j (S,R)} := g̃(T ). (2) Channel
i is free but reward is below threshold T i

j (S,R). In this case,
we continue sensing in that slot. (3) Channel i is not free and
continue sensing. So we have the recursion,

F i
j−1(S,R,µ) = θig̃(T )Xj−1(D,∅,µu) +

θi[1− g̃(T )]Fj−1(S\{i},R∪ {(i, F )},µf ) +

(1 − θi)Fj−1(S\{i},R∪ {(i, B)},µb) (6)

where µu in the first term denotes the across-the-slot be-
lief vector update, µf in the second term is the within-
slot-update based on sensing history R ∪ {(i, F )}, and µb

in the third term is the within-slot-update based on sens-
ing history R ∪ {(i, B)}. In the following, belief vector
update should be implicitly understood from the context.
Now, the boundary conditions are given by Fj(S,R,µ) =
Xj−1(D,∅,µu), if S = ∅ and j > 1 and Fj(S,R,µ) =
0, if j ≤ 1. Using (1), the single slot reward is computed as

X i
1(S,R,µ) =
θi
{
[1− g̃(T )](X1(S\{i},R∪ {(i, F )},µf ) + T g̃(T )

+ fM−|S|+1(T )
}
+ (1− θi)X1(S\{i},R∪ {(i, B)},µb)(7)

Using (6) and (7), we get X i
j(S,R,µ) = (1 −

θi)
{
X1(S\{i},R ∪ {(i, B)},µb) + Fj−1(S\{i},R ∪

{(i, B)},µb)
}

+ θi
{
g̃(T )[T + Xj−1(D,∅,µu)] +

fM−|S|+1(T )
}

+ θi[1 − g̃(T )] ×
{
X1(S\{i},R ∪

{(i, F )},µf ) + Fj−1(S\{i},R ∪ {(i, F )},µf )
}

.
Differentiating w.r.t T and setting the term to zero we
get the optimal threshold

T i
j (S,R) = X1(S\{i},R∪ {(i, F )},µf )−Xj−1(D,∅,µu)

+ Fj−1(S\{i},R∪ {(i, F )},µf ) (8)

= Xj(S\{i},R∪ {(i, F )},µf )−Xj−1(D,∅,µu)

With this optimal threshold, we have X i
j(S,R,µ) =

θi
{
X1(S\{i},R ∪ {(i, F )},µf ) + fM−|S|+1(T

i
j ) +

Fj−1(S\{i},R∪ {(i, F )},µf )
}
+ (1 − θi)

{
X1(S\{i},R∪

{(i, B)},µb) + Fj−1(S\{i},R ∪ {(i, B)},µb)
}

. Setting

Y1 = Xj(S\{i},R ∪ {(i, F )},µf ), Y2 = Xj−1(D,∅,µu)
and Y3 = Xj(S\{i},R ∪ {(i, B)},µb), we have
X i

j(S,R,µ) = θi(Y1 + fM−|S|+1(Y1 − Y2)) + (1 − θi)Y3.
Using elementary calculus, it can be shown that X i

j(S,R,µ)
is an increasing function of Y1, Y2 and Y3. Hence maximizing
the terms Y1, Y2 and Y3 independently, we have

X i
j(S,R,µ) = (1− θi)Xj(S\{i},R∪ {(i, B)},µb) +

θi
{
fM−|S|+1(T

i
j (S,R)) +Xj(S\{i},R∪ {(i, F )},µf )

}
.(9)

To summarize, for a given sensing situation in the present
slot, we have derived the maximum expected total throughput
over next j slots given by (5) using recursion given in (9)
and optimal stopping thresholds given in (8). In order to
find the multi-slot optimal sensing procedure, we need to
carry-out throughput optimization for each and every possible
sensing situation and search for the procedure which results
in maximal throughput over N slots. This search can be
accomplished using dynamic programming as an extension
of the single-slot optimization discussed earlier and is similar
to the travelling salesman problem. It is worth noting that
once we have reached a given sensing situation/history, the
order in which we had sensed the channels to reach that
situation does not affect the future reward from that situation.
The search complexity for M− channel N− slot optimization
grows exponentially with MN .

D. Suboptimal procedures

Greedy algorithm: We propose a greedy algorithm, where
in each slot, we maximize the expected rewards for only the
immediate next slot. Specifically, given the belief vector µu

based on partial observability after sensing in n slots, we
maximize X1(D,∅,µu) for (n + 1)th slot. Here, the search
complexity grows exponentially with M .
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Fig. 3. Effect of Markov transitions uncertainty Parameter ε.
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Fig. 4. Comparison for the transition matrix P (0.05, [2, 2, 2, 3, 4, 5, 7, 7]).

Steady State sensing: Using the steady state probability
vector of the Markov chain, we design single-slot sensing
procedure as done in Section III-A and follow the same
procedure in all slots. This procedure will be optimal if the
channel availability statistics are i.i.d. across slots [1], but sub-
optimal, if there is correlation of channel-availability across
slots. There is a one-time search whose complexity grows
exponentially with M .

Intuitive Sensing: Using the steady state probability vector
of the Markov chain, we can find the channels’ marginal avail-
ability probabilities - θi, i ∈ {1, · · · ,M}. Intuitive sensing [6]
senses channels in the descending order of their availability
probabilities. There is one-time complexity in sorting.

IV. NUMERICAL RESULTS

For numerical simulations, we consider the case of M = 3,
N = 4. With ε ∈ (0, 17 ) and an ordered set A of size 8
with entries from {1, · · · , 8}, we construct Markov transition
matrix P (ε,A) such that transition from state i to state
A(i) happens with probability 1 − 7ε and transition from
state i to other states happen with probability ε. In Fig. 3,
we plot the optimal throughput for the transition matrix
P (ε, [8, 1, 2, 3, 4, 5, 6, 7]) for various values of ε and compare

the performance with steady state sensing procedure. For small
values of ε (small uncertainty in state transitions across slots)
we see that multi-slot optimal procedure performs significantly
better than steady-state sensing. For higher values of ε, the
correlation of channel availability across slots gets reduced
and hence the loss in steady-state sensing is small.

We compare the throughput of the various approaches in
Fig. 4 along with genie aided throughput in which the state in
the previous slot was assumed to be completely known while
maximizing the reward for the current slot (and thus eliminat-
ing the problem of partial observability). As the steady state
sensing [1] and intuitive sensing [6] ignore the correlation of
channel availability statistics, they perform poorer compared to
our multi-slot optimal approach. We also note that the greedy
sensing procedure (whose complexity does not grow with N )
performs better than intuitive and steady state sensings.

To conclude, we considered the cognitive radio scenario
where channel availability statistics are correlated across time
and frequency and developed optimal sensing procedure to
maximize the cognitive throughput. We also proposed a low-
complexity Greedy sensing procedure. Numerical results show
gains of proposed techniques over existing methods.
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